
Internet of Things, People, and Processes
Editor: Schahram Dustdar • dustdar@dsg.tuwien.ac.at

54 	 Published by the IEEE Computer Society	 1089-7801/15/$31.00 © 2015 IEEE� IEEE INTERNET COMPUTING

B ig Data has become an immanently impor-
tant topic in many application areas such as
smart cities, smart factories, the smart grid,

or smart mobility. Gartner estimates that there
are already 1.1 billion connected physical devices
alone for smart cities in 2015, and expects this
number to rise to almost 10 billion devices in
2020 (www.gartner.com/newsroom/id/3008917).
These connected devices form the so-called Inter-
net of Things (IoT).

Although the IoT enables new opportunities
in different industries and application areas, its
potential benefits are only realizable once impor-
tant research questions in the field of Big Data
have been answered. These questions range from
data access, storage, discovery, analysis, or pro-
cessing to reasoning on Big Data. Especially smart
systems — such as smart cities and the IoT —
require real-time processing capabilities (includ-
ing stream processing) to provide value-added
services.1 Although stream processing has been an
active research area for several years, the topic is
gaining momentum as the emerging IoT increases
the amount of continuous streaming data (such as
sensor data) to previously unknown levels.

IoT-based value-added services are triggered
by sensor events or user requests, which lead to
variable system loads being handled by stream
processing systems. To cope with these chal-
lenges, a stream processing system must be elas-
tic in terms of its processing capabilities.

Regarding elasticity, we consider three inter-
dependent dimensions. The first dimension is

quality elasticity. This deals with aspects such as
the response time, the quality of a response for
queries against streaming data, or the amount of
successfully processed streaming data. If too much
data must be handled by a stream processing sys-
tem, this can lead to a reduction in service qual-
ity2 or to all non-processable data being dropped.

The second dimension is resource elasticity.
It indicates that the amount of computational
resources required to process streaming data must
be adapted at runtime to cope with the current
system load.3 Until now, most stream processing
systems ran on fixed computational resources in
one location, such as a data center, and could
distribute the workload only among these fixed
resources. In fact, systems with fixed resources
could adapt to volatile data rates only by reduc-
ing the quality of service (QoS).

The third dimension is data elasticity. This
means that data aren’t necessarily stored or pro-
cessed locally, but rather in various remote data
repositories in the Cloud. NoSQL approaches,
such as MongoDB (www.mongodb.org), already
envision the distributed storage of huge amounts
of data, but until now, stream processing hasn’t
applied these NoSQL concepts.

To take stream processing to the next level,
resource elasticity is a prerequisite to maintain
service-level agreements (SLAs), regardless of
the system load. It’s also an efficient approach
to elastically deal with huge amounts of stored
data located in different geographical locations.
In order to back up our claims, we provide a

Elastic Stream Processing for
Distributed Environments
Christoph Hochreiner, Stefan Schulte, and Schahram Dustdar • TU
Wien,  Austria

Freddy Lecue • IBM Research–Ireland

The Internet of Things introduces the need for more flexibility in stream pro-

cessing. To address these challenges, the authors propose elastic stream pro-

cessing for distributed environments. This novel concept allows for scalable and

more flexible solutions compared to traditional approaches.

Elastic Stream Processing for Distributed Environments

november/december 2015� 55

scenario from the mobility domain
(see the related sidebar), propose elas-
tic stream processing for distributed
environments, and identify several
open research challenges. Let’s begin
by taking a closer look at the pro-
posed model.

Conceptual Overview
To cope with the changing resource
requirements and different geograph-
ical locations of sensors as well as the
stream processing nodes, we propose
an elastic stream processing model
for distributed environments. Our
model is composed of multiple self-
contained nodes (see Figure 1).

As we discuss in the sidebar
“Related Work in Stream Processing,”
in the past stream processing sys-
tems generally pursued a monolithic
approach where a centralized com-
ponent manages the communication
and execution of stream processing
operations. These operations range
from filtering data, to querying sensor
data for a specific time span, to cus-
tomizing business logic (for example,
transforming sensor data into other
data formats).

