
Time Series Predictions for Cloud Workloads: A
Comprehensive Evaluation

Anna Lackinger‡, Andrea Morichetta‡, Schahram Dustdar‡,
‡TU Wien {a.lackinger, a.morichetta, dustdar}@dsg.tuwien.ac.at

Abstract—Predicting workloads in cloud computing is a signifi-
cant challenge due to their complex, multidimensional, and highly
variable nature. Assessing the accuracy of these predictions is
critical, as this directly impacts management decisions that the
infrastructure manager has to take in real-time to optimize
resource utilization and meet Service Level Agreements (SLAs).
Researchers and practitioners approached workload prediction
as a time series problem using both statistical and Machine
Learning (ML) methods. However, due to the volatile nature
of the resource utilization patterns and the fact that new
workloads constantly appear, developing robust solutions is still
an open challenge. Furthermore, current solutions often only
predict one single workload, completely lacking the capability for
generalizing over new workload time series. These approaches
fully counter the advantages of leveraging complex methods,
as for every new workload, they need to train, validate, and
test a separate model. In this paper, we offer a generalizable
approach based on Transfer Learning concepts. We comprehen-
sively evaluate different methods (statistical, Machine Learning,
and Deep Learning based) for predicting the resource utiliza-
tion of cloud workloads by testing them on new, unobserved
time series data, thereby assessing their potential for practical
applications through Transfer Learning. Specifically, we inspect
the algorithms’ performance in predicting one or multiple times-
tamps ahead, considering both CPU and memory usage. Our
main findings indicate that the Deep Learning methods Long
Short-Term Memory (LSTM) and Transformer are the most
suitable methods for predicting different metrics and timestamps
ahead for test data. Through Transfer Learning principles, we
investigate how the models’ performance varies with out-of-
distribution data. In predicting new, unseen workloads, complex
models show some limits, even if LSTM still proves to work in
specific cases. Overall, our research offers valuable insights that
can help infrastructure managers make correct design decisions
when predicting cloud workload resource usage.

Index Terms—workload prediction, cloud, LSTM, Trans-
former, Transfer Learning

I. INTRODUCTION

In recent years, cloud platforms have gained a leading
role in providing infrastructure and computing resources to
companies and organizations. Cloud computing offers a key
advantage by replacing fixed capital investment with pay-
on-demand services, enabling firms to scale and reorganize
according to their requirements [9]. Contextually, the critical
nature of the applications and services deployed on these
platforms, such as Amazon Web Services (AWS), Microsoft
Azure, IBM Cloud, Alibaba Cloud, Google Cloud Platform
(GCP), and many more, calls for accurate measures for timely
management, as most companies consider managing cloud
spend as one of their top challenges.1 Finding ways to act

1https://info.flexera.com/CM-REPORT-State-of-the-Cloud

before malfunctions or inefficient actions occur is essential,
not only from a business perspective but also from the se-
curity and reliability ones. In addition, accurate prediction
of workloads can reduce waste in the cloud infrastructure
and thus reduce carbon emissions into the environment [12].
Therefore, a notable challenge in cloud computing lies in
effectively processing and predicting the runtime behavior of
the applications’ workload. This task is critical for service
providers and infrastructure managers, seeking to optimize
resource allocation, enhance system performance, and ensure
seamless scalability and responsiveness to dynamic workloads
[30]. Specifically, from the infrastructure manager’s perspec-
tive, having accurate predictions of resource consumption
of applications workload is essential for precise resource
provisioning and efficient management of cloud workloads.
In this context, the predictions can directly fuel autoscaling
strategies that are indeed often modeled as a time series
problem [20], [40]. However, prevailing methods are unable
to effectively predict the complex and highly variable nature
of cloud workloads, resulting in either a waste of resources
or an inability to meet Service Level Agreements (SLAs) [6].
Therefore, it is essential to give the infrastructure manager
performative tools to develop accurate strategies, providing
highly precise predictions.

Traditionally, time series forecasting has been treated
through statistical methods such as Autoregressive Integrated
Moving Average (ARIMA) [4]. However, the context of cloud
computing monitoring brings stringent requirements of rapidly
adapting to changes. Therefore, in the literature, these methods
have been overpowered by, in turn, Machine Learning (ML)
and Deep Learning (DL) models [13], [39]. In general, the
latter approaches often build on regression methods, heuristic
algorithms, and traditional Neural Network (NN). In particular,
NN solutions are networks with a limited number of layers,
such as Multi-Layer Perceptron (MLP) and Radial Basis Func-
tion (RBF) [43]. Still, even if these methods can be effective
for identifying clear patterns in workloads, they struggle to
capture complex correlations. In the latter case, more complex
NN models can be necessary to minimize the prediction errors
[43]. At the same time, such complex models tend to suffer
from overfitting and have higher computational complexity in
training and inference.

Furthermore, most of the proposed solutions for cloud
workload resource usage forecasting limit their methodology
in observing and predicting a single workload. This approach,
as highlighted by Morichetta et al. in [29], has three clear

36

2024 IEEE International Conference on Service-Oriented System Engineering (SOSE)

979-8-3315-3958-0/24/$31.00 ©2024 IEEE
DOI: 10.1109/SOSE62363.2024.00007

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

er
vi

ce
-O

rie
nt

ed
 S

ys
te

m
 E

ng
in

ee
rin

g
(S

O
SE

) |
 9

79
-8

-3
31

5-
39

58
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

SO
SE

62
36

3.
20

24
.0

00
11

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

disadvantages. First, a new model must be trained for different
groups of workloads or individual workloads, which involves
both time and resource costs. Secondly, these methods cannot
be utilized in the data collection phase. Thirdly, this strategy
only works for long-lasting workloads, as for short ones, there
would not be enough time to collect sufficient data. In addition,
previous contributions lack an accurate analysis of the results
and a clear definition of the approach configuration.

With this work, we aim to cover the existing gaps, fore-
casting the resource requirements of new jobs without relying
on extensive data collection for model training. Furthermore,
our objective is to identify a method that accurately predicts
resource requirements and is generalizable, enabling practical
application across various resource metrics and job types
without requiring extensive historical data to train a new
model or enough information to cluster jobs. This approach
is inspired by Transfer Learning, i.e., using source models
and information to improve a target predictive function, as
described by Weiss et al. [42]. In this paper, we leverage
Transfer Learning by training methods on existing jobs and
applying these methods to predict new jobs. In this way, we
use the knowledge we have gained from previous resource
utilization data to improve the predictions for new jobs. We
provide to the infrastructure manager clear and practical tools
for workload resource usage forecasting by comprehensively
exploring a range of time series prediction methods, consid-
ering various categories, and testing prominent algorithms.
We evaluate these approaches primarily on their prediction
error minimization for upcoming job resource requirements
and their computational complexity. This assessment extends
beyond single-step predictions to include the more challenging
task of multi-step ahead prediction, which proves beneficial as
it provides more time to allocate resources by revealing the
short-term future workload behavior. Furthermore, by testing
various techniques, we seek to identify the most generalizable
model that can reliably predict resource utilization for various
jobs, contributing to a more efficient and adaptable resource
provisioning system. Our approach is shown in Figure 1.

