
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024 5069

A Comprehensive Deep Learning Library Benchmark
and Optimal Library Selection

Qiyang Zhang , Xiangying Che , Yijie Chen , Xiao Ma , Member, IEEE, Mengwei Xu , Member, IEEE,
Schahram Dustdar , Fellow, IEEE, Xuanzhe Liu , Member, IEEE, and Shangguang Wang , Senior Member, IEEE

Abstract—Deploying deep learning (DL) on mobile devices has
been a notable trend in recent years. To support fast inference
of on-device DL, DL libraries play a critical role as algorithms
and hardware do. Unfortunately, no prior work ever dives deep
into the ecosystem of modern DL libraries and provides quanti-
tative results on their performance. In this paper, we first build
a comprehensive benchmark that includes 6 representative DL
libraries and 15 diversified DL models. Then we perform extensive
experiments on 10 mobile devices, and the results reveal the current
landscape of mobile DL libraries. For example, we find that the
best-performing DL library is severely fragmented across different
models and hardware, and the gap between DL libraries can be
rather huge. In fact, the impacts of DL libraries can overwhelm
the optimizations from algorithms or hardware, e.g., model quan-
tization and GPU/DSP-based heterogeneous computing. Motivated
by the fragmented performance of DL libraries across models and
hardware, we propose an effective DL Library selection framework
to obtain the optimal library on a new dataset that has been created.
We evaluate the DL Library selection algorithm, and the results
show that the framework at it can improve the prediction accuracy
by about 10% than benchmark approaches on average.

Index Terms—Benchmark, deep learning, library selection,
mobile devices.

I. INTRODUCTION

D EEP learning (DL) has become an indispensable func-
tional module for today’s smartphones, widely adopted in

applications like input method, AR/VR, voice assistant, etc [1],
[2]. A noteworthy trend is that more and more DL inference
tasks are now shifting from cloud datacenters to smartphones,

Manuscript received 14 March 2023; revised 23 July 2023; accepted 27 July
2023. Date of publication 4 August 2023; date of current version 4 April 2024.
This work was supported in part by the National Key R&D Program of China
under Grant 2020YFB1805500, and in part by the National Natural Science
Foundation of China under Grants 62032003, 62102045, and U21B2016. A
preliminary version of this paper appears as a conference paper in proceedings
of the 31st Annual International World Wide Web Conference (WWW) 2022
[DOI: 10.1145/3485447.3512148]. Recommended for acceptance by X. Han.
(Corresponding author: Xiao Ma.)

Qiyang Zhang, Xiangying Che, Yijie Chen, Xiao Ma, Mengwei Xu, and
Shangguang Wang are with the State Key Laboratory of Networking and Switch-
ing Technology, Beijing University of Posts and Telecommunications, Beijing
100876, China (e-mail: qyzhang@bupt.edu.cn; xyc@bupt.edu.cn; yijiechen@
bupt.edu.cn; maxiao18@bupt.edu.cn; mwx@bupt.edu.cn; sgwang@bupt.edu.
cn).

Schahram Dustdar is with the Computer Science heading the Research Divi-
sion of Distributed Systems, TU Wien, 1040 Wien, Austria (e-mail: dustdar@
dsg.tuwien.ac.at).

Xuanzhe Liu is with the School of Computer Science, Peking University,
Beijing 100871, China (e-mail: xzl@pku.edu.cn).

Digital Object Identifier 10.1109/TMC.2023.3301973

making a case for low user-perceived delay and data privacy
preservation with the support of on-device DL. For example, it
is reported that the DL-embedded apps on Google Play market
have increased by 60% from Feb. 2020 to Apr. 2021, and those
apps contribute to billions of downloads and user reviews [3],
[4].

Running inference (or prediction) task in a fast way is the
intuitively basic demand to on-device DL, as many of them are
deployed for continuous user interactions. It is also fundamen-
tally challenging because DL models are known to be very com-
plex and cumbersome [5], [6], [7]. Consequently, optimizing the
inference performance has been the theme of both academia [1],
[3], [8] and industry [9], [10] in recent years.

The inference performance of on-device DL is affected by
many factors. Existing literature that aims to quantitatively
understand the performance mostly focuses on hardware and
models, leaving the software (DL execution engines or DL
libraries) underexplored. These libraries share the same goal:
executing the inference task solely on smartphones. Yet, soft-
ware also plays a critical role in speeding up the on-device DL
inference, e.g., up to 62,806× gap between vanilla and fine-
tuned implementation [11]. Furthermore, due to the severely
fragmented ecosystem of smartphones [12], there exists a mass
of heterogeneous DL library alternatives for app developers [3],
[4], making it difficult and labor-intensive to compare their
suitability into specific models.

To gain in-depth understandings of the performance of mod-
ern DL libraries, we first build a comprehensive benchmark for
on-device DL inference, namely MDLBench. The benchmark
includes 6 popular, representative DL libraries on mobile de-
vices, i.e., TFLite, PyTorchMobile, ncnn, MNN, Mace,
andSNPE [13], [14], [15], [16], [17], [18]. It contains 6 DL mod-
els compatible with all above DL libraries, 8 models compatible
with at least 3 above DL libraries, and 1 model compatible
with 2 DL libraries, spanning from image classification, object
detection, to NLP. Compared to existing AI benchmarks, our
benchmark triumphs at the aspect of rich support for various DL
libraries and models. In addition to the completeness, we also
instrument the DL libraries to obtain underlying performance
details such as per-operator latency, CPU usage, etc. Those
details allow us to peek into the intrinsic features of those DL
libraries and therefore provide more insightful implications to
developers.

Based on our benchmark, we perform extensive experiments
to demystify the performance of DL libraries on various models

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5585-6613
https://orcid.org/0009-0003-1009-9921
https://orcid.org/0009-0002-7911-5646
https://orcid.org/0000-0001-5742-8890
https://orcid.org/0000-0001-6271-6993
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0002-7908-8484
https://orcid.org/0000-0001-7245-1298
mailto:qyzhang@bupt.edu.cn
mailto:xyc@bupt.edu.cn
mailto:yijiechen@bupt.edu.cn
mailto:yijiechen@bupt.edu.cn
mailto:maxiao18@bupt.edu.cn
mailto:mwx@bupt.edu.cn
mailto:sgwang@bupt.edu.cn
mailto:sgwang@bupt.edu.cn
mailto:dustdar@dsg.tuwien.ac.at
mailto:dustdar@dsg.tuwien.ac.at
mailto:xzl@pku.edu.cn

5070 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

(15 in total) and hardware (10 smartphones that are equipped
with CPU/GPU/DSP). Through the experiments, we make the
following interesting and useful observations as follows:

(1) The performance of the 6 DL libraries benchmarked
is severely fragmented across different models and hardware
(§3.1): There is no One-Size-Fits-All DL library that performs
best on all scenarios (model ⊗ device), yet each DL library has
at least one best-performing scenario. Even for the same model,
there are different DL libraries that perform the best on different
devices.

(2) The impacts of DL software may overwhelm the
model/algorithm designs and hardware capacity (§3.2 & 3.3):
Designing a more lightweight model structure, model quantiza-
tion (FP32 to INT8), and using mobile GPUs/DSPs with high
parallelism are common ways to speed up on-device inference.

(3) Cold-start inference of DL libs is significantly slower than
warm inference (§3.4): On average, the first inference for each
session is about 10.8× and 25.7× slower than the following
ones on CPU and GPU, respectively. Diving deeper, we find
that the memory preparation stage contributes to the most of
the overhead, which includes expanding the loaded weights to
proper memory locations and reserving memory for intermediate
feature maps.

(4) During the evolution of DL libraries, performance bugs
are introduced for many times (§3.5): By benchmarking the
weekly version of TFLite and ncnn since early 2018, we
find that the overall performance of DL libraries is improving
yet becomes relatively stable since 2020.

