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Abstract Workflow design, mashup configuration, and
composite service formation are examples where the capabil-
ities of multiple simple services combined achieve a complex
functionality. In this paper, we address the problem of limit-
ing the number of required services that fulfill the required
capabilities while exploiting the functional specialization of
individual services. Our approach strikes a balance between
finding one service that matches all required capabilities
and having one service for each required capability. Specif-
ically, we introduce a weighted fuzzy clustering algorithm
that detects implicit service capability groups. The cluster-
ing algorithm considers capability importance and service
fitness to support those capabilities. Evaluation based on a
real-world data set successfully demonstrates the effective-
ness of and applicability for service aggregation.

Keywords Fuzzy clustering - Service capabilities -
Service aggregation

1 Introduction

Service aggregation describes the process of selecting a set of
services to exploit their combined functionality. Applications
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such as designing a service mashup, developing a composite
service, or determining services for a workflow require
the selection and aggregation of suitable services. Existing
work applies advanced mechanisms such as ontologies [23],
goal models [9], context-based mediation [17], or QoS met-
rics [31] to determine the optimal set of services that provide
the required functionality. These approaches can be roughly
classified according to two extreme categories. Either each
service is expected to provide exactly one of the operations
or a single service provides all operations.

In this paper, we present an approach to service aggre-
gation that resides between those extremes. The problem is
finding implicit functional groups that are prevalent among
the available services. An implicit functional group describes
a set of operations that tend to be provided together on a ser-
vice instance. One major challenge is automatically extract-
ing those groups. Simultaneously, we also need to address
the importance of each function in the overall aggregation
as well as the actual support of each operation by the set of
available service instances.

We apply the concept of capabilities to abstract from
the technical service specification. Capabilities are metadata
about a service that go beyond the pure interface descrip-
tion (WSDL) but remain more specific than QoS attributes.
A storage service, for example, provides an upload operation
and comes with corresponding capabilities that specify the
maximum allowed file size and file count.

We compare required service capabilities and provided
capabilities to obtain matching scores. QoS metrics filter out
services that fail to offer the required performance require-
ments. Further pre-clustering analysis identifies generic
capabilities that subsequently receive very low importance to
ensure they do not distort the clustering result. The scores are
then clustered to extract the implicit capability groups. After
ranking the services in each cluster, we can select the top
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scoring services for the aggregation. Additional aggregation

constraints allow for specifying dependencies between ser-

vice instances and service providers. The main focus, how-

ever, lies on the customization of the clustering algorithm.

Subsequent challenges in the composition process such as

interface mediation remain outside the scope of this article.
Our salient contributions in this article are:

— A modified fuzzy c-means (WFCM) clustering algorithm
that is able to intelligently consider the importance and
support of individual capability constraints when gener-
ating clusters.

— A mechanism for detecting and suppressing generic
capabilities that would otherwise distort the clustering
result.

— Integration of QoS metrics to define performance con-
straints.

— An algorithm determining the optimal service composi-
tion subject to aggregation constraints.

Evaluation based on a real-world data set successfully
demonstrates the applicability and feasibility of our clus-
tering algorithm. Our weighted fuzzy clustering technique
provides consistently more sensible capability groups than
the regular, non-weighted fuzzy c-means (FCM) clustering
technique [1,2].

The remainder of this paper is structured as follows.
Section 2 presents a motivating scenario to outline the prob-
lem and challenges in more detail followed by the approach
in Sect. 3. Section 4 outlines the mechanisms for data trans-
formation in preparation for clustering. Section 5 details the
weighted fuzzy clustering algorithm. Section 6 presents the
results of the clustering algorithm when applied to a real-
world data set. Section 7 discusses related work before Sect. 8
concludes with an outlook on future work.

2 Motivating scenario

The advantage of extracting implicit capability groups
instead of searching for a single, optimal mapping of capabil-
ities to services is replacability. A capability group represents
aconsiderable number of similarly structured services as oth-
erwise the clustering algorithm would not determine such
a group. This allows for run-time replacement of services
within a group, while leaving the structure of the remaining
service aggregation untouched.

We expect that capabilities are not uniformly distrib-
uted across services. A few capabilities will be available
on most services, while other capabilities are very specific
and provided only by a subset. Fuzzy clustering allows us
to assign those generic capabilities to every cluster with
some extent, while hard clustering (e.g., K-means clustering)
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would require to assign such capabilities to exactly one clus-
ter. Unfortunately, fuzzy clustering alone does not guarantee
that the generic capabilities always end up evenly spread
cross all detected clusters. They might be distinct enough to
create a cluster of their own.

We argue that the clustering algorithm needs to become
aware of capability importance (i.e., constraint weights) and
capability support (i.e., how well are capabilities provided
by the service instances in terms of measured utility). Capa-
bility importance enables defining vital and optional capa-
bilities. The clustering technique should produce clusters
of specific functionality, rather than creating two types of
clusters: the one type describes specific capabilities and the
other type describes generic capabilities. Also, when encoun-
tering situations where some capabilities are hardly sup-
ported by available services, we want to avoid having two
clusters emerge: one around the well-supported capabili-
ties, and one containing all unsupported capabilities. The
following scenario outlines these effects based on example
data.

Let us suppose we have a set of 10 services (57 —
S10) that match at least some of the desired 10 capabil-
ities (C; — Cjp). Table 1 provides example utility val-
ues for each capability and service. Utility values close
to 100 denote a (almost) perfect match of required capa-
bilities and provided service capability. Values close to
zero indicate that the service hardly fulfills the required
capability.

Ideally, the clustering algorithm generates two clusters:
one for capabilities C; — C3 and one for C4 — C6 (see
Table 2 right side). As services hardly support capabilities
Cs and C7, we want to avoid having these capabilities form a
cluster and then select a service which barely fits. In contrast,
basically all services provide Cg and C1g. There is no need to
have these form a distinct cluster as any services from another
cluster is able to provide also these generic capabilities.
Regular FCM clustering, however, produces the cluster con-
figurations as provided in Table 2 left side, all of them unsuit-
able for efficient service aggregation. Two clusters split the
capabilities into the set of best supported and the rest. Three
clusters have the same overall effect, but distinguish between
storage and communication capabilities. The right side of
Table 1 lists the service ranking result for each of those
three clusters. An aggregation of the top three services (57,
Sg, S2) would result in duplicating the efforts for provid-
ing capabilities C4 — Cg. As the ranking scores Ry aris-
ing from cluster K3, are comparatively high, a user might
select also some lower ranking services (as they still yield
high scores) and include one of S4; S5; Se to the aggregation.
When increasing the cluster number to four, adaptation and
general capabilities become mixed up. Results of five clus-
ters and more become even more unusable and thus are not
shown.
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Table 1 Columns 3—12: utility matrix matching required capabilities and provided service capabilities from the scenario. Columns 13—15: ranking

services when regular FCM produces three clusters

Capability description  Id Si S S3 Sa Ss Se S7 Sg So S0 Ry Ry R3

Task notification C 80 90 50 0 0 0 5 5 0 0 S7(61.33) Sg (94.04) S (41.81)
Task delegation Cy 50 70 90 0 0 0 0 0 0 0 Sg (48.89) S0 (89.94) S1 (40.87)
Blackboard Cs 60 40 30 0 0 0 0 10 0 5 So (43.86) S3 (88.52) S3 (38.65)
File versioning Cy 0 0 0 0 5 0 80 90 70 60 S10 (33.56) S7 (87.07) Sg (6.55)
Storage flexibility Cs 0 10 0 0 0 0 70 30 0 40 83 (6.27) S1 (86.00) S7(3.95)
File size Cq 0 0 10 0 8 0 70 50 80 20 S> (4.86) S4 (85.86)  Si0 (3.43)
Location-awareness C7 7 0 10 0 5 3 0 10 0 4 S5 (4.12) So (82.74) So (1.62)
Device-awareness Cs 0 0 10 0 0 0 0 0 5 0 S1(2.41) S (77.17) S5 (0.91)
User accounts Cy 100 80 87 90 80 80 90 95 87 99 S (0.21) S5 (76.41) S (0.51)
Secure access Cio 78 79 9% 90 8 80 90 100 85 88 S4(0.02) Se (76.34) S4(0.01)