Our contributions are as follows:

• Conversely from related work, we offer full transparency
and reproducibility, clearly showing all the steps of our
data selection and preparation process in detail.

• We conduct an experimental comparison of different
approaches for predicting the workload of new jobs, not
only one but up to six2 timestamps ahead. The rationale
is to capture immediate and near-future behaviors.

• Unlike previous approaches, we evaluate the method’s
performance by comparing their predictive capabilities
using the Mean Squared Error (MSE) on both a test set
and out-of-distribution data, ensuring the generalisability
of the results and, therefore, the transferability of the
developed solutions.

2Far-future predictions are not of interest as the boundary conditions
can rapidly change in such dynamic environments and re-forecasting might
become necessary.

Fig. 1: Workload prediction approaches for two applications
A1 and A2. The upper subgraphic illustrates the conventional
method, whereas the lower subfigure depicts our Transfer
Learning approach. In the upper subfigure, a new model is
trained for each application, the trained model is then used
for the prediction. In the lower one, a replica of a trained
model is used for the prediction for each workload, which is
not retrained for each new application.

• We provide our code as open source,3 allowing other
researchers to utilize it for their purposes.

The rest of the paper is organized as follows: Section II
gives an overview of related work in the field. Section III
presents the detailed steps of our methodology. Then, we
evaluate the obtained results in section IV. Finally, the last
section V presents the concluding remarks and the summary
of the results.

II. RELATED WORK

Cloud workload prediction typically involves forecasting
how resource utilization patterns evolve, particularly for single
tasks or jobs. Contrarily to related work, this paper aims to
compare the efficiency of different methods on unseen jobs
and jobs that are out-of-distribution data, meaning that they
have different patterns.

In state-of-the-art work for time series prediction statistical
methods, such as ARIMA are usually either used as a bench-
mark method [17], [28], [46] to compare results or they are
combined with Machine Learning or Deep Learning methods,
such as in [23].

Since the advent of popular libraries for implementing
neural networks, many works leveraged methods based on Re-
current Neural Networks (RNNs). Solid results have confirmed
their suitability and effectiveness in the context of time series
forecasts for resource utilization [46]. More recent works
frequently employ Long Short-Term Memory (LSTM) or Bi-
Directional Long Short Term Memory (Bi-LSTM), which are
a specific implementation of RNNs as these methods also

3https://github.com/Lacki28/time-series-optimization

37

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

demonstrate strong performance in handling non-short-term
time sequences [3], [17], [30], [39], [45]. The mentioned
methods all use the workload of the Google cluster trace [34],
but most of the mentioned methods need historical data of
the workload for training to predict its continuation [3], [17],
[30], [39], [46] and do not consider out-of-distribution data.
Moreover, some methods only consider the prediction of the
CPU [39], [45].

A different approach is to treat the workload sequence
prediction as a translation problem, which can be realized
using an Attention Seq2Seq-based technique, as in [2]. The
mentioned work uses the Google cluster trace to predict
memory and CPU values, but they also use historical data of
the workload to predict its continuation and do not consider
out-of-distribution data.

State-of-the-art applications frequently use hybrid meth-
ods that strategically combine a variety of Deep Learning
techniques [6], [21], [31]. Beyond the field of standalone
Deep Learning, there is a growing trend towards integrating
these advanced techniques with traditional statistical methods
[10], [21]. This fusion aims to leverage the strengths of both
paradigms and create a comprehensive and robust framework
that exploits the advantages of both techniques. However,
these novel methods frequently lack thorough implementation
details, which poses a challenge for others wishing to replicate
or build on their findings. Moreover, the findings are usually
not tested on out-of-distribution (OOD) data. For this paper,
we have decided not to include a hybrid approach in our
experiments, as the focus of our work is the comprehensive
evaluation of standard methods on how well they predict un-
seen jobs and how accurately they predict multiple timestamps
ahead.

Some time series prediction methods not only forecast
the workload for the upcoming timestamp but also extend
predictions for multiple timestamps ahead, providing sufficient
time to schedule tasks based on the anticipated workload [10],
[13], [29], [39], [45]. However, the effectiveness of these
approaches is assessed based on their ability to predict future
trends in specific time series data, given their history.

Moreover, some papers focus on the application of predic-
tion methods, such as [27], [41]. Tour et al. present a scalable
mechanism for monitoring and forecasting resource utiliza-
tion in large-scale distributed systems [41], which integrates
adaptive measurement transmission of local nodes, dynamic
clustering, and temporal forecasting algorithms for a group
of nodes, demonstrating improved performance in real-world
experiments compared to baseline methods, with potential
applications in resource allocation and system management.
For each cluster, a different model is used, which is retrained
every 24 hours. In their work, they consider CPU and memory
values, but their models are trained on the history of the
workload to predict its continuation. Moreover, they only
compare two prediction methods, including a LSTM and an
ARIMA.

Another area of research that is becoming increasingly
popular in the field of workload prediction is Transfer Learn-

ing. Liu et al. [7] use an LSTM ensemble method for ac-
curate workload prediction. However, this work only predicts
short jobs that run for less than eight hours and they also
use only a very small subset of 9 jobs. Singh et al. [37]
combine feature extraction, clustering, and a deep learning
model (N-Beats) to forecast workload. They analyze and
cluster using machine similarities so that the prediction model
can predict future usage without retraining, thereby reducing
computational costs. They build generic models to forecast
workload/CPU utilization across an entire cluster instead of
individual machines. To train the models, 70% of the machines
are used for training and the rest is then used for testing.
However, they only consider CPU usage and they only predict
one timestamp into the future.

III. METHODOLOGY

Prevalent experiments and solutions for time series fore-
casting in cloud workload data rely on the assumption that
the model trained on a single job can generalize well. This is,
however, a weak premise, as the model would likely need to be
adapted – retrained, or at least updated in its hyperparameters.
Furthermore, most of the previous contributions do not men-
tion the details about their models’ features, making it difficult,
or impossible, to evaluate the validity of their solutions. This
work aims to provide a comprehensive study and integrate
different prediction methods to evaluate their effectiveness in
predicting new time series data. Figure 2 depicts the individual
steps of our methodology, which we will detail in this section.

