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A B S T R A C T

Trust prediction facilitates the day-to-day functionality of diverse web-based applications, such as recommen-
dation systems, market advertising and anomaly detection. However, existing works heavily rely on user–user
trust interactions, which result in limited performance as the data sparsity. Previous studies have shown that
the trust relationship between users is significantly affected by the category of items that the users interacted. In
this paper, we propose a MetaTrust model, which generates redundant user-item interactions as the supplement
of user–user trust to alleviate the data sparsity on trust prediction. Specifically, we propose category-aware
metapaths, which generate abundant user–item–user interactions based on the common item category that
users have interacted with. Further, Long Short Term Memory (LSTM) networks are utilized to mine features
of multiple category-aware metapaths and their correlations. In order to filter the user–item–user interactions
that are not related to the current task, the real trust relationship between users are embedd in the network
with MLP. Finally, a multi-headed attention network is utilized to distinguish which metapath determines trust
prediction between the current pair of users. Extensive experiments on three real-world dataset show that our
proposed model can effectively achieve significant improvements over other competitive approaches and show
the potential interpretability of trust building.
1. Introduction

Trust prediction facilitates the day-to-day functionality of diverse
web-based applications, such as recommendation systems, market ad-
vertising, and anomaly detection. For instance, evidence suggests that
users on Epinions, a service recommendation site, are more likely to
seek advice from a trusted partner before purchasing the service [1].
The goal of trust prediction is to determine whether two partners share
a trust relationship based on prior behavioral interactions, thereby
reducing the risk associated with unpredictable future behavior of
both partners [2]. To help us overcome these perceptions of risk and
uneasiness, it becomes imperative to consider who and why we can
trust.

Most of the existing work on trust prediction mainly focuses on
extracting users’ trust properties from trust networks (e.g., trust inter-
actions between users) [3–6] and users’ behavioral preferences from
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historical interaction records (e.g., ratings of item by users). By as-
suming the independence of these two types of interaction information
from each other, earlier work has typically tackled trust interaction
information and behavioral interaction information separately. Trust
property-based approaches like STNE [3], OpinionWalk [4], and Neu-
ralWalk [5] take use of propagation mechanisms to predict trust re-
lationships among users. However, due to the sparsity of user–user
trust interactions, such methods fail to predict the trust relationships
of those user pairs without propagation paths. Behavioral preference-
based methods [7,8], factorize a large amount of user–item interaction
information into two low-rank matrices by matrix decomposition that
yields a latent representation of the user. Since the dimensions of latent
factor is determined by manual experience, these methods are prone to
produce inaccurate user representations that result in overfitting.
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Fig. 1. Illustrative example of a heterogeneous network.
As shown in Fig. 1(a)(b), there are various types of nodes in a
heterogeneous social network (HSN), including users, items, and cat-
egories. Users have distinct trust relationships with one another, and
items that users interact with belong to the same category or different.
Based on the interaction types between nodes, heterogeneous social
networks can be decomposed into homogeneous networks (e.g., trust
networks) and heterogeneous networks; the former solely contains
trust interactions between users, while the latter contains behavioral
interactions between users and items. In homogeneous networks, due
to the sparsity of the trust relationship, there is no sufficient prop-
agation path to determine the trust relationship between Doris and
Eric. In contrast, there are a large number of user–item interactions in
heterogeneous network. Generally, items in the same category usually
have similar functions and characteristics. As an example, Eric enjoys
playing soccer, whereas Doris enjoys playing table tennis. Table tennis
and soccer belong to the same category while indicating that Doris
and Eric have similar behavioral preferences for sports. Furthermore
according to the homophily theory, interpersonal trust is encouraged by
such similar behavioral preferences based on shared category items [9].
Therefore, adequate user–item behavioral interactions can serve as
complementary information to sparse user–user trust interactions that
jointly contribute to trust prediction [10,11].

However, it is a challenging task to fuse trust and behavioral interac-
tion information in HSN for learning an effective user representation as
following three critical issues. (1) Originating from the sparsity of trust
interactions (e.g., user–user), how to incorporate sufficient user–item
interaction information including ratings, reviews and categories of
items. These heterogeneous data reveal users’ behavioral preferences,
but it is a hard task to represent and fuse these high-dimensional and
multi-category data. (2) Due to the heterogeneity of HSN structures,
it is a challenge to preserve the structural features of user–user and
user–item interactions and their intrinsic correlations. (3) How to fuse
the semantic features of different structures to obtain informative user
representations that can then be utilized to infer the strength of trust
between users.

Recently, considering that metapaths can connect different types
of nodes, there has been significant interest in developing metapath
models for mining various node sequence features in well-known do-
mains, such as link prediction and recommender systems. Inspired
by the rich semantics of node sequences revealed through metapaths,
we exploit metapaths to portray fine-grained interaction information
in HSNs (as shown in Fig. 1(c)). To address the above challenges,
we propose a deep metapath-guided trust prediction model in HSN.
Specifically, we draw two metapaths based on behavioral preferences
and trust properties, where the former characterizes users’ multifaceted
behavioral preferences, while the latter can characterize users’ trust
properties based on trust propagation. Together, the double semantics
reflected by the two types of metapaths expose different facets of the
2

user’s characteristics. Then, embedding techniques are applied to map
the two heterogeneous metapaths into the same feature space; Further,
we employ Long Short-Term Memory (LSTM) networks and multilayer
perceptron (MLP) networks to extract metapath features, respectively.
Among them, the LSTM network is capable of parsing the semantics
of behavioral interactions of pairwise users, while the MLP network is
able to maximize the co-occurrence probability of neighboring nodes.
Finally, multiple metapath features are delivered into the multi-headed
attention network to capture the correlation between metapath features
and provide a reliable basis for the trust relationship between any two
users.

The main contributions of this paper are as follows.

• We formally propose a metapath-guided trust prediction approach
based on the fruitful behavioral interaction records and trust
interactions between users in heterogeneous social networks.

• To mine sufficient user–item interaction information, category-
aware metapaths are constructed and transformed into the same
space by embedding while preserving the original structure. The
sparsity of trust relationships is addressed.

• To preserve the heterogeneity of HSN structure, category-aware
metapath features and trust property-based metapath features
are mined through LSTM and MLP networks. Further, multiple
metapaths are fused through a multi-headed attention network to
obtain informative user representations for trust prediction.

• This is the first interaction-based metapath-guided trust predic-
tion model. The scalable experiments validated on three datasets
demonstrate that the proposed approach outperforms other com-
petitive baseline approaches with extraordinary excellence. More-
over, it can work well even with sparse or no trust interaction
information.

The remaining part of this paper is organized as follows. Section 2
describes the related work; Section 3 presents the specific steps of the
proposed model; Section 4 shows the practical experimental results;
Section 5 summarizes the whole work and points out the direction of
future research.

2. Related work

Prior works on trust prediction can be grouped into two main
categories: (1) trust prediction in homogeneous social networks; (2)
trust prediction in heterogeneous social networks.

2.1. Trust prediction in homogeneous social networks

The trust prediction approaches based on homogeneous social net-
works mainly assume the existence of different trust strengths between
two users. By exploiting the fact that propagation is one of the prop-

erties of trust, trust propagation mechanism is utilized to calculate the
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Table 1
Literature summary.

Category Approaches Trust propagation Context-aware information Behavior information

Trust prediction in
homogeneous social
networks

Web of trust [12] × ×
NeuralWalk [5] × ×
OpinionWalk [4] × ×
Guardian [13] × ×
Medley [14] × ×

Trust prediction in
heterogeneous social
networks

mTrust [15] × ×
C-DeepTrust [16] × ×
Context-aware trust [17] ×
Ante-trust [18] × ×
JMF [19] ×
MemTrust [20] × ×
d
a

indirect trust relationships without relying on the previous behavioral
interactions between two users.