Table 2 Columns 2—11: scenario results for 2, 3, and 4 clusters with regular FCM. Columns 12-15: best cluster result with weighted, variable

importance WFCM. Crisp cluster membership values in bold font

T K> 1 K> K31 K32 K33 K41 K42 K43 Ky4 L ® K> 1 K>
Cq 0.1 0.08 0.92 0.05 0.02 0.93 0.01 0.98 0.01 0.00 0.125 0.173 0.003 0.997
C 0.1 0.07 0.93 0.04 0.02 0.94 0.03 0.96 0.01 0.00 0.125 0.158 0.006 0.994
Cs 0.1 0.01 0.99 0.01 0.00 0.99 0.17 0.80 0.02 0.01 0.125 0.109 0.026 0.974
Cy 0.1 0.18 0.82 0.96 0.01 0.03 0.02 0.01 0.97 0.01 0.125 0.229 0.997 0.003
Cs 0.1 0.03 0.97 0.85 0.01 0.14 0.46 0.09 0.44 0.02 0.125 0.113 0.893 0.107
Ce 0.1 0.08 0.92 0.97 0.01 0.02 0.02 0.01 0.97 0.00 0.125 0.179 0.993 0.007
C7 0.1 0.01 0.99 0.22 0.02 0.76 1.00 0.00 0.00 0.00 0.125 0.029 0.391 0.609
Cy 0.1 0.01 0.99 0.23 0.02 0.75 0.00 0.00 0.00 1.00 0.125 0.011 0.392 0.608
Cy 0.1 1.00 0.00 0.00 1.00 0.00 0.99 0.00 0.00 0.00 0.0001 0.001 0.565 0.435
Cio 0.1 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.0001 0.001 0.590 0.410
3 Approach of the utility functions and specification of QoS constraints.

Capability-driven service aggregation starts with defining the
required capabilities (Fig. 1). This includesparametrization
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Fig. 1 Capability-driven service clustering

Pre-clustering QoS evaluation removes those services that
fail to achieve the required QoS levels during an initial fil-
tering of the available service capabilities. QoS requirements
themselves are not included in the actual clustering process.
Subsequently, utility calculation determines for each service
and capability combination the corresponding utility value.
The resulting utility matrix is input for adjustment according
to user constraint weights and capability support by services.
The weighted FCM clustering algorithm produces overlap-
ping capability clusters. Each service is ranked within each
cluster. The final aggregation of the top scoring service from
each cluster is subject to post-clustering SLA constraints. An
example aggregation condition specifies that service S4 and
S must not be used in the same composition.

4 Clustering preparations
4.1 Capability profiles and requirements

As briefly mentioned before, capabilities are metadata about
a service that go beyond the pure interface description
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<cap:Profile ProfileId="http://.../profiles?id=56879413">

1
2 <cap:WSDLlocation>http://example.org:8080/Storage_Service/service/ </cap:WSDLlocation>
3 <cap:Component ComponentId="http://example.org/Upload">
4 <cap:Capability>
5 <cap:CapabilityId>http://.../StorageTransfer</cap:CapabilityId>
6 <cap:Property PropertyId="http://.../StorageTransfer/MaxFileSize">
7 <cap:value><cap:intValue>100</cap:intValue></cap:value>
8 </cap:Property>
9 </cap:Capability>
10 <cap:SelectableCapability
11 DefaultSelection="http://.../StorageCapability/Fixed" RequiredSelection="true">
12 <cap:CapabilityId>http://.../StorageDynamics</cap:CapabilityId>
13 <cap:Alternative>
14 <cap:CapabilityId>http://.../StorageCapability/Fixed</cap:CapabilityId>
15 <cap:Property PropertyId="http://.../StorageCapability/MinStorageSize">
16 <cap:value><cap:intValue>1000</cap:intValue></cap:value>
17 </cap:Property>
18 <cap:Property PropertyId="http://.../StorageCapability/MaxStorageSize">
19 <cap:value><cap:intValue>5000</cap:intValue></cap:value>

20 </cap:Property>
21 </cap:Alternative>

22 <cap:Alternative>

23 <cap:CapabilityId>http://.../StorageCapability/Dynamic</cap:CapabilityId>

24 [...]

25 </cap:Alternative>

26 <cap:Alternative>

27 <cap:CapabilityId>http://.../StorageCapability/Growing</cap:CapabilityId>

28 [ 1

29 </cap:Alternative>

30 <cap:Alternative>
31 <cap:CapabilityId>http://.../StorageCapability/Shrinking</cap:CapabilityId>
32 [...]

33 </cap:Alternative>

34 </cap:SelectableCapability>
35 <cap:WSDLoperationScope>http://example.org/Storage_Service/service/storeFile</cap:WSDLoperationScope>

36 </cap:Component>

37 <cap:Component ComponentId="http://example.org/ContentManagementComponent">

38 <cap:QoSCapability>

39 <cap:CapabilityId>http://.../StorageContent</cap:CapabilityId>

40 <cap:Property PropertyId="http://.../StorageContent/MaxItemListSize">

41 <cap:value><cap:intValue>200</cap:intValue></cap:value>

42 </cap:Property>

43 <cap:QoSProperty PropertyId="http://.../QoSMetric/ResponseTime">

44 <cap:value><cap:intValue>100</cap:intValue></cap:value>

45 </cap:QoSProperty>

46 </cap:QoSCapability>

47 <cap:WSDLoperationScope>http://example.org/Storage_Service/service/queryContent</cap:WSDLoperationScope>

48 </cap:Component>
49| </cap:Profile>

Listing 1 Capability profile excerpt containing two components which include one regular capability, one selectable capability, and one QoS

capability

(WSDL) but remain more specific than QoS attributes.
An example profile excerpt based on the scenario is provided
inListing 1. The profile describes storage services and defines
exemplar capabilities on the maximum file size (lines 4-9),
and the various strategies to dynamically adjust the avail-
able storage capacity (lines 10-34). Each selectable alterna-
tive capability provides the same properties on min and max
storage limits (lines 15-20), and the values, however, may
differ. We assume that service providers create a capability
profile for each service and make this profile publicly avail-
able—similar to publishing the obligatory WSDL descrip-
tion. Currently such information is only available in human
readable form (e.g., server hosting providers describing var-
ious packages of cpu power, available memory, maximum
hard disk space). The interested reader is referred to [7] for
a detailed discussion of the capability model, the specifica-
tion of capability requirements, and the subsequent matching
against capability profiles.

4.2 Pre-clustering QoS-based service filtering

QoS constraints are orthogonal to regular capability require-
ments as they describe the performance of a service rather
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than the limits of utilization. QoS criteria such as throughput,
response time, or execution time are independent of the ser-
vices purpose and equally apply to storage services and com-
munication services. We thus distinguish how well a service
does its job (QoS) and how to best use it, respectively well it
fits the particular underlying purpose (Capability). The pro-
cess of deriving the actual QoS metrics is out of scope of this
paper. Existing research efforts such as by Rosenberg et al.
[24,25] provide various techniques to measure and manage
QoS metrics.

