
2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

International Journal of Cooperative Information Systems
Vol. 22, No. 4 (2013) 1341003 (28 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218843013410037

CONCEPTUALIZING AND PROGRAMMING HYBRID
SERVICES IN THE CLOUD

HONG-LINH TRUONG∗ and SCHAHRAM DUSTDAR†

Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

∗truong@dsg.tuwien.ac.at
†dustdar@dsg.tuwien.ac.at

KAMAL BHATTACHARYA

IBM Research, Nairobi, Kenya, Africa
kamal@ke.ibm.com

Received 10 March 2013
Accepted 28 October 2013

Published 24 December 2013

For solving complex problems, in many cases, software alone might not be sufficient and
we need hybrid systems of software and humans in which humans not only direct the
software performance but also perform computing and vice versa. Therefore, we advocate
constructing “social computers” which combine software and human services. However,
to date, human capabilities cannot be easily programmed into complex applications in a
similar way like software capabilities. There is a lack of techniques to conceptualize and
program human and software capabilities in a unified way. In this paper, we explore a
new way to virtualize, provision and program human capabilities using cloud computing
concepts and service delivery models. We propose novel methods for conceptualizing and
modeling clouds of human-based services (HBS) and combine HBS with software-based
services (SBS) to establish clouds of hybrid services. In our model, we present com-
mon APIs, similar to well-developed APIs for software services, to access individual and
team-based compute units in clouds of HBS. Based on that, we propose a framework
for utilizing SBS and HBS to solve complex problems. We present several programming
primitives for hybrid services, also covering forming hybrid solutions consisting of soft-
ware and humans. We illustrate our concepts via some examples of using our cloud APIs
and existing cloud APIs for software.

Keywords: Hybrid services; cloud computing; human-based computation; service com-
puting.

1. Introduction

Recently the concept of building “social computers” has emerged, in which the main
principle is to combine human capabilities and software capabilities into composite
applications solving complex problems.1,a In such types of computers, both software

∗Corresponding author.
aThe Social Computer — Internet-Scale Human Problem Solving. socialcomputer.eu. Last access:
3 May 2012.

1341003-1

http://dx.doi.org/10.1142/S0218843013410037

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

and humans play equally roles: they direct/coordinate as well as perform tasks,
dependent on their capabilities and specific context. For example, (i) a software
can analyze an image and direct scientists to carry out a quality assessment of the
analysis result before sending the result to another software or (ii) a scientist can
direct a software to analyze high quality of images while asking another scientist
to judge if it makes sense to continue the analysis of images of low quality. While
such a combination in complex systems is not new, to build and program such
systems capable of supporting pro-active, highly-interactive, team-based human
computation under different elastic, pay-per-use models with on-demand (cloud)
software services in a unified way remains challenging.

To date, concrete technologies have been employed to provide human capabili-
ties via standard, easy-to-use interface, such as Web services and Web platforms2,3,b

and some efforts have been devoted for modeling and coordinating flows of human
works in the process/workflow level.4,5 In all these works, a fundamental issue is
how to utilize human capabilities. We observed two main approaches in utilizing
human capabilities: (i) passively proposing tasks and waiting for human input,
such as in crowd platforms,3 and (ii) actively finding and binding human capabili-
ties into applications. While the first one is quite popular and has many successful
applications,3,6–9 it mainly exploits individual capabilities and is platform-specific.
In the second approach, it is difficult to proactively invoke human capabilities in
Internet-scale due to the lack of techniques and systems supporting proactive uti-
lization of human capabilities.1 From a programming perspective, currently, most
techniques concentrate on workflow-based solutions in which the workflow engine
can find suitable humans and assign the tasks to them. However, many complex
problems requiring both humans and software cannot be solved by using current
workflow-based solutions, as these problems demand flexible interactions among
humans and software services.

In this paper, we conceptualize human capabilities under the service model and
combine them with software to establish clouds of hybrid human- and software-
based services (HBS and SBS). This enables the provisioning of a large-scale number
of HBS together with SBS. Our approach aims at exploring novel ways to actively
program and utilize human capabilities in a similar way to software services and to
provision human capabilities using cloud service and deployment models for high
level frameworks and programming languages to build “social computers”.

1.1. Motivation

Several works have shown that we need to integrate further humans and software
under the service model.1,10 Hybrid services, in our notion, include SBS and HBS.
We argue that we could provide a cloud of HBS working in a similar manner to

bWS-BPEL Extension for People (BPEL4People) Specification Version 1.1, November 2009.
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf.

1341003-2

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

contemporary clouds of SBS (such as Amazon services and Microsoft Azure ser-
vices) so that HBS can be invoked and utilized in a proactive manner, rather than
in a passive way like in existing crowdsourcing platforms. Furthermore, HBS can
be programmed together with SBS in a composite application, enabling complex,
dynamic interactions between SBS and HBS, instead of being used separately from
SBS as in contemporary crowdsourcing platforms and workflows without/with little
interactions.

Our goal is to program HBS and SBS together in an easier way because several
complex applications need to utilize SBS and HBS in a similar way. For example,
several Information Technology (IT) problems, such as in incident management for
IT systems, software component development, and collaborative data analytics, can
be described as a dependency graph of tasks in which a task represents a unit of work
that should be solved by a human or a software. Solving a task may need to con-
currently consider other relevant tasks in the same graph as well as introduce new
tasks (this, in turns, expands the task graph). Utilizing team and hybrid services is
important here as tasks are interdependent, but unlike crowdsourcing scenarios in
which different humans solving different tasks without the context of teamwork and
without the connectedness to SBS. Teamwork is crucial as it allows team members
to delegate tasks when they cannot deal with the task as well as newly tasks can be
identified and created that need to be solved. SBS for teamwork is crucial for team
working platforms in terms of communication, coordination, and analytics. There-
fore, it is crucial to have solutions to provision individual- and team-based human
capabilities under clouds of human capabilities, in parallel with the provisioning
of SBS.

These clouds require novel service models and infrastructures to provide and
support on-demand and elastic HBS provisioning. We need solutions allowing us to
buy and provision human capabilities via simple interfaces in a similar way to buy-
ing and provisioning virtual machines in contemporary clouds of Infrastructure-as-a-
Service (IaaS) and Software-as-a-Service (SaaS). By doing so, we could incorporate
human capabilities in programming paradigms for “social” computers. However, so
far, to our best knowledge, there is no proposed solution towards a cloud model for
human capabilities that enables us to acquire, program, and utilize HBS in a similar
way to that of IaaS, Platform-as-a-Service (PaaS) and SaaS. Existing technologies
are not adequate, for example, workflow and language extensions and social comput-
ing platforms are focused too much on crowdsourcing models. The way to program
human capabilities in contemporary workflows and crowdsourcing platforms is that
either tasks are published for humans to bid them (e.g. in most crowdsourcing
platforms) or tasks are directly mapped to humans by the workflow engines (e.g.
in human-centric workflows). While the first mechanism allows people to select the
task, it do not encourage people to interact together to solve the task. In the second
mechanism, it is possible that the workflow engine actively matches suitable people
to tasks, (although currently such workflow engines are not popular and they tend
to search people only within local organizations). However, still human capabilities

1341003-3

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

are utilized in a passive way, e.g. humans are assigned to tasks or perform simple
control activities (e.g. approving a task). Furthermore, with current workflows, it is
difficult to utilize large-scale human capabilities in a dynamic, selective way due to
the lack of APIs to invoke human services. Furthermore, workflow-based solutions
exploiting human capabilities focus on the way to define how the tasks should be
done but not how can we provision humans and software in a unified manner so
that both humans and software can act as computing units of a single “social com-
puter”. Overall, programming flexible and dynamic relationships among software
and humans are not well supported, thus hindering the incorporation of human
services into programming paradigms.

