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Abstract—Recently, computation offloading methods have
greatly improved the Quality of Experience (QoE) in Multi-access
Edge Computing (MEC) by offloading tasks to the edge servers.
Since well-coordinated actions of Terminal Devices (TDs) are crit-
ical to improving the performance of the entire individual system,
many practical MEC-based applications, i.e., firefighting robots
and unmanned aerial vehicles, require great teamwork among
TDs. However, real-world scenarios are usually bound by resource
conditions. For instance, network connectivity may weaken or
experience interruptions during emergency situations. In cases
where the communication medium is utilized by multiple TDs,
achieving effective coordination poses a significant challenge. In
this paper, we propose a computation offloading scheme based on
Scheduled Multi-agent Deep Reinforcement Learning (SMDRL)
to make the most efficient decision in a resource-constrained sce-
nario. First, we design a virtual energy queue based on the MEC
system and maximize the QoE (related to service delay and energy
consumption) in a real-time manner. Subsequently, we propose a
scheduled multi-agent deep reinforcement learning algorithm to
support each TD in learning how to encode messages, select actions,
and schedule itself based on the received messages. Furthermore, a
TopK mechanism is introduced. This mechanism chooses the most
crucial TDs to broadcast their messages, and then the computation
offloading problem in a communication-constrained MEC environ-
ment can be solved in a low-communication manner. Also, we prove
that even under limited communication conditions, our proposed
methods can still lead to the close-to-optimal performance. The
final performance analysis shows that the developed scheme has
significant advantages over other representative schemes.
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I. INTRODUCTION

THE advent of smart devices and the rapid development
of mobile communications, computational-intensive and

latency-sensitive applications, such as Virtual Reality (VR),
Natural Language Processing (NLP), and real-time video ana-
lytics have begun blooming [1]. This scenario imposes stringent
requirements on the Terminal Devices (TD) with limited compu-
tation power and battery capacity. However, due to the hardware
constraint [2], satisfying these requirements is challenging. In
addition, traditional Cloud Computing (CC) technologies have
some inherent limitations in this context. The long propagation
distance from the CC to the TDs makes this approach unsuitable
for latency-sensitive applications [3], [4].

Recently, the European Telecommunications Standards In-
stitute (ETSI) has proposed a new computing paradigm, Multi-
Access Edge Computing (MEC) [5]. It extends CC to the edge of
the network, where dense Edge Nodes (ENs), including small
Base Stations (BSs) and wireless Access Points (APs), assist
resource-constrained TDs. In this way, some latency-sensitive
tasks can be performed at the edge of the network, namely,
computation offloading or task offloading, thus decreasing com-
putation delay and local energy consumption and improving
Quality of Experience (QoE) for the users [6]. While MEC
shortens the physical distance to reduce service latency, optimiz-
ing system performance for different scenarios, so that service
latency and energy consumption can be further improved is still
critical. Currently, developing the optimal offloading strategies
has gained extensive interest in academics and industrial [7], [8],
[9], [10], [11].

Some previous work formulate the computation offloading
issue by Mixed Integer Programming (MIP), and typically rely
on a central server to aid in offloading decision generation,
using a centrally controlled approach to make decisions [12],
[13], [14], [15]. For instance, Huang et al. [13] proposed a
deep reinforcement learning-based online offloading (DROO)
framework that implements a deep neural network as a scalable
solution to learn binary offloading decisions from experience.
Shi et al. [14] present the task offloading problem, which aims
to maximize the average latency-aware utility of a task over
a period, and develop a Soft Actor Critic (SAC)-based DRL
algorithm for achieving the expected payoff and policy entropy
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maximization. Nevertheless, these methods require transmitting
massive amounts of data to a central server, which leads to
up-link congestion and severe transmission delays. Meanwhile,
these methods with a centralized training approach introduce
experience replay mechanisms that use the historical experience
data generated to train a unified model and deploy parameters to
all TDs. These approaches deprive TDs of many local features
and the ability to capture features of interactions between TDs
in many practical MEC-based applications (i.e., firefighting
robots and Unmanned Aerial Vehicles, which mix cooperative-
competitive relationship features). Ultimately, these approaches
often lead TD agents to make many incorrect calculations and
cannot adapt to the reality of multi-TD multi-EN dynamic MEC
environments with complex hybrid relationships.