Guha et al. [12] believes that social networking sites maintain a web
of trust, while arguing that trust and distrust are equally important.
The trust and distrust values between users are added to the atomic
propagation and cocitation operations to infer trust relationships be-
tween indirect users. To further identify the factors affecting trust
propagation, the approach proposed in [5] to estimate the factors
affecting the trust building relationship. First, WalkNet is employed
to assess single-hop trust values by learning the network parameters,
and Neuralwalk is then able to iteratively deduce indirect multi-hop
trust relationships. Furthermore, the trust values between users are
propagated through discounting and combining operations to obtain
more accurate results [4,21,22].

Different from the above manually set rules or complex trust fu-
sion operations in trust propagation, Lin et al. propose an end-to-end
framework that divides the associated trust relationships between users
into popularity trust and engagement trust. The corresponding prop-
agation mechanisms and social network structure are captured by
exploiting graph convolutional networks [13]. Furthermore, in order
to preserve the structural proximity in social networks, social trust
network embedding [3] are proposed, and structural balance theory is
utilized to infer the potential relationships between multi-hop users.
Given the presence of both positive and negative interactions in social
networks, a signed social network (SSN) is constructed. Subsequently,
diffTrbML is proposed to model SSNs and predict diverse trust val-
ues between users [23]. Lin et al. [14] contend that it is important
to predict social trust from dynamic social interaction. To explicitly
capture time-varying latent factors, attention mechanisms are exploited
to assign greater weight to recent social interactions. By fusing evolving
topological networks, social trust is predicted dynamically over time.

Since the explicit trust values between users are very sparse, the
above mentioned methods mainly speculate the trust relationship be-
tween indirect two users through trust propagation and trust transfer
patterns [24,25]. These methods face two drawbacks: (1) There is no
unified trust propagation mechanism, which lacks certain universality
due to the artificially established trust propagation rules; (2) For two
users without any common trust neighbor, the trust relationship cannot
be inferred.

2.2. Trust prediction in heterogeneous social networks

Due to the complexity of trust formation, The various node types
and relationships in heterogeneous social trust networks are exploited
for trust prediction. The types of nodes can be categorized as user
and item, and there are multiple kinds of relationships between them
(e.g., rating, review, helpful-rating) [26–28]. Such approaches can be
mainly classified into context-aware approaches and historical
behavior-based approaches [29–31].

The fact that people have multifaceted interests and have different
aspects of expertise, shows that users have varying levels of trust in
various social group. Tang et al. [15] argue that the difference in the
3

degree of expertise of users demonstrates the existence of heteroge-
neous trust relationships among users. And the strength of multifaceted
trust relationship is explored by applying matrix decomposition. Trust
can be built virtually based on contextual information, which can
effectively reflect the interaction context between users, e.g., time and
geographical location. The dynamic and static preferences of the users
are obtained in each context, and finally context-aware features are
fused and fed into the MLP network to obtain the final context-aware
latent feature for trust evaluation [16]. Considering that rich informa-
tion within a context also affects trust estimation, Zheng et al. [17]
add personal/interpersonal properties into the trust transfer model and
use matrix decomposition to compute trust relationships in the target
context.

Social science theory suggests that users with similar behaviors and
preferences are more likely to build trust relationships [32,33]. Mining
user behavior characteristics from users’ historical behavior records
is helpful for trust building. Huang et al. [19] modeled user–user
trust graph and user behavior auxiliary graph as heterogeneous social
networks. The joint manifold factorization (JMF) method is proposed to
share the common structure and patterns of the two graphs. The group-
level trust are predicted. Negi et al. [34] argue that there are multiple
link types in heterogeneous social networks and propose the corre-
sponding distance metric for each link type. Wang et al. [18] believe
that users’ attribute information has an impact on the establishment
of trust relationships, and treat users’ rating/review records of items
as users’ attribute information. Xu et al. [20] argue that the dynamic
behavioral preferences of users can provide strong evidence for trust
relationship establishment. The LSTM network is employed to extract
the behavioral features of users in multiple time periods, and then the
trust relationship between any two users is calculated by latent feature.

In Table 1, we present a detailed analysis of the strengths and weak-
nesses of prior research, highlighting their respective contributions to
trust prediction in online social networks. Our proposed metapath-
guided trust prediction method based on heterogeneous social networks
is different from previous work. (1) This work adopts a metapath-
based approach to preserve the order of interactions between users
as well as the sequence semantics, which is different from previous
work that utilizes all the interaction records without sequential nature.
(2) By leveraging the trust property-based metapath, we can effec-
tively aggregate trust neighbor information. (3) This work is based on
metapath-guided trust evidence search, which can effectively expand
the trust-oriented information to find potential trust relationship among
users.

3. Problem definition

In this section, we will describe some of the concepts used in the
paper.

Definition 1 (Trust Prediction). Give a set ⟨ ,,,⟩, where  in-
icates the set of users,  indicates the set of items.  indicates the
ttributes linked with the object.  indicates the behavioral interactions
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Fig. 2. Illustrative example of metapaths in HSN.

between different types of objects. In our task, trust prediction aims
to estimate the level of trust and distrust between any two users by
relying on user–user and user–item interaction behavior. We model
trust prediction in the context of HSN [34,35]. A HSN can defined
as a graph G = (𝑉 , 𝐸), where contain multiple objects and links. In
HSN, network schema is designed to characterize the meta-structure of
a network, which can show object types and their interaction behavior.
Metapaths [36] are sequences of objects that capture the structure and
semantic relations across multiple objects.

In Fig. 2, we can observe that the HSN contains multiple types
of objects (eg., Users(U), Items(I), Category(C)) and abundant interac-
tions relations between objects. Since our task is to predict the trust
relationship between an individual user and other users, we focus
specifically on metapaths from users to show the interaction behavior
characteristics and trust properties of users. As shown in Fig. 2 (a),
the category-aware metapath ‘‘User-Item-Category-Item-User’’(UICIU),
indicates that two users have interacted with two items, which belong
to the same category, respectively. For instance, 𝑢𝑎 rates 𝑖1 and 𝑖2, 𝑢𝑏
rates 𝑖3, whereas 𝑖1, 𝑖2 and 𝑖3 all belong to category 𝑐1. The intuitive
presentation of semantic relationships as: 𝑈𝑠𝑒𝑟

𝑟𝑎𝑡𝑒
←←←←←←←←←←←←←←←→ 𝐼𝑡𝑒𝑚

𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦
𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← 𝐼𝑡𝑒𝑚

𝑟𝑎𝑡𝑒
←←←←←←←←←←←←←←←← 𝑈𝑠𝑒𝑟. In Fig. 2 (b), the trust property-

based metapath ‘‘User-User-User’’(UUU) indicates the trust relationship
between adjacent users. For instance, ‘‘𝑈𝑎−𝑈𝑏−𝑈𝑒’’ means that 𝑈𝑎 trusts
𝑈𝑏 and 𝑈𝑏 trusts 𝑈𝑒. It can be represented intuitively as: 𝑈𝑠𝑒𝑟

𝑡𝑟𝑢𝑠𝑡
←←←←←←←←←←←←←←←←←←→

𝑈𝑠𝑒𝑟
𝑡𝑟𝑢𝑠𝑡
←←←←←←←←←←←←←←←←←←→ 𝑈𝑠𝑒𝑟.