1.2. Approach

To incorporate humans into programming paradigms, our approach aims at tackling
the following issues from different aspects:

• Programming languages: First of all, we need to abstract human capabilities under
compute units and provision them under service units10 so that they can be
easily incorporated into high-level program elements and constructs. Second, we
can extend existing programming languages to support human compute units.
Finally, we need to enable different data and control flows among software and
human service units via extensible APIs and develop new APIs to support other
types of flows among software and human service units.

• Multiple programming models: By utilizing human service units as programming
elements/constructs, we could support different programming models, such as
shared memory, message passing, and artifact-centric models via APIs working
atop the service unit abstraction. Furthermore, contemporary workflow languages
can be extended to exploit large-scale HBS.

• Execution environments: We will need to develop several components for man-
aging provisioning of HBS and the interaction of humans with HBS abstracting
them. First computing capability/profile management will allow us to concep-
tualize and define computing power, pricing and incentive models. We need to
monitor and enforce incentives/rewards, quality of results, availability, to name
just a few. Several way of communication between different structures of HBS
and SBS must be supported.

In this paper, we will focus on abstracting and conceptualizing HBS and clouds
of HBS, providing APIs and presenting basic programming techniques for hybrid
services.

1.3. Contributions and paper structure

We concentrate on conceptualizing the cloud of HBS and how clouds of HBS and
SBS can be programmed for solving complex problems. Our main contributions

1341003-4

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

are:

• a novel model for clouds of HBS and hybrid services provisioning,
• a framework for solving complex problems using clouds of hybrid services,
• programming primitives for hybrid services.

To illustrate our work, we present several examples of how to program software-
based services and HBS in a unified way. This paper substantially extends the work
described in Ref. 11. We have added our approach (Sec. 1.2), substantially detailed
the concepts of hybrid services and extended them to cover also other aspects like
archetypes and incentives (in Sec. 2). We have added a conceptual architecture
of IaaS of hybrid services (in Sec. 2.5). We also extend programming primitives by
detailing our techniques, discuss how our framework can be used to implement HBS
provisioning platforms, and elaborate the related work.

The rest of this paper is organized as follows. Section 2 discusses our model of
clouds of hybrid services. Section 3 describes a generic framework utilizing hybrid
services. Section 4 presents programming primitives utilizing clouds of hybrid ser-
vices. Section 5 discusses related work. Section 6 concludes the paper and outlines
our future work.

2. Conceptualizing Clouds of Hybrid Services

2.1. Clouds of hybrid services

In our work, we consider two types of computing elements: software-based comput-
ing elements and human-based computing elements. In software-based computing
elements, different types of services can be provided to exploit machine capabilities
and we consider these types of services under the SBS category. Similarly, human-
based computing elements can also offer different types of services under the HBS
category.

Definition 2.1 (Cloud of HBS). A cloud of HBS includes HBS that can be pro-
visioned, deployed and utilized on-demand based on different pricing and incentive
models.

Models for SBS and their clouds are well defined.12 By combining SBS with our
model for HBS, we consider a cloud of hybrid services as follows:

Definition 2.2 (Cloud of hybrid services). A cloud of hybrid services includes
SBS and HBS that can be provisioned, deployed and utilized on-demand based on
different pricing and incentive models.

In principle, a cloud of hybrid services can also be built atop clouds of SBS and
clouds of HBS (by employing concepts for federated clouds). As SBS and clouds of
SBS are well researched, in the following we will discuss models for clouds of HBS
and of hybrid services.

1341003-5

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

2.2. Models for HBS

Human capabilities can be provisioned under the service model, e.g. our previous
work introduced techniques for offering individual human capabilities under Web
services.2 However, at the moment, there exists no cloud system that the con-
sumer can program HBS in a similar way like IaaS (e.g. Amazon EC) or data (e.g.
Microsoft Azure Data Marketplace). Before discussing how clouds of hybrid services
can be designed and used, we propose a conceptual model for clouds of HBS that
cover the following aspects: (i) communication interfaces, (ii) human power unit
(HPU), (iii) HBS archetypes, and (iv) pricing and incentive models.

2.2.1. HBS communication interfaces

Humans have different ways to interact with other humans and ICT systems. Con-
ceptually, we can assume that HBS (and corresponding HBS clouds) abstracting
human capabilities can provide different communication interfaces to handle tasks
based on a request and response model. Requests can be used to describe tasks/mes-
sages that an HBS should perform or receive. In SBS, specific request representa-
tions (e.g. based on XML) are designed for specific software layers (e.g. application
layer, middleware layer, or hardware layer). In HBS we can assume that a single
representation can be used, as HBS does not have similar layer structures seen in
SBS (at the end only humans will understand and process the messages), while the
message content can be defined based on application needs. Requests in HBS can,
therefore, be composed and decomposed into different (sub)requests. The use of the
request/response model will facilitate the integration between SBS and HBS as via
similar service APIs.

Unlike SBS in which communication can be synchronous or asynchronous, in
HBS all communication is asynchronous. Clearly, the reason is that the semantics
of human-level communication messages, the way of how the human takes the
messages, and the high latency of communication between a requester (whether
it is a HBS or SBS) to a HBS prevent synchronous communication in which an
HBS is expected to process the messages and send responses at the same time. In
general, the upper bound of the communication delay in and the internal request
processing mechanism in HBS are unknown (and these issues are not in the focus
of this paper). However, HBS intercommunication can be modeled using the well-
known message passing and shared memory models:

• Message passing: Message-passing in which two HBS can directly exchange
requests: hbsi →

request
hbsj . One example is that hbsi sends a request via SMS

to hbsj. Similarly, an SBS can also send a request directly to an HBS.
• Shared memory: Shared-memory in which two HBS can exchange requests via

a SBS. For example, hbsi stores a request into a Dropboxc directory and hbsj

cwww.dropbox.com.

1341003-6

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

Fig. 1. Message passing and shared-memory communication models for services in clouds of HBS
and SBS.

obtains the request from the Dropbox directory. Similarly, an SBS and HBS can
also exchange requests/responses via an SBS or an HBS (e.g. a software can
be built atop Dropbox to trigger actions when a file is stored into a Dropbox
directory (see http://www.wappwolf.com)).

Figure 1 describes possible message passing and shared-memory communication
models for services in cloud of HBS and SBS. Message-passing middleware can be
further divided into different channels implemented by different services, e.g. Short
Message Service (SMS) and Instant Messaging (IM) are dedicated for humans, while
Message-oriented Middleware (MOM) can be used for both SBS and HBS. In par-
ticular, the implementation of communication channels for HBS — among humans
and cloud middleware — can benefit from well-researched collaboration services.13

Similarly, the shared-memory middleware can be built based on different services,
offering different types of “shared-memory”, such as file-based shared memory, like
Dropbox and Amazon S3,d and database-based shared memory, like MongoDBe

and AmazonDynamoDB.f Both message-passing and shared-memory communica-
tion middleware can be used internally for services within a cloud or externally for
the communication between service consumers and services within clouds. Concep-
tually, we could have all of these middleware under the same set of APIs. In both
communication models, the structures of messages sent to HBS are designed for
human comprehension.

Similarly to machine instances which offer facilities for remote job deployment
and execution, an HBS communication interface can be used to run requests/jobs
on HBS.