To address the above issues, researchers have considered
Multi-Agent Deep Reinforcement Learning (MADRL) models
to solve the computation offloading and resource allocation
problems in a distributed manner, these models have inherent
advantages in optimizing problems involving complex dynamic
relationships through parameter synchronization [16], [17], [18],
[19], [20], [21], [22]. For instance, Peng et al. [16] formulated
the resource allocation on MEC servers as a distributed op-
timization problem of maximizing the number of offloading
tasks while satisfying their heterogeneous QoE requirements,
and then solved it with a multi-agent depth-determined policy
gradient (MADDPG)-based approach. Tang et al. [17] proposed
a decentralized computational offloading scheme based on a
model-free deep reinforcement learning-based distributed algo-
rithm, where each device can determine its offloading decision
without knowing the task models and offloading decision of
other devices. These methods introduced the cloud computing
center layer to assist the TDs in training the model but invari-
ably overlooked issues of sharing the communication medium
into consideration, especially when agents communicate over
wireless channels. This is a troublesome assumption in practi-
cal applications because communication is expensive or even
limited in practice [23]. That means agents must exchange
concise but significant information. In addition, another thorny
but often overlooked problem in MEC is that users access the
network in a multi-access scheme, where multiple users share
media at the same time. This means that potential competitors
must be properly arbitrated to avoid collisions, which requires
some form of communication scheduling. Therefore, compared
to the previous work like [17], we will pay more attention to
how to choose the most significant information to facilitate the
offloading decision and coordinate the competition caused by
communication between TDs. However, as elaborated in related
work, the problem of computation offloading in multi-access
edge computation with bandwidth constraints has not been
extensively studied. Inspired by [24], we investigate that agents
learn how to schedule themselves, how to encode the messages,
and how to select actions based on received messages.

Motivated by the above, we propose a multi-agent deep
reinforcement learning-based computational offloading and re-
source allocation model to solve the problem of maximizing
the QoE of the users, especially in a resource-constrained MEC
scenario. The main contributions of this paper are as follows.

� We first formulate the distributed computation offloading
problem as a QoE maximization problem. The insight
behind this problem is that Edge Node (EN) dynamically
allocates computational resources to TDs based on differ-
ent task demands. We construct an energy consumption
queue that can maximize QoE in real-time.

� To solve the defined optimization problem, we transform
the task computation offload into a formulated Markov
Decision Process (MDP) based optimization problem. We
propose a predetermined multi-agent learning model (SM-
DRL) that facilitates cooperation between agents through
the distributed execution of the designed learning model.
In particular, we redesign an actor network structure to
encode information and introduce the Topk mechanism
to select the appropriate users to participate in training to
make the most reasonable offloading decision applicable
to the communication-limited situation.

� We conducted extensive experiments to evaluate the perfor-
mance of the SMDRL scheme, and the experimental results
demonstrate that the proposed algorithm is able to achieve
near-optimal performance while staying within the TDs’
communication and energy constraints. Simulation results
show that our proposed algorithm is more effective than
existing schemes in determining the offloading strategy.

The remainder of this article is organized as follows.
Section II details the system model and assumptions. In Sec-
tion III, the problem formulation and analysis have been de-
scribed. In Section IV, we detail the three basic elements (action,
state, and reward) and formulate the task scheduling problem
based on MDP. Section V depicts the proposed computation of-
floading solution, SMDRL. The simulation results are presented
in Section VI. Finally, Section VII summarizes this paper and
provides insights into possible future work.

II. SYSTEM MODEL AND ASSUMPTIONS

In this section, we present and illustrate the system model
in terms of task completion delay and energy consumption.
In addition, we explain the system operation flow. The main
notations are listed in Table I.