Fig. 2: Overview of our methodology.

A. Motivation

We aim at offering a comprehensive investigation of algo-
rithms for time series forecasting of resource usage patterns
for cloud workloads. In particular, we focus on investigating
the capability of these methods of working with OOD data.
A previous contribution in that sense is provided by Gao
et al. [13]. In their work, they identify three main classes
of algorithms that are typically employed for time series
prediction. Despite providing an accurate analysis that offers
an m-gap prediction of future resource usage, a model valid for
each type of workload is built as well as specific models for
workload categories identified through unsupervised learning.
However, in a real case, it is not always possible to identify
patterns of usage for all the workloads, especially in the early
stages of the adoption of a platform, where different kinds of
applications might submit their jobs. Therefore, it is essential
to analyze the capability of these models over different, unseen

38

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

data. Furthermore, despite the thorough analysis, the work
in [13] does not explicitly discuss the adopted parameters
for the models and the detail of which data they used, e.g.,
which jobs, with which characteristics. These aspects limit
the comprehension and evaluation of the proposed results.
Conversely, we provide a fully transparent and clear analysis
of the approaches considered.

B. Selection of Predictive Approaches

To capture the most accurate analysis of time series pre-
diction for cloud workloads, it is essential to include the
most relevant approaches. In particular, we inspect relevant
methods belonging to the three main categories identified
by [13], namely statistical methods, ML algorithms, and DL
techniques. In addition, we consider a Naı̈ve Benchmark (NB).
This method considers the value of the last observation as the
prediction for the forthcoming resource usage steps. With NB
we aim at having a ground truth, i.e., we want to verify that the
more sophisticated methods outperform this vanilla approach.
Despite facile, this “naı̈ve” functioning is commonly used for
comparison with advanced algorithms, including DL ones [11],
[28]. Therefore, NB represents a useful benchmark.

Regarding the three categories, concerning statistical meth-
ods, we consider ARIMA, a widely used approach known for
its effectiveness in predicting time series data, which is often
used as a benchmark [17], [28], [30], [46]. For the ML class,
we consider Random Forest (RF), which utilizes Bootstrap
Aggregating, to construct multiple models and compute their
collective average, thereby mitigating variance, as outlined in
[36]. Being an ensemble ML algorithm, one benefit of the RF
is that instead of conducting only one local search, multiple
local searches from various starting points are conducted
and the results are averaged. Moreover, it exhibits a reduced
tendency to overfit [5]. Its performance has been shown in
[22], where the RF outperformed an ARIMA when predicting
influenza outbreak time series data. For the DL approaches,
we have chosen a LSTM, which is frequently recurring as
a solution for cloud workload resource usage prediction,
making it an essential benchmark [17], [30], [39], [45]. The
LSTM is a popular choice for time-series prediction because
it has a memory cell that maintains state over time and non-
linear gating units controlling information flow, which prevents
the vanishing gradient problem that commonly appears in
Recurrent Neural Network (RNN). A more detailed description
of the LSTM architecture is given by Song et al. in [39]
and in [25]. However, the last development and evolution of
Transformer methods cannot be omitted [29], [35], [38]. The
architecture of a Transformer consists of the encoder and the
decoder, each of which can consist of several identical layers
[29]. A crucial element is the integration of the attention
mechanism, which enables the model to focus on relevant
segments of the input sequence. To evaluate its potential in
predicting new time series data, we include a Transformer in
our analysis.

C. Selection of the Dataset

To evaluate the effectiveness of each of the investigated
methods, it is essential to select a suitable dataset, considering
its content, size, and scientific relevance. Several real-world
datasets are available for this purpose, including the Azure
dataset [16], the Google cluster dataset [14], and the Alibaba
dataset [15]. To identify patterns, we want to run tests with
data from jobs with a minimum duration of two weeks. The
Alibaba dataset was excluded due to its limited time period. A
search on Google Scholar to compare the citations between the
papers detailing the datasets revealed that the Google cluster
trace [34] is more commonly used by other researchers with
1037 citations compared to 646 in Azure [8] as of April 22,
2024.

The details about the trace selected for our experiments
are sourced from [34] and [25]. Beginning at 19:00 EDT
on Sunday, May 1, 2011, in one of Google’s production
cluster cells located in the Eastern time zone of the United
States, the clusterdata-2011-2 trace was gathered for 29 days.
About 12.500 distinct machines are part of this cluster [14].
In the context of Google’s infrastructure, a cluster consists of
computers grouped in racks and interconnected via a high-
bandwidth cluster network. In contrast, a cell is made up
of several devices that are usually part of a single cluster.
As a result, the cluster management system that oversees the
assignment of tasks to the computers in the cell is shared by
these machines. Work arrives at a cell in the form of jobs.
A job consists of one or more tasks. Each task is associated
with a set of resource requirements used in the scheduling
process to assign the tasks to specific computers in the cell.
Individual tasks represent a Linux program, which might be
several processes that are intended to operate on a single
system. There are six different data tables provided [34] [26]
[25].

1) Machine events table, which records each machine’s
events and capacity;

2) Machine attributes table, which are key-value pairs
representing machine properties;

3) Job events table, which describes jobs’ status and how
latency-sensitive it is;

4) Task event table, which describes tasks’ status, priority,
constraints, and each task’s resource request in the cloud;

5) Task constraints table, which records constraints for
exactly each task;

6) Task resource usage table, which shows each task’s
detailed records, such as start and end time, Central
Processing Unit (CPU) usage, memory usage, etc.

To provide an overview of the dataset, we list the most
important values in Table I, which is taken from [25].

D. Feature Engineering

In this paper, we will focus on the prediction of jobs that
have high-priority tasks, since these tasks will get preference
for resources over tasks with lower priority numbers [34]. This
section aims to give a detailed description of how the data

39

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Overview of the Google cluster trace, taken from
[25].

Number of machines 12.583
Number of jobs 672.074
Number of tasks 25.424.731

Number of jobs with scheduling class 0 257.275
Number of jobs with scheduling class 1 215.110
Number of jobs with scheduling class 2 194.513
Number of jobs with scheduling class 3 5.179
Average number of tasks each job has 215

Number of machines a job uses on average 35

is chosen and prepared. There are 12 different priorities that
range from 0 to 11 where 0 is the lowest priority [14]. Jobs
that have priority 9 and above that are latency-sensitive should
not be “evicted due to over-allocation of machine resources”,
according to the trace providers [33].

