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B ig Data has become an immanently impor-
tant topic in many application areas such as 
smart cities, smart factories, the smart grid, 

or smart mobility. Gartner estimates that there 
are already 1.1 billion connected physical devices 
alone for smart cities in 2015, and expects this 
number to rise to almost 10 billion devices in 
2020 (www.gartner.com/newsroom/id/3008917). 
These connected devices form the so-called Inter-
net of Things (IoT).

Although the IoT enables new opportunities 
in different industries and application areas, its 
potential benefits are only realizable once impor-
tant research questions in the field of Big Data 
have been answered. These questions range from 
data access, storage, discovery, analysis, or pro-
cessing to reasoning on Big Data. Especially smart 
systems — such as smart cities and the IoT — 
require real-time processing capabilities (includ-
ing stream processing) to provide value-added 
services.1 Although stream processing has been an 
active research area for several years, the topic is 
gaining momentum as the emerging IoT increases 
the amount of continuous streaming data (such as 
sensor data) to previously unknown levels.

IoT-based value-added services are triggered 
by sensor events or user requests, which lead to 
variable system loads being handled by stream 
processing systems. To cope with these chal-
lenges, a stream processing system must be elas-
tic in terms of its processing capabilities.

Regarding elasticity, we consider three inter-
dependent dimensions. The first dimension is 

 quality elasticity. This deals with aspects such as 
the response time, the quality of a response for 
queries against streaming data, or the amount of 
successfully processed streaming data. If too much 
data must be handled by a stream processing sys-
tem, this can lead to a reduction in service qual-
ity2 or to all non-processable data being dropped.

The second dimension is resource elasticity. 
It indicates that the amount of computational 
resources required to process streaming data must 
be adapted at runtime to cope with the current 
system load.3 Until now, most stream processing 
systems ran on fixed computational resources in 
one location, such as a data center, and could 
distribute the workload only among these fixed 
resources. In fact, systems with fixed resources 
could adapt to volatile data rates only by reduc-
ing the quality of service (QoS).

The third dimension is data elasticity. This 
means that data aren’t necessarily stored or pro-
cessed locally, but rather in various remote data 
repositories in the Cloud. NoSQL approaches, 
such as MongoDB (www.mongodb.org), already 
envision the distributed storage of huge amounts 
of data, but until now, stream processing hasn’t 
applied these NoSQL concepts.

To take stream processing to the next level, 
resource elasticity is a prerequisite to maintain 
service-level agreements (SLAs), regardless of 
the system load. It’s also an efficient approach 
to elastically deal with huge amounts of stored 
data located in different geographical locations. 
In order to back up our claims, we provide a 
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 scenario from the mobility domain 
(see the related sidebar), propose elas-
tic stream processing for distributed 
environments, and identify several 
open research challenges. Let’s begin 
by taking a closer look at the pro-
posed model.

Conceptual Overview
To cope with the changing resource 
requirements and different geograph-
ical locations of sensors as well as the 
stream processing nodes, we propose 
an elastic stream processing model 
for distributed environments. Our 
model is composed of multiple self-
contained nodes (see Figure 1).

As we discuss in the sidebar 
“Related Work in Stream Processing,” 
in the past stream processing sys-
tems generally pursued a monolithic 
approach where a centralized com-
ponent manages the communication 
and execution of stream processing 
operations. These operations range 
from filtering data, to querying sensor 
data for a specific time span, to cus-
tomizing business logic (for example, 
transforming sensor data into other 
data formats).

Monolithic systems are deployed 
in one geographic location (on a 
cluster, for example), which eases 
the communication among the dif-
ferent processing nodes as well as 
the resource management for the 
processing operations. In the past, 
static stream processing scenarios 
with short and reliable communica-
tion paths successfully applied this 
centralized approach. Nevertheless, 
this approach is unsuitable for the 
IoT, because IoT scenarios are likely 
to evolve over time, in the sense that 
a smart city is constantly evolving. 
This leads to continuous changes of 
the IoT landscape, and therefore also 
to the stream processing infrastruc-
ture. To counter the IoT domain’s 
challenges, we must design an elastic 
stream processing model consisting 
of self-contained nodes that we can 
orchestrate during runtime.