Among the above observations, the severely fragmented infer-
ence performance of libraries across different models and hard-
ware is a critical but unexplored issue. In practical applications,
developers usually use one library to run different models [4].
When the models do not fit the libraries accurately, the infer-
ence performance will be significantly degraded and even user
experience will be compromised. For example, as one of the
most commonly used models, vgg16 in Table III shows a 54.3×
inference time gap between the best and the worst libraries.
Moreover, one app usually integrates more than one library
(as one app is usually developed by different engineers, who
introduce different libraries), leaving the space for improving
the inference performance by selecting the most proper library
for each model of an app. No prior work has dived deep into
the inference-time oriented library selection issue for models.
In this paper, we seek to address this issue, aiming at optimizing
the inference time of models.

Selecting the most optimal libraries for different models faces
a key challenge. To obtain the optimal library for models, the
inference time of different libraries should be obtained. Yet
measuring the inference time on real-world apps is costly, or even
infeasible due to the high inference time overhead, especially
for the worst-performing library. To deal with this challenge,
we propose a prediction-based library selection framework to
select the most proper library for each model with low time
overhead. The library selection framework can train a pre-
diction model to select the optimal library directly based on
the characteristics of each model, instead of selecting based
on the inference performance after substantial measurements.

However, the prediction-based library selection framework re-
quires a dataset recording the inference performance of running
the same models on different libraries. However, there is no
off-the-shelf dataset that can be used directly. Even MDLBench
only provides fewer same models on the libraries. To address this
concern, we create a dataset that contains 1127 state-of-the-art
models with 13 operator types and configurations. These models
can run on 5 popular DL libraries, i.e., TFLite, ncnn, MNN,
Mace, and PyTorchMobile [13], [15], [16], [17], [18]. For
fairness, this dataset also ensures that the same models can
be generated from different libraries. We perform extensive
experiments based on the dataset by MDLBench automatically
and obtain the inference time of models offline, which are the
basis of the library selection model in this framework. Our main
contributions are as follows.
� We design and implement MDLBench, a fully auto-

matic, comprehensive benchmark for DL libraries. The full
benchmark suite and measurement results used in this work
are available.1

� We conduct extensive experiments with MDLBench on
diverse hardware devices and models. For the first time,
the results reveal a complete landscape of the current
DL library ecosystem. We also summarize the insightful
observations and practical implications.

� We propose a prediction based library selection framework
for models to derive the most proper library with low time
overhead. To enable the prediction based library selection
framework, a new dataset that contains 1,127 models with
13 operator types and configurations has been created.

� We implement and evaluate the proposed framework for
models, and demonstrate that it can improve the prediction
accuracy by about 10% than benchmark approaches on
average.

II. BENCHMARK & METHODOLOGY

MDLBench is a benchmark aimed to understand the impacts
of DL libraries on the on-device DL performance. It has the
following advantages over existing AI benchmarks.
• Rich support: Table I summarizes the DL libraries

(6 in total), models (15 in total), and hardware processor
(CPU/GPU/DSP) MDLBench currently supports. Being able to
test many DL libraries under various contexts is critical to obtain
a complete landscape of the DL library ecosystem, because
the performance optimization is quite ad-hoc to models and
hardware. Among the large amount of DL libraries available
for developers, we select 6 most representative ones from a
“market” perspective. We follow the prior works [4] to detect the
DL libraries used in 16,000 Android apps we crawled in Mar.
2021 from Google Play. Among the 676 DL apps identified,
we find the most popular DL libraries are TFLite (70.5%),
TensorFlow (7.8%), ncnn (7.2%), caffe (4.4%), MNN (4.1%),
PyTorchMobile (3.8%), Mace (1.2%). We filter TensorFlow and
caffe, as their support for smartphones are deprecated a few years
ago and has been merged into the corresponding lightweight

1https://github.com/UbiquitousLearning/

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: COMPREHENSIVE DEEP LEARNING LIBRARY BENCHMARK AND OPTIMAL LIBRARY SELECTION 5071

TABLE I
SUPPORTED DL LIBRARIES AND MODELS OF MDLBench

Fig. 1. Overall architecture of our work includes two tiers: the first tier shows
the workflow of MDLBench and the second tier shows the library selection
framework.

implementation, i.e., TFLite and PyTorchMobile. We further
include SNPE into MDLBench, as it’s a vendor-specific (Qual-
comm) DL library while all above are not. The models we use
come from two sources. One is the model zoo of TensorFlow and
PyTorch [19], [20]. The other is by using the built-in converters
of each DL library to convert models to different formats [15],
[16], [17], [18]. MDLBench also incorporates a module to au-
tomatically check the equivalence of the same model generated
for different DL libraries.

Workflow: The first tier of Fig. 1 shows the overall workflow
of MDLBench. For each testing, the desktop-side benchmark
iterates over each DL library. It first pushes the library and

TABLE II
TESTED DEVICES AND THEIR SPECIFICATIONS

corresponding models generated as aforementioned to the de-
vices through adb [36]. Next, the device cleans the system
environment by killing other apps in background and sets the
system configurations (CPU frequency, thread number, etc).
Following prior work [37], [38], we always use 4 big cores to
run the DL libraries as it’s often the best-performing setting. The
device then loads the library and model into memory to warm
up, and executes the inference by N times (50 by default). The
testing results will be written to device storage and retrieved to
desktop.

Devices: Table II shows the devices used in our measure-
ment. It includes 10 different device models with various SoCs
(Snapdragon series, Kirin, Helio) and GPUs (Adreno series and
Mali series), where the currently selected smartphones are still
representative to reflect the hardware heterogeneity.

Based on MDLBench and the diverse mobile devices, we
perform extensive experiments and analyze the results. The

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

5072 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 2. Best-performing DL library (smallest inference time) with different
models and devices.

theme of this measurement is to quantitatively understand the
performance discrepancy of different DL libraries, and how the
inter-play with the impacts from algorithm and hardware.

III. PERFORMANCE ANALYSIS AND IMPLICATIONS

This section presents our analysis of DL libraries for smart-
phone. The theme of this measurement is to quantitatively under-
stand the performance discrepancy of different DL libs, and how
the inter-play with the impacts from algorithm and hardware.
Besides, we also explore two rarely touched topics in mobile
community: what is the performance of the first inference (cold
start) of different DL models, and how does the performance
of DL libs evolve across time. Finally, we show implications to
different roles in the mobile DL ecosystem.

A. Performance Fragmentation

Fig. 2 summarizes the best-performing DL library (by color),
i.e., the DL library with the smallest inference time when running
different models on heterogeneous devices. We observe that the
performance of DL libraries across models and hardware devices
is severely fragmented.

(1) There is no one-size-fit-all DL library for optimal perfor-
mance across models and hardware:

Each DL library has at least one best-performing scenario, ex-
cept thatPyTorchMobiledoes not support GPU acceleration.
Even for the same model, its corresponding best-performing DL
library may change across different hardware. For instance, the
best-performing DL libraries of inceptionV3 are SNPE, ncnn,
and Mace on GP5, OP9, and RN9, respectively.

Such high performance fragmentation mainly attributes to two
facts. First, mobile hardware ecosystem is highly fragmented in
consideration of their Big.Little Core architecture, cache size,
GPU capacity, etc. Second, the model structure is also hetero-
geneous. Implementing depth-wise convolution operator [39] is
totally different from traditional convolution operators as they
have different cache access patterns. Overall, the fragmentation
of models and hardware forces the software-level DL infer-
ence optimization especially model- and hardware-specific. To
obtain the optimal performance, DL library developers need
to hand-craft each operator at very low-level programming
interface, heavily relying on assembly language and NEON
instructions. While being able to fully exploit the capacity of
specific hardware, such implementation cannot be generalized
well to different hardware platforms. For example, ncnn has
44 different types of implementation for convolution operation,
each fitting to different execution contexts like kernel size,
hardware architecture, etc. Due to the high manual program-
ming efforts, there is no oracle DL library optimized for each
scenario.