A. System Model

This paper aims to efficiently allocate network resources to
maximize the long-term expected QoE of users which is related
to the task completion delay and energy consumption. As shown
in Fig. 1, we consider an architecture about the MEC environ-
ment. It includesM ENs, denoted byM = {1, . . .m, . . .,M},N
TDs, represented by N = {1, . . .n, . . ., N} coexist. Each EN in-
cludes a Base Station (BS) and an Edge Server (ES); BS is mainly
used for communication while ES provides computing services.
The computation capability and the bandwidth resources of EN
m are defined as fm (cycles per second) and Bm, respectively.

TDs correspond to smart devices or a low-power Internet
of Things (IoT) system, e.g., AR/VR and wearable devices.
In this scenario, we consider a more realistic situation where
TDs usually have a cap on energy consumption. For example,
wearable devices are often designed to increase wearing comfort
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TABLE I
MAIN NOTATIONS

by reducing the capacity of the battery. If the battery is depleted,
the task potentially will fail, leading to irreversible consequences
in some medical scenarios. Therefore, we set an energy con-
sumption cap ecn for each TD, and the task scheduling cannot
exceed this value of the energy consumption cap. In addition,
each TD is assumed to have a computation capability gn (cycles
per second).

For simplicity and without loss of generality, we consider
that TD n generates a task in each time slot with probability
λt
n, n ∈ N, and the time horizon is divided into a set of time slots

with equal length T . The task generated by TD n in time slot t
can be represented by xt

n = {ctn, ztn, dt,max
n }, where ctn, z

t
n, and

dt,max
n are defined as the data size, the requested CPU cycles,

and the delay toleration of task xt
n, respectively.

B. Task Computation Model

A task generated by the TD can be processed locally or
offloaded to EN. We assume that each atomic task can not be
split so that a binary offloading decision (i.e., processed locally
or offloaded to EN) can be made.

Fig. 1. MEC system consists of multiple ENs and multiple TDs. TDs either
process their tasks locally or offload their tasks to the EN based on the compu-
tation and communication resources.

1) Process Locally: If the task xt
n is processed locally, the

time consumption of the task xt
n depends on the computation

capacity gn of the TD n and the required CPU cycles ztn. Thus,
the computation delay for local Dt,l

n can be expressed as Dt,l
n =

ztn/gn.
Correspondingly, we can obtain the computation energy con-

sumption which can be computed by et,ln = ρn · ztn, where ρn
is the power coefficient of energy consumed per CPU cycle
at TD n.

2) Process at EN: If the task xt
n is offloaded to EN m,

the computation delay of task xt
n can be obtained by Dt,e

m,n =
ztn/fm.

It is possible to obtain the computation energy consumption
of a system by calculating et,em,n = ρm · ztn, same as energy
consumption of TDs, ρm is the power coefficient of EN m.

C. Communication Model

1) Transmit to EN: TDs need to communicate with ENs
when offloading tasks to the target EN based on the offloading
decision. We set the upload link from the TDs to the target
EN as a flat Rayleigh fading channel, regardless of channel
interference. In this communication model of this system, the
edge server can serve as a multiple access scenario. As a realistic
approach, we assume that EN m owns bandwidth resources that
can be divided into orthogonal sub-channels of size b Hz each.
Therefore, we define W = {1, · · ·, w} as the set of available
sub-channels for TD. P t

m,w is defined as the bandwidth of the
sub-channel, each sub-channel can be allocated to at most one
TD. At time slot t, the bandwidth allocated to TD n in the form
of EN m is denoted as btm,n = Bm

P t
m,n∑

W P t
m,w

,m ∈ M,n ∈ N ,

where P t
m,n is a set of bandwidth allocation factors based

on realistic conditions. When P t
m,n = 1, the communication

resources of EN m are equally allocated to TDs.
If the task xt

n is offloaded to EN m, the transmission delay
depends on the input data with the size of ctn and the transmission
rate rtm,n from TD n to the EN m at time slot t. Therefore, it can
be computed by Dt,t

m,n = ctn/r
t
m,n, where the transmission rate
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Fig. 2. MEC system operation flow.