We extend our capability model to incorporate QoS
metrics and introduce a new capability subclass:
QoSCapability.Each QoSCapability defines one or more
QoS Properties. Listing 1 demonstrates how to define that
a ContentManagementComponent delivers up to 200 item
entries within 100 ms (lines 37-48). Defining the correspond-
ing QoS constraint is then simply a matter of referencing the
respective capability, relevant QoSMetric, and QoS utility
evaluation parameters (see Listing 2 lines 28—40). The exam-
ple constraint here considers every service below 200ms
of equally high performance and accepts degrading perfor-
mance of up to 1,000ms. Services beyond that threshold
fail the QoS requirement. As QoS metrics are regarded as
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List reqlist = new ArrayList<Requirement>();

1
2

3| TCapabilitySelectionRequirement reql =

4| RequirementsFactory.getSelectConstraint(

5 "Set of acceptable storage adaptation strategies",

6 "http://.../StorageDynamics",

7 new String[]{http://.../StorageCapability/Growing,
8 http://.../StorageCapability/Fixed},
9 new String[]1{},

10 SetUtilityOne.class.getSimpleName(),

11 SetUtilityOne.UTILITY_TYPE,

12 0.6d);

14| TSimpleRequirement req2 =
15| RequirementsFactory.getConstraint(

16 "Minimum required transfer file size",
17 "http://.../StorageTransfer",

18 "http://.../StorageTransfer/MaxFileSize",
19 ValueUtility.UTILITY_TYPE,

20 ValueUtility.class.getSimpleName(),

21 new double[]{

22 new Unit(Mb, 80),

23 new Unit(Mb, 100),

24 new Unit(Mb, Double.MAX_VALUE),

25 new Unit(Mb, Double.MAX_VALUE)},

26 0.4d);

28| TQoSRequirement reg3 =
29| RequirementsFactory.getQoSConstraint (

30 "Minimum responsetime for file list retrieval",
31 "http://.../StorageContent",

32 QoSMetric.RESPONSETIME,

33 ValueUtility.UTILITY_TYPE,

34 ValueUtility.class.getSimpleName(),
35 new double[]{

36 new Unit(Millis, 0),

37 new Unit(Millis, 0),

38 new Unit(Millis, 200),

39 new Unit(Millis, 1000)},

40 1.0d);

42| reqlist.add(reql);
regqlist.add(req2);
44| reqlist.add(req3);

IS
&

IS
N

QoSManager qos = new QoSManager();
gos.join(new Requirement[]{regl, reg2});
qos.split(new Requirement[]{reg4, reg5});

PN
% 3

Listing 2 Requirements on dynamic storage space adaptation, mini-
mum transferable file size, and file list response time

independent, a service failing a single (out of potentially
many) QoS requirement is no longer eligible for clustering.

In addition to performance requirements, service level
agreements and other legal business aspects potentially
constrain the formation of service compositions. Such
aggregation constraints might restrict certain capabilities to
be provided by the same service instance, forbid aggregation
of two services from different providers, or limit the number
of services within the composition. We discuss any restric-
tions that are dealt with before the clustering process here,
and postpone the remaining description to Sect. 5.8. Cur-
rently we support the following pre-clustering aggregation
constraints:

Collocated capabilities i.e., two or more capabilities need
to be provided on the same service instance. We need
to ensure that these capabilities do not end up in differ-
ent clusters. Hence, we create a virtual capability that
provides a single utility values based on the individual
requirements and service capabilities. See Listing 2 line

47 as an example for joining two requirements in one
virtual capability. Later on, only the virtual capability is
used for clustering.

Separated capabilities i.e., two or more capabilities must not
be provided by the same service instance. We need to
ensure that these capabilities end up in different clus-
ters. Any service that provides multiple of these capabil-
ities is split into virtual services, one for each capability
(see Listing 2 line 48 as an example). This reduces the
likelihood of the separated capabilities ending up in the
same cluster. There is an alternative if the capabilities
still become collocated and when the aggregation size is
not a concern. In this case, we select for each capability a
separate service from that cluster, thereby increasing the
number of aggregated services.

Aggregation size i.e., the aggregation must consist of mini-
mal/maximal x services. The clustering process should
not create too many or too few clusters (even though the
cluster quality metric suggests to do so). For example,
experience tells us to use at least three services, but the
cluster quality is highest for two clusters. Thus, we sim-
ply limit the range of the cluster count z to observe this
lower limit. Ultimately we accept the clustering result
(with z > 2) that has the highest clustering quality.

4.3 Utility calculation

For the scope of this paper, it is sufficient to assume that
there exists a matching function eval that maps each service
s, € S and required capability ¢ € C to a utility value u; , in
the interval [0, 100], where 100 is the maximum score. The
resulting utility matrix U contains for every combination of
capability ¢; and service s, the corresponding utility value.
Each row x; in U describes the feature vector of capability
¢; used for clustering.

The overall impact w; of capability ¢; during the clustering
process is given by the initial capability requirement impor-
tance 7; (with D" 1; = 1), and the support by the available
services as measured by the fulfillment metric f;.

fixT D lin
W= _
2 fi*T Su
Subsequently, we ensure that services determine the clus-
tering result proportional to their utility. To this end, we trans-
form the utility matrix ({/) before clustering to reflect the
preliminary service rank r, = >, uj %7 / 2 rp. We mul-
tiply each u;, with the service rank r, € R and normal-
ize the matrix again such that services with average utility
u; = u maintain their utility value (4, = U x R x |R|). We
thereby exploit the FCM’s sensitivity toward outliers. After
the transformation, the weighted utility matrix {4, contains
higher utility values for better ranked services compared with
lower ranked services. Hence, above average services will

ey

where f; =
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have more impact during the clustering process as described
in the following section.

5 Capability clustering
5.1 Fuzzy clustering basics

The underlying principle in fuzzy clustering is assigning data
elements to multiple clusters with varying degree of mem-
bership. Algorithm 1 details the steps to obtain the best clus-
tering for a particular number of clusters z. We refer to the
listing when explaining the individual steps.

For our problem, the basic FCM [1,2] associates each
capability feature vector x; with every cluster k; € K. The
membership table M;; describes the degree of capability x;
belonging to a particular cluster &, such that " jij = 1.
Elements close to the cluster center (i.e., the centroid) have
higher membership values for that particular cluster than ele-
ments farther away.

The clustering algorithm’s objective is minimizing the
overall distance of data elements to the cluster centers
(line 11). This within-class least squared-error function is
defined as:

ICl IK]

T =D e llxi, kj |12 )

i=1 j=1

where m > 1 is the fuzzy factor and || e || is a distance mea-
surement between data element x and the cluster center k.

Algorithm 1 Weighted FCM
WFCMU,, z,m, e, maxIt, W, B).
1: function PERFORMCLUSTERING(U,,, z, m, &, maxIt, W, B)

clustering algorithm

2: M <« initRandomMembershipU,, 7)

3: /* Weight membership according to importance. */

4: Mp <~ M xW

5: lastJ <0

6: for round = 1...maxlIt do

7: K < calculateClusterCenters(z,m)

8: M <« updateClusterMembership(U,,, IC, m)

9: /* Recalculating the cluster membership resets > p;; = 1,
therefore update membership again according to impor-
tance. */

10: My <~ MxW

11: J = calculateObjectiveFct(U,, K, m)

12: if |J —lastJ| < ¢ then

13: break

14: else

15: last] < J

16: end if

17: end for

18: maxDist < calculateTotalDistance(U,, W)
19: calculateQuality(Uy,, W, K, B, M, maxDist, m)
20: M <« normalizeMembership(M,)

21: return M

22: end function
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Table 3 Fulfillment cluster center and size

KL Ky
Ce
Center 5.23 67.86
Size 7.05 2.95
G
Center 83.18 96.57
Size 5.66 4.34

FCM iteratively recalculates cluster centers (line 7) and
membership degree (line 8) until the objective function con-
verges (line 12) |J!, — J!=1| < & (where ¢ denotes the con-
vergence limit) or until the maximum number of iterations
max It is reached (lines 6—-17). For our purpose, the distance
function is the euclidian distance, defined as:

n 172
distance(x, k) = ( Z |x(d) — k(d)|2) 3)
d=1
where 7 is the dimension of both the capability vectors x and
the centroid k, i.e., equal to the number of service candidates.
FCM applies the fuzzy factor m to define the crispness
of membership degree. In general, high values of m impli-
cate very fuzzy cluster boundaries whereas low values result
in clear cluster limits. For m close to 1, FCM replicates the
behavior of K-means clustering [14]. With m = 2, distance
measurements are normalized linearly, and for m — oo,
elements will belong to every cluster with equal degree.

