
Fine-Grained Elastic Partitioning for
Distributed DNN Towards Mobile Web AR

Services in the 5G Era
Pei Ren , Xiuquan Qiao , Yakun Huang , Ling Liu, Fellow, IEEE,

Calton Pu , Fellow, IEEE, and Schahram Dustdar , Fellow, IEEE

Abstract—Web-based Deep Neural Networks (DNNs) enhance the ability of object recognition and has attracted considerable

attention in mobile Web AR and other services. However, neither performing the DNN inference on mobile Web browsers locally nor

offloading computations to the cloud can strike a balance between accuracy and efficiency; generally, rude methods are often

accompanied by unsatisfactory accuracy. Collaborative approaches seem to fill this gap by coordinating the distributed hierarchical

computing resources, especially in the 5G era, but it still faces challenges in the current solutions, such as the lack of (1) full use of 5G

resources for the one point DNN computation partitioning schemes; (2) fine-grained branching mechanism; (3) efficient partitioning

method; and (4) multi-objective optimization. To this end, we present the fine-grained elastic computation partitioning mechanism for

distributed DNN in 5G networks. First, we elaborate two collaborative scenarios. Second, we study the DNN branching mechanism at

layer granularity. Next, we propose a DNN computation partitioning algorithm based on deep reinforcement learning. Finally, we

develop a mobile Web AR application as a proof of concept. The experiments were conducted in an actually deployed 5G trial network,

and the results show the superiority of this collaborative approach. The common theme is, under the premise that Quality of Service

(QoS) is satisfied, to balance multiple interests by orchestrating computations across heterogeneous computing platforms.

Index Terms—Mobile service computing, distributed deep neural networks, 5G networks, augmented reality, reinforcement learning

Ç

1 INTRODUCTION

THE emergence of Augmented Reality (AR) [1] services
greatly changes the way we interact with the real-world.

Web-based AR (Web AR) in particular, which promises a
lightweight and cross-platform AR experience that is chal-
lenging for current App-based approaches, shows the great
potential of AR on mobile devices [2], [3]. Many factors con-
tribute to the phenomenal growth of AR. The boom of Deep
Neural Networks (DNNs) in the field of computer vision is
one of the most important, as it provides an accurate object
recognition solution which is the key for AR subscribers to
enter and interact with the mixed-reality world. Web-based
DNN has therefore recently become a research hotspot [4].

However, current DNN-based object recognition on
mobile Web browsers leaves an unsatisfactory choice, either
(1) perform DNN inference on the mobile Web browser,
especially a built-in browser, with an unacceptable response

latency and energy consumption due to its limited comput-
ing capability, or (2) offload DNN computations to the
cloud, leading to increased deployment costs caused by the
occupation of bandwidth and computing resources and also
a degradation of the user experience in unstable networks.

To balance the interests of both service subscribers (i.e.,
maximized user experience) and provider (i.e., minimized
deployment overhead), it is natural to consider the use of a
collaborative computing approach. But the conventional
collaboration between the end-user and cloud still faces sig-
nificant challenges. Since AR is a computation- and data-
intensive service, this kind of cloud-assisted approach will
easily result in slowdowns due to the service congestions
under high concurrency.

Fortunately, the “network edge” is emerging as another
potential collaborator,whichpromises not only to alleviate con-
currency of the central site in a distributed manner but also
improve service performance due to the close distance to the
subscribers.More generally, edge devices can refer to all equip-
ments that can provide computing services between the data
source and the destination [5]. With the deployment of the
infrastructure for ubiquitous Mobile Edge Computing
(MEC) [6] andDevice-to-Device (D2D) [7] communication sup-
port in the 5G era, this “edge”-based collaborative approach
will be a promising solution formobileWebAR services.

However, employing this collaborative approach over a
computing hierarchy is still challenging for the practical
application of mobile Web AR in 5G networks:

� The basis of collaborative computing is the computa-
tion partitioning. The state-of-the-art approach

� Pei Ren, Xiuquan Qiao, and Yakun Huang are with the State Key labora-
tory of Networking and Switching Technology, Beijing University of Posts
and Telecommunications, Beijing 100876, China. E-mail: {renpei, qiaoxq,
ykhuang}@bupt.edu.cn.

� Ling Liu and Calton Pu are with the College of Computing, Georgia Insti-
tute of Technology, Atlanta, GA 30332 USA. E-mail: {ling.liu, calton.pu}
@cc.gatech.edu.

� Schahram Dustdar is with the Distributed Systems Group (DSG), Infor-
mation Systems Institute, Vienna University of Technology, 1040 Vienna,
Austria. E-mail: dustdar@dsg.tuwien.ac.at.

Manuscript received 10 Apr. 2020; revised 26 June 2021; accepted 18 July
2021. Date of publication 26 July 2021; date of current version 9 Dec. 2022.
(Corresponding author: Xiuquan Qiao.)
Digital Object Identifier no. 10.1109/TSC.2021.3098816

3260 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2022

1939-1374 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
mailto:renpei@bupt.edu.cn
mailto:qiaoxq@bupt.edu.cn
mailto:ykhuang@bupt.edu.cn
mailto:ling.liu@cc.gatech.edu
mailto:calton.pu@cc.gatech.edu
mailto:dustdar@dsg.tuwien.ac.at

Neurosurgeon [8] was proposed for collaborative
DNN inference but with only one partitioning point
(i.e., coarse-grained partitioning), which fails to take
full use of 5G resources: for optimal inference latency
or energy saving, it will degenerate into a cloud-only
solution in the experiment. 5G technologies promise
a revolutionary network experience, a more flexible
approach is therefore needed. Specifically, by adopt-
ing a fine-grained mechanism with multi-partition-
ing points, computation-intensive DNN layers will
be assigned to edge or cloud server for inference
acceleration while others will be completed on the
mobile Web browsers to reduce the system deploy-
ment cost. A comparison of the DNN inference pro-
cess is illustrated in Fig. 1. However, this has not yet
been studied throughly.

� The features learned at the early stage of a DNN are
sufficient to provide credible recognition for simple
samples [9]. But for current coarse-grained DNN
branching mechanism [10], the inference processing
can only be terminated when the next exit branch is
reached, although the intermediate results already
satisfy the recognition requirement as shown in
Fig. 2. Obviously, this will lead to redundant compu-
tations, and thus increase the occupation of comput-
ing resources and latency of the service response. In
contrast, a fine-grained DNN branching mechanism
can therefore significantly improve the inference effi-
ciency as the recognition result can be returned in a
timely fashion.

� Furthermore, for layer granularity DNN computa-
tion partitioning, because each layer is independent
of the others, which will then result in an explosive
growth in the partitioning decision space. For exam-
ple, there are only 57 potential partitioning points
for ResNet-56 when adopting Neurosurgeon, but
will be about 5:23� 1026 partitioning solutions
within the “Device-Edge-Cloud” collaborative sce-
nario for layer granularity DNN partitioning
approach with multi-partitioning points. Current
partitioning schemes rely on the enumerative
approach to get the optimal decision, but obviously,
a more efficient approach will be needed.

� Current collaborative approaches focus on the DNN
inference latency or mobile energy consumption sep-
arately in the computation partitioning process.
However, AR service subscribers are sensitive to
response latency as well as energy consumption. Per-
forming DNN inference on mobile Web browsers,

especially built-in browsers, is more difficult than
the App-based approaches, due to their limited com-
puting efficiency of JavaScript. Therefore, both two
factors need more attention in mobile Web AR
services.

Given these concerns, it is desirable that a collaborative
computing paradigm provide a win–win service provision-
ing solution in the 5G era. To this end, we first focus on the
two collaborative computing scenarios (i.e., “vertical”–the
collaboration between hierarchy computing resources and
“horizontal”–D2D-based resources collaboration) for
mobile Web AR services in 5G networks. Then we discuss
the architecture design of the enhanced Elastic Computation
Offloading (ECO) decision-making mechanism, which takes
into account the network performance, computing capabil-
ity, and customized requirements, simultaneously. Elastic
computation partitioning relies on the fine-grained design
of the DNN architecture. We next study the branching
mechanism in different DNN architectures, and analyze the
per-layer latency and energy consumption prediction mod-
els as well, which provide the basis for the multi-objective
optimization. An efficient DNN computation partitioning
approach is another core component for a distributed proc-
essing platform. Finally, we propose a DNN computation
partitioning solution based on reinforcement learning in
order to address the problem of the explosive growth in the
partitioning decision space.

Experiments have been conducted within both “vertical”
and “horizontal” computing scenarios for mobile Web AR
services in 5G networks. The prototype demonstrates an
improvement of DNN inference latency by about 72.17 and
47.02 percent, and 0.875� system throughput improvement
on average, also 66.91 percent mobile energy saving for differ-
ent DNN architectures (i.e., AlexNet, VGGNet-16, ResNet-32,
andMobileNet-V1)with the given partitioning decisions.

The main contribution lies in the following aspects:

� Prove the availability of collaborative computing mecha-
nism in mobile Web AR services. Where can the DNN
computations be completed? We detail the first col-
laborative computing scenarios for mobile Web AR
in the 5G era, which is the basis for the fine-grained
DNN computation partitioning. But, more generally,
this can also contribute to other collaborative com-
puting problems especially in distributed systems
over 5G networks.