Definition 2 (Metapath-guided Neighbors). Give a object 𝑎 and a metap-
ath  . The metapath-guided neighbors are defined as the set of objects
that traverse the entire metapath from object 𝑎. Furthermore, we define
the 𝑖-hop neighbor of object 𝑎 as 𝑁

𝑖 (𝑎). Particularly, 𝑁
0 (𝑎) refers to

object 𝑎
As shown in Fig. 2(a), for the metapath UICIU from 𝑢𝑎, we can ob-

tain the methpath-aware neighbors as 𝑁𝑈𝐼𝐶𝐼𝑈
1 (𝑢𝑎) = {𝑖1, 𝑖2},

𝑁𝑈𝐼𝐶𝐼𝑈
2 (𝑢𝑎) = {𝑐1}, 𝑁𝑈𝐼𝐶𝐼𝑈

3 (𝑢𝑎) = {𝑖3, 𝑖4}, 𝑁𝑈𝐼𝐶𝐼𝑈
4 (𝑢𝑎) = {𝑢𝑏, 𝑢𝑏}. All

metapath neighbors starting with 𝑢 are 𝑁𝑈𝐼𝐶𝐼𝑈 (𝑢 ) = {𝑁𝑈𝐼𝐶𝐼𝑈 (𝑢 ),
4

𝑎 𝑎 1 𝑎
𝑁𝑈𝐼𝐶𝐼𝑈
2 (𝑢𝑎), 𝑁𝑈𝐼𝐶𝐼𝑈

3 (𝑢𝑎), 𝑁𝑈𝐼𝐶𝐼𝑈
4 (𝑢𝑎)} = {𝑖1, 𝑖2, 𝑐1, 𝑢1, 𝑢2}. As shown in

Fig. 2(b), for the metapath UUU starting with 𝑢𝑎, the 1-hop and 2-hop
metapath neighbors of 𝑢𝑎 are 𝑁𝑈𝑈𝑈

1 (𝑢𝑎) = {𝑢𝑏, 𝑢𝑐}, 𝑁𝑈𝑈𝑈
2 (𝑢𝑎) = {𝑢𝑑 ,

𝑢𝑒, 𝑢𝑓 }. All the metapath neighbors of 𝑢𝑎 are 𝑁𝑈𝑈𝑈 (𝑢𝑎) = {𝑁𝑈𝑈𝑈
1 (𝑢𝑎),

𝑁𝑈𝑈𝑈
2 (𝑢𝑎)} = {𝑢𝑏, 𝑢𝑐 , 𝑢𝑑 , 𝑢𝑒, 𝑢𝑓 }.

Existing attempts on HSN-based trust prediction usually utilize ma-
trix decomposition to capture the behavioral characteristics of users for
predicting trust relationships. Instead, we utilize a metapath sequence
search way to discover trust-oriented interaction information. This
manner is capable of reflecting the semantic and structural relations be-
tween objects and provides certain interpretability for trust relationship
building.

4. The MetaTrust model

We propose a deep metapath-guided trust prediction model, named
MetaTrust. The framework of the MetaTrust model is shown in Fig. 3.
Specifically, (1) Metapath Embedding. Interaction-based metapaths
are mapped into a unified feature space by embedding. In this way,
category-aware metapaths preserve the semantics of behavioral inter-
actions between users, while trust property-based metapaths enable the
preservation of first-order second-order trust neighbors. (2) Metapath
Feature Extraction: Different from the previous way of fusing meta-
paths, we employ LSTM networks to extract features from category-
aware metapaths in parallel. Simultaneously, we exploit the multi-layer
perception network to extract the features of users’ multi-hop trust
neighbors, which helps to find co-occurrence trust neighbors between
users based on trust property-based metapaths. (3) Inter-metapath
Fusion. Based on multiple parallel metapath features, we use a multi-
headed attention network to automatically extract the comprehensive
metapath-guided trust features. (4) Trust Evaluation. Trust values be-
tween pairs of users are evaluated by softmax function. We present the
MetaTrust model thoroughly in the following subsections.

4.1. Metapath embedding

In previous HGN-based trust prediction models [37,38], behavioral
preferences of users were modeled mainly by mining user–item rating
interaction records through matrix decomposition [39,40]. These ap-
proaches have two main drawbacks. (1) It requires the completion of
item ratings that users have not interacted with; then feature decompo-
sition is performed, which is prone to overfitting and leads to inaccurate
rating predictions. (2) With millions of items on the networking sites,
such an approach is more computationally intensive than practical.
With embedding’s ability to maintain semantic relevance, we can only
retain the items that each user has interacted with, and without needing
to keep items that they have not.

In social networking sites, such as Epinions, there are three object
types including users, items and categories. There are three types of in-
teraction between objects, such as user–user interactions and user–item
and item–item interactions. Specifically, user–user interactions involve
the existence of a trust relationship between users, user–item inter-
actions involve the items rated by users, and item–item interactions
involve the item belonging to the same category or not.

The symbols that represent these objects and the records of their
interactions are specified as below.

•  = {𝑢1,… , 𝑢𝑀}: denote the set of 𝑀 users.
•  = {𝑖1,… , 𝑖𝑁}: denote the set of 𝑁 items.
•  = {𝑐1,… , 𝑐𝐾}: denotes the set of 𝐾 categories of items. Typi-

cally, an item belongs to only one category.
• 𝑁∗𝐾 denotes a item-categeory matrix. If 𝑐𝑁∗𝐾 = 1, it denotes that

item 𝑁 belongs to category 𝐾 and otherwise, 𝑐𝑁∗𝐾 = 0.
• 𝑀∗𝑀 denotes the user–user trust relationships matrix. If 𝑇𝑎,𝑏 = 1,

it indicates that there exists a trust relationship between pairwise
users (𝑢 , 𝑢 ), and otherwise, 𝑇 = 0.
𝑎 𝑏 𝑎,𝑏
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Fig. 3. The MetaTrust model.
Subsequently, we model the behavior information of each user.

• 𝑘
𝑎 = {𝑖𝑘𝑎,1, 𝑖

𝑘
𝑎,2,… , 𝑖𝑘𝑎,𝑄, }: denotes the set of 𝑄 (1 ≤ 𝑄 ≤ 𝑁) items

that 𝑢𝑎 has interacted with in category 𝑐𝑘 (1 ≤ 𝑘 ≤ 𝐾).
• 𝑘

𝑎 = {𝑟𝑘𝑎,1, 𝑟
𝑘
𝑎,2,… , 𝑟𝑘𝑎,𝑄, }: denotes the set of 𝑢𝑎’ ratings for 𝑄 (1

≤ 𝑄 ≤ 𝑁) items interacted with in category 𝑐𝑘 (1≤ 𝑘 ≤ 𝐾).
•  𝑘 = {𝑢𝑘1 , 𝑢

𝑘
2 ,… , 𝑢𝑘𝐺}: denotes the set of 𝐺 (1≤ 𝐺 ≤ 𝑀) users who

have interacted with items in category 𝑐𝑘 (1 ≤ 𝑘 ≤ 𝐾).

For each 𝑢𝑔 ∈  𝑘, 𝑘
𝑔 = {𝑖𝑘𝑔,1, 𝑖

𝑘
𝑔,2,…} denotes the set of items that

𝑢𝑔 has interacted with in category 𝑐𝑘. For each 𝑢 ∈  𝑘, The set of
items that all users have interacted with in category 𝑐𝑘 is {𝑘

1 , 𝑘
2 , . . . ,

𝑘
𝐺}. Since there are millions of items in the set {𝑘

1 , 𝑘
2 , . . . , 𝑘

𝐺}, we
randomly choose 𝑘 = {𝑖𝑘1 , 𝑖

𝑘
2 ,… , 𝑖𝑘𝐹 } from the set {𝑘

1 , . . . , 𝑘
𝑔 , . . . ,

𝑘
𝐺} by uniform distribution and the set of corresponding ratings can

be denoted as 𝑘 = {𝑖𝑘1 , 𝑖
𝑘
2 ,… , 𝑖𝑘𝐹 }.