5.2 Detecting generic capabilities

We automatically detect generic capabilities by analyzing the
support distribution across all services. To test a singe capa-
bility ¢;, we cluster the corresponding utility values (4;) into
two groups: high support K g and low support K7 . We then
analyze the respective cluster centroids. A typical capability
exhibits a clear separation. Capability Cg, for example, has
K; =5.23 and Ky = 67.86 (see also Table 3). In addition,
the size of Ky (O pp) is smaller as Ky, as usually only
a subset of all services will support a particular capability.
As for the generic capability Co, both centers are compar-
atively high and also the clusters are of roughly equal size.
We make use of these properties and define a capability as
generic according to the following condition:

1f K >xAKpg >x
ifKg>xAD ug>> ur @)
false otherwise

true

isGeneric= 1 true

where x is a configurable threshold. A sensible value for
x is 60 as any generic capability with both cluster centers
below that threshold receives little to no boosting by the ful-
fillment metric f;. The condition states that any capability



SOCA

is considered generic when both cluster centers Kp j are
above the threshold or when size of Ky exceeds the size
of K (given than Ky exceeds the threshold). Any generic
capability that is not captured by these conditions receives
medium to low support by the fulfillment metric f; and thus
is not likely to populate its own cluster but rather ends up
assigned to multiple clusters. For our example, this clearly
identifies Cg and C1 as generic capabilities. In a second step,
we decide whether to remove those from the clustering pro-
cess or preferably opt to significantly reduce their weights
(e.g., T = 0.0001).

5.3 Weighted fuzzy clustering

The basic FCM algorithm considers all data elements of
equal importance. Thus when calculating the cluster centroid,
the impact of a capability feature vector x is determined by
its distance and membership degree. Data elements further
away—thus having lower membership degree—yield lower
impact on the center than closer elements. We adapt the FCM
algorithm considering also the capability importance. Note
that with > u; = 1, every element is considered equally
important. We therefore drop the condition that >_ u; = 1.To
this end, we weight the membership according to the impor-
tance vector W (line 4). After multiplying the membership
table with the importance vector (M, = M x W), less sig-
nificant capabilities have little impact when calculating the
cluster center as they yield a lower u value. The weighted
centroid k; with importance vector ¥V and fuzzy factor m is
defined as:

ki — Z,- l/«:']lw * X

==
Zi M;;l‘,w

The membership of a capability x belonging to a particular

cluster k depends on the ratio of distance between x and k
and the distance from x to all centroids K:

&)

K] 2/m-1\
llxi, k j”) "
i = L (©)
N ; ( Ixi, i
The reevaluation of membership degree in each iteration

resets »_ u; = 1,and hence, we need to recalculate the mem-
bership table in every iteration (line 10).

5.4 Cluster quality

The clustering procedure itself does not give any indication
on the optimal number of clusters (the ‘c’ in FCM). Instead,
we require some quality measurements to determine which
number of clusters provides the most sensible results. A rule
of thumb [16] recommends selecting max, =~ Y2 with i
the number of data elements. A computationally more inten-
sive approach calculates the clustering quality for increas-

ing number of clusters until reaching maximum quality [29]
propose a combination of cluster compactness and cluster
separation for crisp clustering as a viable overall quality mea-
sure. Compactness describes how well the clusters explain
the variance in the data. Cluster separation describes the het-
erogeneity between clusters. Clusters further apart exhibit
more distinct elements than clusters close together.

First we update the definition of variance to account for
weighted data elements. The weighted variance v, of a set
of capability constraints and importance vector WV is defined
as:

n

|
Vo Up) = Z (“xi, x_w”Z * wZZ) * (Z wlZ) @)

i=1

_ xi * 0
X = —— 3

where ||x;, X, || computes the distance of x; to the weighted
mean x,, of all elements in X . The less dispersed the elements,
the smaller the variance.

Next, we compare the variance found in each cluster to
the overall variance. We alter the definition of compactness
cmp to consider fuzzyness:

5 Vo (Usp) ™! )

1i > iy * llxi, k12

cmp = —
= 2.0 1ij

where \/E calculates the variance of elements weighted by

their degree of membership in cluster k;. Compactness is
1 for one cluster. With increasing clusters, the compactness
eventually decreases to O at which point each data element
resides in a separate cluster. We prefer lower compactness
(i.e., clusters describe the variance increasingly well), but
we need to avoid introducing too many clusters. To this end,
we reuse the cluster separation metric by [29].

Separation is the coefficient of total pairwise distance
between cluster centers and maximum possible distance.
Separation reaches its maximum (sep = 1) when each cluster
contains exactly one element. When one cluster comprises
all elements, separation is zero. We update the function for
calculating the total distance between constraints accord-
ingly. Distance between important constraints gains sig-
nificance, while distance between less important or mixed
important elements has little effect on the overall distance.

n—1 n W+ o
. 2 Wi J
disty; = z Z i, xj 1% ———+ (10)
i=1 j=i+1
For cluster separation, we have to adapt the distance mea-
surement between clusters. For each cluster, we compute the
importance of the contained elements and apply the same
weighted distance function as introduced above.
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where > w; * p;; defines the importance of cluster j. The
sum of pairwise distance between all elements yields compu-
tational complexity O(|C |2). However, the distance remains
unchanged for all iterations of cluster counts z = 1...|C]|
and thus needs computation only once (line 18).

The combined metrics identify the maximum clustering
quality. For one cluster, compactness equals 1 and separation
equals 0. For all elements in individual clusters, compactness
yields O and separation 1. The quality function g(B) identi-
fies the number of clusters that best describe the underlying
distribution (line 19):

q(B) =1—(B*cmp+ (1 — ) *sep) (12)

where B defines a preference on compactness or separation.
A B value below 0.5 assigns more weight on distinct clusters
(sep) than on (lower) intra-cluster variance (cmp) and vice
versa. The maximum quality value identifies the best number
of clusters.

5.5 Effect of weights on cluster formation

One phenomena when applying the importance vector W is
having the most significant capabilities rapidly split up into
separate clusters. Clusters of less important capabilities form
comparatively late.

Figure 2 compares normalized cluster entropy for
unweighted (a); weighted, equal importance (b); and
weighted, variable importance (c), with m = 2. Cluster
entropy measures for each element the membership degree
distribution across all available clusters. Low entropy values
(dark colors) indicate focus on one or a few clusters. Bright
colors highlight elements that (equally) belong to many clus-
ters. Each column comprises the entropy values for a single
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capability. The top row contains the entropy values for z = 1
cluster, respectively the bottom row for z = 10 clusters.

The regular FCM algorithm places the general capabil-
ities 9 + 10 immediately into their own cluster while the
remaining capabilities 1 ... 8 display cluster membership of
changing crispness. Rows 2, 3, and 4 in Fig. 2a result from
the membership values in Table 2. Note the fluctuation of
membership values between crisp and fuzzy as visualized by
alternating bright and dark colors within a column.

In the weighted, equal importance case (Fig. 2b), we
observe capabilities 9 + 10 still exhibiting crisp membership
across all clustering iterations. Hardly supported capabilities
7+ 8, however, cease to occupy a separate cluster and display
increasingly fuzzy membership values.

Finally, when correcting for the general capabilities in
the weighted, variable importance case (Fig. 2c), capabili-
ties 7. .. 10 belong equally to an increasing number of cluster
until after row seven, they all end up populating individual
clusters. At the same time, capabilities 1 ... 6 display com-
paratively crisp membership values also for low cluster count
values (1 < z < 4).