� Design of the fine-grained DNN architectures. (1) To
improve the inference efficiency, we re-design the
branching mechanism for DNN with the lowest

Fig. 1. Comparison of the DNN inference process. (a) Current coarse-grained partitioning approach is based on only one partitioning point, which
divides the DNN computations into mobile Web and remote cloud for execution. Although this partitioning point can be dynamically selected in differ-
ent scenarios, it still lacks flexibility. (b) 5G network provides the basis for fine-grained elastic partitioning for distributed DNN. By adopting multi-parti-
tioning points, the computation of each DNN layer will be independent of its “neighbors” to be distributed to the mobile Web (red), network edge
(green), and remote cloud (blue). For example, assume that performing the Li DNN computation on the mobile Web browser takes a lot of time and
energy, generally, this DNN computation layer/block can be easily assigned to the network edge or remote cloud by our proposed fine-grained parti-
tioning approach. However, this is impossible with a coarse-grained partitioning approach.

REN ETAL.: FINE-GRAINED ELASTIC PARTITIONING FOR DISTRIBUTED DNN TOWARDS MOBILE WEB AR SERVICES IN THE... 3261

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

inference cost (i.e., only exits are added to each
branch). Unlike the status quo solutions, this fine-
grained branching approach will also effectively
reduce the redundant DNN computations. (2) On
the basis of factor analysis of the device computing
capability and the DNN layers’ configurable param-
eters, we then present per-layer inference latency
and energy consumption prediction models that
give basic insights into the on-demand real-time
neural network computation partitioning.

� DNN partitioning algorithm. (1) We propose the
Intent-oriented Offloading algorithm (IoRLO) based
on reinforcement learning, in which Deep Determin-
istic Policy Gradient (DDPG) is used to learn the
optimal partitioning decision, in order to address the
challenge of the explosive growth of the decision
space. The core mechanism of IoRLO can also pro-
vide valuable experience for other decision-making
problems. (2) Besides, we formulate a multi-objective
optimization problem to meet the user’s require-
ments for inference latency and energy consumption
simultaneously in the DNN computation partition-
ing process. Unlike the status quo solutions, our
approach is more flexible based on the fine-grained
DNN computation partitioning mechanism.

� Mobile Web AR application. We examine the perfor-
mance of our proposed partitioning solution for Dis-
tributed DNN (DDNN) for mobile Web AR
applications in the “vertical” and “horizontal” col-
laborative computing scenarios over the actually
deployed 5G networks.1

The remainder of this paper is organized as follows. Sec-
tion 2 presents the two collaborative scenarios for mobile
Web AR in 5G networks, followed by the overview of the
partitioning decision-making system. Section 3 gives the
per-layer characteristics prediction models. An analysis of
IoRLO is given in Section 4. Section 5 presents the experi-
mental analysis. Section 6 reviews the related literature. Sec-
tion 7 concludes the paper.

2 OVERVIEW OF THE ARCHITECTURE

The collaborative mechanism provides opportunities for
flexible service provisioning. For clarity, it is important to
detail the distributed computing scenario designed for

mobile Web AR over 5G networks before the analyzation of
the DNN computation partitioning method.

Typically, an AR system pipeline consists of three com-
ponents: object recognition, object tracking, and annotation
rendering [3]. When the AR subscriber targets the camera at
the object, the AR system first needs to know what the user
is focusing on (i.e., environment perception). That is, object
recognition, which provides a key for subscribers to enter
the mixed-reality world, and therefore, is one of the most
important components in AR systems. The traditional object
recognition methods need to first extract the local feature
points [11], [12], [13] from the video frames captured by the
camera in real time, and then complete the recognition pro-
cess through object retrieval [14]. Remarkably, the perfor-
mance of this traditional recognition mechanism is greatly
limited by the ability of local feature extraction and object
retrieval techniques. With the boom of artificial intelligence,
deep learning technologies have been widely used in the
field of computer vision (such as object detection, recogni-
tion, and segmentation). By adopting the DNN technologies
into the augmented reality application, it will be able to
greatly improve the accuracy and generalization ability of
object recognition (i.e., environment perception), thereby
improving the AR application performance.

The rapid development of 5G network technologies and
large-scale commercial deployment are major factors that
mobile Web AR can be achieved [15]. Specifically, AR is a
kind of delay-sensitive and computationally-intensive serv-
ices. However, mobile Web platforms (especially built-in
Web browsers) often require additional computing resour-
ces to complete the AR processes due to the limited comput-
ing capability [16]. From the communication perspective,
5G networks promise even gigabyte-level bandwidth and
millisecond-level network delay, which will greatly opti-
mize the data transmission in the network and thus provide
the basis for collaborative computing. From the computing
perspective, both the ubiquitous edge servers and sur-
rounding mobile devices can provide AR subscribers with
additional computing resources. In this paper, we explore
the orchestration of the networking and computing resour-
ces in 5G networks for adopting the distributed DNN in
mobile Web AR as a proof of concept.

2.1 Collaborative Scenarios in 5G Networks

In addition to the skip-type improvement of networking
performance, the emerging 5G networks also introduce a
variety of promising features, such as the pervasive edge
server deployment and D2D communication support.

Fig. 2. Comparison of the DNN branching mechanism. (a) The coarse-grained DNN branching mechanism obviously causes redundant computa-
tions. For a pre-defined recognition accuracy threshold, although the intermediate result already meets the accuracy requirements after the process
of the first three DNN layers for the given input sample, the subsequent DNN processing still needs to be completed to obtain the recognition results.
(b) However, for our proposed fine-grained DNN branching mechanism, once the inference result of the intermediate DNN layer satisfies the recogni-
tion requirements, the DNN inference process will be terminated, which will effectively reduce the redundant computations.

1. The 5G trial network was supported by China Mobile Communi-
cations Group Beijing Co., Ltd. and Huawei Technologies Co., Ltd.

3262 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

However, the evolution of both computing and communica-
tion paradigms bring Web-based services new opportuni-
ties as well as challenges. To this end, we propose the MEC-
based and D2D-based computing solutions directed at the
problem of collaborative service provisioning. More gener-
ally, the two collaborative modes can also contribute to
other types of services with heavy computation and com-
munication demands, especially in the 5G era.

As shown in Fig. 3a, the computing platform in the
“vertical” scenario mainly consists of the end device, net-
work edge, and cloud. All the computing and network
resources along the path between the end device (i.e., the
data source) and the cloud data center can be defined as an
“edge” [5]. For simplicity, we refer the micro data center
that is deployed on the 5G base station as the network edge.

The D2D-based collaborative computing mode is another
important and promising one, attributable to the support of
D2D communication technology in 5G networks and the
increasing popularity of intelligent devices [17]. The D2D-
based mobile Web AR implementations have prospective
value for a wide range of applications, such as entertain-
ment (e.g., multiplayer games [18]) and training [19]. Fig. 3b
shows this collaborative computing scenario.

Based on the discussions above, the question then arises
as to how to balance multiple interests by leveraging the
distributed and heterogeneous resources. Obviously, a flexi-
ble computation scheduling approach is thus necessary.

2.2 Why Elastic Computation Offloading is Needed

The conventional offloading paradigms are proposed for
mobile cloud computing to solve the problem of Quality of
Service (QoS) degradation caused by insufficient computing
resources of the user device. However, these efforts, such as
MAUI [20] and CloneCloud [21], were all designed to off-
load as many computations as possible to the cloud, for the
sake of improved performance. Service providers therefore
had to pay hefty deployment costs to support the operation
of the business.

Mobile edge computing as a revolutionary paradigm has
been widely recognized. But the offloading decision-making
process also becomes more difficult for the following

reasons: (1) Complex computing scenario. Computations
can be completed not only in the cloud or locally, but also
can be assigned to various distributed and heterogeneous
computing platforms. (2) Dynamic network situation. The
communication situation will also be more complicated and
changeable due to the increase in networking equipments.
(3) Diverse service requirements. Both the user experience
and service deployment costs need to be considered.

Fortunately, the computing capability of mobile devices
is now increasing rapidly: more and more complex compu-
tations can be completed locally. With the breakthrough of
wireless transmission in 5G networks, the connection
between network edge devices (including these user end
devices) will be more closer. An elastic computation off-
loading mechanism relies on efficient network communica-
tion capability, which can realize dynamic decision-making
in changing application environment, and is expected to
balance the interests of both the user and service provider.
Specifically, under the premise that QoS (it depends on the
service requirements, and here is just a generalized concept)
is satisfied, by coordinating computations across heteroge-
neous platforms, the crowdsourced computing capability
will therefore effectively alleviate the computational pres-
sure on the central site in the distributed manner.

3 FINE-GRAINED DEEP NEURAL NETWORKS

Features learned at the early stage of a DNN are sufficient to
provide credible result for simple samples. By placing early
exits at the appropriate position, this DNN architecture can
obviously reduce the inference time and simultaneously
reduce the computational cost [10]. This section focuses on
the improvement of the branch-based DNN architecture.