Our prediction targets are the memory and CPU since they
are prominent metrics for understanding resource usage. The
prediction of the CPU load is the target in multiple related
papers [7], [21], [37], [39], [45]. Other works predict not only
the CPU but also the memory, such as [2], [6], [29]–[31], [46].

For the preparation of the dataset, we follow the instructions
taken from [25]. In total, 45.533 jobs contain high-priority
tasks. For the training/test and validation data, we filter out
jobs that have fewer than 4032 lines since these jobs run less
than two weeks, which leaves us with 3793 jobs. For the OOD
data, we select jobs with a different structure, that have a
shorter duration. To be more precise, we select jobs with a
duration of more than 1 hour but less than a week; therefore,
we filter out files that have more than 2016 lines and less
than 12. For this dataset we included jobs with high-priority
tasks since they will get preference for resources over tasks
with lower priority numbers, making their accurate prediction
more important.

The subsequent phase involves dealing with missing val-
ues and preparing the datasets for the prediction. There are
various techniques for dealing with missing values, which
can be roughly divided into three types: Ignore, Delete, and
Imputation. In this paper, we use the imputation approach as
described in [32]. In particular, the k-nn imputation method
is used because of its recognized effectiveness [1]. Since this
method is very resource-intensive, an interpolation method is
used that considers the nearest neighbors in both directions.

Afterward, we filter out rows that do not contain any
meaningful data on resource consumption, such as cases in
which the maximum CPU consumption is specified as 0.
In order to align the tasks with a 5-minute interval and to
facilitate subsequent grouping based on start times, the start
times are rounded. After this phase, the tasks that start at
the same time are summarized in a single line for all files,
since we want to predict jobs and not individual tasks. The
resource values in each line correspond to the cumulative total
of all tasks. In the next step, a new column is then added
indicating the number of tasks, followed by the inclusion of
a column for the scheduling class in all files. After filtering

files that do not have enough lines (the desired duration), the
non-OOD dataset contains 2261 jobs, and the OOD dataset
includes 3432 jobs. To prepare the data for the Machine and

0 5 10 15 20 25 30
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

us
ag

e
(jo

b
19

85
95

73
05

)

(a) Normalized data

0 5 10 15 20 25 30
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

us
ag

e
(jo

b
19

85
95

73
05

)

(b) Savitzky-Golay filter

Fig. 3: Mean CPU usage of the job with the id 1985957305,
after normalization with and without Savitzky-Golay filter
spanning a duration of approximately 4 weeks. The y-scale
in both images ranges from 0 to 1.0.

0 5 10 15 20 25 30
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

us
ag

e
(jo

b
19

85
95

73
05

)

(a) Normalized data

0 5 10 15 20 25 30
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

us
ag

e
(jo

b
19

85
95

73
05

)

(b) Savitzky-Golay filter

Fig. 4: Canonical memory of the job with the id 1985957305,
after normalization with and without Savitzky-Golay filter
spanning a duration of approximately 4 weeks. The y-scale
in both images ranges from 0 to 1.0.

Deep Learning models, we additionally used normalization
and a Savitzky-Golay filter. This filter smooths a series, and
it has been used in the papers [3], [10] and in the thesis
[25]. The thesis showed, with several experiments, that the
models achieved a higher accuracy when a Savitzky-Golay
filter was used for the training data. We have used the same
parameters for the filter as in [25] as we are working with
similar data. Figure 3 illustrates the normalized mean CPU
usage and Figure 4 depicts the canonical memory usage of
a job, both before and after the application of a filter. Upon
comparing the two images presented in Figure 3, it becomes
evident that the application of this filter in the bottom Figure
3b effectively mitigated the noise inherent in the data, shown
in 3a. The same pattern is shown in Figure 4 when comparing
the two images 4a and 4b. This process enhances the visibility
of the underlying patterns thereby facilitating the model in
making predictions that are based on meaningful information
and are not influenced by random noise.

To gain some understanding of the value distributions of
the different datasets, we created violin plots, which are a
combination of box plots and kernel density plots. These plots
contain much of the information about boxplots and provide

40

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

additional information about the shape of the distribution that
is not obvious in boxplots [19]. In Figure 5 one can see
a violin plot of the CPU value distribution of the different
datasets. To better visualize the distribution, the extreme

Fig. 5: Mean CPU usage distribution of the different datasets.

outliers have been removed. The maxima can be found in
Table II. Looking at Figure 5 and Table II, one can see that the
training data has higher CPU values than the other datasets.
The validation data exhibits fewer instances of higher CPU
values but demonstrates a high density at lower values.

TABLE II: Maximum values of the datasets.

Train data max CPU 245.9730
Train data max memory 222.8578

Validation data max CPU 13.5571
Validation data max memory 10.5724

Test data max CPU 72.2677
Test data max memory 39.7109
OOD data max CPU 14.0444

OOD data max memory 23.7272

Comparatively, the test data mirrors the distribution ob-
served in the training data, featuring more occurrences of
high values. The OOD data shows a similar distribution to
the validation data but with one difference: the density at low
CPU values is not as pronounced.

In Figure 6, one can see the distribution of the memory
values in all four datasets. The training dataset has not only
higher CPU values but also higher memory values, which can
be seen in Figure 6 and Table II. The validation data and
OOD data have again a comparable distribution with a high
percentage of low memory values. The median of the test data
is higher than the ones of the validation and OOD data, but
lower than the one from the train data.

E. Evaluation Metrics

When it comes to regression, the model is usually evaluated
with MSE, Mean Absolute Error (MAE) or the Root Mean
Squared Error (RMSE) [18]. We have decided to focus on the
MSE in our evaluation since it is frequently used in related
work, such as [6], [24], [30], [39], [44]–[46] and it puts larger

Fig. 6: Canonical memory usage distribution of the different
datasets.

weight on higher errors, penalizing larger deviations between
predicted and actual values more significantly than smaller
errors.

F. Experimental Design

The steps conducted for the experiments are depicted in Fig-
ure 7. The various prediction approaches are shown in purple
on the left-hand side. The next step of the experiments, high-
lighted in yellow, involves selecting suitable architectures. This
step is exclusively for the two DL methods. The search for
optimal hyperparameters (orange) and the subsequent phases
of training and evaluation of the methods (green) are essential
for all approaches except the NB. After the evaluation, there
are two possible directions: Either proceed to the final step or
resume the iterative process of refining hyperparameters and
architectures. The final step, shown in blue, is shared across
all the experiments. This is because the methods each predict
new jobs and the results are systematically evaluated.