2.2.2. Human power unit (HPU)

The first issue is to define a basic model for describing the notion of “computing
power” of HBS. Usually, the computing capability of a human-based computing

dhttp://aws.amazon.com/s3/.
ehttp://www.mongodb.org/.
fhttp://aws.amazon.com/dynamodb/.

1341003-7

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

element is described via human skills and skill levels. Although there is no standard
way to compare skills and skill levels described and/or verified by different people
and organizations, we think that it is feasible to establish a common, comparative
skills for a particular cloud of HBS.

• The cloud can enforce different evaluation techniques to ensure that any HBS in
its system will declare skills and skill levels in a cloud-wide consistency. This is,
for example, similar to some crowdsourcing systems which have rigorous tests to
verify claimed skills.

• The cloud can use different benchmarks to test humans to validate skills and skill
levels. Each benchmark can be used to test a skill and skill level. This is, e.g.
similar to Amazon which uses benchmarks to define its elastic compute unit.

• The cloud can map different skills from different sources into a common view
which is consistent in the whole cloud.

We define HPU for an HBS as follows:

Definition 2.3 (Human Power Unit). HPU is a value describing the computing
power of an HBS measured in an abstract unit. A cloud of HBS has a pre-defined
basic power unit, hpuθ, corresponding to the baseline skill bsθ of the cloud.

Without the loss of generality, we assume hpuθ = f(bsθ). A cloud C provisioning
HBS can support a set of n skills SK = {sk1, . . . , skn} and a set of m cloud skill
levels SL = {1, . . . , m}. C can define the HPU wrt ski for slj as follows:

hpu(ski, slj) = hpuθ × f

(
ski

bsθ

)
× slj. (1)

Here f(ski

bsθ
) indicates a way to determine a weighted factor when comparing the skill

ski against the baseline bsθ. For the cloud C, f(ski

bsθ
) is known and pre-defined (based

on the definition of SK). For example, let bsθ the basic Testing skill, ski be the basic
UnitT esting skill and skj be the basic IntegrationTesting skill, f(UnitTesting

Testing) = 2
and f(IntegrationTesting

Testing) = 8 could be very simple examples.
Given the capability of an hbs – CS(hbs) = {(sk1, sl1), . . . , (sku, slu)} – the

corresponding HPU can be calculated as follows:

hpu(CS(hbs)) =
u∑

i=1

hpu(ski, sli). (2)

Note that two HBS can have the same hpu value, even if their skills are different.
To distinguish them, we propose to use a set of “architecture” types (see Sec. 2.2.3).
Given a human offering her capabilities to C, she can be used exclusively or shared
among different consumers. In case an hbs is provisioned exclusively for a particular
consumer, the hbs can be associated with a theoretical utilization u — describing
the utilization of a human — and CS(hbs); its theoretical HPU would be u ×
hpu(CS(hbs)). In case a hbs is provisioned for multiple consumers, the hbs can
be described as a set of multiple instances, each has a theoretical power as ui ×

1341003-8

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

hpu(CSi(hbs)) where u =
∑

(ui) ≤ 1 and CS(hbs) = CS1(hbs) ∪ CS2(hbs) ∪ · · · ∪
CSq(hbs) .

Using this model, we can determine theoretical power for individual HBS as well
as for a set of individual HBS. Note that the power of a set of HBS may be more than
the sum of power units of its individual HBS, due to teamwork. However, we can
assume that, similar to individual and cluster of machines, theoretical power units
are different from the real one and are mainly useful for selecting HBS and defining
prices. Given a human offering her capabilities to C, she can be used exclusively or
shared among different consumers.

2.2.3. HBS archetype

As an HBS can potentially offer different capabilities, similar to SBS, an HBS can
be considered to offer a set of types of solutions for a set of domains. For example,
an HBS can offer a set of solutions as

SO = {({WebDataAnalytics, TwitterAnalytics}, DataAnalytics),

({DataCleansing, DataEnrichment}, DataQualityImprovement)},
where

{WebDataAnalytics, TwitterAnalytics, DataCleansing, DataEnrichment}
are types of solutions and {DataAnalytics, DataQualityImprovement} are
domains. Therefore, an HPU of an HBS can be associated with types of solutions
and domains to indicate the processing capability of the HBS for a specific solution
in a specific domain. To allow this association, we propose to use a set of common
“architecture” types, called Archetype, to indicate the type of solutions in a partic-
ular domain that the HPU is determined. This is similar to, e.g. different types of
instruction set architectures (such as ×86, SPARC, and ARM).

2.2.4. Pricing and incentive models

As we have observed, SBS often comes with pricing models but many of SBS are
also given free, in particular, in volunteering and peer-to-peer computing systems,14

due to different incentives. Similarly, in crowdsourcing, free human efforts are quite
popular.15–18 In the case of HBS, it is obvious that pricing models will need to
be identified for HBS, e.g. by the HBS cloud provider in agreement with the HBS
provider or other methods.19 However, an HBS can also declare itself as a free
service while it may require rewards when using it via some incentive models.g

gIn literature, many incentive models give rewardss of monetary values. Furthermore, in volun-
teering computing, there exits the concept of “pay for participation”. For the sake of simplicity,
we consider all monetary values under pricing models because, although in principle unlike ser-
vices with commercial intention, these services impose some monetary pricing models that one
has to pay when using the services. In other words, incentive models in our cloud HBS rewards
non-monetary values, such as reputation.

1341003-9

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

Therefore, in our model, each HBS will be associated with a set of pricing
models and incentive models. This is different from SBS which is associated with
pricing models, but not with incentive models. Note that for pricing and incentive
models, there must be techniques to support billing and incentive enforcement.
However, similar to software systems, such billing and incentive enforcement can
be decoupled. For example, when an HBS is utilized and we need to reward it,
the consumer or the provider can send its results to an incentive system, which
calculates and performs payments.

2.3. HBS instances provisioning

2.3.1. Types of HBS instances

For HBS we will consider two types of instances:

Definition 2.4 (Individual Compute Unit instances (iICU)). iICU describe
instances of HBS built atop capabilities of individuals. An individual can provide
different iICU. Analogous to SBS, an iICU is similar to an instance of a virtual
machine or a software.

Definition 2.5 (Social Compute Unit instances (iSCU)). iSCU describe
instances of
HBS built atop capabilities of multiple individuals and SBS. Analogous to SBS,
an iSCU is similar to a virtual cluster of machines or a complex set of software
services.

In our approach, iICU is built based on the concept that an individual can
offer her capabilities via services2 and iSCU is built based on the concept of Social
Compute Units20 which represents a team of individuals.

2.3.2. HBS instance description

Let C be a cloud of hybrid services. All services in C can be described as follows:
C = HBS ∪ SBS where HBS is the set of HBS instances and SBS is the set of
SBS instances. The model for SBS is well known in contemporary clouds and can
be characterized as SBS(capability, price). The provisioning description models for
HBS instances are proposed as follows:

• For an iICU its provisioning description includes (CS, HPU, price, incentive,
utilization, location, APIs).

• For an iSCU its provisioning description includes (CS, HPU, price, incentive,
utilization, connectedness, location, APIs).

From the consumer perspective, iSCU can be offered by the cloud provider or the
consumer can build its own iSCU . In principle, in order to build an SCU, the
provider or the consumer can follow the following steps: first, selecting suitable

1341003-10

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

iICU for an iSCU and, second, combining and configuring SBS to have a working
platform for iSCU . The connectedness reflects the intercommunication topology
connecting members of iSCU , such as ring, star, and master-slave, typically con-
figured via SBS. APIs describe how to communicate to and execute requests on
HBS. Moreover, similar to SBS, HBS can also be linked to user rating information,
often managed by third-parties.