3.1 Design of the Branch-Based DNN Architecture

Aiming at the fine-grained computation partitioning and
scheduling, we first explore the DNN branching mechanism
as follows. Fig. 2 (see Supplementary Material), which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2021.3098816,
illustrates the architecture improvement of DNN; here we

Fig. 3. Two collaborative computing scenarios for mobile Web AR in the 5G era.

REN ETAL.: FINE-GRAINED ELASTIC PARTITIONING FOR DISTRIBUTED DNN TOWARDS MOBILE WEB AR SERVICES IN THE... 3263

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSC.2021.3098816
http://doi.ieeecomputersociety.org/10.1109/TSC.2021.3098816

use the AlexNet, VGGNet-16, ResNet-32, and MobileNet-V1
as examples. Early exits have the potential to provide credi-
ble predictions and the number of input samples exiting
from each branch is illustrated in Table 1 (see Supplemen-
tary Material), available online. Similarly, we use entropy
(i.e., entropyðyÞ =

P
c2C yclog yc) to measure the confidence

of each side branch [10]. When the classification result is
sufficient (i.e., entropyðyÞ < Thrshld) for prediction, the
output will then be returned immediately as the final result
without further inference processing. Here y refers to the
probabilities of all possible class labels C, and Thrshld indi-
cates the pre-defined threshold of side branches.

This lightweight branching and processing mechanism
for DDNN can effectively improve the inference efficiency
and can also optimize the system load, but it is still affected
by the specific branch design mechanisms. Because this is
beyond the scope of this paper, here we only give a brief
and necessary discussion about it; and only use the dense
DNN branch structure with the FC layer for demonstration.

� The density of DNN branches (i.e., how the early exit
points are determined): The introduction of DNN early
exit branches will undoubtedly cause additional
inference processes in the case where the prediction
results are not credible enough, especially when
the fine-grained DNN branch design is intensive, the
complex input samples will continuously activate
multiple branch inference process, which is ineffec-
tive for prediction and will lead to negative effects.
While in practical applications, the determination of
early exit points should depend on multiple factors.
For example, when all the input samples are more
complex, by avoiding the early stage DNN branches
can reduce the unnecessary computations; while
when service providers have lower requirement for
prediction accuracy, those early stage DNN branches
will help improve the system inference efficiency.
Moreover, in a distributed collaborative computing
scenario, the DNN service computational complexity
can also be reduced by adjusting the inference pro-
cess (i.e., execution mechanism). Assume that the
DNN computations are partitioned into several parts
as shown in Fig. 4, here only certain side branches
will be activated. Specifically, before the intermediate
results are transmitted between two computing plat-
forms, the subsequent exit branch then will be acti-
vated, if the features learned are sufficient for
prediction, the DNN inference process will be termi-
nated and return the results to the client immediately.

� The complexity of each branch: On the other side, the
complexity of the introduced branch will also affect
the inference efficiency; Complex DNN branches
often lead to increased inference response latency,
energy consumption, and storage occupation. For
example, the branches in BranchyNet adopts the
structure of n� Convolutional layer þ Fully-Con-
nected layer, undoubtedly the introduction of convo-
lution operation will increase the complexity of the
DNN branch; while our proposed branching mecha-
nism requires only one Fully-Connected layer for
each branch, which is necessary to be used for early
exit. By comparison, this cost is still acceptable when
compared with the other complex branching mecha-
nisms. In practice, the complexity of the branch
structure can be customized by the developer based
on specific application requirements.

Theoretically, this collaborative method can achieve a
balance of DNN inference accuracy and efficiency, that is,
by dynamically adjusting the prediction accuracy threshold,
so as to meet the different inference efficiency requirements.
Partitioning schemes discussed in this paper are for the
DNN computations scheduling, the prediction accuracy of
the system is not directly related to it, but depends on the
accuracy threshold predefined by the service provider; this
partitioning mechanism can be directly applied to the cur-
rent mature DNN backbone networks without additional
modification (if early exit is not considered). On the other
hand, compared with conventional methods, different
branch-based DNN training modes will also have different
effects on the DNN prediction accuracy. Specifically, if the
branch parameters are trained directly based on the pre-
trained DNN model for early exit, the parameters of the
DNN backbone network remain unchanged, and the predic-
tion accuracy of the system depends on the designate of the
threshold (i.e., the method we used in this paper); while if
all the parameters of the branch neural network are
retrained, these early exit points may play the same role as
the softmax in GoogLeNet [22], which can achieve more effi-
cient gradient transmission, thereby affecting the prediction
accuracy of the entire DNNmodel, but this is not within the
scope of our discussion.

3.2 Per-Layer Prediction Models

For the elastic computation partitioning, we give two pre-
diction models on DNN inference latency and energy con-
sumption by analyzing the per-layer input and/or output
size (although different DNN layers have different floating-
point operations, their inference efficiency is not propor-
tional to this value [23]) and capabilities of the computing

TABLE 1
Parameters for the DNN Characteristics Prediction Models

*We use l and e as subscripts to identify a, b, and g in DNN inference latency
and energy consumption prediction models, and a, b, and/or g are the parame-
ters used by the above prediction models as detailed in Section 3.2.

Fig. 4. Execution mechanism of branch-based DNN. When the interme-
diate result is transmitted between different platforms, will the branch
exits be activated first to determine whether it is necessary to perform
the subsequent DNN computations.

3264 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

platforms. The performance measurement is conducted
with different neural network architectures at layer level
using various computing platforms (due to the limited data
access on iOS, we only used mobile devices with Android
OS for testing). To avoid the impact of architectural differ-
ences between computing platforms on the DNN perfor-
mance of feedforward, we introduce a “standard” approach
using an edge server (IBM System x3650 M4, Intel Xeon E5-
2600 v2 @ 2.0 GHz) as a measurement benchmark to analyze
the device computing capability [24]. Moreover, only the
mobile device energy consumption is measured by collect-
ing the idle and active status using Power Monitor AAA10F.

Specifically, our obtained DNN layer characteristics
models are detailed below: (1) for convolution, pooling, and
fully-connected layers, both the inference latency and
energy consumption prediction model can be expressed as
prediction ¼ d� ða� inputþ b� outputþ gÞ; (2) the pre-
diction model of ReLU and normalization layers only con-
siders the computing capability and input feature size, that
is, prediction ¼ d� ða� inputþ gÞ, since these layers have
fewer configurable parameters.

The parameters for the DNN layer characteristics predic-
tion models are listed in Table 1. Besides the linear regres-
sion-based prediction models analysis, we also consider
logistic-based and polynomial-based approaches. But the
linear-based approach perform better than others, with
lower prediction errors for both DNN inference latency and
energy consumption, that is, on average 13.25 and 49.35 per-
cent lower compared to logistic-based approach, and 83.13
and 85.28 percent lower compared to polynomial-based
approach.

Although the system status monitoring on the mobile
device may increase the energy consumption, it is negligible
since the energy required is small and the monitoring oper-
ation is only conducted periodically. Moreover, the fitting
processing of the proposed prediction models is completed
on the edge/cloud server automatically, which can be
updated effectively by collecting the feedforward perfor-
mance on the different computing platforms in real time.

Based on the analysis and discussion above, the pro-
posed per-layer latency and energy consumption prediction
models provide basic insights into how to achieve fine-
grained DNN computation partitioning. These models also
make their predictions based on the configurations without
execution in advance, and therefore can be directly applied
to different DNN architectures as a generalized approach.

4 THE ELASTIC PARTITIONING METHOD

Based on the discussion above, the DNN computation parti-
tioning method should be responsible for: (1) adaptive deci-
sion-making in accordance with the different capabilities of
the computing platforms and mobile network performance;
and (2) striking a balance between user experience and sys-
tem deployment cost.

4.1 Problem Formulation

In this part, we consider the two typical computing scenar-
ios in the 5G era as mentioned before (see Section 2.1).

Our object is a win–win situation, that is, by leveraging
the newly emerged computing and communication

technologies in 5G networks, the demands from the two
conflicting parties (i.e., AR service subscribers and pro-
vider), viz. user experience maintenance and deployment
cost saving, are expected to be satisfied simultaneously. The
analyses of the system for these two scenarios are given
below.

4.1.1 “Vertical” Computing Scenario

As shown in Fig. 5, the overall system processing model
consists of two parts, the performance monitoring module
and the service provisioning module.

Performance Monitoring Module. An additional thread is
maintained for periodically monitoring the performance of
the network and reporting the computing capability. Specif-
ically, we denote by B

U=D
TE the uplink and downlink band-

widths (mbps) between the Terminal and Edge server, and
by B

U=D
EC the bandwidths between the Edge and Cloud serv-

ers. Similarly, we denote by L ¼ LTE; LECf g the end-to-end
latency (ms) between these three computing platforms.
Only if the detected data exceeds the pre-defined thresholds
will it be updated to the cloud. The computing capabilities
(GHz) of the mobile terminal device dT and network edge
server dE are also collected during the service request phase.