(2) The performance gap of DL libraries can be large:
The ”gap” is defined as the ratio of inference time of two

DL libraries (the longer one divided by the shorter one). The
numbers in parentheses are average values. Surprisingly, though
those DL libraries are all specifically designed and optimized for
mobile devices, the performance gap can be quite severe. For
instance, for the same model vgg16, the gap between different
libraries and smartphones is as high as 54.3×, and even the
smallest gap between the best and the second best is 1.5×. On
average, the gap between the best-performing to the worst one
is 7.4×, and to the 2nd-best one is 1.9×.

(3) GPU backend choices further exaggerate the fragmenta-
tion: Even on the same GPU, there are different backend choices
implemented by DL libraries. For example, MNN implements
three backends: Vulkan, OpenGL and OpenCL [40], [41], [42].
Interestingly, as shown in Fig. 2(b), different GPU backend
choices also fit different models and devices. This is somehow
surprising because Vulkan in MNN is mainly used for cross-
platform compatibility (e.g., desktop), while OpenGL/OpenCL
are mobile-specific programming interfaces highly optimized
for mobile devices [41]. Such phenomenon attributes to both
the underlying design of backends and how DL developers
implement the DL operators atop the backends.

(4) With software heterogeneity, the model structure is not
the sole factor that determines their relative performance: We
deem that model complexity does affect the inference time,
e.g., the computation complexity represented by floating-point
operations (FLOPs) and the number of models parameters. In
fact, the complexity can also be affected by the structural hetero-
geneity, since heterogeneity makes on-device optimization more
difficult. For example, although mobilenetV2 and mnasnet have
similar FLOPs (300 million versus 315 million) and parameters

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: COMPREHENSIVE DEEP LEARNING LIBRARY BENCHMARK AND OPTIMAL LIBRARY SELECTION 5073

Fig. 3. Average inference time of mobilenetV2 and mnasnet with different
libraries on MI11.

(3.4 million versus 3.9 million), their performances vary a
lot across DL libraries. As shown in Fig. 3, squeezenet runs
faster than mobilenetV2 with SNPE, PyTorchMobile, while
mobilenetV2 runs faster with other DL libraries. The reason of
such behavior can be these libraries adapt to a wide variety of
operators and the operators are implemented in different ways.
The same operator even has different latency because the same
operator has fewer implementations on one library. For instance,
convolution operators employ different algorithms depending
on the hyperparameters, such as Winograd for 3×3 and direct
convolution for 5×5 convolution [43].
† Summary The best-performing DL library is highly frag-

mented across models and hardware. Such fragmentation may
even overwhelm the model designs and hardware capacity im-
provement. To pursue optimal performance in a mobile DL app,
the developers need to incorporate different DL libraries and
dynamically load one based on the current model and hardware
platform. Such a methodology is rarely seen in practice as it
incurs significant overhead to both software complexity and
developing efforts. A more lightweight system is desired to bring
together the best performance of different DL libraries.

B. Impacts of Quantization

Quantization has become a common practice to deploy DL
models on mobile devices. There are different levels of quanti-
zation, e.g., FP16, INT16, INT8, etc. Among them, INT8-based
quantization is known to achieve the best trade off among model
accuracy and on-device speedup. Therefore, we mainly study
INT8-based performance on CPU/GPU/DSP.

Benefit brought by INT8 quantization is under expectation:
Fig. 4 summarizes the best inference performance across DL
libraries on different model representations and hardware. It
shows that quantization indeed brings inference speedup in most
scenarios. However, the speedup (0.8×–3.0×) is much less than
the theoretical expectation (4× due to the NEON support in
Android [42]). In certain cases, the INT8-based inference is
even slower than FP32, e.g., with squeezenet and vgg16 on M11
CPU. Furthermore, whether quantization can accelerate model
inference also relies on the underlying hardware, i.e., the SoCs
and the processor.

We dive into the source code of those DL libraries and identify
the following reasons. (1) Modern mobile SoCs also have good
support for FP processing. (2) FP32-based tensor operations are
better tunned than INT8, according to our observations to the
commit history of those DL libraries. (3) Overhead of converting
between INT8 and FP32 can incur nontrivial overhead. For

example, re-quantization is essential in the final softmax layer
of most classification models.
† Summary Not every model can be accelerated through

INT8 quantization, and the situation may vary across different
hardware devices and processors. There exists great potential at
software level to accelerate the inference of quantized models.

C. Impacts of Hardware

We then investigate whether and to what extent can more
powerful CPUs or heterogeneous processors (GPU/DSP) on
smartphones can accelerate DL inference. The results are shown
in Fig. 4.

Newer generations of mobile SoCs can mostly accelerate the
inference, yet not in every case: As the most representative
SoC series of mobile devices, new generation of Qualcomm
Snapdragon comes out every one or two years. As shown in
Fig. 5, from the Snapdragon 430 to 888, the overall performance
of the three libraries (TFLite, MNN, SNPE) shows a similar
trend of improving. However, there are cases when newer SoC
runs slower than the old ones, e.g., Snapdragon 870 versus 855
onTFLite, even though 870 is equipped with stronger CPU and
faster memory access speed. This is mainly because Snapdragon
855 is a more popular SoC for which the DL libraries are highly
optimized.

GPUs can not always accelerate DL inference: For most cases
of FP32-based models, GPU can indeed bring inference speedup
by 1.4×–1.9× compared to CPU. However, in certain cases like
mobilenetV1 and vgg16 on MI11, GPU even runs slower than
CPU (up to 2.3×). On INT8-based models, GPU can hardly
bring any benefit.

There are following primary reasons. First, mobile GPUs
are mainly designed for rendering instead of general-purpose
computing. Their computing power is highly constrained due to
the battery life consideration [44]. Second, the DL libraries are
not as well optimized for GPUs as CPUs. During experiments,
we observe that the arithmetic processing units inside GPU
cores are often underutilized. Third, mobile GPUs often do not
have native support for INT8 data format, therefore the actual
inference falls back to FP32. Fourth, there lack GPU support for
some operators (e.g., SQUEEZE on TFLite), and those operators
will fall back to run on CPUs, which incurs nontrivial overhead
for data copy among CPU and GPU.2

† Summary Our findings motivate DL library developers to
focus on GPU-side optimization [37], including supporting
more types of operators and single-op performance. It also
motivates DL researchers to design the models suitable for GPU
computing, that is, the operators in the models with a large
number of parallel features as much as possible, and reduce
high memory access operators that are not good for parallel
operations.

DSP can significantly accelerate INT8 model in most cases:
Fig. 4 also shows that running on mobile DSP can reduce the
inference time of INT8 model by 2.0×–12.9×. This is mainly

2Though mobile CPU and GPU share the same memory unit, their memory
spaces are separated by OS and cannot be accessed mutually.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

5074 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 4. Optimal inference speed among all deep learning libraries for RN9 and MI11. ”T”, ”N”, ”S”, ”P”, ”M1”, and ”M2” are short for TFLite, ncnn,
SNPE, PyTorchMobile, Mace, and MNN respectively as the best-performing DL libraries. ”V”, ”C”, ”G” indicate different GPU backends. “C/G/D”: mobile
CPU/GPU/DSP. The subscripted 32 and 8 represent different model precision, i.e., float32 and int8, respectively. The height of the bar represents the inference
time of best-performing library. Note that, for DSP, we leave out the performance of vgg16 with SNPE since the model does not work with DSP on MI11.

Fig. 5. Performance across different SoCs.

because Qualcomm DSP has been equipped with AI capabilities
such as HTA and HTP [45], which are integrated with Hexagon
vector extension (HVX) acceleration. Meanwhile, the Winograd
algorithm is used to accelerate the convolution calculation on
DSP. In fact, the energy saving of DSP is even more significant
than inference speed (not shown in the Figure) according to our
measurements.