5.6 Effect of weights on compactness and separation

Figure 3 displays compactness and separation for m =
[1.5; 2; 3] with unweighted, weighted equal importance, and
weighted variable importance clustering side by side.

‘We notice an early, sharp decline in compactness opposed
to a consistent increase in separation. Compactness is mini-
mal when elements populate individual clusters. As observed
above, the most significant elements quickly scatter into
separate groups. If insignificant elements eventually occupy
their own cluster, they barely reduce compactness.

The same effect causes a late steep incline of cluster sepa-
ration when the weights clearly distinguish between distinct,
well-supported capabilities and ill-supported or general capa-
bilities. In the weighted, equal-importance case (Fig. 3b),
capabilities 9 4+ 10 dominate the importance subsequently
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Fig. 3 Compactness and separation for unweighted (a); weighted, equal importance (b); and weighted, variable importance (¢) clustering
leaving little difference between regular capabilities 1 — Table 4 Final ranking results for the scenario
6 and the unsupported capabilities 7 + 8. This difference rit riz
becomes more significant once we reduce the importance
of the general capabilities (Fig. 3c). Separation is maximal | S7 (57.24) Sy (46.38)
when each cluster contains a single element. As long as clus- 2 S (46.05) S1 (44.71)
ters of significant elements split into increasingly smaller 3 So (40.86) S3 (42.06)
clusters, the centroids remain close together, adding little to 4 S10 (31.66) Sy (5.74)
separation. The distance between centroids grows once less 5 S3 (5.22) S7 (3.08)
significant elements form individual clusters clearly sepa- 6 S5 (4.04) S10 (2.78)
rated from the existing cluster centers. 7 S> (2.90) So  (0.90)

Comparing unweighted and both types of weighted clus- 8 S (1.33) S5 (0.74)
tering, we notice weighted compactness reaching its mini- 9 Se (0.34) Se (0.44)
mum once all important elements (i.e., all capabilities with 1o Sy (0.02) Sy (0.01)

comparatively high weights) reside in separate clusters.
Unweighted compactness drops similarly fast at the begin-
ning, but then phases out, reaching its minimum at z = |C]|.
This effect is most visible in Fig. 3¢ where compactness
almost reaches zero already for z = 7.

5.7 Intra-cluster service ranking

The score for service j within cluster & is determined by the
original utility value, capability importance, and capability
cluster membership:

D Ui kT ok Lk

1
i Ti % Mik =

rjk=

Ultimately, arrive at the service rankings in Table 4 for
the scenario cluster result (left side in Table 2). The opti-
mum aggregation consists then of service S7 (providing capa-
bilities C4, Cs5, Cg) and service S, (providing capabilities
C1, Cy, C3). Note that the scores in both clusters remain
comparatively low as services lack fulfillment of capabilities
C7 and Cg. Although no service supports these capabilities,
they nevertheless remain equally important as C1 — C6 (as
specified by the user weights 7).

5.8 Post-clustering aggregation constraints

The optimal service aggregation consists of selecting the
top ranked service within each clusters. However, such an
aggregation might be subject to conditions. Aggregation con-
straints that limit the selection of specific services or service
provider come into play once service ranking is completed.
Any QoS constraints and certain aggregation constraints
were addressed already before clustering (see Sect. 4.2). In
the scope of this paper, we support service aggregations that
respect dependencies between service instances and between
services of particular providers:

Joint service dependency (JSD) i.e.,if service Sy isincluded
in the composition, then also service Sp must be included.
This constraint is only enforceable when both services
provide capabilities from different clusters.

Disjoint service dependency (DSD) i.e., if service S4 is
included in the composition, then service Sp must not
be included.

Joint provider dependency (JPD) i.e., two or more capabil-
ities must be provided by services of the same provider.

Disjoint provider dependency (DPD) i.e., two or more capa-
bilities must be provided by services of different providers.

@ Springer
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Algorithm 2 Greedy aggregation algorithm GAA
(Ranking Results RR, AggregationConstraints AC).

1: function AGGREGATE(RR, AC)
2: /* Initialize service aggregation and constraint violations */

3: A < selectTopRankedServices(RR)

4: V <« evaluateConstraints(A, AC)

5: while V # () do

6: sortViolations(V)

7: v < top(V)

8: /* Extract violating service combination */

9: Sy < higherScore(v)

10: S1, < lowerScore(v)

11: if type(v) = JPD Atype(v) = DPD then

12: /* Create copies of RR that include only desired providers
before calling Select Alternative */

13: end if

14: Sy1 < SelectAlternative(Sy, S, RR, AC)

15: utill < evaluateScore(Sy, Sy1)

16: Sy2 < SelectAlternative(Sr, Sy, RR, AC)

17: util2 < evaluateScore(Sr, Sy2)

18: if utill > util2 then

19: replace(A, Sz, Sn1)

20: else

21: replace(A, Sy, Sn2)

22: end if

23: V <« evaluateConstraints(A, AC)

24: end while

25: return A

26: end function

27: function SELECTALTERNATIVE(Sy, Sy, RR, AC)
28: cly < getCluster(Sy)

29: Sy < top(RR[cly])

30:  /*Select the best combination that is not violating any constraint
*/

31: while doesViolate(Sy, Sy, AC) do

32: Sy < next(RR[cly])

33: end while

34 return Sy

35: end function

This constraint is only enforceable when all the affected
capabilities populate distinct clusters.

We propose the following greedy algorithm to determine the
optimum aggregation. Algorithm 2 processes only simple
constraints involving exactly two capabilities, services, or
providers. Any more complex constraints involving three or
more entities can be broken down into a set of pairwise con-
straints.

The algorithm starts out with the top ranked service in
each cluster (line 3) and checking this initial aggregation for
constraint violations (line 4). As long as the set of violations
is not empty, we sort the violations by the highest ranked
service causing the violation (line 8). From the top violation,
we extract the higher (Sg) and lower (Sg) ranked service.
The basic principle for resolving the violation is keeping
one of the involved services fixed at a time and searching
for an alternative second service (lines 14—17). The function
SelectAlternative (lines 27-35) iterates descending
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through the ranking results to find the highest combination
(as defined by the sum of service scores) that does not violate
any constraint. Whichever combination yields better scores is
included in the aggregation (lines 18-22). This basic proce-
dure is immediately applicable for JSD and DSD constraints.
For JPD and DPD, we need to filter the service ranks accord-
ing to the underlying provider dependencies before searching
for alternatives (lines 11-13). Once a violation is resolved,
the aggregation is checked again (line 23), and the while loop
(lines 5-24) is repeated for any other remaining violation.

Note that this algorithm is unaware of conflicting aggrega-
tion constraints that potentially prevent the algorithm to find
a valid composition. Detecting and resolving such conflicts
is, however, outside the scope of this article. We refer instead
to existing literature (e.g., [10,19]).

6 Evaluation

We focus on analyzing the following aspects of the weighted
FCM clustering algorithm:

— The algorithm produces suitable clusters, i.e., well-sup-
ported capabilities dominate the cluster formation, while
less supported capabilities exhibit fuzzy membership
across (all) existing clusters.

— The generated clusters are indeed distinct and promote
specialized services to the top of each cluster. Without
clustering, these services rank rather low and thus would
not be considered for aggregation.

— Cluster results remain overall stable when changing
from equal to variable capability requirements weights.
Although the promoted capabilities tend to form new/
changed clusters, the remaining capability groups remain
stable.

— Service aggregations exhibit higher averaged service
scores than a single best service providing all capabil-
ities.

To the best of our knowledge, there exists no data set
describing the utility, respectively the score, of software-
based web service operations. Most collections consist of
services with a single capability or provide only Quality of
Service data; both types are unsuitable for evaluating our
clustering approach.