Monolithic systems are deployed
in one geographic location (on a
cluster, for example), which eases
the communication among the dif-
ferent processing nodes as well as
the resource management for the
processing operations. In the past,
static stream processing scenarios
with short and reliable communica-
tion paths successfully applied this
centralized approach. Nevertheless,
this approach is unsuitable for the
IoT, because IoT scenarios are likely
to evolve over time, in the sense that
a smart city is constantly evolving.
This leads to continuous changes of
the IoT landscape, and therefore also
to the stream processing infrastruc-
ture. To counter the IoT domain’s
challenges, we must design an elastic
stream processing model consisting
of self-contained nodes that we can
orchestrate during runtime.

The left side of Figure 1 shows an
exemplary choreography based on a
motivational scenario, and the right side
presents one of the processing nodes in
detail. Such a node is deployed on fixed
computational resources (for instance, in
a cloud-based infrastructure), where
each node can autonomously allocate
computational resources according to
the data rates. To realize elastic scal-
ing, the node can allocate additional
resources — obtaining, for example, vir-
tual machines (VMs) as child nodes —
and then it can deploy processing oper-
ations on these VMs.

Besides the elastic data process-
ing capabilities, each single node
also maintains data storage (such as
a database) to realize stateful opera-
tions (such as data aggregations) as
well as a messaging infrastructure to
receive data from sensors or preced-
ing nodes. For the outgoing commu-
nication, the node further maintains
a message buffer to ensure that no
information is lost, if communication
to succeeding nodes isn’t possible
due to temporary technical failures or
environmental aspects, such as com-
munication dead spots. The node’s

last component is the monitor, which
records changing data rates over time
to allow predictive reasoning for the
identification of future computational
resource requirements.

Open Research Challenges
Even though elastic stream process-
ing builds on established principles
and concepts, four important research
challenges (detailed in the following)
must be addressed to achieve wide-
spread adoption. These topics include
methodologies and algorithms as well
as the software tools necessary to
realize elastic stream processing for
distributed environments.

Cost-Efficient Resource
Provisioning
Although there has been much research
toward the optimal deployment of
stream processing operations on
fixed resources, there are hardly any
advances in leveraging the resource
elasticity provided by cloud-based
resources. Because the system load
varies over time due to varying data
rates, a stream processing system may
run into over- or underprovisioning

Figure 1. Elastic stream processing model. On the left we show the
choreography based on a motivational scenario, and on the right we show a
processing node in detail.

Job

Childnode n

Job

Childnode 2

NN

N

S

N

S

N N

N N N

N

N
N

N

N

Monitor

Processing
logic

Data
storage

Load m
anagem

ent
Messaging infrastructure

Messaging infrastructure... Sensor

... Stream processing node

... Public transport user

... Data repository

... Flow of streaming data

Resource provisioning

Master node

Child node 1

Message
buffer

SS

S

N

Processing
logic

Internet of Things, People, and Processes

56	 www.computer.org/internet/� IEEE INTERNET COMPUTING

scenarios, if the system only has a
fixed amount of resources at its dis-
posal. For instance, in off-peak times,
a stream processing system could run
into an overprovisioning scenario,
because not all available computa-
tional resources are used. However, a
stream processing system may also run
into an underprovisioning scenario at
peak times, when the stream-process-
ing system can’t process all incoming
requests or streaming data, and there-
fore violates SLAs. The cloud comput-

ing paradigm4 provides a promising
solution by replacing fixed resources
with elastic ones. A resource-elastic
stream processing system leases and
releases the required computational
resources on demand to minimize the
operational costs while guaranteeing
a high QoS.

Although the introduction of elas-
tic resources provides a solution to
resource-related challenges, the ad
hoc nature of such resource-allocation
approaches introduces a dimension

of complexity for deploying stream
processing operations. Also, the leas-
ing and releasing strategy must be
optimized for real-world require-
ments, such as the billing time unit
(the minimal leasing duration for
cloud resources) and historical data
rates. Such data rates allow the stream
processing system to predict future
resource requirements and optimize
allocation of elastic resources just
in time to avoid underprovisioning
scenarios.

Mobility Domain Scenario

Our motivation for elastic stream processing originates
from the omnipresent trend towards smart cities. Smart

cities rely on numerous sensors that cover different aspects
of the city’s management and interaction with citizens, such as
smart energy, smart homes, and smart transport networks.1
These smart systems form a distributed environment. To dem-
onstrate the challenges for stream processing, we consider an
intelligent transportation system (ITS).2 The ITS is responsible
for monitoring and directing public transport as well as manag-
ing related infrastructure, such as information displays. The ITS
depends on different data sources — for example, GPS sensors
mounted on public transport vehicles, traffic information (such
as induction loops measuring the number of cars driving by), or
weather information.