Service-Oriented Processing Pipeline. After receiving a ser-
vice request, the cloud performs the computation partition-
ing using the proposed IoRLO algorithm based on the
collected network performance, capabilities of the comput-
ing platforms (i.e., d ¼ dT; dE; dCf g, here we denote by dC
the computing capability of the cloud server), latency and
energy consumption prediction models, DNN architecture,
and the proposed IoRLO algorithm. Then the target DNN
model and the computation partitioning decision will be
returned to the user and edge server. And we denote by
G ¼ G1; G2; . . . ; Gnf g the DNN blocks. For example, the
number of blocks in the branch-based AlexNet, VGGNet-16,
ResNet-32, and MobileNet-V1 architectures is 10, 15, 17,
and 6 as shown in Fig. 1 (see Supplementary Material),
available online. The granularity of neural network segmen-
tation is determined by the service provider during the
DNN model design phase. Moreover, we denote by Gin

i and
Gout

i the size (Kilobyte) of input and output of the ith block,
respectively, and denote by S ¼ S1; S2; . . . ; Snf g the
obtained partitioning decision in the MEC-based computing
scenario, where Si 2 1; 2; 3f g. Explicitly, Si ¼ 1 indicates
that the ith DNN block is assigned to execute on the mobile
Web browser, Si ¼ 2 means it will be completed on the
edge server, otherwise, it will be processed on the cloud,

Fig. 5. MEC-based collaboration pipeline for mobile Web AR services.

REN ETAL.: FINE-GRAINED ELASTIC PARTITIONING FOR DISTRIBUTED DNN TOWARDS MOBILE WEB AR SERVICES IN THE... 3265

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

that is, Si ¼ 3. Worth mentioning is that to perform infer-
ence on the mobile Web platform, the DNN models will be
encoded in the WebAssembly2 format on the edge server in
advance.

Based on the proposed per-layer characteristics predic-
tion models, we can therefore derive the inference latency
of the ith DNN block on computing platform X as TX

i�cp,
X 2 T;E;Cf g, i 2 1; 2; . . . ; nf g. Similarly, the per-block
inference energy consumption is defined as ET

i�cp, here we
only focus on the overhead of mobile device.

Considering the layer-by-layer DNN inference mecha-
nism, the ith neural network block can only be executed
after the computing platform receives its input (i.e., output
of the previous block or the raw image for the first DNN
block) completely; and only after the current block is com-
pleted will its output be sent to the next block. The detailed
modeling of the cost of inference latency and energy con-
sumption in the DNN computation partitioning is then
illustrated in what follows.

Cost of Local Computing. When the ith neural network
block is assigned to execute on the mobile device, the cost of
latency can be generally divided into two parts, the part for
receiving the input TT

i�cmr and the part for inference process-
ing TT

i�cp. For a given partitioning decision, the total cost of
latency for inference on the mobile device is

TT
total ¼

Xn
i¼1;Si¼1

ðTT
i�cp þ TT

i�cmrÞ: (1)

Specifically, only the previous result needs to be obtained
from other computing platforms, then it will cause the
transmission overhead. Moreover, we assume that the raw
image has already been obtained, and thus the transmission
latency will also be neglected in the case S1 ¼ 1.

In addition to the energy consumed by carrying out
DNN inference on the mobile Web browser, the data trans-
mission will also consume mobile energy ET

i�cm, which
includes not only receiving input but also sending the out-
put to other platforms. Specifically, if the input comes from
edge server, the TT

i�cmr will be Gin
i =B

D
TE þ LTE, and if it is

from remote cloud, the data receiving latency needs to
increase Gin

i =B
D
EC þ LEC; similarly, the data sending latency

to the edge server and remote cloud is Gout
i =BU

TE þ LTE and
Gout

i =BU
TE þGout

i =BU
EC þ LTE þ LEC, respectively.

Here we only consider the energy consumption of mobile
terminal device ET

total, with

ET
total ¼

Xn
i¼1;Si¼1

ðET
i�cp þ ET

i�cmÞ: (2)

Moreover, we denote by r5G the available data rate, and by
P

U=D
5G ¼ a

U=D
5G � rU=D

5G þ b5G (the parameters aU
5G and aD

5G are
set to be 65 mW/Mbps and 6.5 mW/Mbps, respectively;
and b5G is set to be 11475.97 mW) the uplink and downlink
transmit power in 5G networks [26]. Therefore the mobile
energy consumed during the data transmission is

ET
i�cm ¼ TT

i�cmr � PD
5G þ TT

i�cmt � PU
5G:

Cost of On-Edge Computing. Similarly, when the ith DNN
block is assigned to execute on the edge server, the cost of
processing latency is given by

TE
total ¼

Xn
i¼1;Si¼2

ðTE
i�cp þ TE

i�cmrÞ: (3)

Also, the input (i.e., the output of the previous block) source
of the ith DNN block can be classified into three categories,
that is, mobile device, network edge, and cloud server.
When the data need to be transfered from mobile device,
then the transmission latency is Gin

i =B
U
TE þ LTE; and the

data receiving latency from the remote cloud is thus
Gin

i =B
D
EC þ LEC.

When the first DNN block is specified to be executed by
the edge server, the raw image needs to be transmitted from
the mobile device as the input to this block. Therefore, the
mobile energy consumption caused by image transmission
is given by

EE ¼ EE
1�cmr ¼

Gin
1

BU
TE

þ LTE

� �
� PU

5G: (4)

Cost of On-Cloud Computing. In the case where the com-
puting task is assigned to the cloud for execution, we define
the cost of inference latency as follows:

TC
total ¼

Xn
i¼1;Si¼3

ðTC
i�cp þ TC

i�cmrÞ: (5)

Similarly, the per-block input transmission latency TC
i�cmr

from the mobile device and edge server is Gin
i =B

U
TE þ

Gin
i =B

U
EC þ LTE þ LEC and Gin

i =B
U
EC þ LEC, respectively.

If S1 ¼ 3, the raw image needs to be transmitted from the
mobile device to the remote cloud, therefore the energy con-
sumption of the mobile device caused by the data transmis-
sion is EC ¼ EC

1�cmr, with

EC
1�cmr ¼ EE

1�cmr þ
Gin

1

BU
EC

þ LEC

2

� �
� PU

5G: (6)

Cost of Result Receiving. In addition, the inference result
needs to be finally returned to the user; and the result trans-
mission latency Tresult depends on where the nth DNN block
is performed. In detail, the latency of result transmission
from edge server and remote cloud is Gout

n =BD
TE þ LTE and

Gout
n =BD

TE þGout
n =BD

EC þ LTE þ LEC, respectively. Similarly,
the energy consumption of mobile device for service result
receiving is defined as Eresult ¼ Tresult � PD

5G.
In summary, for a given DNN computation partitioning

decision, the total cost of the inference latency T and mobile
energy consumption E is defined as the sum of the above
four types of costs. It is worth noting that the object of our
partitioning mechanism is a win–win situation, besides the
aforementioned user experience-related requirements, we
also considered the deployment overhead, especially, com-
puting cost, from the service provider’s perspective. For

2. WebAssembly [25] is designed as a computational acceleration
approach by encoding procedures (e.g., C, C++) into a size- and load-
time-efficient binary format, which can be executed on the Web
directly.

3266 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

simplicity, we take the percentage of computations com-
pleted at the network edge and the remote cloud platforms
as the mobile Web AR service deployment overhead, that is,
Dcp ¼

Pn
i¼1;Si 6¼1 Si

�
n. More detailed deployment overhead

optimization problems will be discussed in our future
works, for example, taking into account the computing
capability and rental differences between the network edge
and the remote cloud servers.

Based on the above discussion, we formulate the optimi-
zation problem that aims at minimizing the DNN inference
latency, mobile energy consumption, and service deploy-
ment overhead by optimizing the computation partitioning
decision. Specifically, our formulated DNN computation
partitioning problem is given by

P : min ð T þ hMEC
1 � E|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Mobile Web User

þ hMEC
2 �Dcp|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Service Provider

Þ:

Note that the above weighted objective function is able to
balance the DNN inference latency and mobile energy con-
sumption (for service subscriber) and deployment overhead
(for service provider) dynamically by adjusting the pre-
defined weighting factor hMEC

1 and hMEC
2 .

4.1.2 “Horizontal” Computing Scenario

The system processing model for D2D-based computing
scenario is illustrated in Fig. 6, which significantly differs
from the aforementioned “vertical” computing scenario but
also includes two parts.

Device Monitoring Module. This part is responsible for the
monitoring of (1) the availability of all candidate collabora-
tors H ¼ H1; H2; . . . ; Hmf g; (2) the computing capability of
both end-user device dU and other collaborators dH ¼
fdH1

; dH2
; . . . ; dHmg; and (3) the communication characteris-

tics, that is, the end-to-end data transmission bandwidth
BH ¼ fBH1

; BH2
; . . . ; BHmg and the network latency LH ¼

fLH1
; LH2

; . . . ; LHmg between the end-user and other
collaborators. Here we denote by m the number of available
collaborators in a D2D network. Considering the fluctua-
tions in the network performance and load on the comput-
ing platform, the local controller which is deployed
over the access point will periodically select the
“best” collaborator, that is, Hx ¼ argmaxðdHi

=maxðdHÞ þ
BHi

=maxðBHÞ þ 1=LHi
Þ, based on the previously monitored

context information.
Generally, the block-based DNN computations are parti-

tioned among two platforms (i.e., the user device and a spe-
cific collaborator with computing capability dHx). But other
“candidates” may be involved in the following cases:

� Overload of the collaborator degrades the service per-
formance and thus needs to be replaced by others.