In the domain of Human-provided Services [27] (HpS),
however, experts join service compositions to provide their
skills. For HpS, capabilities describe the level of expertise
or level of participation. Also the notion of QoS applies
in the form of response time or throughput. We evade the
problem of having no data on software services by focus-
ing on data sets describing HpS. Hence, in the scope of this
evaluation, we describe the process of capability matching,
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filtering, clustering, and ranking for ultimately determining
the best aggregation of HpS for a particular set of skills (i.e.,
capabilities) based on a real-world data set from the Slashdot
community.

Slashdot! is a user-driven news portal focusing on various
aspects of information technology. News fall into multi-
ple categories (i.e., subdomains). Slashdot exhibits simi-
lar characteristics as large-scale complex service systems.
Some entities remain consistently active throughout all sub-
domains. Other entities join in an ad hoc manner, participate
for a limited period, and then vanish again. In Slashdot, users
are interested in providing their knowledge to improve the
quality and information content of a story (i.e., they fulfill a
task). They rarely engage in direct communication with other
users [8,28]. Hence, we claim that Slashdot users accurately
mimic the behavior of Human-provided Services.

Slashdot postings are subject to a moderation system.
Postings receive scores between —1 (low quality) and +5
(high quality). Predicates enable the classification of post-
ings according to insight ful, interesting, informative,
funny, etc. content. We define two posting metric to mea-
sure the skill level: total scores (i.e., Score) and total posting
counts (i.e., Count). Specifically, we derive an HpS’ total
posting count and the total score for every subdomain and
predicate combination. We prefer to keep these two capabili-
ties separated, as relying on a single average score favors HpS
with very few postings which were lucky to receive high rat-
ings. In contrast, HpS contributing regularly are unlikely to
receive continuously high scores. We consider total scores to
be equally important to total postings throughout our exper-
iments. Thus, requirement weights for pairs of these statis-
tics (respective to predicates) are always identical. For each
capability requirement, the HpS with the highest total score
(respectively total posting count) receives a utility value of
100, with the worst HpS having utility 0. The underlying data
set contains postings from February 1 to July 1, 2008.

6.1 Experiment setup

Given the set of predicates P, subdomains S D, and two post-
ing metrics, we arrive at the global set of available capa-
bility requirements set C of size |P| x |SD| % 2. In our
experiments, we focus on an HpS aggregation that pro-
vides skills for three subdomains—Ask, Entertainment,
and M obile—and focus in particular on the scores of funny,
interesting, and insight ful postings. Thus, there are 18
requirements (i.e., Ask — Fun—Count, Ask— Fun— Score,
Ask—Ins—Count,etc.) as input to our clustering algorithm.

First, we apply a QoS metric to identify only regular HpS
instances. In particular, we filter out all HpS that did not
achieve at least 5 posting in the desired subdomains of score 2

! http://www.slashdot.org .

or higher. We treat HpS below this QoS constraint as services
exhibiting different skills/capabilities we are not interested
in. For each HpS, we then derive the utility values for all
requirements. As a side effect, reducing the initial set of can-
didates (here 257 users) reduces the duration of the clustering

pI'OCCSS.2

6.2 Unweighted clustering results

First, we analyze unweighted clustering, where we ignore
requirement importance and work with the unweighted util-
ity matrix /. The cluster quality metric identifies 12 clusters
to optimally describe the implicit capability groups. Specif-
ically, the resulting cluster membership places Count and
Score requirements of every subdomain and predicate in
the same cluster except for Ask-Insightful, Entertainment-
Funny and Entertainment-Interesting which populate indi-
vidual clusters. Cluster membership u is larger than 0.9 for
all constraints.

We calculate the pairwise Jaccard similarity between any
two clusters for the top 50 HpS. Figure 4a visualizes the
resulting similarity matrix. Row 13 and column 13 contain
the unclustered ranking set. We notice that some clusters
yield extremely high similarity. Specifically clusters 3 and 5,
4 and 10, as well as cluster 6 and 11 have many HpS in com-
mon. Although all clusters yield significant differences to the
unclustered ranking, the clustering process has created three
pairs of clusters that should be merged. Incidentally, these
pairs comprise of the above-mentioned constraints, where
Score and Count of the same subdomain and predicate end up
in different clusters (Ask-Insightful, Entertainment-Funny
and Entertainment-Interesting). Merging these cluster pairs
would not significantly reduce the overall clustering quality.

6.3 Weighted, equal importance clustering results

Second, we cluster again with equal requirement importance
but weighted utility matrix . Capabilities that exhibit low
fulfillment support have less impact during clustering than
well-supported requirements. Table 5 provides the capability
membership in the resulting six clusters. Most capabili-
ties yield crisp cluster membership (1 > 0.9) with excep-
tion to Entertainment-Funny, Entertainment-Interesting, and
Mobile-Funny which do not strongly belong to any cluster.
The weight vector WV is a good indicator on which capability
requirements are likely to yield crisp clusters. A low weight
value by itself, however, is not sufficient. The constraint
Ask-Funny-Score (w = 0.804) exhibits lower weight than
Entertainment-Funny-Count (w = 0.836) but ends up clearly
assigned to cluster 1. Here, the close correlation between
count and score values is decisive.

2 The data set containing the 257 users is available as a csv file from:
http://www.infosys.tuwien.ac.at/staff/dorn/soca-dataset257.csv.
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Fig. 4 Cluster Jaccard similarity for Top 50 HpS for unweighted (a); weighted, equal importance (b); and weighted, variable importance (c)

capability constraints

Table 5 Cluster membership and weight vector W for 18 capability requirements from Count, Score, with subdomains Ask, Entertainment, and

Mobile and predicates Funny, Insightful, and Interesting

Constr. w K K> K3 K4 Ks K¢ w K K> K3 K4 Ks K K7

A-Fun-C  0.864 0.959 0.005 0.011 0.012 0.008 0.006 0.05 0.822 0253 0.070 0.169 0.186 0.117 0.092 0.114
A-Fun-S  0.805 0.968 0.004 0.009 0.009 0.006 0.005 0.05 0.766 0.260 0.067 0.166 0.183 0.115 0.091 0.118
A-Ins-C 1.394 0.019 0.010 0.023 0.025 0914 0.010 0.05 1.325 0.019 0.011 0.024 0.027 0901 0.01 0.009
A-Ins-S 1.735 0.005 0.003 0.008 0.007 0975 0.003 0.05 1.649 0.005 0.003 0.007 0.007 0973 0.003 0.002
A-Int-C 1.185 0.009 0.004 0.006 0.969 0.008 0.005 0.05 0.901 0.008 0.004 0.007 0961 0.009 0.006 0.004
A-Int-S 1.226 0.011 0.004 0.007 0964 0.009 0.005 0.05 0.932 0.008 0.004 0.007 0961 0.010 0.006 0.004
E-Fun-C  0.836 0.240 0.120 0.176 0.158 0.104 0.202 0.05 0.795 0.167 0.099 0.143 0.134 0.087 0.155 0.215
E-Fun-S  0.702 0.253 0.116 0.170 0.146 0.099 0.215 0.05 0.667 0.165 0.092 0.133 0.120 0.080 0.156 0.253
E-Ins-C 1.035 0.010 0.004 0.965 0.007 0.010 0.004 0.05 0984 0.008 0.004 0.967 0.006 0.008 0.004 0.004
E-Ins-S 1.008 0.007 0.003 0.976 0.004 0.007 0.003 0.05 0958 0.008 0.003 0.970 0.005 0.007 0.003 0.004
E-Int-C 0.513 0.338 0.090 0.179 0.156 0.105 0.132 0.08 0.732 0.799 0.023 0.045 0.041 0.027 0.032 0.032
E-Int-S 0.748 0.291 0.085 0.215 0.158 0.143 0.108 0.08 1.066 0.945 0.006 0.014 0.011 0.010 0.007 0.007
M-Fun-C  0.563 0.197 0.136 0.123 0.112 0.087 0.346 0.07 0.91 0.002 0.002 0.002 0.002 0.001 0.004 0.987
M-Fun-S 0.563 0.205 0.130 0.127 0.110 0.087 0.341 0.07 0911 0.002 0.002 0.001 0.001 0.001 0.003 0.990
M-Ins-C 1459 0.003 0.980 0.003 0.003 0.003 0.007 0.05 1387 0.003 0.976 0.003 0.003 0.003 0.008 0.004
M-Ins-S 1.503 0.003 0.983 0.003 0.003 0.003 0.007 0.05 1429 0.003 0.980 0.003 0.003 0.003 0.007 0.003
M-Int-C~ 0.814 0.006 0.011 0.005 0.006 0.004 0.969 0.05 0.774 0.008 0.014 0.006 0.007 0.005 0.943 0.018
M-Int-S 1.046 0.008 0.016 0.006 0.008 0.005 0.957 0.05 0994 0.003 0.007 0.003 0.003 0.002 0.976 0.006