Fig. 7: Experimental design.

In the search for the optimal architectures and hyperparam-
eters, tests have been conducted by using 10% of the jobs
and the prediction target was the CPU usage. To determine
the optimal hyperparameters for the ARIMA model, a sys-
tematic evaluation is conducted by assessing the performance
on the validation and training dataset across all permuta-
tions of hyperparameter values, specifically considering binary
configurations (0 or 1) for each hyperparameter. The three

41

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

parameters for ARIMA are usually written as (p,d,q), where
p is the number of lags of the stationarized series, d is the
number of non-seasonal differences needed for stationarity and
q is the number of lagged forecast errors. The best results
were achieved using the parameters (1,0,0). The RF has two
hyperparameters that can be optimized. These include the
maximum depth of the individual trees and the total number of
trees. The optimal maximum depth for the RF was determined
by employing 100, 200, and 300 trees, comparing the results
of using a maximum depth of 8, 16, 24, 32, and 64. The
best results were achieved with 200 trees and a maximum
depth of 16. The first step for optimizing DL methods is
to select suitable architectures, then a grid search is used to
find the best hyperparameters. The Long Short-Term Memory
(LSTM) architecture is taken from [25] and comprises a
variable number of LSTM layers. The final output is then
processed through three fully connected layers, where in the
first layer, a Rectified Linear Unit (ReLU) activation function
is used. In Table III one can see the hyperparameters that lead
to the best results. To find the best parameters, we trained
the model for 100 epochs with a linear layer size of 500. We
then tested different LSTM layer numbers and hidden sizes
with a learning rate ranging from 0.01 to 0.00001 and batch
sizes including 16, 32, and 64, until we received the optimal
hyperparameters.

TABLE III: Hyperparameters of the LSTM model.

Hyperparameter Value
hidden size 64

LSTM layers 1
learning rate 0.001/0.0001

batch size 32
linear layers size 500

epochs 10/13

Given the univariate nature of the data, a simple Transformer
model is chosen, which is taken from [25]. The data is first
embedded, and then an encoding layer is used. Finally, the data
is passed to a decoder, which, in this context, is represented
by a fully connected layer. The hyperparameters that lead
to the best results are shown in Table IV. To find the best
hyperparameters for the Transformer we trained it for 100
epochs. We then tested different hidden dimensions, number of
heads, number of transformer encoder layers, and feed-forward
dimensions with a learning rate ranging from 0.01 to 0.00001
and batch sizes including 16, 32, and 64, until we received
the optimal hyperparameters.

TABLE IV: Hyperparameters of the Transformer model.

Hyperparameter Value
hidden dimension 32
number of heads 4

feedforward dimension 32/64
number of Transformer encoder layers 1

learning rate 0.001
batch size 32

epochs 36/69

To train and evaluate the models, the training jobs were
first used to train the model for a single epoch and then all
the validation jobs were used for the evaluation. This process
is repeated for a specified number of epochs and is shown in
Algorithm 1.

Algorithm 1: Training process using multiple jobs
Input: t l list, v l list: PyTorch DataLoader lists

model: Model to be trained
device: Device for computation (CPU/GPU)
t: Number of prediction steps
opt: Optimizer algorithm

for i← 0 to nr of epochs do
for t l in t l list do

train model(t l, model, opt, device, t);

mse = [test model(v l, model, opt, device, t) |
v l in v l list];
sum mse = sum(mse);

where:
• t l: Training DataLoader
• v l: Validation DataLoader

Once the appropriate hyperparameters are found, the data
for the final predictions undergoes a partitioning process,
dividing it into three distinct sets. 60% of the jobs are used
for training, while 20% of the jobs are reserved for validation
and additionally, 20% are chosen for testing. Therefore, our
test data consists of 452 jobs, our validation data has 453
jobs, and the train data has 1356 jobs. Since our objective of
the prediction is to estimate both the mean CPU usage and
the canonical memory usage, a distinct model is constructed
and trained for each target so that the input data for each
model aligns with the respective goal it aims to predict. For
the training and the prediction of individual jobs, each method
takes six timestamps as input to predict the next six values
as illustrated in Figure 8. Given the dataset, predicting up to
six timestamps ahead is equivalent to predicting the resource
usage of the next 30 minutes, leaving enough time to allocate
resources.

Fig. 8: Multistep-ahead prediction.

G. Hardware Setup
All tests conducted in this work ran on the same server that

is equipped with 32 CPUs, specifically the AMD Ryzen 9
5950X 16-Core Processor, each with a maximum clock speed
of 5083.3979 MHz. Additionally, the server incorporates 2
NVIDIA GeForce RTX 3090 GPUs, each featuring 24576 MB
of memory.

IV. RESULTS

In this section, we compare the results of the five different
methods. We analyze the performance from one to six times-

42

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

tamps (TS) ahead, looking at aggregated metrics for MSE,
namely Mean (x̄) and Standard Deviation (σ). To emphasize
the most important values, we have highlighted the lowest
values for x̄ and σ in bold. First, we analyze the prediction
results of the test data in predicting the CPU values and then
compare the methods based on their predictions for memory.
Then we identify how well the methods work on jobs with
shorter execution time, i.e., running for less than a week.
Lastly, we compare the prediction and training times.

1) Comparison of the methods based on predicting the
CPU: Table V shows the mean values and standard deviations
of the MSE of the CPU usage of the different methods when
predicting one to six timestamps in advance.

TABLE V: Mean squared error (MSE) prediction results of
the methods for predicting the mean CPU usage of the test
data.

1 TS 2 TS 3 TS
Method x̄ σ x̄ σ x̄ σ

NB 0.0311 0.4356 0.0363 0.4415 0.0444 0.5269
ARIMA 0.0281 0.3607 0.0320 0.3795 0.0391 0.4572

RF 0.0308 0.3998 0.0406 0.4367 0.0536 0.5271
LSTM 0.0251 0.3116 0.0307 0.3534 0.0366 0.4160
Trans. 0.0288 0.3640 0.0336 0.3889 0.0356 0.3951

4 TS 5 TS 6 TS
Method x̄ σ x̄ σ x̄ σ

NB 0.051 0.6069 0.0506 0.5738 0.0627 0.7580
ARIMA 0.0421 0.4823 0.0460 0.5240 0.0482 0.5419

RF 0.0619 0.5751 0.0622 0.5656 0.0676 0.6823
LSTM 0.0409 0.4621 0.0438 0.4856 0.0487 0.5463
Trans. 0.0449 0.5257 0.0426 0.4699 0.0486 0.5479

Given this table, one can see that the LSTM and the
Transformer have lower averages and standard deviations than
the other methods in most cases, which is not surprising
since they are known to better capture complex correlations.
The ARIMA outperforms the NB, and when predicting 6
timestamps ahead, it has the lowest average MSE and the
lowest standard deviation. It is worth mentioning that all
methods, except for the RF have lower average MSE than
the NB. One possible explanation for the bad performance of
the RF is that its hyperparameters have been chosen on 10%
of the jobs, and for more data, a more complex model may
be needed. Overall the results on the test data are as expected,
showing that the deep learning methods perform best.