Figure A illustrates the orchestration of the ITS’s different
data sources and stream processing operations. Four value-
adding services are depicted that are relevant for system users.
The first two services represent simple services that notify
the driver of a public transport vehicle about the latest traffic
information. Each service consists of two stateless processing
operations (see Figure A). The first operation filters traffic sen-
sor data and the second operation propagates the information
to the drivers.

More complex services, such as the update service for dis-
plays, obtain information from all four data sources, an addi-
tional operation (which calculates public transport vehicles’
movement speed based on GPS locations over time), as well as
routing information. The routing information is obtained from
a cloud-based data repository. Movement speed and sensor
information are then forwarded to the prediction operation,
which reasons on the data. This prediction operation is stateful,
because it stores historic predictions over a longer time span to
provide better prediction results.

Besides the operational components, the ITS also pro-
vides real-time routing information for public transport. Pub-
lic transport users initiate routing queries and three stateless

operations process each query to obtain the desired result for
the user.

The individual sensors’ data rates (the amount of informa-
tion provided by the sensor at a specific point in time) changes
throughout the course of the day, mainly because of the com-
muters’ different driving directions. These volatile data rates
challenge a stream processing system to cope with varying
resource requirements to process streaming data.

The stream processing system further obtains the information
from different sensors and data repositories (such as roadmaps),
which are located in different geographical locations. Because
the data originate from different infrastructures, the data might
be inconsistent across various sources:  A GPS device reports a
bus driving on a specific street while an induction loop on that
same street detects a traffic jam.

When processing streaming data from various sources, it’s
challenging to select the most accurate and reliable data source.
In terms of cost and performance optimization, it’s desirable to
process the data geographically from the closest location. This
reduces the effort required, such as data transfer costs that are
required to transfer streaming data.

This scenario provides a brief glance at services and chal-
lenges from the mobility domain. Similar use cases also arise
in other domains, such as building automation for smart cities,
which involves monitoring countless sensors and processing
their data to ensure a safe and pleasant environment. We fur-
ther envision similar challenges in other areas such as e-health-
care, where systems must process large amounts of data in real
time to gain insight into a patient’s time-dependent information,
such as heart rate or temperature.

References
1.	 L. Fei et al., “Web-Scale Service Delivery for Smart Cities,” IEEE Internet

Computing, vol. 17, no. 4, 2013, pp. 78–83.

2.	 A. Biem et al., “Real-Time Traffic Information Management Using Stream

Computing,” IEEE Data Eng. Bullet, vol. 33, no. 2, 2010, pp. 64–68.

Elastic Stream Processing for Distributed Environments

november/december 2015� 57

SLAs’ Data Stream Processing
Because quality elasticity represents
one of the elasticity dimensions for
stream processing, we must design
appropriate SLAs to assess the QoS for
elastic stream processing. Until now,
stream processing only considered the
latency of processed streaming data
or the ratio of dropped streaming data
in comparison to all streaming data.

Besides such basic SLAs, there
are other areas that SLAs can cover:
First, SLAs can be applied to queries

on streaming data, making it pos-
sible to relax the result’s quality in a
controlled manner by shortening the
observation time span or omitting rel-
evant query data.

Second, SLAs can be assigned to
individual streaming data, such as
privacy restrictions or stating a valid-
ity period. In some domains, the infor-
mation provided by sensors is transient
and the information may be outdated
after a few seconds. Therefore, it’s pos-
sible to implement a context-sensitive

load-shedding mechanism that discards
all outdated data, instead of randomly
discarding data to reduce the load.

Efficiently Placing and Migrating
Stream Processing Nodes
Optimal placement of stream process-
ing nodes is crucial for performance-
and cost-efficient stream processing
in the IoT. Different deployments are
possible for stream processing nodes —
for instance, on an embedded infra-
structure with limited processing and

Figure A. Motivational scenario. Orchestrating the different data sources and stream processing operations provided by an intelligent
transportation system (ITS).