Crisp cluster membership in bold font

We test whether clusters provide more specialized HpS
than the unclustered ranking result by pairwise comparing
the top-k HpS with Pearson’s correlation coefficient (p =
[—1, 1]) and Jaccard similarity (J = [0, 1]). Table 6 lists
the ranking differences of the top 10, 50, and 100 HpS. The
Jaccard similarity measures the set overlap of HpS regard-
less of their rank. Complete overlap results in J = 1, while
no overlap results in J = 0. Pearson’s coefficient requires
both sets to contain the same elements. We therefore extend
beyond the top [10;50;100] HpS and take the union of ele-
ments from both rankings (given in brackets in Table 6) and
then compute p. We have p = —1 for perfect negative cor-
relation, p = 0 for no correlation, and p = 1 for perfect
positive correlation.
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Average Jaccard similarity remains low for the top 10, 50,
and 100 HpS. On average, only 34% of the top-50 non-clus-
tered HpS are also listed in individual clusters. The average
Pearson’s coefficient stresses the ranking differences even
more. We observe no correlation in ranks for up to the top 50
HpS and only a small correlation for the top 100 HpS.

6.4 Weighted, variable importance clustering results

Finally, we apply variable requirements weights to analyze
their effect on the clustering result. In this third experiment,
we increase the importance of following four constraints:
Entertainment-Interesting-[Count|Score] (z = 0.08) and
Mobile-Funny-[Count|Score] (r = 0.07). The remaining
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Table 6 Ranking differences of top [10;50;100] HpS between each cluster and the unclustered ranking order measured with Pearson’s correlation

coefficient (p) and Jaccard similarity (J)

Clus. Top 10 Top 50 Top 100 Top 10 Top 50 Top 100
P J P J ] J 0 J P J P J

K —0.38 (16)  0.25 0.02(74) 0.35 0.11(144) 039 —0.10(15) 0.33 0.22(71) 0.41 0.26 (138) 045
K> —-0.60 (17) 0.18 —0.15(81) 0.24 —0.01 (147) 036 —-0.64(17) 0.18 —0.20(83) 0.21 —0.06 (147) 0.36
K3 0.31(15) 033 0.19(71)  0.41 0.22 (139) 044 0.21 (15) 0.33 0.10(72)  0.39 0.16 (142) 041
K4 -0.32(17) 0.18 0.01(75) 0.33 0.01(143) 040 —-037(17) 0.18 —0.04(79) 027 —0.05(150) 0.33
Ks 0.07(16) 0.25 0.03(78) 0.28 0.12(138) 045 0.00(16) 025 —0.06(78) 0.28 0.01 (146)  0.37
K¢ -0.37(17) 018 —0.06 (71) 0.41 0.19 (138) 045 —-0.62(18) 0.11 —0.16(73) 0.37 0.10 (142) 041
K7 -039(18) 0.11 —0.15(76) 0.32 0.12 (136) 0.47
Avg —0.21 0.23 0.01 0.34 0.11 041 —-0.27 021 —0.04 0.32 0.08 0.40

Columns 2-7: weighted, equal importance () clustering; Columns 8—13: weighted, variable importance (w + 7) clustering

requirements exhibit identical weights (r = 0.05) so the
sum of weights remains 1.

Clustering this configuration produces one more cluster
(Table 5 right side). Also cluster membership has changed
for some requirements. Both, Entertainment-Interesting and
Mobile-Funny populate now their own cluster exhibiting high
crispness. On the other hand, Ask-Funny looses its clear
membership in a single cluster, now yielding fuzzy mem-
bership across all clusters. Entertainment-Funny maintains
its fuzzyness but shares its largest membership with Mobile-
Funny instead of Entertainment-Interesting.

Again, we pairwise compare the non-clustered ranking
and each cluster for ranking differences. Compared to the
previous experiment, Jaccard similarity is similarly low
(average ~= [0.21; 0.40]) and Pearson’s coefficient sup-
ports the distinction in clusters as there is no correlation of
the top 10, 50, and 100 between non-clustered HpS and clus-
tered HpS. Cluster 7 emerges not only due to the changed
importance. We evaluate the pairwise cluster similarity to
ensure that the underlying data justifies this additional clus-
ter. Figure 4 provides the similarity matrix including the non-
clustered set in the last row and column. Cluster 7 remains
distinctively different from the other clusters for the top 50
HpS. Hence, the additional cluster allows for further special-
ization compared to the previous experiment.

6.5 Performance evaluation

We measure the run-time performance of the clustering algo-
rithm for the described experiment of 257 HpS and a larger
set of 1,733 HpS (using subdomains: Mobile, Tech, and Sci-
ence). The performance tests were carried out on a Win-
dows XP Intel core2duo at 2.5 GHz laptop with 3.5 GB RAM.
We implemented the weighted (as well as reference regular)
FCM algorithm in Java 1.6. As the focus of this research was
mostly on producing sensible clusters rather than on maximal
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Fig. 5 Cluster algorithm performance in milliseconds for 18 capabil-
ities (i.e., ¢ = 1 to 18): dashed lines for the regular FCM , full lines for
the weighted FCM, with 257 HpS (circles and squares) and 1,733 HpS
(triangles)

performance, we did not rely on dedicated matrix libraries
nor other speed-up mechanisms such as multicore support.
Thus, we expect that the following performance results can
easily be reduced by a factor of 10.

Figure 5 displays the average runtime in milliseconds for
completing one instance of the weighted and regular FCM
algorithm for ¢ 1 — 18 clusters (for 18 capabilities).
Our weighted FCM algorithm, for example, takes on aver-
age 340ms to determine the best 7 clusters for 1,733 HpS
and 425 ms for the best 8 clusters. When checking the com-
plete spectrum for the best capability clusters (here 1 to 18),
the weighted FCM takes 1.5s to complete with 257 HpS,
respectively, the regular FCM algorithm 3s. For the larger
data set of 1,733 HpS, the runtime increases to 10.6 and
14.2 s, respectively. Our weighted FCM is consistently faster
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Table 7 Utility comparison of

Non K K K K. K K K Impr (%
top 10 HpS of each cluster and : ’ ’ ¢ ’ o ! pr (%)
the unclustered ranking order we 0.196 0.150 0.167 0.159 0.143 0.185

60.7 76.2 73.3 76.3 78.2 84.1 61.9 23

39.3 48.8 71.7 71.9 70.1 79.0 49.2 62

357 475 67.4 60.3 47.1 61.0 422 50

10 30.5 32.8 50.3 39.3 38.8 50.6 31.1 30

wce 0.177 0.119 0.135 0.115 0.119 0.126 0.209

58.2 84.4 82.6 84.5 85.0 90.9 77.5 85.8 45
Cluster weight wc provides the 43.6 83.7 78.1 76.7 71.2 81.5 479 49.8 58
importance of all capabilities in 343 557 75.7 64.4 48.0 65.7 44.7 48.7 66
that cluster according to

10 29.5 39.0 55.7 41.5 37.8 53.0 36.6 333 40

capability membership

than the regular FCM. The assignment of low impact entities
to specific clusters has little impact on the convergence condi-
tion and thus enables our weighted FCM to settle earlier. The
overhead of weighting the membership matrix is thus more
than compensated through earlier termination. The runtime
of weighted and regular FCM is linear with the number of
clusters to check where the vector dimension (i.e, number
of HpS) determines the steepness. Besides the integration of
high-performance matrix libraries, we propose to limit the
number of clusters to check to sensible values (and not the
complete spectrum). In our example, restricting the search
to half the capabilities (i.e., cmax = 9) reduces the overall
runtime of our weighted FCM to 0.3 s for 257 HpS, and 2.6
seconds for 1,733 HpS, respectively.