2) Comparison of the methods based on predicting the
memory: Table VI depicts the average MSE and the standard
deviations of the prediction of the canonical memory usage
with the test data.

When comparing the averages, the LSTM again outperforms
the other methods when predicting only one and also when
predicting multiple timestamps ahead. The Transformer model
has significantly higher MSE averages than the other methods
except for the RF when predicting one, two, and three times-
tamps ahead, but when predicting five and six timestamps
ahead, it outperforms the NB. The ARIMA performs worse
than the NB. One possible explanation for the bad performance
of the ARIMA is the hyperparameters that have been chosen

TABLE VI: Average MSE prediction results of the methods,
predicting the canonical memory usage of the test data.

1 TS 2 TS 3 TS
Method x̄ σ x̄ σ x̄ σ

NB 0.0013 0.0158 0.0016 0.0178 0.0018 0.0190
ARIMA 0.0020 0.0263 0.0021 0.0260 0.0025 0.0295

RF 0.0017 0.0238 0.0040 0.0634 0.0054 0.0895
LSTM 0.0008 0.0084 0.0011 0.0107 0.0013 0.0129
Trans. 0.0060 0.1016 0.0040 0.0628 0.0046 0.0700

4 TS 5 TS 6 TS
Method x̄ σ x̄ σ x̄ σ

NB 0.0021 0.0213 0.0023 0.0237 0.0026 0.0263
ARIMA 0.0027 0.0314 0.0030 0.0337 0.0035 0.0417

RF 0.0060 0.0977 0.0060 0.0916 0.0060 0.0890
LSTM 0.0015 0.0155 0.0017 0.0177 0.0023 0.0234
Trans. 0.0032 0.0421 0.0020 0.0188 0.0025 0.0240

for the prediction of the CPU, which do not generalize well for
other metrics. The RF has a much higher average MSE when
predicting multiple timestamps ahead, which can be expected,
given its performance on the CPU values.

3) Out of Distribution (OOD): In the following section, our
focus shifts to examining the performance of these methods
in predicting 3432 jobs with a different pattern that have a
duration of more than 1 hour, but less than a week. For the
following tests, we take the models that we have trained on
jobs with a longer duration. In Table VII one can see the
prediction results of the five methods when predicting the
CPU usage of short jobs. In this table, one can see that the

TABLE VII: Average MSE prediction results of the methods,
predicting the mean CPU usage of the OOD data.

1 TS 2 TS 3 TS
Method x̄ σ x̄ σ x̄ σ

NB 0.0811 0.6565 0.1317 1.0429 0.1774 1.4329
ARIMA 0.1567 1.1068 0.2030 1.5101 0.2609 2.0749

RF 0.1474 1.3316 0.2696 1.8911 0.4239 2.7291
LSTM 0.1195 0.9464 0.1692 1.4073 0.2181 1.8761
Trans. 0.1306 1.0329 0.2014 1.6675 0.2382 2.0366

4 TS 5 TS 6 TS
Method x̄ σ x̄ σ x̄ σ

NB 0.2091 1.7445 0.2363 1.9894 0.2791 1.7092
ARIMA 0.3117 2.5703 0.3376 2.8420 0.3678 3.0966

RF 0.5181 3.3225 0.5538 3.7453 0.5255 3.7243
LSTM 0.2424 2.1315 0.2578 2.2705 0.2819 2.4382
Trans. 0.2619 2.2888 0.2510 2.1990 0.2847 2.4612

NB performs better than the other methods. Both DL methods
perform worse than the NB as they have higher means and
standard deviations, indicating that they do not generalize as
well to new data. The ARIMA has higher averages than the
NB and DL methods and the RF has the highest average loss
when predicting multiple timestamps ahead. Still, the LSTM
provides prediction with only a slightly higher MSE.

In Table VIII, one can see standard deviations and averages
when predicting the canonical memory usage of the OOD data.
The LSTM and NB have the best results. The Transformer
performs slightly worse and the ARIMA has the highest
average losses. One possible reason for the bad performance of

43

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: Average MSE prediction results of the methods,
predicting the canonical memory usage of the OOD data.

1 TS 2 TS 3 TS
Method x̄ σ x̄ σ x̄ σ

NB 0.1120 1.4906 0.1402 1.6806 0.1860 2.3878
ARIMA 0.1829 2.0993 0.2763 3.1772 0.3363 3.8763

RF 0.1678 2.3880 0.2249 2.8418 0.2894 3.7589
LSTM 0.1323 1.7162 0.1660 2.1362 0.1767 2.4130
Trans. 0.1806 2.3340 0.1863 2.4042 0.1986 2.6897

4 TS 5 TS 6 TS
Method x̄ σ x̄ σ x̄ σ

NB 0.1140 1.3680 0.1183 1.4218 0.0618 0.5241
ARIMA 0.3226 3.7774 0.2118 2.3225 0.2385 2.5946

RF 0.2044 2.4902 0.2095 2.5475 0.2280 2.7050
LSTM 0.0760 1.0191 0.0783 1.0406 0.1094 1.3417
Trans. 0.0803 1.0941 0.0899 1.2286 0.1215 1.5126

the ARIMA is that it highly depends on the hyperparameters
that may change when the data distribution changes.

To conclude the comparison of the methods on the OOD
data, the NB performs best in most cases. The other methods
have more difficulty predicting the resource usage of data
with different patterns. The DL methods have slightly higher
average MSE, but in some cases, they outperform the bench-
mark. In particular, the LSTM model keeps up with low MSE
losses. Intuitively, giving the possibility to the LSTM model
to adapt and improve over time, we can obtain a robust and
fully generalizable model.

4) Comparison of the methods based on their training
and prediction time: To assess how long the methods take
for training and predictions, we have added the training and
prediction times in seconds for predicting the CPU usage of
the non-OOD data that are depicted in Table IX. The NB and
the ARIMA do not need to be trained. The Transformer and
the LSTM are characterized by the longest training duration,
while the RF has the shortest training time among the methods
requiring training. When it comes to predicting the test, train,

TABLE IX: Training and prediction time (for CPU).