With fine-grained delineation of users’ interaction information,
metapaths can effectively link different types of interaction information
between users and maintain the original semantic relationships. Here,
for simplicity of presentation, the category-aware metapath UICIU is
denoted as 1 and the trust property-based metapath UUU is denoted
as 2. According to Definition 2, the 1-hop metapath-guided neighbor
under metapath 1 for 𝑢𝑎 is 𝑁1

1 (𝑢𝑎) = {𝑘
𝑎 }, the 2-hop, 3-hop and 4-hop

metapath-guided neighbor for 𝑢𝑎 are 𝑁1
2 (𝑢𝑎) = {𝑐𝑘}, 𝑁1

3 (𝑢𝑎) = {𝑘},
and 𝑁1

4 (𝑢𝑎) = { 𝑘}. All the metapath-guided neighbor are 𝑁1 (𝑢𝑎) =
{𝑁1

1 (𝑢𝑎), 𝑁
1
2 (𝑢𝑎), 𝑁

1
3 (𝑢𝑎), 𝑁

1
4 (𝑢𝑎)} = {𝑘

𝑎 , 𝑐𝑘, 𝑘,  𝑘}.
To preserve the sequential and heterogeneous nature of the inter-

action information [41,42], embedding technique is adopted to project
the metapath-guided neighbors in a unified feature space. As the 1-hop
and 3-hop metapath-guided neighbours involve the items interacted by
𝑢𝑎 and  𝑘, the embedding of the ratings of these items are denoted as
𝐸𝑅,𝑘
𝑎 ∈ R𝑄∗𝑑𝑒 and 𝐸𝑅,𝑘

𝑢 ∈ R𝐹∗𝑑𝑒 , respectively. Thus, the 1-hop, 2-hop,
3-hop, and 4-hop metapath-guided neighbor embedding matrix for 𝑢𝑎
are 𝐸𝐼,𝑘

𝑎 ∈ R𝑄∗𝑑𝑒 , 𝐸𝑐𝑘
𝑎 ∈ R1∗𝑑𝑒 , 𝐸𝐼,𝑘

𝑢 ∈ R𝐹∗𝑑𝑒 , 𝐸𝑈,𝑘
𝑢 ∈ R𝐺∗𝑑𝑒 , respectively.

The sequence semantics based on the metapath 1 are preserved by
Eq. (1).

𝐸1,𝑘 = 𝐸𝐼,𝑘 ⊕𝐸𝑅,𝑘 ⊕𝐸𝑐𝑘 ⊕𝐸𝐼,𝑘 ⊕𝐸𝑅,𝑘 ⊕𝐸𝑈,𝑘 (1)
5

𝑎 𝑎 𝑎 𝑎 𝑢 𝑢 𝑢
where ⊕ denotes the concatenation operation between two matrices.
To capture the multifaceted nature of user behavioral preferences,
category-centric paths were designed based on 1. 𝐸1,𝑘

𝑎 denotes the
semantic features of 𝑢𝑎 based on category 𝑐𝑘(1 ≤ 𝑘 ≤ 𝐾) in metap-
ath 1. Thus, the set of path by metapath 1 can be represented as
{𝐸1,1

𝑎 , 𝐸1,2
𝑎 ,… , 𝐸1,𝑘

𝑎 ,… , 𝐸1,𝐾
𝑎 }.

For the category-aware metapaths, we designed these metapaths to
capture the interaction patterns between users and items of the same
category. These metapaths are constructed by traversing the user–item–
user interaction network while considering the category information
associated with the items. The metapaths connect users who have in-
teracted with items of the same category, thereby generating additional
user–item–user interactions.

For the metapath 2, the set of 1-hop and 2-hop metapath-guided
neighbors by 𝑢𝑎 are denoted as 𝑁2,1

1 (𝑢𝑎) = {𝑢1, 𝑢2, . . . } and 𝑁2,2
2 (𝑢𝑎)

= {𝑢3, 𝑢4, . . . }, respectively. We search the trusted neighbors of 𝑢𝑎
with width-first manner. The embedding matrices of 1-hop and 2-hop
metapath-guided neighbors can be represented as 𝐸2,1

𝑎 and 𝐸2,2
𝑎 . To

effectively fuse the multi-hop meta-path-aware neighbors for 𝑢𝑎, the
specific representation is shown in Eq. (2) (3).

𝐸2,1
𝑎 = 𝑔(𝐸2,2

𝑎 ) (2)

𝐸2
𝑎 = 𝑔(𝐸2,1

𝑎 ) (3)

where 𝑔(⋅) denotes the meanpooling function, which can weaken the in-
fluence of trust neighbors of 2-hops on trust prediction. 𝐸2

𝑎 represents
the semantic features of 𝑢𝑎 in metapath 2.

Here, we construct two metapaths with three advantages: (1)
category-aware metapath 1, which can effectively expand the range of
behavioral interactions between two users, i.e., from interacting with
the same items to interacting with items under the same category. (2)
The trust property-based metapath 2 organizes users’ trust neighbors,
which assists in the extraction of behavior records of both users who
trust each other in the category-aware metapath. (3) Different from the
traditional approach of searching all interaction records of users, we
uniformly select a small number of interaction records, which greatly

reduces the complexity of computation.
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4.2. Metapath feature extraction

With the ability of LSTM networks to handle parallel sequences
and discern their correlation, we employ multi-layer LSTM networks to
extract features from multiple parallel paths based on 1. The structure
of each LSTM unit is as follows.

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒄𝑙𝑎,𝑘
𝒊𝑙𝑎,𝑘
𝒇 𝑙
𝑎,𝑘

𝒐𝑙𝑎,𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

tanℎ
𝜎
𝜎
𝜎

⎤

⎥

⎥

⎥

⎥

⎦

(

𝑾

[

ℎ𝑙𝑎,𝑘−1
ℎ𝑙𝑎,𝑘

]

+ 𝒃

)

(4)

𝒄𝑙𝑘 = 𝒇 𝑙
𝑎,𝑘 ⊙ 𝒄𝑙𝑎,𝑘−1 + 𝒊𝑙𝑎,𝑘 ⊙ 𝒄𝑙𝑎,𝑘 (5)

𝑙
𝑎,𝑘 = 𝑜𝑙𝑎,𝑘 ⊙ tanh(𝒄𝑙𝑘) (6)

here 𝑙 (1 ≤ 𝑙 ≤ 𝐿) denotes the horizontal depth of LSTM network. 𝒉𝑙𝑎,𝑘
enotes the hidden layer output at the horizontal depth 𝑙 and vertical
nput of the 𝑘th path sequence of LSTM network by 𝑢𝑎. Similarly, 𝒉𝑙𝑏,𝑘
an be obtained. For 𝑢𝑎 and 𝑢𝑏, the input matrices of LSTM networks are
ℎ0𝑎,1, ℎ

0
𝑎,2,… , ℎ0𝑎,𝐾] = [𝐸1,1

𝑎 , 𝐸1,2
𝑎 ,. . . , 𝐸1,𝐾

𝑎 ] and [ℎ0𝑏,1, ℎ
0
𝑏,2,… , ℎ0𝑏,𝐾] =

[𝐸1,1
𝑏 , 𝐸1,2

𝑏 ,. . . , 𝐸1,𝐾
𝑏 ], when the horizontal depth of LSTM network

is set as 𝑙 = 1. After the multiple path sequences are processed by the
multi-layer LSTM network, the integrative features of 𝑢𝑎 and 𝑢𝑏 based
on the metapath 1 are obtained as shown below.