� The collaborator leaves the current D2D communica-
tion network proactively.

� The collaborator disconnects from the controller or
user device due to an unstable connection.

Service-Oriented Processing Pipeline. The local controller
will perform the DNN computation partitioning based on
the collected network performance and the computing capa-
bilities of the devices after deciding on the collaborator. The
specified neural network model and the partitioning deci-
sion S, Si 2 0; 1f g, will be transmitted to the end-user device
and the collaborator, simultaneously. Specifically, Si ¼ 0
means that the ith DNN block is assigned to execute on the
end-user device, otherwise, it will be completed on the
selected collaborator.

Based on the discussion above, we can therefore derive
the DNN inference latency of the ith neural network block
on end-user device and collaborator as TU

i�cp and TH
i�cp, i 2

1; 2; . . . ; nf g, respectively. Also we only focus on the user’s
energy consumption, which is denoted by EU

i�cp. The service
overhead is described in detail below.

Cost of Local Computing. Similarly, the processing latency
consists of input receiving TU

i�cmr and inference processing.
For a given partitioning decision , the total cost of the
latency on the end-user device is given by

TU
total ¼

Xn
i¼1;Si¼0

ðTU
i�cp þ TU

i�cmrÞ: (7)

Specifically, input transmission only occurs if the previous
DNN block is executed on the collaborator platform. The
transmission latency, especially for data receiving, is there-
fore given by TU

i�cmr ¼ Gin
i

�
BHx þ LHx . For the first DNN

block or the previous block that is completed locally, there
will be no data transfer. Also, when the next DNN block is
assigned to the collaborator, that is, Siþ1 ¼ 1, then the out-
put sending will be activated, and thus, the data transmis-
sion latency is defined as TU

i�cmt ¼ Gout
i

�
BHx þ LHx .

Similarly, the mobile energy consumption of the end-
user device consists of three parts, that is, DNN inference,
input receiving EU

i�cmr and output sending EU
i�cmt.

EU
total ¼

Xn
i¼1;Si¼0

ðEU
i�cp þEU

i�cmr þEU
i�cmtÞ: (8)

Specifically, the mobile energy overhead of communication
depends on the transmit power and the transmission dura-
tion, with EU

i�cmr=t ¼ TU
i�cmr=t � PD2D. Here, we denote by rD2D

the available data rate between the two devices and by
PD2D ¼ aD2D � rD2D þ bD2D the transmit power in a D2D net-
work using Wi-Fi Direct link. The parameters aD2D and bD2D

are set to be 283.17 mW/Mbps and 132.86 mW,
respectively [26].

Cost of Collaborator Computing. When the ith DNN block
is assigned to execute on the selected collaborator, the proc-
essing latency is given by

TH
total ¼

Xn
i¼1;Si¼1

ðTH
i�cp þ TH

i�cmrÞ: (9)

Fig. 6. D2D-based collaboration pipeline for mobile Web AR services.

REN ETAL.: FINE-GRAINED ELASTIC PARTITIONING FOR DISTRIBUTED DNN TOWARDS MOBILE WEB AR SERVICES IN THE... 3267

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

The input source of the current DNN block may be end-user
device (including the raw image and the output of previous
block) or collaborator itself. Only for the first case, the input
data needs to be transmitted to the current collaborator
before continuing the DNN inference. The data transmis-
sion latency for the input receiving is therefore defined as
TH
i�cmr ¼ Gin

i

�
BHx þ LHx . Note that when the first DNN

block is assigned to be executed by the collaborator, the raw
image needs to be transmitted to the collaborator, which
will also cause the mobile energy consumption

EH ¼ EH
1�cmr ¼

Gin
1

BHx

þ LHx

� �
� PD2D: (10)

Additionally, the transmission of the inference result from
collaborator to the end-user device will also incur a latency
cost Tresult ¼ Gout

n

�
BHx þ LHx and mobile energy consump-

tion Eresult ¼ Tresult � PD2D. In summary, the total cost of the
inference latency and energy consumption in this collabora-
tive computing scenario is the sum of the costs incurred by
the mobile user and the collaborator.

Based on the above discussion, our formulated computa-
tion partitioning problem can be defined as follows:

P : min ð T þ hD2D � E Þ:

4.2 Intent-Oriented Offloading Algorithm (IoRLO)

Considering the above discussion, what we focused on are
two different collaborative computing scenarios in 5G net-
works. But in essence, what they discussed is to reasonably
allocate DNN computations to different computing plat-
forms with the help of a partition system to meet multiple
requirements. The object of this partitioning system is to
reduce the service deployment overhead while simulta-
neously satisfying the user experience requirement. In gen-
eral, assuming the number of computing platforms is a and
the number of DNN blocks is n0, the number of potential
partitioning decisions therefore will be an

0
. And as the DNN

architecture continues to deepen, the decision-making pro-
cess will become more complex. To this end, an offloading
decision-making approach based on deep reinforcement
learning is proposed, which leverages the DDPG for
addressing the challenges of this “dimension disaster”.

In this part, we analyze the proposed IoRLO algorithm,
which is designed as a computation partitioning solution
for distributed DNN in the 5G era. This decision maker
includes the following three key features:

� Efficiency. The experience replay mechanismmakes it
easy to use the existing “experience” to accelerate the
training process. Also, using the online learning
method enables the decision maker to cope with
changing environments, and improves the decision-
making ability attributed to the “rich” learning
experiences.

� Flexibility. Various factors, such as custom require-
ments from service provider, network performance,
and computing capability, are all considered for the
decisionmaking, so the IoRLO contributes to the elas-
ticity of the DNNpartitioning in practical application.

� Reusability. Although the IoRLO is designed for
mobile Web AR service, the core mechanism also
motivates the investigations of partitioning problems
in other fields.

The core phases of IoRLO are detailed below.

4.2.1 Overview of the IoRLO Algorithm

The goal of IoRLO is to devise a computation partitioning
policy p that can generate an optimal partitioning decision
(i.e., action, which indicates the computing platform each
DNN block will be assigned to) at ¼ at;1; at;2; . . . ; at;n

� �
, at 2

A, based on the received agent state information st ¼
st;1; st;2; . . . ; st;n

� �
, st 2 S at the tth time frame, which repre-

sents the DNN inference cost, including the DNN block
inference latency, energy consumption, and service deploy-
ment overhead (in the MEC-based “vertical” collaborative
computing scenario), here n is the number of blocks in the
DNNmodel.

As illustrated in Fig. 7, the IoRLO algorithm mainly con-
sists of two components, Actor and Critic. The partitioning
action is generated by the Actor after receiving the state
information st. When the action acts on the environment
(here the environment refers to the 5G communication net-
works), the reward rt will be fed back and then the agent
enters the state stþ1. Based on the previous discussion, the
reward rt can be represented as �ðTMEC þ hMEC

1 � EMEC þ
hMEC
2 �DcpÞ in the “vertical” computing scenario; and

�ðTD2D þ hD2D � ED2DÞ in the “horizontal” scenario. Because
the two scenarios discussed in Section 4.1 are all designed
to reduce the DNN inference cost, therefore in the IoRLO
algorithm, the reward needs to be set to the opposite of the
cost value as the agent always tends to the actions with
higher reward in reinforcement learning. The tuple
ðst; at; rt; stþ1Þ will be stored in memory for the learning of
Actor and Critic, that is, um and uQ, respectively. Then it
comes to the partitioning policy pu

m
tþ1

.
It should be noted that rt (i.e., r

a
ss0) refers to the immediate

environment reward for performing the action a to state s0

under the state s, which is defined as rass0 ¼ �costt. According
to the Markov Decision Process (MDP), the cumulative
reward at state st is given by Rt ¼

P1
k¼0 g

krtþkþ1, where g 2
½0; 1� is the discount factor. Obviously, our goal is tomaximize
the expected cumulative reward through the learned DNN
computation partitioning policypðajsÞ ¼ argmaxEðRtÞ.

4.2.2 Intent-Oriented Action Generation

The action space noise is introduced to the output of the
Actor network which adopts the Sigmoid function, that

Fig. 7. Processing pipeline for DDPG-based IoRLO.

3268 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

is, a ¼ SigmoidðzaÞ, as the activation function to balance
exploration and exploitation. Note that in our computing
scenarios, the value of each sub-action at;i is discrete, that
is, where the specific DNN block will be performed.
Therefore, we introduced a piecewise function in the orig-
inal DDPG model before the action acts on the environ-
ment as shown in Fig. 7, thus realizing the discretization
of the continuous actions in DDPG. Specifically, it is gen-
erated as follows:

aMEC
t;i ¼

1 0 < a < " ðmobile Web browserÞ
2 " � a < ’ ðnetwork edge serverÞ
3 ’ � a < 1 ðremote cloud serverÞ

8<
: :

The pre-defined thresholds " and ’ here refer to the intent of
the actions distribution from service provider. The greater
the value of ", the more computations are intended to be
completed on the mobile Web browser (i.e., the savings in
deployment overhead are more important). Otherwise, the
service provider is more focused on the user service experi-
ence (i.e., places more DNN computations on the network
edge or remote cloud servers), which will in contrast result
in an increase in the deployment cost. The value of ’ refers
to the intent to assign the DNN computation to either edge
or cloud servers.