However, there are a few cases that DSP performs worse than
CPU (mobilenetV1/V2 on MI11). This is mainly because MI11
uses Snapdragon 888 SoC, which is a relatively new chip that
the DL libraries are not currently well tuned for.
† Summary In most cases, more powerful CPUs and accel-

erators (GPU and especially DSP) can speed up the model
inference. However, there are cases that DL libraries perform
even worse on those hardware. In other words, the current DL
libraries can not fully exploit the capacity of each hardware. Our
findings motivate DL library developers to focus on optimization
on heterogeneous processors, including supporting more types
of operators and single-op performance. It also motivates DL
researchers to design the models suitable for GPU computing
and reduce high memory access operators that are not good for
parallel operations.

D. Cold-Start Inference

The above results are all based on “warm” execution, i.e.,
the continuous inference after the first 5 rounds of inference.

Fig. 6. Ratio of cold-start inference to warm inference. Numbers are averaged
across all DL models.

However, “cold-start” inference, i.e., the first inference begin-
ning from model loading, is also important because for many
apps the inference only happens once. In addition, cold-start
inference is also important when apps expectedly crash and need
to recover the DL functionality as fast as possible.

Cold-start inference is significantly slower than warm in-
ference: Fig. 6 shows how much times (×) slower cold-start
inference is on CPU and GPU averaged across all models on
two mobile devices. Overall, cold-start inference is much slower
than warm inference, i.e., 1.3×–37.7× on CPU and 1.4×–45.0×
on GPU.

Memory preparation contributes to the largest overhead in
cold-start inference: To investigate the reasons of slow cold start,
we dive into the source code of ncnn and identify the workflow
of the cold-start inference. It consists of three major steps:
loading model from disk, memory preparation, and running
inference. The memory preparation main refers to expanding
the loaded weights to proper memory locations and reserving
memory for intermediate feature maps to speed up the later
inference. For example, both img2col [46] and Winograd [47]
implementation of convolution operation require to transform
the original convolution kernel matrix to a different shape.

Fig. 7 quantitatively shows the breakdown of cold-start in-
ference of ncnn on 5 models and 2 devices. As observed,
memory preparation is the one that accounts for the largest
proportion of cold-start inference of all models, i.e., 67% on
CPU and 91% on GPU on average. In fact, we observe that
memory preparation is implemented in a single thread in ncnn
and other DL libs, therefore cannot benefit from the multi-core
system of mobile SoCs. Additionally, memory preparation for

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: COMPREHENSIVE DEEP LEARNING LIBRARY BENCHMARK AND OPTIMAL LIBRARY SELECTION 5075

Fig. 7. Breakdown of cold-start inference time.

Fig. 8. Inference performance evolvement across time of TFLite tested on HM
device.

GPU inference even takes more time than on CPU because of
the complicated model, i.e., the code needs to be compiled to
shader before executing on GPU [48].
† Summary Optimization of cold-start inference is a rarely

explored topic, but can be important in many apps that only need
to execute model once each time. Potential solutions include
speeding up memory preparation using multiple threads and
generating pipeline to run model loading (I/O-intensive), mem-
ory preparation (memory-intensive), and inference (compute-
intensive) simultaneously.

E. Longitudinal Analysis

We then longitudinally analyze how the performance of DL
libraries evolves across time. We select 2 DL libraries that have
the longest open source history and test their performance on the
commits at the beginning of every week from Mar./Jul. 2018 to
Jul. 2021 (80,637 commits in total) respectively. For simplicity,
we only show test models (mobilenetV1/V2 and squeezenet) on
CPU and GPU.

Overall, the performance of DL libraries are continuously
improving in early years, but becomes relatively stable since
2020: As shown in Fig. 8, the performance of TFLite and
ncnn are improving: taking mobilenetV2 (FP32 format) as an
example, its inference time on CPU/GPU has reduced from
203.6 ms/203.8 ms to 21.9 ms/7.2 ms with TFLite, and
30.3 ms/72.7 ms to 19.5 ms/19.7 ms with ncnn, respectively.
Similar observation is also made on squeezenet and the INT8
models. The performance improvement is mostly a cliff-like
change in a few commits, rather than a regular and slow change.
However, since 2020, the performance of DL libraries is rela-
tively stable and there are very few nontrivial improvements. It

indicates that the DL library community is shifting their focus
from performance optimization to other aspects, e.g., supporting
more types of operators.

We also observe that a commit may only improve the per-
formance of certain models. For example, the 20275fe commit
on TFLite in Jun. 6, 2019 reduces the inference time of
mobilenetV2 by 13.6×, but hardly affects the inference time
of squeezenet. The reason of such “partial improvement” is the
same as the fragmentation of DL libraries as mentioned in §3.1.
† Summary The current open-source ecosystems of DL li-

braries sometimes introduce performance bugs, possibly due to
a comprehensive benchmarking tool available for developers to
test their commits. Indeed, due to the performance heterogeneity
of DL libraries on different models and hardware, it is almost
impossible to fully eliminate performance bugs. We propose two
possible solutions. One is to set up an environment with diverse
device models periodically (e.g., per day) running a comprehen-
sive benchmark like MDLBenchto timely detect performance
bugs. Another one is to build a static analysis tool that can
identify commits with potential bugs based on history.

F. Implication

From the above analysis, our findings paint a promising pic-
ture of DL library, motivating future research and development.
In this section, we discuss actionable implications to different
roles in the mobile DL ecosystem as follows:
� For DL app/model developers (1) It is extremely chal-

lenging in selecting a proper DL library due to the severe
fragmentation. To pursue optimal performance under each
scenario, they have to embed different DL libraries into
the apps and load one dynamically based on the model and
hardware settings. (2) A more lightweight model (fewer
FLOPs) does not always run fast. The impacts from soft-
ware at deployment needs to be considered during the
model designing.

� For DL library engineers and researchers (1) It is time to
review the pros and cons of different DL libraries and work
out a solution that can integrate their wisdom in a unified
manner. Otherwise, the fragmentation may continuously
exist for a long term as fixing it can take huge amount of
engineering efforts. Tools that can automatically identify
such bugs timely, either through dynamic or static analysis,
are urgently needed. (2) The cold-start inference time is a
rarely touched topic, but can be important in apps that only
need to execute models for one time per session. Potential
optimizations include using multi-thread to speed up mem-
ory preparation and operator-level pipeline of different
initialization stages. (3) Performance bugs bring negative
impacts to the open-source ecosystem of DL libraries but
are difficult to be fully eliminated due to the aforemen-
tioned fragmentation.

IV. DEEP LEARNING LIBRARY SELECTION FRAMEWORK

Developers always use these libraries designed and optimized
for smartphones to build their DL apps. A suitable library for
models of apps is specially selected for the smallest inference

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

5076 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

TABLE III
PERFORMANCE GAPS OF DIFFERENT DL LIBRARIES

time, based on the observation that one app may incorporate
multiple libraries [4]. However, selecting the optimal library for
models is a very challenging task, as measuring the inference
time of running models on the integrated libraries is extremely
costly. So we are motivated to propose an efficient library
selection framework to predict an optimal library for models.

The second tier of Fig. 1 shows the library selection frame-
work in detail. We first create a large-scope dataset including
existing common multiple models, asMDLBench only provides
a small number of models due to the unsupported operators
in model conversion between libraries. Based on the collected
model zoo, we utilizeMDLBench to obtain the inference reports
of running multiple models on different libraries. We consider
the library with the smallest inference time reported by each
model as the optimal library. We collect inference reports to
make a new library selection-oriented dataset, which is used
as the foundation for library selection. We propose a library
selection framework by training a CatBoost-based selection
model and further improving its performance by tuning the
parameters.