2.3.3. Pricing factors

Similar to existing SBS clouds, we propose clouds of HBS to define different pricing
models for different types of HBS instances. The baseline for the prices can be based
on hpuθ. We propose to consider the following specific pricing factors:

• Utilization: Unlike individual machines whose theoretical utilization when selling
is 100%, ICU has much lower theoretical utilization, e.g. normal full time people
have a utilization of 33.33% (8 h per day). However, an SCU can theoretically
have 100% utilization. The real utilization of an HBS is controlled by the HBS
rather than by the consumer as in machine/software instances.

• Offering communication APIs: It is important that different communication capa-
bilities will foster the utilization of HBS. Therefore, the provider can also bill con-
sumers based on communication APIs (e.g. charge more when SMS is enabled).

• Connectedness: Similar to capabilities of (virtual) networks between machines
in a (virtual) cluster, the connectedness of an iSCU will have a strong impact
on the performance of iSCU . Similar to pricing models in existing collaboration
services,h the pricing factor for connectedness can be built based on which SBS
and collaboration features are used for iSCU.

Furthermore, other conventional factors used in SBS such as usage duration and
location are considered.

2.3.4. Incentive factors

Incentive factors for ICU are determined by the ICU and/or the HBS cloud provider.
This can be done when the ICU is registered and provisioned under the cloud. When
enforcing the incentive models of ICU, obviously all incentives must be attributed
to the ICU. For SCU it is dependent on how the SCU is structured and the incentive
strategies for the SCU are implemented. Thus, when building an SCU, its incentive
strategies can also be programmed, e.g. using incentive programming frameworks,21

to allow the rewards for the whole SCU to be distributed to members of the SCU
in the right way. Overall, the enforcement of incentive models will be carried out
by the provider of HBS clouds.

hSuch as in Google Apps for Business (http://www.google.com/enterprise/apps/business/
pricing.html).

1341003-11

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

2.4. Cloud APIs for provisioning hybrid services

Services in a cloud of hybrid services can be requested and provisioned on-demand.
As APIs for provisioning SBS are well developed, we will focus on APIs for provi-
sioning HBS. Table 1 describes some abstract APIs that we develop for HBS in our
Vienna Elastic Computing Model.i These abstract APIs are designed in a similar
manner to common APIs for SBS.

Figure 2 shows main Java-based classes for APIs. HPU, HBS, ICU and SCU
are described by HPU, HBS, ICU and SCU classes, respectively. Requests and mes-
sages for HBS are described by (HBSRequest and HBSMessage), while skills and
skill levels are described Skill and SkillLevel. The cloud skills, described
in CloudSkill, are built from Skill and SkillLevel. HBS and SBS are sub-
classes of Unit which represents generic service units. Unit is associated with
Cost, describing cost models, and Benefit, describing incentive models and other

Table 1. Main (abstract) APIs for provisioning HBS.

APIs Description

APIs for service information and management

listSkills ();listSkillLevels() List all pre-defined skills and skill levels of clouds
listICU();listSCU() List all iICU and iSCU instances that can be used. Different

filters, e.g. based on pricing/incentive, location, and skills,
can be applied to the listing.

negotiateHBS() Allow a consumer to send and negotiate service contract with an
iICU or an iSCU . In many cases, the cloud can just give the
service contract and the consumer has to accept it (e.g.
similar to SBS clouds) if the consumer wants to use the HBS.

startHBS() Allow a consumer to start an iICU or an iSCU . Via this API,
the consumer sends message to the HBS cloud which, among
other activities, passes a notification to the HBS that the
HBS is being used from the consumer perspective. Depending
on the provisioning contract, the usage can be time-based
(subscription model) or task-based (pay-per-use model).

suspendHBS () Allow a consumer to suspend the operation of an iICU or
iSCU . Note that in suspending mode, the HBS is not
released for other consumers yet.

resumeHBS () Allow a consumer to resume the work of an iICU or iSCU .
stopHBS() Allow a consumer to stop the operation of an iICU or iSCU .

By stopping the HBS is no longer available for the consumer.
reduceHBS() Reduce the capabilities of iICU or iSCU , for example, reduce

the power unit and some specific communication APIs.
expandhbs() Expand the capabilities of iICU or iSCU , for example, reduce

the power unit and some specific communication APIs.

APIs for service execution and communication

runRequestOnHBS() Execute a request on an iICU or iSCU . By execution, the HBS
will receive requests from the consumers and perform them.

receiveResultFromHBS() Receive the result from an iICU or iSCU .
sendMessageToHBS() send (support) messages to HBS.
receiveMessageFromHBS() receive messages from HBS.

idsg.tuwien.ac.at/research/viecom.

1341003-12

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

Fig. 2. Example of some Java-based APIs for clouds of HBS.

1341003-13

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

types of benefits. The VieCOMHBSImpl class describes the collection of APIs that
can be used to discover and invoke HBS, as described in Table 1. Currently,
we simulate our cloud of HBS. The HBS can be accessed via APIs described
in VieCOMHBSImpl. For SBS, we use existing APIs provided by cloud providers
and common client APIs libraries, such as JClouds (www.jclouds.org) and boto
(http://docs.pythonboto.org/en/latest/index.html).

These APIs provide different ways to acquire and interact with HBS. How the
HBS’s performance management is supported despite the fact these APIs do not tell
if the HBS really continues to work even though being suspended via APIs. From
the consumer perspective, the HBS will receive corresponding requests (based on
APIs) and s/he will understand what the messages mean. In principle the HBS
should follow the messages requested by the consumer but whether the HBS really
follows the request or not is a different aspect, as humans may not necessary strictly
follow requests, even they must be. What happens inside an HBS work cannot be
controlled by the cloud. However, two possibilities could be supported. First, the
cloud of HBS can control the quality of HBS and decide how to utilize the HBS
based on quality of results (e.g. time, cost and quality of data) delivered by the
HBS. Similarly, the consumer can also control the quality of the HBS the consumer
pays for. These control mechanisms are complex enough for being out of this paper
scope and we have developed some solutions in Ref. 22. Still, due to the nature
of human works, not all human activities within the HBS can be measured and
controlled.

2.5. Conceptual architecture for hybrid unit as a service

Based on the conceptual models of clouds of hybrid services, we describe a con-
ceptual architecture for establishing a cloud of hybrid services. Figure 3 outlines
our conceptual architecture for provisioning and programming hybrid service units.
At the lowest level, software, people and things can be provisioned by interfacing
and integrating them to the Service-based Middleware. Using this middleware, we
enable different types of integration for software, people and things due to their dif-
ferent interaction models. The Service-based Middleware basically provisions HBS
and SBS to the consumer via programmable, extensible APIs, e.g. based on the list
of APIs that we present in Sec. 2.4. The Service-based Middleware utilizes our con-
cepts by abstracting software, things and people using SBS and HBS unit model.
This allows consumers to access software, people and things via a uniform way in
which SBS and HBS will be mapped to underlying software, things, and people. To
ensure the proper operations of this cloud, we need to implement Runtime Mon-
itoring and Enforcement (e.g. for monitoring and enforcing costs, incentives and
quality), Communication (e.g. for supporting the communication among HBS and
SBS), Service Life-cycle Management (e.g. for supporting HBS selection and for-
mation), and Capability/Profile Management (e.g. for managing service capabilities
and HPU).

1341003-14

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

Fig. 3. Conceptual architecture for provisioning hybrid SBS/HBS services.

The Service-based Middleware will be the core of a hybrid service provisioning
platform. Atop this, one can program HBS and SBS by using Provisioning/Negotia-
tion/Communication Cloud APIs. In the next sections, we describe some utilization
possibilities and how to program hybrid services.