⎧

⎪

⎨

⎪

⎩

𝐻𝐿
𝑎 = (ℎ𝐿𝑎,1 + ℎ𝐿𝑎,2 +… ,+ℎ𝐿𝑎,𝐾 )∕𝐾

𝐻𝐿
𝑏 = (ℎ𝐿𝑏,1 + ℎ𝐿𝑏,2 +… ,+ℎ𝐿𝑏,𝐾 )∕𝐾

(7)

where 𝐻𝐿
𝑎 and 𝐻𝐿

𝑏 are both metapath features of 𝑢𝑎 and 𝑢𝑏 by metapath
1 and the output of the average hidden vector at horizontal depth
𝐿 of the LSTM network. ℎ𝐿𝑎,𝐾 , ℎ𝐿𝑏,𝐾 represent the hidden outputs of

the LSTM network with horizontal depth 𝐿 and vertical input of the
𝐾th metapath sequence by 𝑢𝑎 and 𝑢𝑏, respectively. The structural and
semantic information implied in the metapath embeddings are fed
into the LSTM network in parallel. By this way, single path features
are parsed and feature correlations between multiple paths are also
captured. The user behavior-centric metapath 1 reflects the interaction
behavior between users and reveals the user behavior preferences.

The metapath 2 represents the interaction of trust relationships
between users, which characterizes the trust properties of users. Based
on Eq. (3), we can get the embedding 𝐸2

𝑎 and 𝐸2
𝑏 for 𝑢𝑎 and 𝑢𝑏,

respectively. The MLP network are exploited to further extract the
trust property-based metapath features for paired users. The specific
equation is shown below.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹 1 = 𝒘1
𝑚𝑙𝑝𝑥 + 𝒃1𝑚𝑙𝑝

𝐹 𝑠 = 𝒘𝑠
𝑚𝑙𝑝𝐹

𝑠−1 + 𝒃𝑠𝑚𝑙𝑝 (𝑠 = 2..., 𝑆)

𝐹𝑆 = 𝒘𝑆
𝑚𝑙𝑝𝐹

𝑆−1 + 𝒃𝑆𝑚𝑙𝑝 (𝑠 = 2..., 𝑆)

(8)

⎧

⎪

⎨

⎪

⎩

𝐹𝑆
𝑎 = (...(𝒘2

𝑚𝑙𝑝(𝒘
1
𝑚𝑙𝑝𝐸

2
𝑎 + 𝒃1𝑚𝑙𝑝) + 𝒃2𝑚𝑙𝑝)...)

𝐹𝑆
𝑏 = (...(𝒘2

𝑚𝑙𝑝(𝒘
1
𝑚𝑙𝑝𝐸

2
𝑏 + 𝒃1𝑚𝑙𝑝) + 𝒃2𝑚𝑙𝑝)...)

(9)

where 𝒘𝑠
𝑚𝑙𝑝 and 𝒃𝑠𝑚𝑙𝑝 denote the weight matrix and bias matrix in the

𝑆-layer MLP network, respectively. 𝐹𝑆 denote the output of the MLP
network at the 𝑆th layer in Eq. (8). 𝐹𝑆

𝑎 and 𝐹𝑆
𝑏 represent the metapath

features of 𝑢𝑎 and 𝑢𝑏 by the metapath 2 respectively, which are also
the outputs of the MLP network at the 𝑆th layer. By nonlinear feature
transformation, pairwise features can be effectively obtained from the
first-order and second-order trust neighbors of users, while maintaining
the semantic sequential nature of the neighbors.
6

4.3. Inter-metapath fusion

In order to capture the behavioral characteristics and trust trends
of users, the two types of metapath-guided features for pairwise users
(𝑢𝑎, 𝑢𝑏) are merged. The concatenation operation is taken as shown
in Eq. (10).

𝑻𝑔𝑙𝑜 = 𝐻𝐿
𝑎 ⊕𝐻𝐿

𝑏 ⊕ 𝐹𝑆
𝑎 ⊕ 𝐹𝑆

𝑏 (10)

here 𝑇𝑔𝑙𝑜 ∈ R𝐷𝑔𝑙𝑜∗𝑁 is denoted as a global trust feature for 𝑢𝑎 and
𝑏. Thereby, pairs of metapath features are linked together to repre-
ent the behavior features and trust features based on the interaction
nformation of 𝑢𝑎 and 𝑢𝑏 as a whole.

Since global trust features 𝑇𝑔𝑙𝑜 are composed of four features by
pairs of users, how can we investigate which aspects are essential for
trust prediction? In order to effectively locate trust-oriented features, a
multi-headed self-attention network [43] is utilized to automatically as-
sign unequal weights to the four features. The operation mechanism of
a multi-headed self-attention network can be defined by the following
equations.

𝑎𝑡𝑡𝑒𝑛(𝑄,𝐾, 𝑉 ) = 𝑉 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐾
𝑇𝑄

√

𝐷𝑑
) (11)

𝑄 = 𝑊𝑞𝑇𝑔𝑙𝑜, 𝐾 = 𝑊𝑘𝑇𝑔𝑙𝑜, 𝑉 = 𝑊𝑣𝑇𝑔𝑙𝑜, (12)

where 𝑄, 𝐾 and 𝑉 denote query, key and value matrix for linear
projection, respectively. 𝑊𝑞 ∈ R𝐷𝑑∗𝐷𝑔𝑙𝑜 , 𝑊𝑘 ∈ R𝐷𝑑∗𝐷𝑔𝑙𝑜 , and 𝑊𝑣 ∈
R𝐷𝑣∗𝐷𝑔𝑙𝑜 are the input weight matrices of the linear projection.

After multiple linear mapping, the four features in 𝑇𝑔𝑙𝑜 are ef-
fectively assigned inequitable weights. For the sake of revealing the
correlation between four features from different aspects, the multi-head
attention network is utilized, which can capture variable correlation in
multiple group projection spaces. The attention model is applied in 𝑂
group projection spaces with the following equation.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑄𝑖 = 𝑊 𝑖
𝑞 𝑇𝑔𝑙𝑜, 𝐾𝑖 = 𝑊 𝑖

𝑘𝑇𝑔𝑙𝑜, 𝑄𝑖 = 𝑊 𝑖
𝑘𝑇𝑔𝑙𝑜 𝑖 ∈ [1, 𝑂]

𝑍𝑖 = 𝑎𝑡𝑡𝑒𝑛(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) 𝑖 ∈ [1, 𝑂]

𝑇𝑓𝑒𝑎 = 𝑊𝑂(𝑍1 ⊕𝑍2⊕,… , 𝑍𝑂) 𝑖 ∈ [1, 𝑂]

(13)

where 𝑊𝑂 ∈ R𝐷𝑔𝑙𝑜∗𝑀𝑑𝑣 denotes the output matrix in 𝑂 group projection
space. 𝑊 𝑖

𝑞 ∈ R𝐷𝑑∗𝐷𝑔𝑙𝑜 , 𝑊 𝑖
𝑘 ∈ R𝐷𝑑∗𝐷𝑔𝑙𝑜 and 𝑊 𝑖

𝑣 ∈ R𝐷𝑣∗𝐷𝑔𝑙𝑜 denote
the input matrix in 𝑂 group projection space. 𝑇𝑓𝑒𝑎 denotes the final
trust feature, which perform a decisive role in the establishment of
trust relationships between 𝑢𝑎 and 𝑢𝑏. In turn, the metapath-guided
features obtained from LSTM networks and MLP networks are op-
timized by back-propagation of the multi-headed attention network.
Ultimately, the representation of the model is enhanced. The multi-
headed attention network is a mechanism that allows the model to
attend to different aspects of the input data (i.e., the user–item–user
interactions generated by category-aware metapaths) simultaneously.
It consists of multiple attention heads, each of which learns to focus
on a specific subset of user–item–user interactions. By doing so, the
model can capture diverse patterns and correlations within the data,
enhancing its ability to distinguish between different metapaths for
trust prediction. During the training process, each attention head in the
network learns its own set of attention weights, which determine the
importance of each user–item–user interaction for trust prediction. The
final trust prediction is then obtained by combining the outputs of all
attention heads, where each head contributes to the prediction based
on its learned attention weights.