A. Dataset Creation

We first create a representative large-scale dataset, as there
is no off-the-shelf large dataset that we can use directly. To
this end, we design and implement a random model generator
and consider the common models used in apps. Specifically, we
randomly transform model structure and output by automatically
obfuscating models to generate Tensorflow [49] and Pytorch [50]
format considering the common models (i.e., mobilenet [21],
vgg [25], and MLP [10]) and their variants. As shown in
Table IV, we also consider the models consisting of any primitive
operator type and the various edge connections between opera-
tors. In total, our dataset contains 1,127 models with 13 types of
operators. We also ensure the richness and validity of our dataset.
Fig. 9 shows the probability density distribution of parameters
and FLOPs in the dataset. The FLOPs range from 900 k to 11 G
and the parameters range from 400 k to 30 M. The results are
consistent with the fact that more than 65% of the models in

TABLE IV
PROPORTION OF OPERATORS COVERED IN THE DATASET

Fig. 9. Density distribution of the number of parameters and FLOPs in the
models (i.e., the probability density distribution randomly generated for each
model).

the industry fall into this above range [4]. In other words, the
models in the dataset can be applied in real-world apps. The same
model types in different DL libraries are also generated from the
Model converter suite to ensure the equivalence of models from
the dataset.

These models can run on 5 popular DL libraries, i.e.,TFLite,
ncnn, MNN, Mace, and PyTorchMobile [13], [15], [16],
[17], [18]. Compared to the benchmark, SNPE is not included
due to the incompatibility. Although the workflow in the bench-
mark incorporates Model converter suite, an increase in the num-
ber of test models heightens the risk of conversion failure [51].
Additionally, SNPE’s closed-source nature complicates its uti-
lization. Its primary support for Snapdragon platforms further
limits cross-platform deployment [18]. In order to maintain the
reliability and validity of our experiments, we opted for libraries
that are compatible with as many models as possible.

B. Improved Library Selection Framework

As shown in the second tier of Fig. 1, we extract inference
reports running models in the dataset on the libraries as the
foundation of library selection. Note that feature extraction is
low-cost, easy to identify, and low in information distortion. We
assemble these key features, as outlined in Table V, into unique
vectors, including memory usage, computational demands, and
model structure, leveraging a suitable feature representation
method [52]. Memory usage includes the model parameters and

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: COMPREHENSIVE DEEP LEARNING LIBRARY BENCHMARK AND OPTIMAL LIBRARY SELECTION 5077

TABLE V
REPRESENTATION OF KEY FEATURES INFLUENCING INFERENCE PERFORMANCE

generated intermediate results, such as feature maps. We employ
FLOPs as the standard to measure computational complexity.
Model structure encompasses the type and quantity of vital
operators, such as Conv2D, DepConv, Mul, and BiasAdd.

Here we employ the Boosting-based algorithms for the library
selection task, since the algorithms assign discrete variables to
finite clusters and encode them in Oneshot. Compared with sim-
ilar algorithms such as XGBoost [53], CatBoost automatically
merges discrete features into internal ones and applies them
to training models. CatBoost also overcomes the overfitting
caused by the gradient bias of traditional Boosting training.
Furthermore, the collected reports maybe have a severe imbal-
ance due to the optimization differences among libraries. To
address the issue, we consider a comprehensive loss including
two aspects: misselection-based cross-entropy and performance
error between prediction and ground truth.

Cross-entropy is always used in prediction for multi-
classification tasks. Motivated by its advantages, misselection-
based cross-entropy for library selection tasks is summarized
in (1)

L(yi, f(xi)) =
1

d

d∑

j=1

wj ∗ yj log2pi,j , (1)

where xi represents a unique feature vector. yi represents the
actual optimal library of input xi. d represents the number of

libraries. pi,j = efj(xi)

∑d
i=1 efj(xi)

∈ (0, 1) represents the probability

that the selection result of input xi is the j library, where f(xi)
is the optimal output obtained by xi. Due to the large difference
in the optimization on different DL libraries, there exists an
unbalanced number in each library of the dataset. Therefore,
we introduce the misselection cost as a penalty. For fairness,
DL libraries with smaller number data ensure slightly larger
weights by tuning different cost weights to DL libraries. With
the misselection cost, where w = [w0, w1, . . .wj] is the weight
of the misselection cost.

Algorithm 1: PSO-W-CatBoost.

Performance error Lxi,yi
is used to evaluate the performance

between the prediction and ground truth, which is defined in (2)

Lxi,yi
=

txi,yi

txi,best
+ λ0, (2)

where λ0 is the error penalty factor. txi,yi
is the predicted optimal

inference time. txi,best is the actual optimal inference time.
To address the issue of setting parameters caused by manual

design and grid parameter search, we introduce Particle Swarm
Optimization (PSO) to improve the performance of CatBoost
algorithm. Obviously, selecting the suitable hyperparameters is
a very challenging task since CatBoost has more than 20 hyper-
parameters such as the estimators, the learning rate, etc [54].
We exploit PSO to optimize the library selection algorithm,
as CatBoost assumes that each selection has the same weight.
It is difficult to set the weights of CatBoost in the case of
unbalanced selection, so we dynamically obtain the global opti-
mal selection to make balance the performance as possible. As
shown in Table III, due to the large performance error between
the libraries, the sensitivity of misselection is related to the
performance error. For instance, if the misselection inference
time is lower than the average one, misselection may seriously
weaken user experience. We accept the results when the actual
selection performance is close to the best. Therefore, we employ
performance loss as the evaluation of library selection task.

The fitness function reflects the loss of individual extremum
to the library selection tasks. The larger the fitness is, the smaller
the loss is; vice versa. The testing accuracy can directly reflect
the performance of the selection algorithm. Simultaneously, the
performance loss is used to evaluate the misselection. Therefore,
fitness functionF (t) includes the inverse of the performance loss

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

5078 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

and the testing accuracy at time t, as shown in (3)

F (t) = λ1
M

∑M
i=1 Lxi,yi

+ λ2Racc, (3)

where λ1 and λ2 are weights, Racc =
∑M

i=1 I(yi=f(xi)
)

M is testing
accuracy, I(yi = f(xi)) equals to 1 only when the chosen library
is the best. M is the testing number.

Here we regard key parameters (e.g., the depth of decision tree
d, learning rate lr, the penalty factor e, etc) as the particles of
PSO. In the iteration and weight tuning, the position and velocity
of each particle should be calculated and adjusted according to
the individual extremum and global optimal solution. In each
update, the magnitude and direction of the velocity are updated
according to the gap between the local and the global position,
and the local position is also updated according to the direction
change of the velocity. The velocity and position updates are
shown in (4) and (5), where t represents the time t, pbest and
gbest represent the local optimal and global optimal position
respectively, a1 and a2 represent random factors, w1, w2 and w3

represent the current velocity, local updating factor and global
updating factor optimization coefficient respectively. pi(t) is the
position of particle i at time t

vi+1(t+ 1) = wivi(t) + w2a1(pbesti(t)− pi(t))

+ w3a2(gbest− pi(t)), (4)

pi+1(t+ 1) = pi(t) + vi+1(t+ 1). (5)

The pseudocode of the improved PSO-W-CatBoost-based
algorithm is shown in algorithm 1. The input of the algorithm
is based on the model feature representation vector extracted
by feature engineering, and the output is the optimized selected
library. All parameters are initialized, and the optimal combi-
nation of parameters and weights is learned until t < τ . The
algorithm establishes the CatBoost predictor based on the above
training.

V. EVALUATION

In our experiment, we train high-accuracy library selection
models to obtain the optimal library on the built dataset, in
which the ratio of the training set to the test set is 7:3. The
complex unstructured model is converted to a unique feature
vector through feature construction and extraction. We choose
GP5 as the tested device from Table II to carry out experiments.
In the following, we further introduce benchmark algorithms,
evaluation metrics and discuss the experimental results.