rtm,n between TD n and EN m can be computed based on Shan-
non formula [25] rtm,n = btm,n log2(1 + �m,nhm,n/(b

t
m,nς

2)),
where �m,n is the transmitting power, and hm,n is the antenna
gain at EN n. And hm,n = |hn|2/(L · dm,n), where symbolL is
the path loss at a unit distance,dm,n is the distance between TDn
and EN m, and ς2 is the power of additive white Gaussian noise
of edge computation offloading, hn is a random variable that is
subject to the Gaussian distribution N(0,1), which represents a
small range of fading. Similar to many studies [26], [27], the
returning data is generally much smaller than the input data.
Thus, we assume that the transmission time of return delay can
be ignored.

Also, we can obtain that the transmission energy consump-
tion for TD n offloading the task xt

n to EN m by et,tm,n =
ctn · �m,n/r

t
m,n.

D. System Operation Flow

At each time slot t, tasks xt
n generated by TDs are heteroge-

neous and differ in terms of computational and energy resource
requirements. Based on these task messages, each TD decides
whether and where to execute their task. Based on the related
research [28], we utilize binary value χn ∈ {0, 1} to denote
whether the task xt

n is executed locally. We assume that χn = 1
means that the task is executed locally, and vice versa. Similarly,
binary valueχm,n ∈ {0, 1} denotes whether taskxt

n is offloaded
to EN m or not.

The system operation flow is shown in Fig. 2. First, we assume
that each TD determines its own task offloading strategy based
on its observations (i.e., task xt

n and TD n messages and EN
m messages). After that, the computing central (Computation
Offloading Scheme in Fig. 2) collects the environment messages
(i.e., all task messages {xt

1, x
t
2, . . ., x

t
n}) at time slot t, aids TD

in getting an optimal offloading strategy. Following that, UEs
are allowed to communicate with other UEs by wireless link,
and the state information of UE is broadcast to all UEs within
its communication range to facilitate cooperation between them.
After receiving the offloading request from the TD, the EN will
determine the scheduling order of the task and process the task
xt
n at the edge processor. Finally, the offloading task result will be

sent back to the TD by the transmitter. To satisfy the computing

requirements of users, we define the problem considered as a
QoE maximization problem.

III. PROBLEM FORMULATION AND ANALYSIS

In this section, we analyze the constraints when implement-
ing the task computation offloading problem. Specifically, we
elaborate on the offloading decision constraints. Then, we for-
mulate the task computation offloading problem formulation.
Based on these constraints, we analyze the transformation of
the problem where the optimal objective problem is converted
into a time-series decoupled queue control problem.

A. Constrains of the Problem

1) Offloading Strategy Constraint: LetAt = {χn, χm,n} in-
dicate the offloading strategy of taskxt

n at time slot t, i.e.,χn = 1
means finish the task locally. We assume that each task is atomi-
cally inseparable and needs to be executed in the same processor
within a time slot. Therefore, the task offloading strategy must
satisfy χt

n ∈ {0, 1}, χt
m,n ∈ {0, 1}, and χt

n �= χt
m,n.

2) Computation Delay Constraint: While TD n generates
task xt

n at time slot t, the task is usually accompanied by
a maximum tolerance time dt,max

n , aligning with the realistic
scenario and representing the user’s patience. Due to the delay
limited of the task, the completion delay of the task can not
exceed the maximum tolerance time. During the MEC offloading
process, the completion delay must satisfy T t

n ≤ dt,max
n , where

T t
n = χt

n(D
t,l
n ) + (1− χt

n)(D
t,t
m,n +

∑M
m=1 χ

t
m,n ·Dt,e

m,n).
3) Computation Energy Consumption Constraint: MEC task

offloading improves the user’s QoE by reducing latency, but
offloading generates additional energy consumption for MEC
computing simultaneously. Considering the realistic MEC of-
floading process, the offloading strategy should follow the en-
ergy constraint of devices. The long-term energy consumption
constraint deserved in this MEC system is defined as follows:

lim
T →+∞

1

T

T −1∑
t=0

E(Et
n) ≤ ecn (1)