3. Framework for Utilizing Hybrid Services

By utilizing hybrid services in clouds, we could potentially solve several complex
problems that need both SBS and HBS. In our work, we consider complex problems
that can be described under dependency graphs. Let DG be dependency graph of
tasks to be solved. It can be provided or extracted automatically. In order to solve
a task t ∈ DG, we need to determine whether t will be solved by SBS, HBS or
their combination. For example, let t be a virtual machine failure and the virtual
machine is provisioned by Amazon EC2. Two possibilities can be performed: (i)
request a new virtual machine from Amazon EC and configure the new virtual
machine suitable for the work or (ii) request an HBS to fix the virtual machine.
In case (i) SBS can be invoked, while for case (ii) we need to invoke an HBS which
might need to be provisioned with extra SBS for supporting the failure analysis.

1341003-15

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

Our approach for utilizing hybrid services includes the following points:

• Link tasks with their required HPUs via skills and skill levels, before programming
how to utilize HBS and SBS.

• Form or select suitable iSCU or iICU for solving tasks. Different strategies will
be developed for forming or selecting suitable iSCU or iICU , such as utilizing
different ways to traverse the dependency graph and to optimize the formation
objective.

• Program different strategies of utilizing iSCU and iICU , such as considering the
elasticity of HBS due to changes of tasks and HBS. This is achieved by using
programming primitives and constructs atop APIs for hybrid services.

Figure 4 describes the conceptual architecture of our framework for solving com-
plex problems. Given a task dependency graph, we can detect changes in required
human computing power by using Task Change Management. Detected required
power changes will be sent to Change Adaptation, which in turns triggers different
operations on HBS usage, such as creating new HBS or adapting an existing HBS.
These operations are carried out by the HBS Formation service which implements
and integrates different algorithms for handling requests of HBS, each suitable for
specific situations. Change Adaptation also decides whether a change should be
applied to SBS by sending change request to the SBS Adaptation service which will
perform the change and modify the task graph accordingly. When an HBS deals
with a task graph, the HBS can change the task graph and its required HPUs (this
will trigger HBS operations again). During the solving process, HBS can change
and this can be detected by HBS Change Management. The HBS change will be
sent to Change Adaptation.

HBS
Formation

description

HBS Change
 Management

Task Change
Management

solve tasks

Change
Adaptation

change detection

changerequest HBS

create/modify

iICU|iSCU
change detection

change

algo

algo

algo

human power
unithuman power

unit

SBS
Adaptation

cloud of hybrid services

description

task dependency

Fig. 4. Conceptual architecture.

1341003-16

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

At the time of writing, we have developed an SCU provisioning platform for
forming, managing and controlling quality of SCUs for independent tasks.22 This
platform utilizes HBS from simulated ICU clouds based our concepts and APIs to
form quality-aware SCUs and we also developed elasticity rules for adapting ICU
and SBS.23 The SCU expansion and reduction for dependent and evolving tasks
are currently being prototyped. In the next section, we explain some concepts of
programming hybrid services that are the key elements of the architecture depicted
in Fig. 4.

4. Programming Hybrid Services

In this section, we discuss some programming primitives for hybrid services that can
be applied to the complex framework that we mentioned before. Such primitives can
be used in different components, such as HBSFormation and ChangeAdaptation,
in our framework described in Fig. 4. In illustrating programming examples, we
consider a virtualized cloud of hybrid services that are built on top of our cloud
of HBS and real-world clouds of SBS. Consequently, we will combine our APIs,
described in Sec. 2.4, with existing client cloud API libraries. Our goal in this section
is not to present specific algorithms, e.g. for HBSFormation, adaptation strategies,
e.g. for ChangeAdaptation, or specific applications to solve specific tasks. Instead,
we present how different algorithms, strategies or applications could be developed
and integrated into our framework.

4.1. Modeling HPU-aware task dependency graphs

4.1.1. Task dependency graphs

Our main idea in modeling HPU-aware task dependencies is to link tasks that are
required for management skills and compliance constraints:

• human resource skills: Represent skill sets that are required for dealing with
problems/management activities;

• constraints: Represent constraints, such as resource locations, governance compli-
ance, time, cost, etc. that are associated with management activities and humans
dealing with these activities.

Given a dependency graph of tasks, these types of information can be provided
manually or automatically (e.g. using knowledge extraction). Generally, we model
dependencies among tasks and required skills and compliance constraints as a
directed graph G(N, E) where N is a set of nodes and E is a set of edges. A
node n ∈ N represents a task or required skills/compliance constraints, whereas an
edge e(ni, nj) ∈ E means that nj is dependent on ni (ni can cause some effect on
nj or ni can manage nj). Edges may be associated with weighted factors to indicate
the importance of edges. The required skills, compliance constraints and weighted

1341003-17

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

lotusdomino

was

is Deployed On

Business Applications Services

supported By Emailand Collaboration Services

supported By

aix

is Deployed On

db2

depends On supported By

Web Middle ware

supported By

emcbackup

depends On

Platform Support Unix

supported By

nasbox

depends On

network

depends On

Database Management

supported By

Storage DASD Backup Restore

supported Bydepends On supported Bysupported By

Network Service

supported By

Fig. 5. An example of HPU-aware dependency graph. A component box describes a software and
its problems (ITProblem node). An eclipse describes management skills (Management node).

factors will be used to determine the required HPU for a task, to select iICU and
members for iSCU , and to build the connectedness for SCUs.

4.1.2. Examples and implementation

Figure 5 presents an example of a dependency graph of an IT system linked to
management skills. In this system, we have a LotusDomino system (described by
lotusdomino) deployed in a Web Application Server (described by was). The Web
Application Server is deployed on an AIX server (described by aix) and depends on
a DB2 server (described by db2). The DB2 server depends on a NAS box (described
by nasbox) and a network (described by network). The AIX server is dependent
on an EMC backup system (described by emcbackup) which depends on network.
Each software node in the IT system has different requirements for HBS in order
to solve IT problems arisen.

In our implementation of dependency graph, we use JGraphT.j We define two
main types of Node — ITProblem and Management. All relationships are depen-
dency. It is also possible to use TOSCA24 to link people skills and map TOSCA-
based description to JGraphT.

4.2. Combining HBS and SBS

Combining HBS and SBS is a common need in solving complex problems (e.g. in
evaluating quality of data in simulation workflows). In our framework, this feature
can be used for preparing inputs managed by SBS for an HBS work or managing
outputs from HBS work. Furthermore, it can be used to provision SBS as utilities

jhttp://jgrapht.org/.

1341003-18

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

for HBS work (e.g. requiring HBS to utilize specific SBS in order to produce the
result where SBS is provisioned by the consumer).

Example: Listing 1 shows an example of programming a combination of HBS and
SBS for a task using our cloud APIs and JClouds. In this example, we want to
invoke Amazon S3 to store a log file of a Web application sever and invoke an HBS
to find problems. Using this way, we can also combine HBS with HBS and of course
SBS with SBS from different clouds.