Similarly, based on the intention of actions distribution,
the value of each sub-action at;i in the D2D-based comput-
ing scenario is given by

aD2D
t;i ¼ 1 0 < a < z ðservice subscriberÞ

0 z � a < 1 ðspecified collaboratorÞ
�

:

Based on the existing experience, the Actor and Critic
update the network parameters during each learning
phase. The experience replay mechanism significantly
reduces the correlation in the training samples and thus
quickens the convergence. Specifically, DDPG leverages
neural networks as the function approximator; and here
we only use one hidden layer with 50 and 30 neurons for
Actor and Critic networks. Overall, the IoRLO uses the
same structure and training method as DDPG [27], but
introduces an intent-oriented action generation module
for DNN block assignment according to the specific ser-
vice requirements. In the practical applications, we can
also directly use the pre-trained Actor network to gener-
ate corresponding actions (that is, partitioning strategies).
However, it is necessary to design and train the Actor
and Critic networks in DDPG according to different DNN
models in advance.

5 PERFORMANCE EVALUATION

In this section, we first detail the method and settings (see
Section 5.1), followed by the evaluation of the proposed
intent-oriented DNN computation partitioning algorithm
IoRLO (see Section 1 in Supplementary Material), available
online, then analyze the results for a collaborative mobile
Web AR application in an actually deployed 5G trial net-
work (see Section 5.2), which has been supported by China
Mobile Communications Group Beijing Co., Ltd. and Hua-
wei Technologies Co., Ltd. What we considered in the

experiments are the response latency, energy consumption,
and throughput of the system, the factors most valued by
service subscribers and providers.

5.1 Method and Settings

For the sake of clarity, in this part, we detail the benchmark
of the computation offloading approaches, the DNN archi-
tectures, as well as the datasets, and also the performance of
the 5G trial network in our experiment.

5.1.1 Experimental Environment

We illustrate the experimental communication network
environment in Fig. 8. End devices connect to the Internet
via Customer Premise Equipment (CPE), and edge serv-
ers are deployed at the 5G base station to provide AR
services.

In practice, the container setting of edge and remote
clouds and the service provisioning in our system are
similar to traditional Web application services. Specifi-
cally, both the edge server and cloud server can use Flask
or Apache Tomcat technology to provide collaborative
service APIs (including the Get and Post requests) for ser-
vice collaboration and data transmission over the cloud,
the edge, and end devices. For the convenience of DNN
inference, we adopt the Flask (which has better support
for the DNN models) to provide computing and data
request services. Note that considering the stability and
continuity requirements of the data transmission, we can
also adopt WebSocket/Socket in the testbed as the trans-
mission protocol between different devices to verify the
effectiveness of the proposed fine-grained elastic parti-
tioning algorithm.

In addition, we present the specification of the 5G trial
network performance and the details of the devices used in
the experiment (see Table 2). Since the network is still in the
experimental stage, the performance is occasionally unsta-
ble, but it performs well on average. Moreover, the CPU fre-
quency of all Android devices can be artificially controlled
by obtaining root permission.

5.1.2 Benchmark of DNN Architectures

For demonstration purposes, we chose four representative
neural network architectures (i.e., AlexNet, VGGNet-16,
ResNet-32, and MobileNet-V1) with different computa-
tional complexity. These DNN architectures not only per-
form well in the field of object recognition but also serve as
the backbones for other computer vision solutions such as
object detection (Faster R-CNN, Mask R-CNN, YOLO, and
SSD) and semantic segmentation (FCNs and DeepLab).

Fig. 8. Experimental 5G network environment.

REN ETAL.: FINE-GRAINED ELASTIC PARTITIONING FOR DISTRIBUTED DNN TOWARDS MOBILE WEB AR SERVICES IN THE... 3269

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

As discussed in Section 3.1, all the aforementioned
neural network architectures have been re-designed with
multiple early exit branches and then re-trained on the
datasets CIFAR-10 and CIFAR-100. Re-training large
DNN architectures (e.g., ResNet-152) with dense side
branches or using a complex dataset (e.g., ImageNet) is
obviously time-consuming, especially with limited GPU
resources. Therefore, for this research, we only adopted
simple DNN architectures and datasets for demonstration
purposes.

5.1.3 Benchmark of Offloading Approaches

The proposed partitioning algorithm IoRLO is designed to
offload DNN computations among the heterogeneous plat-
forms so as to balance multiple interests. For comparison,
we also adopted another two status quo computation off-
loading approaches in our experiment. Neurosurgeon [8] is
a data-centric approach, which provides an automatic DNN
partitioning solution between the user and cloud based on
the neural network architecture characteristics for the best
response latency or energy savings, denoted by Neuro-L
and Neuro-E, respectively. In contrast, MAUI [20] is a con-
trol-centric offloading approach proposed in 2010 but still
famous for its function granularity (i.e., code level) offload-
ing decision making.

5.2 Application Performance Analysis

We implemented an AR-based instance retrieval and rec-
ommendation application (see Fig. 9) on a mobile Web
browser for advertising, as an example. To mitigate the
impact of annotation rendering on the performance of the
mobile Web AR system, we only selected simple 2D

virtual contents to present to users, which will not con-
sume too much additional resources. Users can access
this mobile Web AR service via a pre-defined URL, the
specific DNN model will then be downloaded asynchro-
nously. When the user targets an instance, such as apples
in our experiment, the relevant “augmented” virtual
information will be displayed on the user’s equipment.
Moreover, this link can also be embedded in many places
to provide pervasive AR service, such as Facebook, Twit-
ter, and WeChat.

The theme of this paper is to provide the DNN-based
mobile Web AR services with multiple requirements from
subscribers and providers by leveraging the collaborative
mechanism in the 5G era. Here we first present the per-
formance of Neurosurgeon and MAUI for comparison.
Specifically, Neuro-L and Neuro-E aim to provide the
best service response latency and mobile energy savings.
As data transmission will only have a weak impact on
application performance, all the DNN computations will
be assigned to the cloud or collaborator for accelerating
the DNN inference and saving energy in 5G networks.
When the collaborator cannot provide sufficient comput-
ing capability, the self-contained approach will be better
but will still offload computations to the collaborator for
energy saving. MAUI chooses to send time-consuming
functions to the cloud, but it also degenerates into Neuro-
L. Therefore, we will consider the cloud-only (Cloud),
edge-only (Edge), self-contained (Self), and collaboration
(Co) in the experiment.

In contrast, our offloading algorithm IoRLO works well
in 5G networks. Specifically, computation-intensive parts
are more likely to be offloaded to the cloud or network
edge to accelerate the inference. The others, which will
not cause a great impact on the overall service latency, in
contrast, will be placed on the mobile Web browser,
which therefore can benefit to the service deployment
overhead.

In experiments, the specific offloading decision is
selected randomly from the potential partitioning decisions
(i.e., the colored space) based on the specific requirements,
either DNN inference latency, mobile energy consumption,
and/or deployment overhead, and the DNN computation
distributions in the two collaborative scenarios are illus-
trated in Table 3. The “actor” in IoRLO consists of one hid-
den layer with 50 neurons, which only needs 0.49 ms on
average to generate an action. Moreover, the experiments
were conducted 100 times, and all the experimental results
in the papers are the average values. Note that for a practi-
cal application, the users’ experience can be fed back to the
cloud for further learning.

TABLE 2
Specification of 5G Trial Network and Details of the Devices

1Cloud: Ubuntu 16.04, Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.0 GHz, 128
GB RAM.
2Network Edge: Ubuntu 16.04, Intel Xeon E5-2600 v2 @ 2.0 GHz, 64 GB
RAM.
3End Device: Huawei Mate 10, Android 8.0, HiSilicon Kirin 970, 4 GB RAM
(Chrome).
4Collaborator: Xiaomi Mi 8, Android 8.1, Qualcomm Snapdragon 845, 6 GB
RAM (Chrome).

Fig. 9. Mobile Web AR application.

TABLE 3
DNN Computation Distributions in Two Collaborative Scenarios

*Collaboration with low-performance devices cannot improve inference latency
and energy consumption in the D2D-based scenario, therefore, our approach
only considers collaboration with Co-H.

3270 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

5.2.1 Service Response Latency

In this part, we present the performance of IoRLO against
the other three offloading approaches in term of response
latency. Specifically, the introduction of cloud and network
edge computing resources in the MEC-based collaborative
scenario significantly improves the service response latency
by about 72.17 percent on average (i.e., 86.77, 88.64, 64.68,
and 48.60 percent for AlexNet, VGGNet-16, ResNet-32, and
MobileNet-V1, respectively) compared with the self-con-
tained approaches as illustrated in Fig. 10.

