Andrea Morichetta

University assistant (Postdoc)

+43 1 58801 184902

Google Scholar

last edited: 05.12.2022


Short CV

Andrea Morichetta joined the Distributed Systems Group of the Institute of Information Systems Engineering in January 2020 as a University assistant.

He received his Doctoral degree in Electrical, Electronics, and Communications Engineering in January 2020, in Politecnico di Torino in the Telecommunication Network Group. He worked under the supervision of Prof. Marco Mellia, with a grant fully funded by the Big-DAMA project. From 2017 to 2020, he collaborated with the SmartData@PoliTO center for data science and big data. In 2017 he visited, for a summer internship, Cisco in San Jose, CA. From January 2019 to July 2019, he was a visiting student at AIT, Vienna, Austria.

His research focuses on the intersection of intelligence and systems, combining data analysis and machine learning to distributed systems design. The work pays particular attention to unsupervised methodologies, emphasizing security and parallelization.

Research Interests

Teaching

Courses

No. Title Type
184.237 Distributed Systems VO, 3.0 ECTS
184.260 Distributed Systems Technologies VU, 6.0 ECTS
194.058 Project in Computer Science 1 PR, 6.0 ECTS
194.059 Project in Computer Science 2 PR, 6.0 ECTS
184.194 Seminar in Distributed Systems SE, 3.0 ECTS

Thesis & Project Supervision

I am willing to co-supervising bachelor and master thesis for motivated students interested in topics that match my research focus. For any proposal/question/idea don’t hesitate to contact me.

Supervised Theses

Co-Supervised Theses

Academic Activities

Reviewer

I have been official reviewer for

Conferences/Workshops

Publication co-chair for

I have been a PC member for

Awards and Honors

Publications

  1. Casamayor Pujol, V., Donta, P. K., Morichetta, A., Murturi, I., & Dustdar, S. (2023). Distributed Computing Continuum Systems–Opportunities and Research Challenges. In Service-Oriented Computing–ICSOC 2022 Workshops: ASOCA, AI-PA, FMCIoT, WESOACS 2022, Sevilla, Spain, November 29–December 2, 2022 Proceedings (pp. 405–407). Springer.
  2. Casamayor Pujol, V., Morichetta, A., Murturi, I., Kumar Donta, P., & Dustdar, S. (2023). Fundamental Research Challenges for Distributed Computing Continuum Systems. Information, 14(3). https://doi.org/10.3390/info14030198
  3. Li, K., Wang, X., He, Q., Yi, B., Morichetta, A., & Huang, M. (2022). Cooperative Multi-agents Deep Reinforcement Learning for Computation Offloading: A Mobile Network Operator Perspective. IEEE Internet of Things Journal.
  4. Bartelucci, N., Bellavista, P., Pusztai, T., Morichetta, A., & Dustdar, S. (2022). High-Level Metrics for Service Level Objective-aware Autoscaling in Polaris: a Performance Evaluation. In 2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC) (pp. 73–77). IEEE.
  5. Pusztai, T., Nastic, S., Morichetta, A., Pujol Vı́ctor Casamayor, Raith, P., Dustdar, S., … Zhang, Z. (2022). Polaris scheduler: Slo-and topology-aware microservices scheduling at the edge. In 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC) (pp. 61–70). IEEE.
  6. Pusztai, T., Morichetta, A., Pujol Vı́ctor Casamayor, Dustdar, S., Nastic, S., Ding, X., … Xiong, Y. (2021). A novel middleware for efficiently implementing complex cloud-native slos. In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD) (pp. 410–420). IEEE.
  7. Nastic, S., Pusztai, T., Morichetta, A., Pujol Vı́ctor Casamayor, Dustdar, S., Vii, D., & Xiong, Y. (2021). Polaris scheduler: Edge sensitive and SLO aware workload scheduling in cloud-edge-IoT clusters. In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD) (pp. 206–216). IEEE.
  8. Faroughi, A., Morichetta, A., Vassio, L., Figueiredo, F., Mellia, M., & Javidan, R. (2021). Towards website domain name classification using graph based semi-supervised learning. Computer Networks, 188, 107865.
  9. Pusztai, T., Morichetta, A., Pujol Vı́ctor Casamayor, Dustdar, S., Nastic, S., Ding, X., … Xiong, Y. (2021). Slo script: A novel language for implementing complex cloud-native elasticity-driven slos. In 2021 IEEE International Conference on Web Services (ICWS) (pp. 21–31). IEEE.
  10. Morichetta, A., Pujol, V. C., & Dustdar, S. (2021). A roadmap on learning and reasoning for distributed computing continuum ecosystems. In 2021 IEEE International Conference on Edge Computing (EDGE) (pp. 25–31). IEEE. [Preprint]
  11. Morichetta, A., Trevisan, M., Vassio, L., & Krickl, J. (2021). Understanding web pornography usage from traffic analysis. Computer Networks, 189, 107909.
  12. Nastic, S., Morichetta, A., Pusztai, T., Dustdar, S., Ding, X., Vij, D., & Xiong, Y. (2020). Sloc: Service level objectives for next generation cloud computing. IEEE Internet Computing, 24(3), 39–50.
  13. D’Alconzo, A., Drago, I., Morichetta, A., Mellia, M., & Casas, P. (2019). A survey on big data for network traffic monitoring and analysis. IEEE Transactions on Network and Service Management, 16(3), 800–813.
  14. Morichetta, A., Casas, P., & Mellia, M. (2019). EXPLAIN-IT: Towards explainable AI for unsupervised network traffic analysis. In Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data Communication Networks (pp. 22–28). [Presentation]
  15. Morichetta, A., Trevisan, M., & Vassio, L. (2019). Characterizing web pornography consumption from passive measurements. In International Conference on Passive and Active Network Measurement (pp. 304–316). Springer.
  16. Morichetta, A., & Mellia, M. (2019). LENTA: Longitudinal exploration for network traffic analysis from passive data. IEEE Transactions on Network and Service Management, 16(3), 814–827.
  17. Morichetta, A., & Mellia, M. (2019). Clustering and evolutionary approach for longitudinal web traffic analysis. Performance Evaluation, 135, 102033.
  18. Morichetta, A., & Mellia, M. (2018). Lenta: Longitudinal exploration for network traffic analysis. In 2018 30th International Teletraffic Congress (ITC 30) (Vol. 1, pp. 176–184). IEEE. [Presentation]
  19. Faroughi, A., Javidan, R., Mellia, M., Morichetta, A., Soro, F., & Trevisan, M. (2018). Achieving horizontal scalability in density-based clustering for urls. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 3841–3846). IEEE. [Presentation]
  20. Ciociola, A., Cocca, M., Giordano, D., Mellia, M., Morichetta, A., Putina, A., & Salutari, F. (2017). UMAP: Urban mobility analysis platform to harvest car sharing data. In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1–8). IEEE.
  21. Morichetta, A., Bocchi, E., Metwalley, H., & Mellia, M. (2016). Clue: Clustering for mining web urls. In 2016 28th International Teletraffic Congress (ITC 28) (Vol. 1, pp. 286–294). IEEE. [Presentation]