By analyzing the attention weights learned by the model, the most
influential factors in trust prediction can be identified. For example,
they can uncover which item categories or types of user–item inter-
actions have a significant impact on trust building in social networks.
These pieces of information can provide valuable insights into how trust
forms and evolves among users.
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Embedding real trust relationships between users in the network
helps to filter out irrelevant user–item–user interactions by introduc-
ing a mechanism to prioritize and weigh the significance of different
interactions. On the one hand, users in the metapath ‘‘UUU’’ have
real trust relationships with each other, whereas users in the metapath
‘‘UICIU’’ are any two users (not necessarily having trust relationships).
After LSTM network and MLP network, these two metapath features
are incorporated into the multi-headed attention network. In the multi-
head attention network, more weight will be given to the interactions
generated by two users who trust each other. Then, the metapath
‘‘UUU’’ imposes restrictions on the interactions generated by the meta-
path ‘‘UICIU’’. As a result, real trust relationships are embedded in the
network and will help filter out irrelevant user–item–user interactions.

4.4. Trust evaluation

Following the trust features of each user pair (𝑢𝑎, 𝑢𝑏) obtained
rom the multi-headed attention network, 𝑇𝑓𝑒𝑎 is further transformed

to obtain the trust value. The specific equation is shown below.

𝑇̂𝑎,𝑏 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑖𝑛𝑒𝑎𝑟(𝑇𝑓𝑒𝑎)) (14)

where one layer of linear functions is utilized to decrease the dimension
of 𝑇𝑓𝑒𝑎. 𝑇̂𝑎,𝑏 is represented as the trust value between pairs of users
(𝑢𝑎, 𝑢𝑏), which is obtained through softmax function. Most of works
as described in this paper converts continuous predicted values into
discrete binary ranges by using threshold settings. Here, we consider
that 𝑇̂𝑎,𝑏 is greater than 0.5 where there is a trust relationship between
𝑢𝑎 and 𝑢𝑏, otherwise it is a distrust relationship.

The task of the whole network can be considered as a classification
and supervision model, while the cross-entropy function is more suit-
able for the classification model. For the overall optimization of the
model, we adopt the cross-entropy function as loss function to optimize
the whole network. It is shown in the following equation.

𝑙𝑜𝑠𝑠 = −
∑

𝑇𝑎,𝑏∈𝑇𝑅𝑈
𝑇𝑎,𝑏 log(𝑇̂𝑎,𝑏) (15)

here 𝑇𝑎,𝑏 represents the ground-truth label between pairs of users.
o ensure gradient descent in model training, we use the Adam op-
imizer [44] to iteratively update the parameters in the entire neural
etwork.

In summary, the MetaTrust model finds deep trust-oriented features
n a metapath-guided manner, which uses LSTM networks and MLPs to
aximize the extraction of interaction features between users including

oth category-aware behavioral preference-based features and trust
roperty-based features. The intuitive idea of the metapath UICIU de-
ign is to model the interaction behavior of two users explicitly without
epetition. The intuitive idea of metapath UUU is that maintains the
rust neighbors of 1-hop and 2-hop in the metapath, and the usage of
eanpooling operation is to weaken the influence of trust neighbors

f 2-hop on trust prediction. Through the feature extraction for both
etapaths, the trust-oriented comprehensive features are obtained to
rovide a deterministic judgment for pairwise trust relationship. On the
hole, this approach is interaction-based and supports the sociology of

undamental definition on trust.
The numerical model proposed in the MetaTrust framework is based

n trust prediction, which aims to estimate trust relationships between
sers in web-based applications. The model incorporates category-
ware metapaths to generate user–item–user interactions, which pro-
ide a supplement to the traditional user–user trust interactions. Re-
arding the emergence of other types of trust, such as Luhmann
rust [45], the numerical model is empowered to capture category-
pecific interactions that opens up possibilities for exploring different
rust dimensions. Luhmann trust, as conceptualized by Niklas Luhmann,
efers to the trust in system structures, and it is distinct from trust
etween individual actors. The model’s capacity to consider item
7

ategories could potentially be extended to incorporate system-level
Table 2
Statistics for the three real-world datasets.

Dataset Epinions Ciao Yelp

#Users 7458 2248 1 809 412
#Items 6149 16 861 134 109
#Rating 209 769 36 065 6 011 303
#Category 27 28 31
#Trust relationships 300 548 57 544 10 800 586
Data sparsity 0.4574% 0.0951% 0.0025%

trust dynamics and the stability of trust relationships at a larger
scale. Furthermore, the proposed MetaTrust model could contribute to
validating the trust continuum hypothesis, which suggests that trust
can exist along a spectrum, ranging from strong personal trust to
weaker impersonal or institutional trust. By examining trust patterns
within different item categories and user interactions, the model could
shed light on the continuum of trust in diverse contexts and offer
insights into how trust evolves or varies across various levels of human
interaction and system structures.

5. Experiments

In this section, we perform a series of extensive experiments to
answer the following research questions:

• RQ1: How does the MetaTrust model compare with state-of-the-
art baseline approaches in trust prediction models?

• RQ2: How does the setting of the trust value threshold affect the
performance of different methods?

• RQ3: How do different metapaths affect the MetaTrust model?
• RQ4: How do the parameter settings in different meta-paths affect

the MetaTrust model?

5.1. Datasets

Three publicly available datasets are selected to accomplish the
task of MetaTrust Model. The statistics of the datasets are described
as shown in Table 2.

Epinions and Ciao. Epinions and Ciao datasets [8] are derived from
two product review sites, which contain three types of interactions,
i.e., trust interactions between users, rating interactions between users
and items, and category interactions between items. Ratings of inter-
acted items by users from 1 to 5. In addition, to eliminate the effect
of noisy data as much as possible, we keep at least 15 items that users
have interacted with and at least 10 ratings of items in Epinions dataset.

Yelp. Yelp dataset [46] contains ratings given by users to local
usinesses and their attribute information. Each user maintains a list of
riends. Ratings of business rated by users are from 1 to 5. Additionally,
e take into account that: (1) a business is equal to an item, and it is
notion that is frequently used in recommender systems; (2) if two

sers are friends, then two users trust each other equivalently. In our
xperiments, we extract part of the data from the original dataset.

.2. Experimental setup

The implementation of our model is on pytorch.1 Specifically, we
ross-validate the embedding dimension in the metapath embedding
ayer as {16, 32, 64, 96, 128}, and the results of the pre-training
ndicate that the model achieves the best performance when the em-
edding size is set to 64. In the meta-path embedding layer, we set

as 300 and 𝐺 as 300. In the metapath feature extraction layer, the
orizontal depth of the LSTM network is set as 2, and the vertical depth
s variable depending on the number of categories based on metapaths

1 https://pytorch.org/.

https://pytorch.org/
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Table 3
Effectiveness experiments on three datasets. A higher precision or F1 value indicates better performance. To facilitate the reading of the
experimental results, we also present the improvement of MetaTrust approach over the MemTrust model. The larger improvement ratio indicates
a better performance.