Although there is still a performance (latency) gap
with the edge-only or cloud-only approach (e.g., 261.36
ms, 85.92 ms, and 342.65 ms for AlexNet with edge-only,
cloud-only, and our collaborative solutions, respectively),
by assigning part of computations to the user side, it can
also improve the system throughput (i.e., reduce the
computational pressure of the server), compared with the
other two approaches, but these results are directly
related to the DNN computation partitioning decision.
The improvement in throughput indicates that service
providers can process more requests using the same com-
puting resources, thereby reducing the service deploy-
ment overhead. Considering that the edge server
undertakes a large number of computations, from the
entire system perspective, the remote cloud can therefore
serve more requests, but the system performance has not
been improved as this partitioning decision causes the
throughput bottleneck of this edge domain. But overall,
under the premise that QoS is satisfied, this collaborative
approach obviously reduces the deployment overhead,
thus striking a balance between various requirements.

Remarkably, the process throughput on the network
edge and remote cloud are different, and the system overall
throughput is bounded by the smallest one for the collabo-
rative scenario. The edge and cloud servers adopt buffer
queues to cache the intermediate results of DNN for proc-
essing the accumulated service queries.

But for the D2D-based collaborative scenario, in which
all the computations are completed on the mobile devices,
viz. the service subscriber and collaborator, the comput-
ing capability of the collaborator is set to 100 percent (Co-
H) and 60 percent (Co-L) available respectively; the capa-
bility of the collaborator will exert a great influence on
the service experience. When the computing capability of
the collaborator is limited, this will apparently result in
service response latency degradation. As illustrated in
Fig. 11, the powerful collaborator brings about 47.02 per-
cent service response latency improvement on average
(46.94, 47.35, 46.81, 47.00 percent for the AlexNet,
VGGNet-16, ResNet-32, and MobileNet-V1) compared

with the self-contained approach. Similarly, by placing
part of computations to more powerful collaborator, our
proposed approach can also achieve 38.46, 45.60, 33.92,
24.21 percent latency improvement.

Obviously, the computing capability of different devi-
ces is different. Assigning part of DNN inference compu-
tations to devices with weaker computing capability will
undoubtedly increase the processing time, which
will affect the subsequent DNN computations on other
devices, and thus increases the overall waiting delay.
Fundamentally, both our proposed DNN fine-grained
partitioning-inference scheme and DDNN [28] are
designed for collaborative serial DNN inference among
multiple devices, which will inevitably cause the problem
of synchronization between different devices. But in our
DNN partitioning solution, we have considered the
impact of the waiting delay that may be caused by the
different devices on the service performance. In this part,
the user device, edge server, cloud server, and nearby col-
laborator devices all have different computing capabili-
ties, but as we discussed above, the DNN partitioning
decisions have been able to distribute complex DNN com-
putations to high-performance devices, and simple com-
putations that are assigned to low-performance devices
will not have a serious impact on the system.

5.2.2 Mobile Energy Saving

For the purpose of energy saving, the status quo
approach Neuro-E will offload all the DNN computations
to the cloud or collaborator, as discussed earlier, the end-
user equipment therefore only needs to shoulder the
energy consumption required for communication (i.e.,
input transmission and result receiving), that is, 0.06 Joule
and 0.26 Joule for edge-only and cloud-only approaches,
respectively. The mobile energy consumption in MEC-
based and D2D-based collaborative scenarios are illus-
trated in Figs. 12 and 13.

In contrast, with our proposed offloading algorithm,
users need to pay some energy for DNN inference on the
mobile Web browser. But it can still bring considerable

Fig. 10. DNN inference latency in MEC-based collaborative scenario. Fig. 11. DNN inference latency in D2D-based collaborative scenario.

Fig. 12. Energy consumption in MEC-based collaborative scenario.

REN ETAL.: FINE-GRAINED ELASTIC PARTITIONING FOR DISTRIBUTED DNN TOWARDS MOBILE WEB AR SERVICES IN THE... 3271

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

energy savings, about 66.91 percent on average compared to
the self-contained approach for MEC-based scenario (i.e.,
62.70, 86.45, 64.52, and 53.97 percent energy savings, for
the AlexNet, VGGNet-16, ResNet-32, and MobileNet-V1,
respectively).

However, for service provision in the D2D-based sce-
nario, our proposed approach will consume more energy,
which is used for data transmission between mobile devi-
ces. Why does it still need collaboration for DNN inference?
It depends on the specific purpose of the user, such as DNN
inference acceleration or mobile energy saving.

Another observation is that the more frequent the data
(intermediate computing results) transmission, the higher
the energy consumption, and vice versa. In general, the
Co-H method, that is, offloading all DNN computations
to the collaborator device with higher computing capabil-
ity, can obviously achieve less inference latency and
energy consumption, which is more of an ideal situation.
Because the performance of mobile devices is continuous
dynamically changing, collaborators with high perfor-
mance do not always exist. If all computations are off-
loaded to the collaborator with lower computing
capabilities, that is, the Co-L method, it will lead to unac-
ceptable service response latency. While our proposed
collaborative computing solution can reasonably orches-
trate the computing resources of local and collaborator
devices to achieve better DNN inference latency, but at
the same time user device needs to pay additional com-
munication energy consumption. Therefore, the choice of
computing mode in the D2D-based collaboration scenario
depends on which service performance metric the user
pays more attention to. For example, when the user
device has sufficient energy, our approach can thus
achieve better service response latency; however, when
the user is more concerned about the energy consumption
(or the user device faces the energy shortage problem),
adopting the Co-L method can effectively extend the ser-
vice time, but the QoS will be compromised.

6 RELATED WORK

Many efforts have focused on the acceleration of DNN infer-
ence, (1) model compression; (2) architecture optimization;
and (3) dedicated accelerator development (e.g., GPU,
FPGA, ASIC); However, adopting cloud-centric approaches
undoubtedly incur a high response latency in dynamic and
noisy mobile networks, and thus result in user experience
degradation. To eliminate the negative effects of data trans-
mission, the DNN computations can also be placed on
mobile devices to achieve off-line inference benefiting from
the design of lightweight DNN architectures [29], [30], [31],

but this approach cannot strike a balance between accuracy
and efficiency. The computation offloading mechanism,
therefore, attracted our attention.

However, current cloud-based offloading solutions still
face challenges, (1) coarse-grained partitioning [20], [32],
which cannot fully explore the DNN structural character-
istics and balance the accuracy and efficiency (e.g., Bran-
chyNet [10]). Terminating the inference process too early
will cause insufficient accuracy, but terminating too late
will introduce additional redundant computations; (2)
lack of comprehensive consideration of user experience
and service deployment overhead (e.g., Neurosurgeon [8]
and Edgent [33]); (3) static and aptotic scheduling [21],
[28], [34] cannot cope with the dynamically changing
environment.

Fundamentally, both the DNN computation offloading
discussed in this paper and the service offloading on mobile
computing environment are aimed at optimizing service
performance by orchestrating distributed resources. How-
ever, the current service offloading mechanisms are mainly
focused on the collaboration between the mobile device and
network edge/remote cloud [35], [36], [37]; Because of net-
work performance limitations, these offloading collabora-
tive scenarios are relatively simple. While in 5G networks,
the MEC and D2D technologies make the computing envi-
ronment more complex, but there is still a lack of research
on collaborative computing optimization for latency-sensi-
tive DNN-based services.

The emerging 5G networks together with a variety of
promising features provide us with opportunities for the
collaborative computing of distributed DNNs. But all the
current approaches will degenerate into the cloud-based
mode [8], [20], therefore, although the user experience is sat-
isfied, the service provider will undoubtedly have to pay a
heavy expenses. Unlike previous efforts, we have investi-
gated the collaboration of the cloud, network edge, and
mobile devices, thus bringing about a distributed DNN, (1)
the collaborative mode satisfies the application performance
requirement and saves the deployment overhead as well; (2)
layer granularity offloading supports fine-grained computa-
tion partitioning for distributed collaboration; and (3) by
considering multiple factors, it therefore achieves adaptive
computation scheduling.

7 CONCLUSION

In this paper, we have presented the fine-grained elastic
computation partitioning mechanism for distributed DNN
in 5G networks. This collaborative solution provides a
promising approach to balance the interests of both service
subscribers and provider. We elaborated two collaborative
computing scenarios for the 5G era by leveraging the MEC
and D2D technologies, then presented the computing sys-
tem. Aimed at layer granularity computation scheduling,
we investigated per-layer inference latency and energy con-
sumption prediction models for DNN, followed by the
DNN partitioning scheme, which provides a generalized
approach. The experiments were conducted in an actually
deployed 5G trial network based on our developed Web-
based mobile AR application, and the results show the
superiority of this collaborative approach.

Fig. 13. Energy consumption in D2D-based collaborative scenario.

3272 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work was supported in part by the Funds for Interna-
tional Cooperation and Exchange of NSFC under Grant
61720106007, in part by the National Key R&D Program of
China under Grant 2018YFE0205503, and in part by the 111
Project under Grant B18008.