Method Training (seconds) Prediction (seconds)
Naı̈ve Benchmark No training needed 86

ARIMA No training needed 287 672
RF 11 290 116

LSTM 46 946 14 360
Transformer 47 224 14 150

and validation data of the non-OOD dataset, the NB is the
fastest, followed by the RF. It is noticeable that the LSTM
and the Transformer require significantly more time to predict
the CPU values of the jobs compared to these other two
methods. The ARIMA has the highest prediction time of all
methods. Comparing the training and prediction times of the
five methods, it is evident that the NB is the fastest method
overall. The RF requires a long time for training but not as
much for prediction. The ARIMA does not need to be trained,
but it takes more time for prediction, resulting in a total time
greater than that required for training and predicting using DL

methods. Both DL methods have comparable prediction and
training times.

V. CONCLUSION

In this paper, we compared different methods in their
ability to predict the workload of upcoming jobs. Inspired
by Transfer Learning, we used trained models to predict new
jobs, reducing the need to wait for training data and reduc-
ing computational costs. In our comparison, we considered
different targets, different datasets, and the prediction of up
to six timestamps ahead. The MSE was chosen as a metric
to compare our results. In our comprehensive evaluation,
we found that the LSTM performed well in predicting two
different targets using the test data. However, when predicting
the OOD data, the NB outperformed the LSTM in most cases.
The RF did not perform well in our experiments as it had the
highest average loss in most cases. When it comes to training
times, both Machine Learning and Deep Learning methods
took the longest. However, in terms of prediction times, the
ARIMA method took significantly longer than the others.

The results of our work can guide the selection of an
appropriate method for accurate resource forecasting. Fur-
thermore, our open-source implementation is available for
others to utilize as a foundation for further development.
In the future, we aim to leverage our findings and deploy
solutions in practical scenarios, extending previous work done
in Polaris [29] as part of the Linux Foundation Centaurus
project. We target management measures such as autoscaling
or rescheduling for maintaining SLAs, which can be towards
cost-, resource- or energy-awareness. In this direction, we
plan to test the considered methods on different datasets that
can display different patterns, expanding our generalization
analysis. Furthermore, we want to explore the management
of these methods over time, e.g., studying the best strategies
to prevent model drifting. In conclusion, our comprehensive
analysis and open-source implementation represent leverage
for further implementations of resource usage forecasting,
providing precious tools for researchers and practitioners.

VI. ACKNOWLEDGMENT

This work has been supported by the European Union’s
Horizon Europe research and innovation programme un-
der grant agreement No. 101079214 (AIoTwin) and No.
101135576 (INTEND).

REFERENCES

[1] Hyun Ahn, Kyunghee Sun, and Kwanghoon Kim. Comparison of
missing data imputation methods in time series forecasting. Computers,
Materials and Continua, 70:767–779, 09 2021.

[2] Mustafa M. Al-Sayed. Workload time series cumulative prediction
mechanism for cloud resources using neural machine translation tech-
nique. J. Grid Comput., 20(2), jun 2022.

[3] Jing Bi, Shuang Li, Haitao Yuan, and MengChu Zhou. Integrated deep
learning method for workload and resource prediction in cloud systems.
Neurocomputing, 424:35–48, 2021.

[4] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar
Buyya. Workload prediction using arima model and its impact on cloud
applications’ qos. IEEE Transactions on Cloud Computing, 3(4):449–
458, 2015.

44

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

[5] Rui Cao, Zhaoyang Yu, Trent Marbach, Jing Li, Gang Wang, and
Xiaoguang Liu. Load prediction for data centers based on database
service. In 2018 IEEE 42nd annual computer software and applications
conference (COMPSAC), volume 1, pages 728–737. IEEE, 2018.

[6] Zheyi Chen, Jia Hu, Geyong Min, Albert Y. Zomaya, and Tarek El-
Ghazawi. Towards accurate prediction for high-dimensional and highly-
variable cloud workloads with deep learning. IEEE Transactions on
Parallel and Distributed Systems, 31(4):923–934, 2020.

[7] Liu Chunhong, Jie Jiao, Weili Li, Jingxiong Wang, and Junna Zhang. Tr-
predictior: An ensemble transfer learning model for small-sample cloud
workload prediction. Entropy, 24:1770, 12 2022.

[8] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource central: Understanding and
predicting workloads for improved resource management in large cloud
platforms. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 153–167, 2017.

[9] Timothy DeStefano, Richard Kneller, and Jonathan Timmis. Cloud
computing and firm growth. Review of Economics and Statistics, pages
1–47, 2023.

[10] K. Lalitha Devi and S. Valli. Time series-based workload prediction
using the statistical hybrid model for the cloud environment. Computing,
Nov 2022.

[11] Maximilian Du. Improving lstm neural networks for better short-term
wind power predictions. In 2019 IEEE 2nd International Conference
on Renewable Energy and Power Engineering (REPE), pages 105–109,
2019.

[12] Brad Everman, Maxim Gao, and Ziliang Zong. Evaluating and reducing
cloud waste and cost—a data-driven case study from azure workloads.
Sustainable Computing: Informatics and Systems, 35:100708, 2022.

[13] Jiechao Gao, Haoyu Wang, and Haiying Shen. Machine learning based
workload prediction in cloud computing. In 2020 29th International
Conference on Computer Communications and Networks (ICCCN),
pages 1–9, 2020.

[14] GitHub. google/cluster-data/clusterdata2011 2.md. https://github.com/
google/cluster-data/blob/master/ClusterData2011 2.md, 2021.

[15] GitHub. alibaba/clusterdata. https://github.com/alibaba/clusterdata,
2022.

[16] GitHub. Azure/azurepublicdataset. https://github.com/Azure/
AzurePublicDataset, 2022.

[17] Shaifu Gupta, A. D. Dileep, and Timothy A. Gonsalves. Online sparse
blstm models for resource usage prediction in cloud datacentres. IEEE
Transactions on Network and Service Management, 17(4):2335–2349,
2020.

[18] Guy S. Handelman, Hong Kuan Kok, Ronil V. Chandra, Amir H.
Razavi, Shiwei Huang, Mark Brooks, Michael J. Lee, and Hamed Asadi.
Peering into the black box of artificial intelligence: Evaluation metrics
of machine learning methods. American Journal of Roentgenology,
212(1):38–43, 2019. PMID: 30332290.

[19] Jerry L Hintze and Ray D Nelson. Violin plots: a box plot-density trace
synergism. The American Statistician, 52(2):181–184, 1998.