// us ing JClouds APIs to s t o r e l o g f i l e o f web a pp l i c a t i o n
server

BlobStoreContext context = new
BlobStoreContextFactory () . c r eateContext ("aws-s3" ,"REMOVED" ,

"REMOVED") ;
BlobStore b lobStore = context . ge tBlobStore () ;
// and add f i l e in t o Amazon S3
Blob blob = blobStore . b lobBui lder ("hbstest") . bu i ld () ;
blob . setPayload (new F i l e ("was.log")) ;
b lobStore . putBlob ("hbstest" , blob) ;
S t r ing u r i = blob . getMetadata () . g e tPub l i cUr i () . t oSt r ing () ;
VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;
//assume t ha t WM6 i s the HBS t ha t can analyze the Web

Middleware problem
vieCOMHBS. startHBS("WM6") ;
HBSRequest r eque s t = new HBSRequest () ;
r eque s t . s e tDe s c r i p t i on ("Find possible problems from " +

ur i) ;
vieCOMHBS. runRequestOnHBS ("WM6" , r eque s t) ;

Listing 1. Example of HBS combined with SBS.

4.3. Forming and configuring iSCUs

A cloud provider can form an iSCU and provide it to the consumer as well as a
consumer can select iICU and SBS to form an iSCU . An iSCU not only includes
HBS (iICU or other sub iSCU) but also consists of possible SBS for ensuring the
connectedness within iSCU and for supporting the work and interaction within the
iSCU . There are different ways to form SCUs. In the following, we will describe
some approaches for forming SCUs to solve a dependency graph of tasks.

4.3.1. Selecting resources for iSCU

Figure 6 describes a general concept of how iSCU forming algorithms work. To
form an iSCU, we need to consider both Business-as-Usual (BAU) and corrective

1341003-19

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

Fig. 6. General model for forming iSCU.

action (CA) cases. Given a task t ∈ DG, our approach in dealing with t is that
we do not just simply take required management resources suitable for t but we
need to consider possible impacts of other tasks when solving t and the chain
of dependencies. To this end, we utilize DG to determine a set of suitable human
resources to deal with t and t’s possible impact. Such human resources establish HBS
capabilities in an iSCU . Overall, the following steps are carried out to determine
required SCU:

• Step 1: Determine DGBAU ⊆ DG where DGBAU includes all tj ∃ a walk (tj , t),
tj is the task that must be dealt together with t in typical BAU cases.

• Step 2: Determine DGCA ⊆ DG that includes tasks that should be taken into
account under CA cases. DGCA = {tr} ∃ a walk(tr, tj) with tj ∈ DGBAU .

• Step 3: Merge DGSCU = DGBAU ∪ DGCA by (re)assigning weighted factors to
links between (tk, tl) ∈ DGSCU based on whether (i) tk and tl belong to DGBAU

or DGCA, (ii) reaction chain from t to tk or to tl and (iii) the original weighted
factor of links consisting of tk or tl.

• Step 4: Traverse DGSCU , ∀ti ∈ DGSCU , consider all (ti, ri) where ri

is management resource node linking to ti in order to determine human
resources.

Based on the above-mentioned description, different SCU formation strategies can
be developed. Note that our principles mentioned above aim at forming iSCU

enough for solving main tasks and let iSCU evolve during its runtime. There could
be several possible ways to obtain DGBAU and DGCA, dependent on specific config-
urations and graphs for specific problems. Therefore, potentially the cloud of HBS

1341003-20

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

Table 2. Examples of SCU formation strategies.

Algorithms Description

SkillWithNPath Select iICU for iSCU based on only skills with a pre-defined
network path length starting from the task to be solved.

SkillMinCostWithNPath Select iICU for iSCU based on only skills with minimum cost,
considering a pre-defined network path

length starting from the task to be solved.

SkillMinCostMaxLevelWithNPath Select iICU for iSCU based on skills with minimum cost and
maximum skill levels, considering a pre-defined network path
length starting from the task to be solved.

SkillWithNPathUnDirected Similar to SkillW ithNPath but considering undirected
dependency.

MinCostWithNPathUnDirected Similar to MinCostWithNPath but considering undirected
dependency.

MinCostWithAvail NPathUnDirected Select Select iICU for iSCU based on skills with minimum cost,
considering availability and a pre-defined network path length
starting from the task to be solved. Undirected dependencies
are considered.

can provide several algorithms for selecting HBS to form SCUs. As we aim at pre-
senting a generic framework, we do not describe here specific algorithms, however,
Table 2 describes some selection strategies that we implement in our framework.
Listing 2 describes an example of forming an SCU.

DefaultDirectedGraph<Node , Re la t ionsh ip > dg ; // graph o f
problems

// . . .
double hpu = HPU. hpu (dg) ; // determine
SCUFormation app = new SCUFormation(dg) ;
ManagementRequest r eque s t = new ManagementRequest () ;
// de f i n e r e qu e s t s p e c i f y i n g on ly main problems to be s o l v ed
//
// c a l l a l gor i t hms to f i n d s u i t a b l e HBS. Path l en g t h =2 and

a v a i l a b i l i t y from 4am to 19pm in GMT zone
ResourcePool scu = app .

MinCostWithAvailabil ityNPathUnDirectedFormation(request ,
2 , 4 , 19) ;

i f (scu == null) { return ; }
ArrayList<HumanResource> scuMembers = scu . getResources () ;
SCU iSCU = new SCU() ;
iSCU . setScuMembers (scuMembers) ;
// s e t t i n g up SBS fo r scuMember . . .

Listing 2. Example of forming iSCU by minimizing cost and considering no direction.

1341003-21

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

4.3.2. Setting up iSCU connectedness

After selecting members of iSCU , we can also program SBS and HBS for the iSCU

to have a complete working environment. iSCU can have different connectedness
configurations, such as:

• Ring-based iSCU : The topology of iSCU is based on a ring. In this case for each
(hbsi, hbsj) ∈ iSCU then we program hbsi →

request
hbsj based on message-passing

or shared memory models. For example a common Dropbox directory can be
created for hbsi and hbsj to exchange requests/responses.

• Star-based iSCU : A common SBS can be programmed as a shared memory for
iSCU . Let sbs be SBS for iSCU then ∀hbsi ∈ iSCU give hbsi access to sbs.
For example, a common Dropbox directory can be created and shared for all
hbsi ∈ iSCU .

SCU iSCU ;
// . . . f i n d members f o r SCU
DropboxAPI<WebAuthSession> scuDropbox ; // us ing dropbox ap i s
// . . .
AppKeyPair appKeys = new AppKeyPair (APP KEY, APP SECRET) ;
WebAuthSession s e s s i o n =

new WebAuthSession(appKeys , WebAuthSession . AccessType .
DROPBOX) ;

// . . .
s e s s i o n . setAccessTokenPair (accessToken) ;
scuDropbox = new DropboxAPI<WebAuthSession>(s e s s i o n) ;
// shar ing the dropbox d i r e c t o r y to a l l scu members
// f i r s t c r ea t e a share
DropboxAPI . DropboxLink l i n k = scuDropbox . share ("/hbscloud")

;
// then send the l i n k to a l l members
VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;
for (HBS hbs : iSCU . getScuMembers ()) {

vieCOMHBS. startHBS(i cu) ;
HBSMessage msg = new HBSMessage () ;
msg . setMsg ("pls. use shared Dropbox for communication " +

l i n k . u r l) ;
vieCOMHBS. sendMessageToHBS(hbs , msg) ;

// . . .
}

Listing 3. Example of star-based iSCU using Dropbox as a communication hub.

1341003-22

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

• Master-slave iSCU : An hbs ∈ iSCU can play the role of a shared memory and
scheduler for all other hbsi ∈ iSCU .

Listing 3 presents an example of establishing the connectedness for an iSCU

using Dropbox. Note that finding suitable configurations by using HBS informa-
tion and compliance constraints is a complex problem that is out of the scope of
this paper.