REFERENCES

[1] M. Billinghurst, A. Clark, and G. Lee, “A survey of augmented
reality,” Found. Trends Hum.–Comput. Interaction, vol. 8, pp. 73–
272, 2015.

[2] X. Qiao, P. Ren, S. Dustdar, and J. Chen, “A new era for web AR
with mobile edge computing,” IEEE Internet Comput., vol. 22, no.
4, pp. 46–55, Jul./Aug. 2018.

[3] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web AR:
A promising future for mobile augmented reality–state of the art,
challenges, and insights,” Proc. IEEE, vol. 107, no. 4, pp. 651–666,
Apr. 2019.

[4] Y. Ma, D. Xiang, S. Zheng, D. Tian, and X. Liu, “Moving deep
learning into web browser: How far can we go?,” in Proc. The
World Wide Web Conf., 2019, pp. 1234–1244.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5,
pp. 637–646, Oct. 2016.

[6] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5G networks: New paradigms, scenar-
ios, and challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61,
Apr. 2017.

[7] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-
device communication in 5G cellular networks: Challenges, solu-
tions, and future directions,” IEEE Commun. Mag., vol. 52, no. 5,
pp. 86–92, May 2014.

[8] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” SIGARCH Comput. Archit. News,
vol. 45, pp. 615–629, 2017.

[9] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” in Proc. Des.
Autom. Test Europe Conf. Exhib., 2016, pp. 475–480.

[10] S. Teerapittayanon, B. McDanel, and H. Kung, “BranchyNet: Fast
inference via early exiting from deep neural networks,” in Proc.
23rd Int. Conf. Pattern Recognit., 2016, pp. 2464–2469.

[11] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, pp. 91–110, 2004.

[12] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust
features,” in Proc. Eur. Conf. Comput. Vis., 2006, pp. 404–417.

[13] E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski, “ORB: An
efficient alternative to SIFT or SURF,” in Proc. Int. Conf. Comput.
Vis., 2011, pp. 2564–2571.

[14] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1–8.

[15] X. Qiao, P. Ren, G. Nan, L. Liu, S. Dustdar, and J. Chen, “Mobile
web augmented reality in 5G and beyond: Challenges, opportuni-
ties, and future directions,” China Commun., vol. 16, no. 9, pp.
141–154, Sep. 2019.

[16] P. Ren, X. Qiao, J. Chen, and S. Dustdar, “Mobile edge comput-
ing–A booster for the practical provisioning approach of web-
based augmented reality,” in Proc. IEEE/ACM Symp. Edge Comput.,
2018, pp. 349–350.

[17] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of Internet of
Things for smart home: Challenges and solutions,” J. Cleaner
Prod., vol. 140, pp. 1454–1464, 2017.

[18] M. Jia andW. Liang, “Delay-sensitivemultiplayer augmented real-
ity game planning in mobile edge computing,” in Proc. 21st ACM
Int. Conf.Model. Anal. Simul.WirelessMobile Syst., 2018, pp. 147–154.

[19] N. Gavish et al., “Evaluating virtual reality and augmented reality
training for industrial maintenance and assembly tasks,” Interac-
tive Learn. Environ., vol. 23, pp. 778–798, 2015.

[20] E. Cuervo et al., “MAUI: Making smartphones last longer with
code offload,” in Proc. 8th Int. Conf. Mobile Syst. Appl. Serv., 2010,
pp. 49–62.

[21] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic execution between mobile device and
cloud,” in Proc. 6th Conf. Comput. Syst., 2011, pp. 301–314.

[22] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[23] T.-J. Yang et al., “NetAdapt: Platform-aware neural network adap-
tation for mobile applications,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 289–304.

[24] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
assisted distributed DNN collaborative computing approach for
mobile web augmented reality in 5G networks,” IEEE Netw., vol.
34, no. 2, pp. 254–261, Mar./Apr. 2020.

[25] A. Haas et al., “Bringing the web up to speed with
WebAssembly,” in Proc. 38th ACM SIGPLAN Conf. Program. Lang.
Des. Implementation, 2017, pp. 185–200.

[26] S. Kitanov, B. Popovski, and T. Janevski, “Quality evaluation of
cloud and fog computing services in 5G networks,” in Enabling
Technologies and Architectures for Next-Generation Networking Capa-
bilities, Pennsylvania, USA: IGI Global, 2018.

[27] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Representations, 2016, pp. 1–14.

[28] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 328–339.

[29] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convo-
lutional neural networks for mobile devices,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 4820–4828.

[30] N. Lane, S. Bhattacharya, A. Mathur, C. Forlivesi, and F. Kawsar,
“DXTK: Enabling resource-efficient deep learning on mobile and
embedded devices with the DeepX toolkit,” in Proc. 8th EAI Int.
Conf. Mobile Comput. Appl. Serv., 2016, pp. 98–107.

[31] B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded binar-
ized neural networks,” in Proc. Int. Conf. Embedded Wireless Syst.
Netw., 2017, pp. 168–173.

[32] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and X.
Chen, “COMET: Code offload by migrating execution trans-
parently,” in Proc. 10th USENIX Conf. Oper. Syst. Des. Implementa-
tion, 2012, pp. 93–106.

[33] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand accel-
erating deep neural network inference via edge computing,” IEEE
Trans. Wireless Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[34] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R.
Govindan, “Odessa: Enabling interactive perception applications
on mobile devices,” in Proc. 9th Int. Conf. Mobile Syst. Appl. Serv..,
2011, pp. 43–56

[35] A. Samanta and Z. Chang, “Adaptive service offloading for reve-
nue maximization in mobile edge computing with delay-con-
straint,” IEEE Internet Things J., vol. 6, no. 2, pp. 3864–3872, Apr.
2019.

[36] M. Huang, W. Liu, T. Wang, A. Liu, and S. Zhang, “A cloud-MEC
collaborative task offloading scheme with service orchestration,”
IEEE Internet Things J., vol. 7, no. 7, pp. 5792–5805, Jul. 2020.

[37] D. Van Le and C.-K. Tham, “Quality of service aware computation
offloading in an ad-hoc mobile cloud,” IEEE Trans. Veh. Technol.,
vol. 67, no. 9, pp. 8890–8904, Sep. 2018.

Pei Ren is currently working toward the PhD
degree in the State Key Laboratory of Networking
and Switching Technology, Beijing University of
Posts and Telecommunications, China. He is cur-
rently a visiting scholar with the School of Com-
puter Science, Georgia Institute of Technology,
Atlanta, Georgia, funded by the China Scholar-
ship Council. His current research interests
include the machine learning, augmented reality,
edge computing, and 5G networks.

Xiuquan Qiao is currently a professor with the
Beijing University of Posts and Telecommunica-
tions, China, where he is also the deputy director
of the State Key Laboratory of Networking and
Switching Technology, Network Service Founda-
tion Research Center of State. His current
research interests include the services comput-
ing, computer vision, augmented reality, and 5G
networks. He was a recipient of the Beijing Nova
Program, in 2008 and the first prize of the 13th
Beijing Youth Outstanding Science and Technol-
ogy Paper Award, in 2016.

REN ETAL.: FINE-GRAINED ELASTIC PARTITIONING FOR DISTRIBUTED DNN TOWARDS MOBILE WEB AR SERVICES IN THE... 3273

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

Yakun Huang is currently working toward the
PhD degree in the State Key Laboratory of Net-
working and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China. His current research interests include
computer vision, distributed deep learning,
machine learning, augmented reality, edge
computing.

Ling Liu (Fellow, IEEE) is currently a professor
with the School of Computer Science, Georgia
Institute of Technology, Atlanta, Georgia. She
directs the research programs at the Distributed
Data Intensive Systems Lab, examining various
aspects of large-scale big data systems and ana-
lytics, including performance, availability, security,
privacy, and trust. She was a recipient of the
IEEE Computer Society Technical Achievement
Award, in 2012. She served as the editor-in-chief
for the IEEE Transactions on Service Computing

from 2013 to 2016. She is currently the editor-in-chief of the ACM Trans-
actions on Internet Technology.

Calton Pu (Fellow, IEEE) received the PhD
degree from the University of Washington, Seat-
tle, Washington, in 1986, and served on the fac-
ulty of Columbia University, New York and
Oregon Graduate Institute, Beaverton, Oregon.
Currently, he is holding the position of professor
and John P. Imlay, Jr. chair in software in the Col-
lege of Computing, Georgia Institute of Technol-
ogy, Atlanta, Georgia. His recent research has
focused on big data in Internet of Things, auto-
mated N-tier application deployment and denial
of information.

Schahram Dustdar (Fellow, IEEE) is currently a
professor of computer science with the Distrib-
uted Systems Group, TU Wien, Vienna, Austria.
He was an elected member of the Academy of
Europe, where he is the chairman of the Informat-
ics Section. He was a recipient of the ACM Distin-
guished Scientist Award, in 2009, the IBM
Faculty Award, in 2012. He is also an associate
editor of the IEEE Transactions on Services
Computing, IEEE Transactions on Cloud Com-
puting, ACM Transactions on the Web, and ACM
Transactions on Internet Technology.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3274 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2022 at 09:26:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