The left side of Figure 1 shows an 
exemplary choreography based on a 
motivational scenario, and the right side 
presents one of the processing nodes in 
detail. Such a node is deployed on fixed 
computational resources (for instance, in 
a cloud-based infrastructure), where 
each node can autonomously allocate 
computational resources according to 
the data rates. To realize elastic scal-
ing, the node can allocate additional 
resources — obtaining, for example, vir-
tual machines (VMs) as child nodes —  
and then it can deploy processing oper-
ations on these VMs.

Besides the elastic data process-
ing capabilities, each single node 
also maintains data storage (such as 
a database) to realize stateful opera-
tions (such as data aggregations) as 
well as a messaging infrastructure to 
receive data from sensors or preced-
ing nodes. For the outgoing commu-
nication, the node further maintains 
a message buffer to ensure that no 
information is lost, if communication 
to succeeding nodes isn’t possible 
due to temporary technical failures or 
environmental aspects, such as com-
munication dead spots. The node’s 

last component is the monitor, which 
records changing data rates over time 
to allow predictive reasoning for the 
identification of future computational 
resource requirements.

Open Research Challenges
Even though elastic stream process-
ing builds on established principles 
and concepts, four important research 
challenges (detailed in the following) 
must be addressed to achieve wide-
spread adoption. These topics include 
methodologies and algorithms as well 
as the software tools necessary to 
realize elastic stream processing for 
distributed environments.

Cost-Efficient Resource 
Provisioning
Although there has been much research 
toward the optimal  deployment of 
stream processing operations on 
fixed resources, there are hardly any 
advances in leveraging the resource 
elasticity provided by cloud-based 
resources. Because the system load 
varies over time due to varying data 
rates, a stream processing system may 
run into over- or underprovisioning 

Figure 1. Elastic stream processing model. On the left we show the 
choreography based on a motivational scenario, and on the right we show a 
processing node in detail.
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scenarios, if the system only has a 
fixed amount of resources at its dis-
posal. For instance, in off-peak times, 
a stream processing system could run 
into an overprovisioning scenario, 
because not all available computa-
tional resources are used. However, a 
stream processing system may also run 
into an underprovisioning scenario at 
peak times, when the stream-process-
ing system can’t process all incoming 
requests or streaming data, and there-
fore violates SLAs. The cloud comput-

ing paradigm4 provides a promising 
solution by replacing fixed resources 
with elastic ones. A resource-elastic 
stream processing system leases and 
releases the required computational 
resources on demand to minimize the 
operational costs while guaranteeing 
a high QoS.

Although the introduction of elas-
tic resources provides a solution to 
resource-related challenges, the ad 
hoc nature of such resource-allocation 
approaches introduces a dimension 

of complexity for deploying stream 
processing operations. Also, the leas-
ing and releasing strategy must be 
optimized for real-world require-
ments, such as the billing time unit 
(the minimal leasing duration for 
cloud resources) and historical data 
rates. Such data rates allow the stream 
processing system to predict future 
resource requirements and optimize 
allocation of elastic resources just 
in time to avoid underprovisioning 
scenarios.

Mobility Domain Scenario

Our motivation for elastic stream processing originates 
from the omnipresent trend towards smart cities. Smart 

cities rely on numerous sensors that cover different aspects 
of the city’s management and interaction with citizens, such as 
smart energy, smart homes, and smart transport networks.1 
These smart systems form a distributed environment. To dem-
onstrate the challenges for stream processing, we consider an 
intelligent transportation system (ITS).2 The ITS is responsible 
for monitoring and directing public transport as well as manag-
ing related infrastructure, such as information displays. The ITS 
depends on different data sources — for example, GPS sensors 
mounted on public transport vehicles, traffic information (such 
as induction loops measuring the number of cars driving by), or 
weather information.