[20] Byeonghui Jeong, Jueun Jeon, and Young-Sik Jeong. Proactive resource
autoscaling scheme based on scinet for high-performance cloud comput-
ing. IEEE Transactions on Cloud Computing, PP:1–14, 10 2023.

[21] Ananya Kaim, Surjit Singh, and Yashwant Singh Patel. Ensemble
cnn attention-based bilstm deep learning architecture for multivariate
cloud workload prediction. In Proceedings of the 24th International
Conference on Distributed Computing and Networking, ICDCN ’23,
page 342–348, New York, NY, USA, 2023. Association for Computing
Machinery.

[22] Michael J Kane, Natalie Price, Matthew Scotch, and Peter Rabinowitz.
Comparison of arima and random forest time series models for predic-
tion of avian influenza h5n1 outbreaks. BMC bioinformatics, 15(1):1–9,
2014.

[23] Hisham Kholidy. An intelligent swarm based prediction approach for
predicting cloud computing user resource needs. Computer Communi-
cations, 151, 02 2020.

[24] Jitendra Kumar, Ashutosh Kumar Singh, and Rajkumar Buyya. Self
directed learning based workload forecasting model for cloud resource
management. Information Sciences, 543:345–366, 2021.

[25] A. Lackinger. Towards accurate time series predictions for cloud
workloads, 2023. reposiTUm.

[26] Bingwei Liu, Yinan Lin, and Yu Chen. Quantitative workload analysis
and prediction using google cluster traces. In 2016 IEEE Conference

on Computer Communications Workshops (INFOCOM WKSHPS), pages
935–940, 2016.

[27] Ning Liu, Zhe Li, Jielong Xu, Zhiyuan Xu, Sheng Lin, Qinru Qiu, Jian
Tang, and Yanzhi Wang. A hierarchical framework of cloud resource
allocation and power management using deep reinforcement learning.
In 2017 IEEE 37th international conference on distributed computing
systems (ICDCS), pages 372–382. IEEE, 2017.

[28] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos.
The m4 competition: 100,000 time series and 61 forecasting methods.
International Journal of Forecasting, 36(1):54–74, 2020. M4 Competi-
tion.

[29] Andrea Morichetta, Vıctor Casamayor Pujol, Stefan Nastic, Thomas
Pusztai, Philipp Raith, Schahram Dustdar, Deepak Vij, Ying Xiong, and
Zhaobo Zhang. Demystifying deep learning in predictive monitoring
for cloud-native slos. In 2023 IEEE 16th International Conference on
Cloud Computing (CLOUD).

[30] Bhalaji Natarajan. Cloud load estimation with deep logarithmic network
for workload and time series optimization. Journal of Soft Computing
Paradigm, 3:234–248, 09 2021.

[31] Yashwant Singh Patel and Jatin Bedi. Mag-d: A multivariate attention
network based approach for cloud workload forecasting. Future Gener-
ation Computer Systems, 142:376–392, 2023.

[32] Irfan Pratama, Adhistya Erna Permanasari, Igi Ardiyanto, and Rini
Indrayani. A review of missing values handling methods on time-
series data. In 2016 International Conference on Information Technology
Systems and Innovation (ICITSI), pages 1–6, 2016.

[33] Charles Reiss. Towards understanding heterogeneous clouds at scale :
Google trace analysis. 2012.

[34] Charles Reiss, John Wilkes, and Joseph L Hellerstein. Google cluster-
usage traces: format+ schema. Google Inc., White Paper, 1, 2011.

[35] Andrea Rossi, Andrea Visentin, Steven Prestwich, and Kenneth N
Brown. Clustering-based numerosity reduction for cloud workload
forecasting. In International Symposium on Algorithmic Aspects of
Cloud Computing, pages 115–132. Springer, 2023.

[36] Sarikaa S, Niranjana S, and Sri Vishnu Deepika K. Time series
forecasting of cloud resource usage. In 2021 IEEE 6th International
Conference on Computing, Communication and Automation (ICCCA),
pages 372–382, 2021.

[37] Gurjot Singh, Prajit Sengupta, Anant Mehta, and Jatin Bedi. A feature
extraction and time warping based neural expansion architecture for
cloud resource usage forecasting. Cluster Computing, pages 1–20, 01
2024.

[38] Gurjot Singh, Prajit Sengupta, Anant Mehta, and Jatin Bedi. A feature
extraction and time warping based neural expansion architecture for
cloud resource usage forecasting. Cluster Computing, pages 1–20, 2024.

[39] Binbin Song, Yao Yu, Yu Zhou, Ziqiang Wang, and Sidan Du. Host
load prediction with long short-term memory in cloud computing. J.
Supercomput., 74(12):6554–6568, dec 2018.

[40] Tejas Subramanya and Roberto Riggio. Centralized and federated
learning for predictive vnf autoscaling in multi-domain 5g networks
and beyond. IEEE Transactions on Network and Service Management,
18(1):63–78, 2021.

[41] Tiffany Tuor, Shiqiang Wang, Kin K Leung, and Bong Jun Ko. On-
line collection and forecasting of resource utilization in large-scale
distributed systems. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), pages 133–143. IEEE, 2019.

[42] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of
transfer learning. Journal of Big data, 3:1–40, 2016.

[43] Minxian Xu, Chenghao Song, Huaming Wu, Sukhpal Singh Gill, Ke-
jiang Ye, and Chengzhong Xu. Esdnn: Deep neural network based
multivariate workload prediction in cloud computing environments.
ACM Trans. Internet Technol., 22(3), aug 2022.

[44] Qiangpeng Yang, Chenglei Peng, He Zhao, Yao Yu, Yu Zhou, Ziqiang
Wang, and Sidan Du. A new method based on psr and ea-gmdh
for host load prediction in cloud computing system. J. Supercomput.,
68(3):1402–1417, jun 2014.

[45] Qiangpeng Yang, Yu Zhou, Yao Yu, Jie Yuan, Xianglei Xing, and Sidan
Du. Multi-step-ahead host load prediction using autoencoder and echo
state networks in cloud computing. J. Supercomput., 71(8):3037–3053,
aug 2015.

[46] Weishan Zhang, Bo Li, Dehai Zhao, Faming Gong, and Qinghua Lu.
Workload prediction for cloud cluster using a recurrent neural network.
In 2016 International Conference on Identification, Information and
Knowledge in the Internet of Things (IIKI), pages 104–109, 2016.

45

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 24,2024 at 16:08:07 UTC from IEEE Xplore. Restrictions apply.