4.4. Change model for task graph’s human power unit

When a member in an iSCU receives a task, she might revise the task into a set
of sub-tasks. Then she might specify human compute units required for sub tasks
and revise the task graph by adding these sub-tasks. As the task graph will change,
its required HPU is changed. By capturing the change of the task graph, we can
decide to scale in/out the iSCU . Listing 4 describes some primitives for scaling
in/out iSCU based on the change of HPU.

SCU iSCU ;
// . . .
iSCU . setScuMembers (scuMembers) ;
// s e t t i n g up SBS fo r scuMember
// . . .
double hpu = HPU. hpu (dg) ; // determine current hpu
//SCU so l v e s /adds t a s k s in DG
//
// graph change − e l a s t i c i t y based on human power un i t
double dHPU = HPU. de l t a (dg , hpu) ;
DefaultDirectedGraph<Node , Re la t ionsh ip > changegraph ;
// ob ta in changes
Set<CloudSki l l > changeCS = HPU. de te rmineC loudSk i l l (

changegraph) ;
i f (dHPU > SCALEOUT LIMIT) {

iSCU . s c a l e ou t (changeCS) ; //expand iSCU
}
else i f (dHPU < SCALEIN LIMIT) {
iSCU . s c a l e i n (changeCS) ; // reduce iSCU

// . . .
}

Listing 4. Example of elasticity for SCU based on task graph change.

5. Related Work

Although both humans and softwares can perform similar work and several com-
plex problems, both of them are esential in the same system, currently there is a

1341003-23

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

lack of programming models and languages for hybrid services of SBS and HBS.
Most clouds of SBS offer different possibilities to acquire SBS on-demand, however,
similar efforts for HBS are missing today.

Cloud models and APIs for HBS: Tai et al.25 outlined several research ques-
tions in cloud service engineering to support “everything is a service” in which
services can be provided/integrated from different providers and charged based on
different costs and values. However, contemporary systems focus only on SBS. Sev-
eral frameworks for engineering cloud applications based on different IaaS, PaaS
and SaaS, such as Aneka.26 BOOM27 have been introduced. Generally, they utilize
software-based cloud resources via different sets of APIs, such as JClouds, Boto,k

and OpenStack,l to develop applications under different programming models, such
as MapReduce and dataflows. These frameworks do not consider hybrid services
consisting of SBS and HBS, while our work supports conceptualizing and providing
programming techniques for both SBS and HBS. To our best knowledge, there is
no other work that proposes HBS cloud models.

Programming HBS and SBS in a unified way: Most clouds of SBS offering differ-
ent possibilities to acquire SBS on-demand. However, researchers have not devoted
similar efforts for HBS. A common way to utilize human capabilities is to exploit
human computation programming frameworks, e.g. Crowdforge28 and TurKit29 and
Jabberwocky framework,30 for utilizing crowds for solving complex problems.3,31

However, these works do not consider how to integrate and virtualize software in
a similar manner to that for humans. As we have analyzed, current support can
be divided in three approaches:1 (i) using plugins to interface to human, such as
BPEL4Peopleb or tasks integrated into SQL processing systems,9 (ii) using sep-
arate crowdsourcing platforms, such as MTurk,m and (iii) using workflows, such
as Turkomatic.6 A drawback is that all of them consider humans individually and
human capabilities have not been provisioned in a similar manner like software
capabilities. As a result, an application must split tasks into sub-tasks that are
suitable for individual humans, which do not collaborate to each other, before the
application can invoke humans to solve these sub-tasks. Furthermore, the applica-
tion must join the results from several sub-tasks and it is difficult to integrate work
performed by software with work performed by humans. This is not trivial for the
application when dealing with complex problems that requires human capabilities.
In terms of communication models and coordination models, existing models also
support messages push/pull/mediator, but they are platforms/middleware built-in
rather than reusable programming primitives of programming models. Our work
in this paper does not focus on managing and coordinating tasks but by propos-
ing high-level APIs for HBS in a similar manner to that for SBS, our work could

khttp://boto.s3.amazonaws.com/index.html.
lhttp://www.openstack.org/.
mAmazon mechanical turk, 2011. Last access: 27 Nov 2011.

1341003-24

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

foster the utilization of several HBS and SBS from different clouds based on cloud
business models for different task management and coordination strategies.

Software tools for HBS: Some recent efforts have been devoted for software engi-
neering tools of human-services, such as Ref. 32, and general-purpose programming
languages for human computation, such as CrowdLang.33 While they call for a
better software engineering and programming languages support for human-centric
systems, they do not address issues related to human services provisioning, e.g.
using cloud and service models. Although we do not develop new general-purpose
programming languages, we believe that if these works need to utilize human capa-
bilities and software services in a large-scale, on-demand, pay-per-use fashion, then
our models and techniques can be integrated into these software tools and languages.

Overall, compared with related work, we develop models for clouds of HBS. Our
techniques for virtualizing HBS and programming HBS in a similar way to SBS are
different from related work. Such techniques can be used by high-level programming
primitives and languages for social computers.

6. Conclusions and Future Work

In this paper, we have proposed novel methods for modeling clouds of HBS and
describe how we can combine them with clouds of SBS to create hybrid services.
We believe that clouds of hybrid services are crucial for complex applications which
need to proactively invoke SBS and HBS in similar ways. We have described main
concepts for establishing clouds of hybrid services, covering several aspects, like
conceptual models and provisioning architectures for communication, pricing and
incentive models, and programming APIs. Based on that, we present general frame-
works and programming APIs to describe where and how hybrid services can be
programmed.

In this paper, we focus on designing models, frameworks and APIs, and illus-
trating programming examples. We have presented a broad view on conceptual-
izing and programming hybrid services but have not addressed detailed activities
in provisioning and managing the operation and interaction within HBS clouds as
well as ICU/SCU. They will be subjects of several future research activities. Fur-
ther real-world experiments should be conducted in the future to demonstrate the
benefits of programming HBS and SBS in the same system. With respect to the
software development for our concepts, we are currently working on programming
elements/constructs/patterns for hybrid services that consider different relation-
ships and cost/quality as first class entities in our programming models. Another
direction is to work on hybrid service life-cycle management. This is also strongly
related to how to monitor and enforce pricing and incentive strategies within a cloud
infrastructure of hybrid services. Furthermore, we are also working on the integra-
tion with programming languages for social collaboration processes5 using hybrid
services. Other related aspects, such as pricing models and contract negotiation
protocols, will be also investigated.

1341003-25

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

Acknowledgments

This paper is an extended version of the paper published in Ref. 11 The work
mentioned in this paper is partially supported by the EU FP7 SmartSociety.n

References

1. S. Dustdar and H. L. Truong, Virtualizing software and humans for elastic processes
in multiple clouds — a service management perspective, IJNGC 3(2) 2012.

2. D. Schall, H. L. Truong and S. Dustdar, Unifying human and software services in
web-scale collaborations, IEEE Internet Comput. 12(3) (2008) 62–68.

3. A. Doan, R. Ramakrishnan and A. Y. Halevy, Crowdsourcing systems on the world-
wide web, Commun. ACM, 54(4) (2011) 86–96.

4. D. Oppenheim, L. R. Varshney and Y.-M. Chee, Work as a service, in ICSOC, eds. G.
Kappel, Z. Maamar and H. R. Motahari Nezhad, Lecture Notes in Computer Science,
Vol. 7084 (Springer, 2011), pp. 669–678.

5. V. Liptchinsky, R. Khazankin, H.-L. Truong and S. Dustdar, Statelets: Coordina-
tion of social collaboration processes, in 14th Int. Conf. Coordination Models and
Languages (Coordination 2012), Stockholm, Sweden, June 2012.