GPS sensor
Weather
prediction

Filter dataFilter data
Calculate

movement
speed

Predict the
arrival at the
next station

Generate
possible
routes

Annotate
routes with

arrival
information

Traf�c
information

Filter data

Routing query
by user

Routing
information

Induction
loop

Filter data

Notify driver
with traf�c

 information

Notify driver
with weather
information

... Data source

... Data repository

... Stateless stream processing operation

... Stateful stream processing operation

... Flow of streaming data

Update
display at the
next stations

Provide
routes to

user

Internet of Things, People, and Processes

58	 www.computer.org/internet/� IEEE INTERNET COMPUTING

storage capabilities next to the sensor;
on clusters with fixed computational
resources; or on a cloud infrastruc-
ture that provides unlimited compu-
tational resources and unlimited data
storage.

Besides the volatile resource require
ments, it’s also important to consider
the communication channels between
the different nodes’ locations, as well
as relevant SLAs (for example, the
maximum processing time for stream-
ing data or the ratio of discarded
streaming data). These different aspects
form a nondeterministic polynomial
time (NP)-complete problem for an
optimal deployment solution in terms
of costs, performance, and SLAs. Along
with the optimal initial deployment, it’s
important to investigate robust migra-
tion strategies for processing nodes.
Because the IoT landscape is constantly
evolving, we might need to migrate

processing nodes from one geographi-
cal location to another during runtime.
This requires a sophisticated migration
strategy to ensure a consistent state for
stateful stream processing nodes while
maintaining continuous uptime and
responsiveness.

Data Elasticity
Optimal and efficient access to the
data from remote data repositories
is required, but this efficiency gain
must not reduce the streaming data’s
quality and availability. Because the
data originates from geographically
distributed as well as inconsistent
or even conflicting data sources,
we must develop methodologies for
stream processing to consolidate the
streaming data at runtime. These
methodologies should be robust
when data are noisy, uncertain,
delayed, or (at worst) unavailable.

Current advances in Semantic Web
technologies represent one possible
solution approach that could help
define requirements on data and its
representation. To achieve this, the
level of description must be mini-
mal to avoid overloading the stream
processing system, which aims to
manipulate light objects with only
minimal operational overhead.

B ased on current state-of-the-
art stream processing and the

future challenges we anticipate with
the IoT, we identified several open
areas for research in elastic stream
processing for distributed envi-
ronments. Although there’s room
for improvement, elastic stream
processing can handle the chal-
lenges issued by the IoT to realize
smart systems.�

Related Work in Stream Processing

Because data rates change over time—in some cases even
drastically—processing this data in real time isn’t a straight-

forward task. To process streaming data, different stream pro-
cessing systems such as Aurora,1 Borealis,2 MillWheel,3 or IBM
System S4 provide solutions.

Early stream processing systems like Borealis2 originate
from the database-management domain. From a high-level per-
spective, such systems extend the relational database model to
support the continuous aspects of streaming data. The Borea-
lis architecture considers different processing nodes—such as
software components that process streaming information—to
enable parallel data processing for large amounts of data. How-
ever, the architecture only considers quality elasticity in terms
of load shedding to deal with load peaks.

More advanced stream processing systems such as IBM Sys-
tem S4 reliably and efficiently process different kinds of stream-
ing data (such as financial or telecommunication data). Although
the processing nodes support a distributed deployment (on a
cluster, for example), IBM System S still maintains several central-
ized components, which manage monitoring, communication, and
failure recovery. Besides research prototypes like Borealis, and
proprietary stream processing systems such as IBM System S,
there are also community-driven frameworks like Apache Storm
(https://storm.apache.org) or Apache S4 (http://incubator.apache.
org/s4/). Both frameworks can process huge amounts of data for
Web-based services, to process social media data, for example.

The architecture of these frameworks is based on a central
component that manages data flow. Even though these stream
processing frameworks feature a cluster-based deployment, they
don’t support resource elasticity for single processing nodes or
an orchestration of processing nodes during runtime.

More recently, Benjamin Satzger and his colleagues5 pro-
posed an elastic stream computing platform for the Cloud,
which provides an easy-to-use programming model to leverage
the resource elasticity of the Cloud to deal with volatile data
rates. However, their prototype doesn’t address the challenges
of accessing relevant data from different cloud infrastructures.
Instead, they focus on elastically allocating computational
resources in the Cloud for one static data stream processing
application.

References
1.	 D. Carney et al., “Monitoring Streams: A New Class of Data Management

Applications,” Proc. 28th Int’l Conf. Very Large Data Bases, 2002, pp. 215–226.