Figure A illustrates the orchestration of the ITS’s different 
data sources and stream processing operations. Four value-
adding services are depicted that are relevant for system users. 
The first two services represent simple services that notify 
the driver of a public transport vehicle about the latest traffic 
information. Each service consists of two stateless processing 
operations (see Figure A). The first operation filters traffic sen-
sor data and the second operation propagates the information 
to the drivers.

More complex services, such as the update service for dis-
plays, obtain information from all four data sources, an addi-
tional operation (which calculates public transport vehicles’ 
movement speed based on GPS locations over time), as well as 
routing information. The routing information is obtained from 
a cloud-based data repository. Movement speed and sensor 
information are then forwarded to the prediction operation, 
which reasons on the data. This prediction operation is stateful, 
because it stores historic predictions over a longer time span to 
provide better prediction results.

besides the operational components, the ITS also pro-
vides real-time routing information for public transport. Pub-
lic transport users initiate routing queries and three stateless 

operations process each query to obtain the desired result for 
the user.

The individual sensors’ data rates (the amount of informa-
tion provided by the sensor at a specific point in time) changes 
throughout the course of the day, mainly because of the com-
muters’ different driving directions. These volatile data rates 
challenge a stream processing system to cope with varying 
resource requirements to process streaming data.

The stream processing system further obtains the information 
from different sensors and data repositories (such as roadmaps), 
which are located in different geographical locations. because 
the data originate from different infrastructures, the data might 
be inconsistent across various sources:  A GPS device reports a  
bus driving on a specific street while an induction loop on that 
same street detects a traffic jam.

When processing streaming data from various sources, it’s 
challenging to select the most accurate and reliable data source. 
In terms of cost and performance optimization, it’s desirable to 
process the data geographically from the closest location. This 
reduces the effort required, such as data transfer costs that are 
required to transfer streaming data.

This scenario provides a brief glance at services and chal-
lenges from the mobility domain. Similar use cases also arise 
in other domains, such as building automation for smart cities, 
which involves monitoring countless sensors and processing 
their data to ensure a safe and pleasant environment. We fur-
ther envision similar challenges in other areas such as e-health-
care, where systems must process large amounts of data in real 
time to gain insight into a patient’s time-dependent information, 
such as heart rate or temperature.
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SLAs’ Data Stream Processing
Because quality elasticity represents 
one of the elasticity dimensions for 
stream processing, we must design 
appropriate SLAs to assess the QoS for 
elastic stream processing. Until now, 
stream processing only considered the 
latency of processed streaming data 
or the ratio of dropped streaming data 
in comparison to all streaming data.

Besides such basic SLAs, there 
are other areas that SLAs can cover: 
First, SLAs can be applied to queries 

on streaming data, making it pos-
sible to relax the result’s quality in a 
controlled manner by shortening the 
observation time span or omitting rel-
evant query data.

Second, SLAs can be assigned to 
individual streaming data, such as 
 privacy restrictions or stating a valid-
ity period. In some domains, the infor-
mation provided by sensors is transient 
and the information may be outdated 
after a few seconds. Therefore, it’s pos-
sible to implement a context-sensitive 

load-shedding mechanism that discards 
all outdated data, instead of randomly 
discarding data to reduce the load.

Efficiently Placing and Migrating 
Stream Processing Nodes
Optimal placement of stream process-
ing nodes is crucial for performance- 
and cost-efficient stream processing 
in the IoT. Different deployments are 
possible for stream processing nodes —  
for instance, on an embedded infra-
structure with limited processing and 

Figure A. Motivational scenario. Orchestrating the different data sources and stream processing operations provided by an intelligent 
transportation system (ITS).
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storage capabilities next to the sensor; 
on clusters with fixed computational 
resources; or on a cloud infrastruc-
ture that provides unlimited compu-
tational resources and unlimited data 
storage.