A. Benchmark Algorithms

To evaluate the performance of the PSO-W-CatBoost algo-
rithm, three algorithms used in similar tasks are introduced as
benchmarks, which are listed as follows.
� Hierarchical Support Vector Machine [53] (labeled as
SVM) obtains the library selection by training the SVM
classifier based on the nodes in the decision tree.

� Extreme Gradient Boosting [54] (labeled as XGBoost)
minimizes the fitness function to obtain the library selec-
tion based on the generation and pruning of decision trees.

� Recurrent Graph Convolutional Network [55] (labeled
as RGCN) obtains the library selection by the encod-
ing/decoding of feature vector and graph relationship.
RGCN also converts high-dimensional graph relation-
ships into feature vectors and obtains the graph feature
from the feature vectors.

B. Metrics

We use the following metrics commonly used in classification
tasks to evaluate library selection tasks, as the two tasks have
similar targets. For the selection task, the Macro method [56] is
used to evaluate various accuracy of algorithms. The overall ac-
curacy is represented by the average accuracy of each selection.
� accuracy reflects the proportion of correctly selected li-

braries in all libraries. It’s the simplest and most intuitive
metric for the library selection task.

� precision directly reflects the proportion of the correctly
selected libraries in selected libraries.

� recall reflects the proportion of the selected libraries in
ground truth libraries.

� Fscore is a comprehensive metric considering Precision
and Recall simultaneously. It is a harmonic average of
precision and recall.

C. Experimental Results

To obtain a high-accuracy library selection and evaluate
the performance of the library selection framework, Fig. 10
shows the detailed selection results on the accuracy, precision,
recall, and Fscore. To sum up, the proposed framework can im-
prove the prediction accuracy by about 10% than benchmark ap-
proaches on average. From the perspective of service providers,
although the algorithm does not improve much compared to
other benchmarks, high-accuracy service provision not only
provides users with high-quality services but also generates great
benefits. As shown in Fig. 10, the performance of SVM and
XGboost is not as good as that of the PSO −W − CatBoost
algorithm. It is difficult for SVM to find a suitable kernel
function because conventional SVM can only solve the binary
classification problem. XGboost is better at dealing with low-
dimensional feature data and cannot deal with high-dimensional
data. Besides, we also deem that a similar observation is also
found on other smartphones.

As shown in Fig. 10(a), the PSO −W − CatBoost algo-
rithm has the highest accuracy. The performance of PSO −
W − CatBoost is better than that of PSO − CatBoost,
among which accuracy is improved by about 1.4%. That’s
because PSO −W − CatBoost focuses on weight tuning.
For example, the size N of PSO is set to 20, and the
optimal of PSO −W − CatBoost is wbest = {d = 8, lr =
0.38, e = [0.12, 0.15, 0.60, 0.27, 0.63]}. It is worth noting that
the accuracy of RGCN is not lowered much than that ofPSO −
CatBoost. However, it is lower than that of PSO − CatBoost
and PSO −W − CatBoost in terms of precision, as shown

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: COMPREHENSIVE DEEP LEARNING LIBRARY BENCHMARK AND OPTIMAL LIBRARY SELECTION 5079

Fig. 10. Comparison of Predictive Accuracy of Different Algorithms.
(a),(b),(c),(d) represents the accuracy, precision, recall, and F-score on different
benchmarks, respectively.

Fig. 11. Performance error loss change of PSO −W −CatBoost and
CatBoost.

in Fig. 10(b). It is also consistent with the Fscore in Fig. 10(d)
as Fscore is a harmonic average of precision and recall. In
addition, the distribution of the dataset is also not uniform. We
checked and observed that there are smaller samples in some
libraries such as Mace. It can be concluded that the RGCN
algorithm is dependent on the library with a large number of
models.

D. Analysis of Convergence

To verify the effectiveness of the weighted cost, we make a
comparison with CatBoost. It is worth noting that, CatBoost
abandons the tuning of classification cost compared with
PSO −W − CatBoost. Fig. 11 shows the performance error
loss change ofPSO −W − CatBoost andCatBoostwith the
training iteration, where the red line represents the convergence
number for PSO −W − CatBoost while the green repre-
sents CatBoost. The result explicitly shows that PSO −W −
CatBoost converges faster with a smaller iteration number than
CatBoost.

VI. RELATED WORKS

Mobile DL In recent years, there is a notable trend to move
DL inference into local devices instead of offloading to remote
servers [1], [8], [57], [58]. A fundamental challenge of this
trend is the constrained resources of smartphones. Therefore,
performance optimization has been a primary research direction
for both academia and industry [49], [50], [59]. There have
been some optimization research efforts addressed to reduce the
overhead of DL on smartphones, e.g., offloading, model quan-
tization and sparsity [60], [61], [62]. These solutions usually
either count on preprocessing or perform under lab simulations
on the data collected preciously from smartphones. Thus, our
work brings DL to smartphones in the real world and provides a
unified approach to easily compare performance among different
libraries. This work is motivated by many years of efforts at this
lane.

AI benchmarks There exist a few AI benchmarks for diversi-
fied scenarios, e.g., datacenter servers or edges, inference or
training, etc [63]. This work explicitly targeted at inference
on mobile devices. Besides, the ecosystem of on-device DL
libraries is much more fragmented than servers due to the high
fragmentation of mobile hardware. Furthermore, a number of
studies focus on DL libraries analysis. Amin et al. [64] com-
pared only the TFLite and PyTorchMobile in the terms
of robustness and adversarial attacks. Consequently, the results
are limited in small-scale project from a specific perspective.
Luo et al. [65] proposed the benchmark suite for evaluating the
abilities of mobile devices across different libraries. MLPerf [66]
proposed high-level rules for more flexible benchmark of the
libraries. Tang et al. [67] studied the behavior characteristics
of neural networks to bridge networks design and real-world
performance. There is still limited understanding about the
performance of DL libraries across heterogeneous smartphones.
Compared to similar benchmarks focusing on DL libraries,
MDLBench has richer support for various DL libraries and
models.

Empirical study of mobile DL One line of studies mainly focus
on DL apps/systems/models. Xu et al. [4] demystified how
smartphone apps exploit DL models by deeply analyzing An-
droid apps. Wang et al. [68] made efforts towards the evolution
of mobile app ecosystem. Andrey et al. [69] targeted at devices
and focused on running models with hardware acceleration of
smartphones. Although the studies have analyzed on device DL,
they lack a comprehensive understanding and benchmarking on
diverse libraries.

Library selection is a key but unexplored topic. There have
been related works in different algorithms in service selec-
tion. For instance, Pascal et al. [70] discussed selection based
on contextual scenarios, such as algorithm configuration and
scheduling. It also provides an overview of the relevant selection
algorithms for discrete and continuous problems. Sebastian et
al. [71] proposed a common approach to model evaluation
and selection. Basar et al. [72] focused on real-time machine
vision applications running on resource-constrained embedded
systems and proposed an adaptive model selection framework
to reduce the impact of system contention. It is worth noting that

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

5080 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

these works do not focus on the performances of DL libraries
across models and hardware. As a result, an orthogonal way
to guarantee better service is to select the optimal library. Our
work goes deep into the modern DL library ecosystem, providing
the most suitable DL libraries for models in apps, thus greatly
improving the utilization efficiency of DL libraries.

VII. CONCLUSION AND FUTURE WORK

In this work, we built the first comprehensive benchmark for
DL libraries and conducted extensive measurements to quanti-
tatively understand their performance. The results help reveal
a complete landscape of the DL libraries ecosystem. Atop the
observations, we summarize strong implications that can be
useful to developers and researchers. Based on these findings,
we propose the DL library selection algorithm to guarantee
better service. In the future, we will focus on the following three
potential directions along this line: (1) We will try to maintain
the platform based on the proposed benchmark suite to test
and analyze the measurement results; (2) We will further open
the measurement results to make it work properly for service
provision.

REFERENCES

[1] M. Xu, F. Qian, Q. Mei, K. Huang, and X. Liu, “DeepType: On-device deep
learning for input personalization service with minimal privacy concern,”
in Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., vol. 2,
no. 4, pp. 1–26, 2018.