Dataset Training size Metric JMF STNE LINE Guardian MemTrust MetaTrust Improv.

Epinions 5% Precision 0.5140 0.4999 0.5806 0.4997 0.8924 0.9251 3.66%
F1 0.4921 0.6648 0.7346 0.6654 0.8361 0.9528 13.96%

30% Precision 0.5002 0.5000 0.5742 0.5004 0.9549 0.9928 3.97%
F1 0.4356 0.6662 0.7295 0.6667 0.9157 0.9855 7.62%

50% Precision 0.4987 0.8977 0.5715 0.5001 0.9680 0.9950 2.79%
F1 0.4369 0.9508 0.7943 0.6668 0.9063 0.9810 8.24%

70% Precision 0.5018 0.8505 0.5710 0.5006 0.9081 0.9906 9.09%
F1 0.4340 0.9519 0.7942 0.6655 0.9057 0.9779 7.97%

90% Precision 0.5042 0.9039 0.8711 0.5033 0.9512 0.9953 4.64%
F1 0.4371 0.9432 0.794 0.6685 0.9183 0.9801 6.73%

Ciao 5% Precision 0.5254 0.4856 0.4920 0.4890 0.8280 0.8320 0.48%
F1 0.3416 0.6344 0.6580 0.6481 0.7368 0.7911 7.37%

30% Precision 0.5217 0.4876 0.4899 0.4858 0.9355 0.9365 0.11%
F1 0.3433 0.6494 0.6562 0.6480 0.6917 0.8115 17.32%

50% Precision 0.5560 0.9156 0.4867 0.4878 0.9567 0.9678 1.16%
F1 0.3497 0.8982 0.6529 0.6460 0.8972 0.8988 0.18%

70% Precision 0.5200 0.9223 0.4846 0.4899 0.9114 0.9515 4.4%
F1 0.3574 0.9006 0.6513 0.6443 0.9138 0.9237 1.08%

90% Precision 0.5198 0.9116 0.4861 0.4867 0.8882 0.9821 10.57%
F1 0.3579 0.8927 0.6523 0.6485 0.8926 0.8965 0.48%

Yelp 5% Precision 0.5028 0.7214 0.7223 0.7214 0.6583 0.9030 37.17%
F1 0.476 0.8381 0.5915 0.8381 0.7876 0.9231 16.96%

30% Precision 0.5259 0.7215 0.7216 0.7215 0.8151 0.9383 15.11%
F1 0.5262 0.8382 0.5905 0.8382 0.8666 0.9393 8.39%

50% Precision 0.5090 0.7214 0.7215 0.7214 0.9344 0.9653 3.31%
F1 0.5083 0.8381 0.5909 0.8381 0.9169 0.9603 4.73%

70% Precision 0.4904 0.7228 0.7213 0.7217 0.9312 0.9675 3.90%
F1 0.4524 0.8371 0.5904 0.8373 0.9171 0.9396 2.42%

90% Precision 0.4940 0.7236 0.7221 0.7223 0.9526 0.9799 2.87%
F1 0.4573 0.8365 0.6004 0.8381 0.9279 0.9708 4.62%
UICIU in particular dataset; the number of MLP layers is set as 2. In the
Inter-metapath fusion layer, the group projected subspace in the multi-
headed attention network is set as 4. For the whole network running,
the training batch is set as 16 and the learning rate of the network is set
as 1e−5. We train the model for a total of 20 epochs for the outcomes
f each experiment.
Baseline method. We compare the MetaTrust model with several

other cutting-edge methods, either through publicly available code or
the code we implemented. From the perspective of network types,
we choose two network embedding methods, one of which is a ho-
mogeneous network embedding type (STNE, LINE, Guardian) and the
other is a heterogeneous network embedding method (MemTrust, JMF).
Specifically,

• STNE. STNE [3] embeds user–user trust interaction. The multiple
propagation paths between two users are fused by using social
balance theory. Thus, the trust relationship is evaluated.

• LINE. LINE [47] models an objective function to preserve the
interaction information of 1-hop and 2-hop trusted neighbors.
Pairwise features are exploited to measure whether a trust rela-
tionship exists.

• Guardian. Guardian [13] converts user–user trust interactions
into a graph structure. The co-weight are shared through GCN
to learn the global trust properties of users.

• MemTrust. MemTrust [20] exploits heterogeneous information
such as users’ ratings of items to mine the behavioral features of
users and then measure the trust relationship between two users.

• JMF. JMF [19] designs a joint manifold factorization to collec-
tively learn the similar behavioral characteristics of users and the
features of trust interaction between users are reserved simulta-
neously.
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5.3. The performance on trust prediction (RQ1)

To validate the effectiveness of the MetaTust model, we compared it
with other competitive methods in terms of different training scales. As
shown in Table 3, by observing the variations of F1 values, MetaTrust
technique outperformed STNE, LINE, and Guardian methods by an
average of 16.77%, 22.06%, and 46.34% in the Epinions dataset. The
MetaTrust technique improved on average by 8.71%, 32.13%, 33.59%
and 12.54%, 59.02%, 12.49% in the Ciao and Yelp datasets. These
homogeneous network embedding-based methods only consider trust
interactions between users and ignore the behavioral characteristics
of users, which do not capture the trust-oriented features comprehen-
sively. Compared to the MemTrust and JMF methods, the MetaTrust
approach improved on average 8.81%, 118.15% on F1 values in Epin-
ions dataset. In the Ciao and Yelp datasets, the MetaTrust method
improved on average 4.59%, 14.7%, 6.73% and 94.74% about F1
values synthetically. This is because the MemTrust approach utilizes
LSTM networks to extract behavioral features from heterogeneous in-
formation, which overlooks the search for the user’s trusted neighbors.
The JMF leverages matrix decomposition to extract behavioral patterns
that are comparable to those found in the trust graph by integrating
a large number of parameters. Since personalized trust features are
not accurately captured by this comprehensive decomposition of each
user’s records, accuracy is decreased.

When the data amount ranges from 50% to 90%, all approaches
operate quite consistently. This is due to the fact that they can mine
enough beneficial features to foster user trust at 50% of the data. The
performance of the other approaches declines when the data density is
less than 50%, while MetaTrust maintains good performance.

Here, we concentrate on the scenario in which there is a 5% training
set size where the data is extremely sparse. The other five methods
perform very poorly, while MetaTrust still maintains high accuracy.
Two factors are responsible for MetaTrust’s success: (1) Through meta-
path UICIU, the information search from users interacting with the
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Fig. 4. The effect of trust values on Epinions (a), Ciao (b) and Yelp (c).
Fig. 5. The effect of different metapath on Epinions (a), Ciao (b) and Yelp (c).
same items is expanded to the information search of items with the
same category, broadening the way of interactive information search
and obtaining more powerful features. Moreover, the behavioral char-
acteristics of user sharing are explored. Furthermore, the interaction
between users’ trust neighbors is expressly expanded by the metapath
UUU and it is simpler to build a trust relationship when two users have
more trust neighbors in common. (2) Multi-headed attention networks
guide the extraction of metapath features through LSTM and MLP
networks, facilitating accurate metapath feature generation.

5.4. The effect of trust values (RQ2)

When the trust value threshold is set higher, a more stringent
metapath-guided user feature matching condition is acquired. Thus,
gradually increasing trust values are set as {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
from which the robustness of each approach is validated. As shown
in Fig. 4, MetaTrust has the best performance in comparison with
the other five methods. Among the homogeneous network embedding
methods (Guardian, LINE, STNE), Guardian performs relatively poorly
because it uses GCN to aggregate the user’s outward/inward trust
neighbor features to represent the matching features for user trust
building. The development of trust-oriented user features is hampered
by joining the calculation and sharing the weights with the high-
order trust neighbors. As a result, user features with noisy information
are obtained. With increasing trust value thresholds, Guardian has no
access to more accurate user features.