6. A. P. Kulkarni, M. Can and B. Hartmann, Turkomatic: Automatic recursive task
and workflow design for mechanical turk, in Proc. 2011 Annual Conference Extended
Abstracts on Human factors in Computing Systems, CHI EA ’11 (ACM, New York,
NY, USA, 2011), pp. 2053–2058.

7. D. W. Barowy, E. D. Berger and A. McGregor, Automan: A platform for integrat-
ing human-based and digital computation, Technical Report UMass CS TR 2011-44,
University of Massachusetts, Amherst, 2011. http://www.cs.umass.edu/emery/pubs/
AutoMan-UMass-CS-TR2011-44.pdf.

8. H. S. Baird and K. Popat, Human interactive proofs and document image analysis, in
Proc. 5th Int. Workshop on Document Analysis Systems V, DAS ’02 (Springer-Verlag,
London, UK, 2002), pp. 507–518.

9. A. Marcus, E. Wu, D. Karger, S. Madden and R. Miller, Human-powered sorts and
joins, Proc. VLDB Endow. 5 (2011) 13–24.

10. S. Tai, P. Leitner and S. Dustdar, Design by units: Abstractions for human and
compute resources for elastic systems, IEEE Internet Comput. 16(4) (2012) 84–88.

11. H. L. Truong, S. Dustdar and K. Bhattacharya, Programming hybrid services in the
cloud, in ICSOC, eds. Chengfei Liu, Heiko Ludwig, Farouk Toumani and Qi Yu,
Lecture Notes in Computer Science, Vol. 7636 (Springer, 2012), pp. 96–110.

12. P. Mell and T. Grance, The NIST definition of cloud computing, NIST Special Pub-
lication 800-145 (September 2011).

13. H. L. Truong, S. Dustdar, D. Baggio, S. Corlosquet, C. Dorn, G. Giuliani, R. Gom-
botz, Y. Hong, P. Kendal, C. Melchiorre, S. Moretzky, S. Peray, A. Polleres, S. Reiff-
Marganiec, D. Schall, S. Stringa, M. Tilly and H. Q. Yu, Incontext: A pervasive and
collaborative working environment for emerging team forms, in SAINT (IEEE Com-
puter Society, 2008), pp. 118–125.

14. O. Nov, D. Anderson and O. Arazy, Volunteer computing: A model of the fac-
tors determining contribution to community-based scientific research, in Proc.
19th Int. Conf. World wide web, WWW’10 (ACM, New York, NY, USA, 2010)
pp. 741–750.

nhttp://www.smart-society-project.eu/.

1341003-26

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

Conceptualizing and Programming Hybrid Services in the Cloud

15. A. J. Quinn and B. B. Bederson, Human computation: A survey and taxonomy of a
growing field, in CHI, eds. D. S. Tan, S. Amershi, B. Begole, W. A. Kellogg and M.
Tungare (ACM, 2011), pp. 1403–1412.

16. W. Mason and D. J. Watts, Financial incentives and the “performance of crowds”,
in Proc. ACM SIGKDD Workshop on Human Computation, HCOMP’09 (ACM, New
York, NY, USA, 2009), pp. 77–85.

17. O. Tokarchuk, R. Cuel and M. Zamarian, Analyzing crowd labor and designing incen-
tives for humans in the loop, IEEE Internet Comput. 16(5) (2012) 45–51.

18. O. Scekic, H.-L. Truong and S. Dustdar, Incentives and rewarding in social computing,
Commun. ACM 56(6) (2013) 72–82.

19. J. J. Horton and L. B. Chilton, The labor economics of paid crowdsourcing, in Proc.
11th ACM conf. Electronic commerce, EC’10 (ACM, New York, NY, USA, 2010),
pp. 209–218.

20. S. Dustdar and K. Bhattacharya, The social compute unit, IEEE Internet Comput.
15(3) (2011) 64–69.

21. O. Scekic, H.-L. Truong and S. Dustdar, Programming incentives in information sys-
tems, in 25th Int. Conf. Advanced Information Systems Engineering (CAISE 2013),
Valencia, Spain, 17–21 June 2013.

22. S. Dustdar, M. Z. C. Candra and H.-L. Truong, Provisioning quality-aware social
compute units in the cloud, in Service-Oriented Computing — Proc. 9th Int. Conf.
ICSOC 2013 (Springer, Berlin, Germany, 2–5 December 2013).

23. M. Z. C. Candra, H. L. Truong and S. Dustdar, Modeling elasticity trade-offs in adap-
tive mixed systems, in WETICE, eds. S. Reddy and M. Jmaiel (IEEE, Hammamet,
Tunisia, 17–20 June 2013), pp. 21–26.

24. T. Binz, G. Breiter, F. Leymann and T. Spatzier, Portable cloud services using tosca,
IEEE Internet Comput. 16(3) (2012) 80–85.

25. S. Tai, J. Nimis, A. Lenk and M. Klems, Cloud service engineering, in Proc. 32nd
ACM/IEEE Int. Conf. Software Engineering — Volume 2, ICSE’10 (ACM, New York,
NY, USA, 2010), pp. 475–476.

26. R. N. Calheiros, C. Vecchiola, D. Karunamoorthy and R. Buyya, The aneka platform
and qos-driven resource provisioning for elastic applications on hybrid clouds, Future
Generation Comp. Syst. 28(6) (2012) 861–870.

27. P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier and R. Sears,
Dedalus: Datalog in time and space, in Datalog, eds. O. de Moor, G. Gottlob, T.
Furche, and A. J. Sellers, Lecture Notes in Computer Science, Vol. 6702 (Springer,
Oxford, UK, 16–19 March 2010), pp. 262–281.

28. A. Kittur, B. Smus, S. Khamkar and R. E. Kraut, Crowdforge: Crowdsourcing com-
plex work, in Proc. 24th Annual ACM Symp. User Interface Software and Technology,
UIST’11 (ACM, New York, NY, USA, 2011), pp. 43–52.

29. G. Little, L. B. Chilton, M. Goldman and R. C. Miller, Turkit: Tools for iterative
tasks on mechanical turk, in Proc. ACM SIGKDD Workshop on Human Computation,
HCOMP’09 (ACM, New York, NY, USA, 2009), pp. 29–30.

30. S. Ahmad, A. Battle, Z. Malkani and S. Kamvar, The jabberwocky programming
environment for structured social computing, in Proc. 24th Annual ACM Symp. User
Interface Software and Technology, UIST ’11 (ACM, New York, NY, USA, 2011),
pp. 53–64.

31. A. Brew, D. Greene and P. Cunningham, Using crowdsourcing and active learning to
track sentiment in online media, in Proc. 2010 Conf. ECAI 2010: 19th European Con-
ference on Artificial Intelligence, (IOS Press, Amsterdam, The Netherlands, 2010),
pp. 145–150.

1341003-27

2nd Reading

December 24, 2013 11:8 WSPC/S0218-8430 111-IJCIS 1341003

H.-L. Truong, S. Dustdar & K. Bhattacharya

32. C. Dorn and R. N. Taylor, Co-adapting human collaborations and software architec-
tures, in ICSE, eds. M. Glinz, G. C. Murphy and M. Pezzè (IEEE, 2012), pp. 1277–
1280.

33. P. Minder and A. Bernstein, Crowdlang: A programming language for the systematic
exploration of human computation systems, in SocInfo, eds. K. Aberer, A. Flache, W.
Jager, L. Liu, J. Tang and C. Guéret, Lecture Notes in Computer Science, Vol. 7710
(Springer, Lausanne, Switzerland, 5–7 December 2012), pp. 124–137.

1341003-28