[2] S. Manoharan and P. Natu, “Development of a framework for a collab-
orative and personalised voice assistant,” Electron. Government, Int. J.,
vol. 17, no. 1, pp. 96–104, 2021.

[3] M. Almeida, S. Laskaridis, A. Mehrotra, L. Dudziak, I. Leontiadis, and N.
D. Lane, ”Smart at what cost? characterising mobile deep neural networks
in the wild,” 2021, arXiv:2109.13963.

[4] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at deep
learning apps on smartphones,” in Proc. World Wide Web Conf., 2019,
pp. 2125–2136.

[5] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D. Lane,
“Embench: Quantifying performance variations of deep neural networks
across modern commodity devices,” in Proc. 3rd Int. Workshop Deep
Learn. Mobile Syst. Appl., 2019, pp. 1–6.

[6] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4700–4708.

[7] V. Pratap et al., “Scaling up online speech recognition using convnets,”
2020, arXiv: 2001.09727.

[8] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled cache
for mobile deep vision,” in Proc. 24th Annu. Int. Conf. Mobile Comput.
Netw., 2018, pp. 129–144.

[9] “Deep learning market - growth, trends, forecasts (2020–2025),”
2020. [Online]. Available: https://www.mordorintelligence.com/industry-
reports/deep-learning

[10] “Artificial intelligence market analysis report,” 2021. [Online]. Available:
https://www.grandviewresearch.com/industry-analysis/artificial-
intelligence-ai-market

[11] C. E. Leiserson et al., “There’s plenty of room at the top: What will drive
computer performance after Moore’s law?,” Science, vol. 368, no. 6495,
2020, Art. no. eaam9744.

[12] L. Wei, Y. Liu, S. Cheung, H. Huang, X. Lu, and X. Liu, “Under-
standing and detecting fragmentation-induced compatibility issues for
Android apps,” IEEE Trans. Softw. Eng., vol. 46, no. 11, pp. 1176–1199,
2020.

[13] “Performance measurement TensorFlow lite,” [Online]. Available: https:
//www.tensorflow.org/lite/performance/measurement

[14] “PyTorch mobile,” 2019. [Online]. Available: https://pytorch.org/mobile/
home/

[15] “Tencent ncnn deep learning framework,” 2018. [Online]. Available: https:
//github.com/Tencent/ncnn

[16] “Alibaba mnn deep learning framework,” 2019. [Online]. Available: https:
//github.com/alibaba/MNN

[17] “Xiaomi mace deep learning framework,” 2017. [Online]. Available: https:
//github.com/XiaoMi/mace

[18] “Snapdragon snpe deep learning framework,” 2017. [Online]. Available:
https://developer.qualcomm.com/sites/default/files/docs/snpe/overview.
html

[19] “Tensorflow model zoo,” 2020. [Online]. Available: https://github.com/
tensorflow/models

[20] “Pytorch model zoo,” 2020. [Online]. Available: https://pytorch.org/serve/
model_zoo.html

[21] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv: 1704.04861.

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[24] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[26] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.
Keutzer, “SqueezeNet: Alexnet-level accuracy with 50x fewer parameters
and mb model size,” 2016, arXiv:1602.07360.

[27] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 8697–8710.

[28] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “DenseNet: Implementing efficient convnet descriptor pyra-
mids,” 2014, arXiv:1404.1869.

[29] M. Tan et al., “MnasNet: Platform-aware neural architecture search for
mobile,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 2820–2828.

[30] S. Singh and S. Krishnan, “Filter response normalization layer: Eliminat-
ing batch dependence in the training of deep neural networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 11237–11246.

[31] S. C. Yurtkulu, Y. H. Şahin, and G. Unal, “Semantic segmentation with
extended DeepLabv3 architecture,” in Proc. 27th Signal Process. Commun.
Appl. Conf., 2019, pp. 1–4.

[32] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis., Springer, 2016, pp. 21–37.

[33] Y. Yin, H. Li, and W. Fu, “Faster-yolo: An accurate and faster object
detection method,” Digit. Signal Process., vol. 102, 2020, Art. no. 102756.

[34] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv: 1804.02767.

[35] L. Xu, X. Zhang, and Q. Dong, “CLUECorpus2020: A large-scale Chinese
corpus for pre-training language model,” 2020, arXiv: 2003.01355.

[36] D. Kim, “A study of user data integrity during acquisition of Android
devices,” Digit. Investigation, vol. 10, pp. S3–S11, 2013.

[37] M. Wang, S. Ding, T. Cao, Y. Liu, and F. Xu, “AsyMo: Scalable and
efficient deep-learning inference on asymmetric mobile CPUs,” in Proc.
27th Annu. Int. Conf. Mobile Comput. Netw., 2021, pp. 215–228.

[38] D. Cai, Q. Wang, Y. Liu, Y. Liu, S. Wang, and M. Xu, “Towards
ubiquitous learning: A first measurement of on-device training perfor-
mance,” in Proc. 5th Int. Workshop Embedded Mobile Deep Learn., 2021,
pp. 31–36.

[39] Y. Guo, Y. Li, L. Wang, and T. Rosing, “Depthwise convolution is all you
need for learning multiple visual domains,” in Proc. AAAI Conf. Artif.
Intell., 2019, pp. 8368–8375.

[40] G. Sellers and J. Kessenich, Vulkan Programming Guide: The Offi-
cial Guide to Learning Vulkan. Reading, MA, USA: Addison-Wesley,
2016.

[41] F. Mues, “Optimization of openGL streaming in distributed embedded
systems,” Tech. Univ. Dortmund, 2020, pp. 1–90.

[42] G. Jo, W. J. Jeon, W. Jung, G. Taft, and J. Lee, “OpenCL framework for
arm processors with neon support,” in Proc. Workshop Program. Models
SIMD/Vector Process., 2014, pp. 33–40.

[43] F. Jia et al., “CoDL: Efficient CPU-GPU co-execution for deep learning
inference on mobile devices,” in Proc. 20th Annu. Int. Conf. Mobile Syst.,
Appl. Serv., 2022, pp. 209–221.

[44] S. Chetoui and S. Reda, “Workload-and user-aware battery lifetime man-
agement for mobile SoCs,” in Proc. Des., Automat. Test Europe Conf.
Exhib., 2021, pp. 1679–1684.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

https://www.mordorintelligence.com/industry-reports/deep-learning
https://www.mordorintelligence.com/industry-reports/deep-learning
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.tensorflow.org/lite/performance/measurement
https://www.tensorflow.org/lite/performance/measurement
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
https://github.com/alibaba/MNN
https://github.com/alibaba/MNN
https://github.com/XiaoMi/mace
https://github.com/XiaoMi/mace
https://developer.qualcomm.com/sites/default/files/docs/snpe/overview.html
https://developer.qualcomm.com/sites/default/files/docs/snpe/overview.html
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://pytorch.org/serve/model_zoo.html
https://pytorch.org/serve/model_zoo.html

ZHANG et al.: COMPREHENSIVE DEEP LEARNING LIBRARY BENCHMARK AND OPTIMAL LIBRARY SELECTION 5081

[45] “Qualcomm hexagon,” 2021. [Online]. Available: https://en.wikipedia.
org/wiki/Qualcomm_Hexagon

[46] Y. Li, W. Wang, H. Bai, R. Gong, X. Dong, and F. Yu, “Efficient
bitwidth search for practical mixed precision neural network,” 2020, arXiv:
2003.07577.

[47] R. Wu, F. Zhang, Z. Zheng, X. Du, and X. Shen, “Exploring deep reuse
in winograd CNN inference,” in Proc. 26th ACM SIGPLAN Symp. Princ.
Pract. Parallel Program., 2021, pp. 483–484.