LINE aggregates the features of multi-hop trust neighbors, and a
large number of less relevant 2-hop trust neighbors are aggregated
into user features, which reduces the accuracy of matching user trust
features. Due to the fact that STNE uses the modified Skip-Gram
model to identify users’ latent features, it performs nearly as well as
the MetaTrust solution. It is able to capture trust-directed features
effectively.

Given varying trust levels, MetaTrust has maintained a generally
outstanding and seamless performance. More accurate interaction in-
formation is filtered out through the metapath as the threshold of trust
value rises. Additionally, the multi-headed attention mechanism allows
it to efficiently extract correlated features and contribute significantly
to trust prediction.
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5.5. The effect of different metapath (RQ3)

As shown in Fig. 5, there are two metapaths in MetaTrust model.
To further check the impact of different metapaths on the model, we
validated the F1 performance of different metapaths under varying
trust values. In comparison to the approach that only employs metapath
UUU, the method that only utilizes the metapath UICIU performs
better. Here, the metapath UICIU method can locate records of user
interactions focused on ‘‘category’’ and can gather user behavior char-
acteristics. The outcomes of this study also support the social theory
that users who have comparable behavioral characteristics are more
likely to form trust relationships. Furthermore, the multi-layer LSTM
network can effectively capture the association features of multiple
UICIU paths.

The metapath UUU -based approach aggregates the information of
1-hop and 2-hop trusted neighbors. The MLP network can be used to
extract the feature representation of multi-hop trusted neighbors. This
approach reflects the trust interaction of users and can influence the
establishment of trust relationships between users to some degree, but
it falls short of sufficiently generalizing the necessary conditions for the
establishment of trust relationships. Therefore, this results in rather low
accuracy.

By combining these two approaches, MetaTrust succeeds in captur-
ing the metapath-guided trust features. The use of redundant user–item
interactions in the proposed MetaTrust model improves trust prediction
accuracy by addressing the data sparsity problem. On the one hand,
the traditional trust prediction approaches that heavily rely on user–
user trust interactions, data sparsity arises when there are limited trust
interactions between users. This lack of sufficient data can lead to
inaccurate trust predictions, especially for users with few or no direct
trust interactions. On the other hand, by generating redundant user–
item interactions through category-aware metapaths, the model creates
additional trust-related data points. These interactions are based on
common item categories that users have interacted with, effectively
capturing trust patterns influenced by the types of items users engage
with. The four metapath-guided features for paired users are aggregated
and automatically assigned weights by using a multi-headed attention
network, which can further obtain trust-oriented integrated features.
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Fig. 6. The effect of network parameters on Epinions (a), Ciao (b) and Yelp (c).
Fig. 7. The effect of different number of categories on Epinions (a), Ciao (b) and Yelp (c).
Among the three datasets, the MetaTrust approach performs best in the
Epinions dataset.

5.6. The effect of parameter sensitivity (RQ4)

(1) The Dimensions of Embedding. We confirm the impact of the
dimension of embedding on MetaTrust model from the standpoint of
the network framework. The dimension of embedding is set to {16, 32,
64, 96, 128}. As shown in Fig. 6(a)(b), when the dimensions of the
embedding is set to 16 and 64, the performance is relatively good in the
Epinions and Ciao datasets. The F1 values of the model starts to drop
when the dimension of embedding is steadily increased to 128. There
are two main reasons. (a) The more elements of embedding used, the
more irrelevant variables are mapped into the same data space, which
causes the model to become overfit and degrade its performance. (b)
The Epinions dataset has a higher density than the Ciao dataset. The
dataset density is negatively correlated with the embedding dimension.
In particular, the model performs better in the three datasets when the
size of embedding is set to 64.

(2) The Horizontal Depth of LSTM Network. We investigate the impact
of the horizontal depth of the LSTM network and the horizontal depth
of LSTM network is set to {1, 2, 3, 4,5}. With the increasing horizontal
depth of the LSTM network from 1 to 3, the accuracy of the model
increases gradually as shown in Fig. 6. Thus, the metapaths can be
successfully described by the appropriate number of LSTM layers. When
the horizontal depth of the LSTM is set to 5, the model performs the
poorest. This is because the extraction of the correlation of the features
is hampered if the paths from input data to output features in LSTM
network are too long.

In comparison to the three datasets, the MetaTrust model performs
relatively unsmoothly in the Ciao dataset. There are two reasons for
variations. (a) As the dimensionality of embedding gradually increases,
the noise information is also incorporated into the embedding space.
(b) The data sparsity in the Ciao dataset is large, which indicates that
the interaction information selected randomly for each experiment is
out of balance.

In summary, the MetaTrust model uses the embedding technique
to convert the original path data to the same feature space. Then, the
LSTM network and MLPs are utilized to analyze the user interaction
10
features across various meta-paths in order to construct the user trust
features. Indirectly, we demonstrate the effectiveness of obtaining user
trust features by metapaths.

(3) The Number of Categories. As shown in Fig. 7, the number of
path based on metapath UICIU depends on the number of categories
of the items that the user has interacted with. In the three datasets,
the number of categories is set as {5, 10, 15, 20, 25}. As the number of
categories increases, the performance of MetaTrust method turns out to
be better, i.e., the values of precision and F1 are slowly increasing on
three datasets. The growing number of categories implies an expansion
of behavioral records among users, which indicates that more behav-
ioral characteristics of users can be explored. More importantly, the
MetaTrust model still performs well even if there are few categories. In
conclusion, these results show the robustness of our proposed approach.

6. Conclusion

To the best of our knowledge, this is the first attempt that proposes
a metapath-guided trust prediction model in heterogeneous social net-
works. The behavioral characteristics and trust properties of users have
an important impact on the establishment of trust relationships among
users. Thus, we design two types of metapaths focused on behavioral
interaction records and trust neighbors of users, which can effectively
capture key information. Embedding techniques are utilized to capture
the structural and semantic information of both metapaths. In order
to efficiently extract the features of a single metapath, LSTM network
and MLP network are employed to extract two metapath features with
behavioral and trust features. To further discriminate the importance of
the two metapath features, the multi-headed attention network can au-
tomatically calculate the relevance and assign different attention scores
for the two type of metapath features. As a result, global trust features
are subsequently obtained. Finally, the softmax function is applied to
distinguish the trust value between any two users. Compared with other
competitive approaches, our proposed trust model has superior and
stable performance. In particular, in the case of extremely sparse data,
MetaTrust is still able to tightly capture trust-oriented information and
effectively characterize user features.
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Understanding trust building in social networks has various poten-
tial applications. One such application is the improvement of recom-
mendation systems. By incorporating trust information into recommen-
dation algorithms, personalized and trustworthy recommendations can
be provided to users based on the trust relationships. This can enhance
user satisfaction and engagement with the platform. Another potential
application is in the design of social network platforms. Understanding
trust dynamics can help in developing more effective user engagement
strategies. For example, identifying influential users with high trust
ratings can facilitate targeted marketing campaigns and community
management efforts.

In the future, our model can be extended to marketing, recom-
mender systems and distributed platform cooperation [48,49]. Since
behavioral preferences of users are variable, and not all preferences
are assigned equal attention, a trust model guided by the distribution of
users’ preferences is necessary to be established. Additionally, a variety
of social connections (such as friends and relatives) within heteroge-
neous social networks have an impact on how trust is developed. It
is expected that the developed trust prediction model can seize and
integrate crucial social relationships.
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