Besides the volatile resource require -
ments, it’s also important to consider 
the communication channels between 
the different nodes’ locations, as well 
as relevant SLAs (for example, the 
maximum processing time for stream-
ing data or the ratio of discarded 
streaming data). These different aspects 
form a nondeterministic polynomial 
time (NP)-complete problem for an 
optimal deployment solution in terms 
of costs, performance, and SLAs. Along 
with the optimal initial deployment, it’s 
important to investigate robust migra-
tion strategies for processing nodes. 
Because the IoT landscape is constantly 
evolving, we might need to migrate 

processing nodes from one geographi-
cal location to another during runtime. 
This requires a sophisticated migration 
strategy to ensure a consistent state for 
stateful stream processing nodes while 
maintaining continuous uptime and 
responsiveness.

Data Elasticity
Optimal and efficient access to the 
data from remote data repositories 
is required, but this efficiency gain 
must not reduce the streaming data’s 
quality and availability. Because the 
data originates from geographically 
distributed as well as inconsistent 
or even conflicting data sources, 
we must develop methodologies for 
stream processing to consolidate the 
streaming data at runtime. These 
methodologies should be robust 
when data are noisy, uncertain, 
delayed, or (at worst) unavailable. 

Current advances in Semantic Web 
technologies represent one possible 
solution approach that could help 
define requirements on data and its 
representation. To achieve this, the 
level of description must be mini-
mal to avoid overloading the stream 
processing system, which aims to 
manipulate light objects with only 
minimal operational overhead.

B ased on current state-of-the-
art stream processing and the 

future challenges we anticipate with 
the IoT, we identified several open 
areas for research in elastic stream 
processing for distributed envi-
ronments. Although there’s room 
for improvement, elastic stream 
processing can handle the chal-
lenges issued by the IoT to realize 
smart systems. 

Related Work in Stream Processing

because data rates change over time—in some cases even 
drastically—processing this data in real time isn’t a straight-

forward task. To process streaming data, different stream pro-
cessing systems such as Aurora,1 borealis,2 MillWheel,3 or IbM 
System S4 provide solutions.

Early stream processing systems like borealis2 originate 
from the database-management domain. From a high-level per-
spective, such systems extend the relational database model to 
support the continuous aspects of streaming data. The borea-
lis architecture considers different processing nodes—such as 
software components that process streaming information—to 
enable parallel data processing for large amounts of data. How-
ever, the architecture only considers quality elasticity in terms 
of load shedding to deal with load peaks.

More advanced stream processing systems such as IbM Sys-
tem S4 reliably and efficiently process different kinds of stream-
ing data (such as financial or telecommunication data). Although 
the processing nodes support a distributed deployment (on a 
cluster, for example), IbM System S still maintains several central-
ized components, which manage monitoring, communication, and 
failure recovery. besides research prototypes like borealis, and 
proprietary stream processing systems such as IbM System S, 
there are also community-driven frameworks like Apache Storm 
(https://storm.apache.org) or Apache S4 (http://incubator.apache.
org/s4/). both frameworks can process huge amounts of data for 
Web-based services, to process social media data, for example. 

The architecture of these frameworks is based on a central 
component that manages data flow. Even though these stream 
processing frameworks feature a cluster-based deployment, they 
don’t support resource elasticity for single processing nodes or 
an orchestration of processing nodes during runtime.

More recently, benjamin Satzger and his colleagues5 pro-
posed an elastic stream computing platform for the Cloud, 
which provides an easy-to-use programming model to leverage 
the resource elasticity of the Cloud to deal with volatile data 
rates. However, their prototype doesn’t address the challenges 
of accessing relevant data from different cloud infrastructures. 
Instead, they focus on elastically allocating computational 
resources in the Cloud for one static data stream processing 
application.
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