[48] R. Tornai and P. Fürjes-Benke, “Compute shader in image processing
development,” in Proc. 1st Inf. Technol. Data Sci., Debrecen, Hungar,
2020, pp. 6–8.

[49] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”
in Proc. 12th USENIX Symp. Operating Syst. Des. Implementation, 2016,
pp. 265–283.

[50] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” 2019, arXiv: 1912.01703.

[51] F. Plesinger et al., “Deepplayer: An open-source signalplant plugin
for deep learning inference,” Softw.: Pract. Experience, vol. 53, no. 2,
pp. 455–464, 2023.

[52] S. Boeschoten, C. Catal, B. Tekinerdogan, A. Lommen, and M. Blokland,
“The automation of the development of classification models and improve-
ment of model quality using feature engineering techniques,” Expert Syst.
Appl., vol. 213, 2023, Art. no. 118912.

[53] S. Huang, N. Cai, P. P. Pacheco, S. Narrandes, Y. Wang, and W. Xu, “Ap-
plications of support vector machine (SVM) learning in cancer genomics,”
Cancer Genomic. Proteomic., vol. 15, no. 1, pp. 41–51, 2018.

[54] T. Chen et al., “Xgboost: Extreme gradient boosting,” R Package Version
0.4–2, vol. 1, no. 4, pp. 1–4, 2015.

[55] F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional
networks,” Pattern Recognit., vol. 97, 2020, Art. no. 107000.

[56] H. Vandecasteele and G. Samaey, “Efficiency and parameter selection of a
micro-macro Markov chain Monte Carlo method for molecular dynamics,”
2022, arXiv:2209.13056.

[57] I. Leontiadis, S. Laskaridis, S. I. Venieris, and N. D. Lane, “It’s always
personal: Using early exits for efficient on-device CNN personalisa-
tion,” in Proc. 22nd Int. Workshop Mobile Comput. Syst. Appl., 2021,
pp. 15–21.

[58] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“SPINN: Synergistic progressive inference of neural networks over device
and cloud,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw., 2020,
pp. 1–15.

[59] H. Yeo, C. J. Chong, Y. Jung, J. Ye, and D. Han, “Nemo: Enabling neural-
enhanced video streaming on commodity mobile devices,” in Proc. 26th
Annu. Int. Conf. Mobile Comput. Netw., 2020, pp. 1–14.

[60] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615–629, 2017.

[61] B. Jacob et al., “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 2704–2713.

[62] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in Proc. 16th Annu. Int. Conf. Mobile Syst., Appl., Serv., 2018,
pp. 389–400.

[63] Q. Zhang et al., “A comprehensive benchmark of deep learning libraries
on mobile devices,” in Proc. ACM Web Conf., 2022, pp. 3298–3307.

[64] A. E. Abyane and H. Hemmati, “Robustness analysis of deep learning
frameworks on mobile platforms,” 2021, arXiv:2109.09869.

[65] C. Luo, X. He, J. Zhan, L. Wang, W. Gao, and J. Dai, “Comparison
and benchmarking of AI models and frameworks on mobile devices,”
2020, arXiv: 2005.05085.

[66] P. Mattson et al., “MLPerf training benchmark,” 2019, arXiv: 1910.01500.
[67] X. Tang, S. Han, L. L. Zhang, T. Cao, and Y. Liu, “To bridge neural

network design and real-world performance: A behaviour study for neural
networks,” in Proc. Mach. Learn. Syst., vol. 3, 2021, pp. 21–37.

[68] H. Wang, H. Li, and Y. Guo, “Understanding the evolution of mobile app
ecosystems: A longitudinal measurement study of Google Play,” in Proc.
World Wide Web Conf., 2019, pp. 1988–1999.

[69] A. Ignatov et al., “AI benchmark: Running deep neural networks on
Android smartphones,” in Proc. Eur. Conf. Comput. Vis. Workshops, 2018,
pp. 288–314.

[70] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” Evol. Comput., vol. 27,
no. 1, pp. 3–45, 2019.

[71] S. Raschka, “Model evaluation, model selection, and algorithm selection
in machine learning,” 2018, arXiv: 1811.12808.

[72] B. Kutukcu, S. Baidya, A. Raghunathan, and S. Dey, “Contention-aware
adaptive model selection for machine vision in embedded systems,” in
Proc. IEEE 3rd Int. Conf. Artif. Intell. Circuits Syst., 2021, pp. 1–4.

Qiyang Zhang is working toward the PhD degree in
computer science with the State Key Laboratory of
Networking and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications. He is also
a visiting student with Distributed Systems Group,
TU Wien from 2022 to 2023. His research interests
include mobile edge computing and edge intelligence.

Xiangying Che received the master’s degree in soft-
ware engineering from the State Key Laboratory of
Networking and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications. Her re-
search interests include cloud computing and mobile
edge computing.

Yijie Chen received the bachelor’s degree in software
engineering from Henan University, in 2022. Cur-
rently, she working toward the postgraduate degree
in computer science with the State Key Laboratory
of Networking and Switching Technology, Beijing
University of Posts and Telecommunications. Her re-
search interests include cloud computing and mobile
edge computing.

Xiao Ma (Member, IEEE) received the PhD degree
from the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China, in 2018.
She is currently a lecturer with the State Key Lab-
oratory of Networking and Switching Technology,
BUPT. From October 2016 to April 2017, she visited
the Department of Electrical and Computer Engineer-
ing, University of Waterloo, Canada. Her research
interests include mobile cloud computing and mobile
edge computing.

Mengwei Xu (Member, IEEE) received the bache-
lor’s and PhD degrees from Peking University, Bei-
jing, China. He is an Assistant Professor with the
Computer Science Department, Beijing University of
Posts and Telecommunications, Beijing. His research
interests cover the broad areas of mobile computing,
edge computing, and operating systems.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Qualcomm_Hexagon
https://en.wikipedia.org/wiki/Qualcomm_Hexagon

5082 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Schahram Dustdar (Fellow, IEEE) is a full professor
of computer science heading the Research Division of
Distributed Systems, TU Wien, Austria. He is the co-
editor-in-chief of the ACM Transactions on Internet
of Things and the editor-in-chief of the Computing
(Springer). He is also an Associate Editor of IEEE
Transactions on Services Computing, IEEE Transac-
tions on Cloud Computing, ACM Transactions on the
Web, and ACM Transactions on Internet Technology.
He serves on the editorial board of the IEEE Internet
Computing and IEEE Computer Magazine.

Xuanzhe Liu (Senior Member, IEEE) is an asso-
ciate professor (with tenure) with the School of
Computer Science at Peking University. His research
interests mainly fall in service-based software en-
gineering and systems. Most of his recent efforts
have been published with prestigious conferences
including WWW, ICSE, FSE, SIGCOMM, NSDI,
MobiCom, MobiSys, SIGMETRICS, and IMC, and
in journals including ACM Transactions on Software
Engineering and Methodology/ACM Transactions on
Information Systems/- ACM Transactions on Inter-

net Technology/Transactions on the Web and IEEE Transactions on Software
Engineering/IEEE Transactions on Mobile Computing/IEEE Transactions on
Services Computing. He is a senior member of the ACM, and a distinguished
member of the CCF. He serves as the corresponding author of this paper.

Shangguang Wang (Senior Member, IEEE) is a pro-
fessor with the School of Computer Science, Bei-
jing University of Posts and Telecommunications,
China. His research interests include service comput-
ing, mobile edge computing, cloud computing, and
satellite computing. He is currently serving as chair
of IEEE Technical Community on Services Com-
puting(TCSVC), and vice chair of IEEE Technical
Community on Cloud Computing. He also served as
general chairs or program chairs of 10+ IEEE confer-
ences, advisor/associate editors of several journals,

such as Journal of Cloud Computing, Journal of Software: Practice and Experi-
ence, International Journal of Web and Grid Services, China Communications,
and so on. He is a fellow of the IET.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 25,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