2.	 D.J. Abadi et al., “The Design of the Borealis Stream Processing Engine,”

Proc. Conf. Innovative Data Systems Research, vol. 5, 2005, pp. 277–289.

3.	 T.  Akidau et al., “MillWheel: Fault-Tolerant Stream Processing at Internet Scale,”

Proc. Very Large Data Bases Endowment, vol. 6, no. 11, 2013, pp. 1033–1044.

4.	 L.  Amini et al., “SPC: A Distributed, Scalable Platform for Data Mining,” Proc. 4th

Int’l Workshop on Data Mining Standards, Services, and Platforms, 2006, pp. 27–37.

5.	 B. Satzger et al., “Esc: Towards an Elastic Stream Computing Platform for

the Cloud,” IEEE Int’l Conf. Cloud Computing, 2011, pp. 348–355.

Elastic Stream Processing for Distributed Environments

NOvEMbER/dECEMbER 2015 59

Acknowledgments
This article is supported by Vienna University

of Technology research funds. This work is

partially supported by the Commission of the

European Union within the SIMPLI-CITY FP7-

ICT project (grant agreement 318201).

References
1. M. Cherniack et al., “Scalable Distributed

Stream Processing,” Proc. Conf. Innova-

tive Data Systems Research, 2003, vol. 3,

pp. 258–268.

2. S. Acharya et al., “The Aqua Approximate

Query Answering System,” ACM Sigmod

Record, 1999, vol. 28, no. 2, pp. 574–576.

3. G. Copil et al., “SYBL: An Extensible Lan-

guage for Controlling Elasticity in Cloud

Applications,” Proc. 13th Int’l Symp.

Cluster, Cloud, and Grid Computing, 2013,

pp. 112–119.

4. M. Armbrust et al., “Above the Clouds: A

Berkeley View of Cloud Computing,” Comm.

ACM, 2010, vol. 53, no. 4, pp. 50–58.

Christoph Hochreiner is a PhD student at the

Distributed System Group at the TU Wien,

Austria. His research interests cover the

whole spectrum of cloud computing, spe-

cifi cally stream processing systems, ser-

vice monitoring, and security implications.

Hochreiner has an MSc in software engi-

neering and Internet computing from the

Vienna University of Technology. Contact

him at c.hochreiner@infosys.tuwien.ac.at;

www.infosys.tuwien.ac.at/staff/hochreiner/.

Stefan Schulte is an assistant professor at the

Distributed Systems Group at TU Wien and

the project manager of the ongoing Euro-

pean Union’s Seventh Framework Pro-

gramme project SIMPLI-CITY — The Road

User Information System of the Future

(http://www.simpli-city.eu). His research

interests span the areas of cloud comput-

ing and service-oriented computing, with

a special focus on aspects of quality of

service. Schulte has a PhD in Web Service

discovery from the Technical University

of Darmstadt. Contact him at s.schulte@

infosys.tuwien.ac.at; www. infosys.tuwien.

ac.at/staff/sschulte/.

Schahram Dustdar is a full professor of com-

puter science and he heads the Distributed

Systems Group at TU Wien. His work

focuses on Internet technologies. Dustdar

is a member of the Academy Europeana, an

ACM Distinguished Scientist, and recipient

of the IBM Faculty Award 2012. Contact

him at dustdar@dsg.tuwien.ac.at; dsg.

tuwien.ac.at/.

Freddy Lecue is a research scientist and lead

investigator in large-scale reasoning at

IBM Research–Ireland. His research focuses

on AI, knowledge representation and rea-

soning, service computing with a focus on

Semantic Web technologies, and (hybrid)

reasoning from various domains. Lecue has

a PhD in computer science from Ecole des

Mines de Saint-Etienne, France. Contact

him at freddy.lecue@ie.ibm.com; http://

researcher.watson.ibm.com/researcher/

view.php?person=ie-freddy.lecue.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

The

+ Datacenter Trends and Challenges 10

+ Practical Cloud Security 28

MAY 2014

www.computer.or
g/cloudc

omputing

+ Interoperability Challenges 20

+ Sensor Data in the Cloud 42

JULY 2014

www.computer.org/cloudcomputing

CONVERGENCE computer.org/
cloudcomputing

Subscribe today!
IEEE Computer Society’s newest magazine

tackles the emerging technology
of cloud computing.

+ Some amazing also here 22 + Some amazing also here 22

SEPTEMBER 2014www.computer.org/cloudcomputing