6.6 Discussion of clustering results

The three experiments have shown how requirement weights
influence the clustering result for the same underlying utility
data. Weighted, equal importance clustering highlights the
requirements that are fulfilled by most HpS. Subsequently
weighted, variable importance clustering successfully shifts
the focus onto the capability requirements considered more
important. The general cluster structure, however, remains
stable. Observe that only one one ‘old’ cluster experienced
significant membership changes, and one new cluster was
created. New, or changed, clusters emerge only when the pre-
ferred requirements indeed meet a distinct difference in the
underlying capability data set when compared to the remain-
ing requirements.

Regular clustering—as tested in the unweighted
experiment—produced too many clusters. In contrast, both
weighted experiments exhibited very distinct clusters. The
inter-cluster Jaccard similarity remains in the range of
[0 < 0.25], [0.02 <> 0.28], and [0.13 < 0.42] for the
top-10, top-50, and top-100 HpS (out of 255), respectively.
The corresponding similarity between the unranked result
and each cluster resulted in slightly higher values, namely

@ Springer

[0.11 <> 0.33], [0.21 <> 0.41], and [0.33 <> 0.47] for the
top-10, top-50, and top-100 HpS.

Our new weighted FCM clustering algorithm correctly
identifies collocated capabilities. For all of our experiments
with the WFMC algorithm, the posting metrics of Score and
Count always ended up as pairs in the same cluster.

Clustering also promotes HpS to the top elements in a
cluster which are badly ranked in the non-clustered set.
The Pearson’s correlation coefficient emphasized the element
positioning difference between non-clustered and clustered
ranking order for both weighted experiments. We observed
no correlation for the top-10 not top-50 HpS and only a slight
positive correlation for the top-100 HpS.

Table 7 compares the utility values of the single best
unclustered service to an aggregation of services from the
various clusters. The average utility benefit for selecting the
top-10 HpS set from every cluster amounts to a 38% (equal
importance) to 51% (variable importance) utility increase
compared to the unclustered ranking result.

Compared to existing techniques that map each required
capability to a dedicated service, our approach greatly
reduces the number of required services. In the weighted
examples only 6, respectively 7, services are required com-
pared with the 18 capability requirements.

7 Related work

Numerous papers improve the FCM algorithm to achieve
robustness (e.g., [4, 13,33]). These techniques apply data dis-
tribution intrinsic metrics to identify and mitigate the effect of
outliers and noise. We focus on achieving optimum clusters
where significant capability constraints and capability sup-
port by actual service instances should influence the result
more than insignificant constraints or services.

In the SOA domain, clustering techniques have been
applied to compute the similarity of web services based on
key words extracted from the service interface descriptions
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(WSDL). Dong et al. [6] propose a Web service search engine
that applies keywords as well as input and output matching
to determine matching services. They apply term cluster-
ing to determine sets of parameter names to give web ser-
vice operations a semantic meaning. Nayak and Lee [18]
transform WSDL descriptions into the OWL-S format en
enhance the result with information found in human read-
able service descriptions. Hierarchical agglomerative clus-
tering produces then groups of semantically similar services.
Platzer et al. [21] enhance a distributed vector space search
engine to achieve rapid, scalable retrieval of services. Ser-
vices that match the users query are then clustered according
to term similarity. In the domain of recommendation support
for mashup development, Blake and Nowlan [3] investigate
service similarity measures based on syntactical message
analysis to recommend suitable services. Their algorithm is,
however, not laid out for distinguishing between services that
apply similar data structures but provide completely different
capabilities. Ranabahu et al. [22] take this idea a step further
and propose a faceted classification-based approach. These
approaches aim to find similar services given a particular
query. In contrast, we extract a set of complementary service
clusters, from which an aggregation of individual services
provides the required capabilities. Also, these approaches
observe only keywords, but not consider a service’s fitness
to provide a certain capability.

More advanced techniques exist in the broader domain of
service composition. Work focusing on QoS-centric service
selection, recommendation, and composition is orthogonal
to our approach. QoS metrics describe parameters such as
throughput and latency [24], or trust and reputation [15,31]
that apply equally to any service. In contrast, our aggrega-
tion mechanism builds on capabilities which reside between
QoS and service interface descriptions. As we have dem-
onstrated, they extend our core approach to improve the
initial selection of service candidates, and the final process
of selecting the actual services that create a composition.
The notion of capabilities is not new. It shares some sim-
ilarities with the Composite Capability/Preference Profiles
(CC/PP) specification [11]. The purpose of CC/PP fore-
sees web clients to transmit their capabilities (e.g., screen
size) in order to enable service providers (e.g., web serv-
ers) to adapt the delivered content accordingly. In contrast,
services describe their capabilities to enable service clients
to select the most suitable service. An example alternative
to describing service capabilities is the semantic modeling
approach through WSMO [23]. More recent efforts in the
semantic web services domain provide more light-weight
description languages such as WSMO-lite [30] (targeted to
SOAP-based service) and hREST [12] (addressing REST-
based services and Web APIs). Pedrinaci and Domingue
describe how these descriptions relate to each other and can
be unified in the Minimal Service Model [20]. However, inde-

pendent of the description language used, a service provider
would have to create dedicated capability profiles. While our
approach is intentionally more pragmatic and subsequently
more straight-forward to realize in a real-world environment,
we are aware that there is added benefit for representing our
capability model in RDF for integration with a semantic ser-
vice description language. The wl:NonFunctionalParameter
from the WSMO-lite model can potentially serve as an entry
point. Automatic web service mediation techniques based
on mediation spaces [5] could then assist in matching differ-
ences in the capability descriptions. Such efforts to overcome
heterogeneous service provides and consumers are, however,
complementary to the mechanism presented in this paper and
thus remain future work.

Other complementary techniques to service composition
are goal-driven approaches such as [9,26,32]. These tech-
niques, however, focus on optimal replacement of individual
services to maintain desirable, global composition quality
metrics. Integration of those techniques after the capabil-
ity clustering procedure is expected to be very effective for
maintaining a service composition.

8 Conclusion

We have presented a weighted fuzzy clustering approach to
exploit implicit service groups. Our technique produces ser-
vice aggregations that significantly reduce the number of
actual involved services (compared to the number of capabil-
ity requirements) while taking advantage of service special-
ization. As a side effect, discovered service clusters enable
the rapid replacement of individual services without hav-
ing to analyze the overall composition. Analysis of capabil-
ity support among the services, and capability requirement
weights allow for fine-grained cluster formation control. Inte-
gration of required QoS levels allows for further refinement
of candidate services. Post-clustering aggregation constraints
control the ultimate service aggregation to observe service
and provider dependencies. We successfully demonstrated
the effectiveness of our approach based on a real-world data
set.

Currently all service capabilities are assumed to be at
the same level of granularity. Fine-grained analysis of
capabilities, their support by services, and the subsequent
impact requires the consideration of capability hierarchies.
The capability model already provides a hierarchical struc-
ture that enables reasoning on the relationship between
capabilities. We expect this analysis to improve the detec-
tion of general and specific capabilities and thus adjust the
corresponding weights more accurately. In the future, we also
plan to include feedback from the actual composition orches-
tration and deployment process to learn which services turn
out to be difficult or even impossible to integrate.
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