where symbol E(·) is a mathematical expectation, Et
n =

χt
n(e

t,l
n ) + (1− χt

n)(
∑M

m=1 χ
t
m,n · et,tm,n) is the energy con-

sumption of TD n processing the task xt
n per time slot t, and ecn

is the energy caps of the TD n.
4) Bandwidth Allocation Constraint: In the task offloading

process, TDs transmit the computational task to ENs with allo-
cated bandwidth. LetNt

m = {1, . . .N t
m} is the set of TDs served

by EN m at time slot t, and btm,n ≤ Bm, ∀n ∈ N
t
m, t ∈ T .

B. Problem Formulation

The task of formulating the computation offloading problem is
addressed within the context of minimizing delays while adher-
ing to energy consumption constraints, as demonstrated in prior
research [16], [18]. However, the realization of a real-time com-
putation offloading decision is impeded by notable challenges.
First, the necessity for comprehensive information spanning all
periods, notably task-related data, poses a formidable acquisi-
tion challenge. Second, the oversight of various time-coupling
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factors, such as the deficit energy consumption of the TD,
complicates the problem. In the dynamic time coupling process,
excessive energy consumption by the current task depletes re-
sources for subsequent tasks, thereby influencing the offloading
strategy. To address these challenges, a transformation of the
original problem is undertaken, limiting the task’s reliance on
future information. Additionally, a virtual energy deficit queue
is introduced to decouple the protracted energy consumption
constraint.

At time slot t, let Qt
n be defined as the virtual energy queue

of TD n. We assume that this queue is set to 0 in the initial time
slot, i.e., Q0

n = 0.

Qt+1
n = max{0, Qt

n + Et
n − ecn} (2)

As we mentioned before, Et
n and ecn denote the energy con-

sumption of task xt
n at time slot t and energy caps of TD n,

respectively. As shown in (2), the virtual energy deficit queue is
a historical measure of excess energy consumption. Calculating
the virtual energy deficit queue represents the gap between the
current energy consumption and the constraint visually.

From (2), we can observe that if the energy consumed by
TD n at time slot t grows, the energy deficit queue increases at
the next time slot. An offload policy resulting in a large value
of Qt+1

n would imply that energy consumption may exceed the
energy maximum, which is unacceptable in a realistic scenario.
QoE can be regarded as the most direct experience in service
interactions. Currently, the majority of offloading services to
enhance the QoE level become comprehensively attractive to
attention [6]. In addition, QoE can be measured by the QoS from
the task offloading, improving the experience in MEC networks.
Based on the task offloading, we give the delay and energy
consumption to measure the satisfaction of QoE. Combining the
constraints just mentioned and satisfying the users’ computation
requirements, we defined the considered problem as a real-time
QoE maximization problem, the task offloading policy f(At∗)
is presented as follows:

P1 min
At∗∈At

f(At∗) =
∑
n∈Nt

m

ω1Q
t
n · Et

n + ω2T
t
n (3a)

s.t. C1 : χt
n, χ

t
m,n,∈ {0, 1}, ∀m ∈ M, ∀n ∈ N (3b)

C2 : T t
n ≤ dt,max

n , ∀n ∈ N (3c)

C3 : btm,n ≤ Bm, ∀n ∈ N
t
m, t ∈ T (3d)

C4 :
1

T

T −1∑
t=0

E{Et
n} ≤ ecn, ∀n ∈ N, t ∈ T (3e)

where positive control parameters ω1 and ω2 weight Qt
n · Et

n

and T t
n to strike a desirable balance between TDs’ deficit energy

and task completion delay.1 The objective function (3a) felici-
tates the satisfaction of users’ requirements by maximizing the
QoE of users. The first constraint (3b) guarantees the task is
indivisible and each task is required to be processed in a single
processor [29]. The second constraint (3c) indicates that the total

1Both terms in the formula are normalized before the weighted sum.

delay of task xt
n should not exceed its tolerance delay dt,max

n .
The third constraint (3d) guarantees that the allocated bandwidth
of each TD must be less than the bandwidth resources of the EN
m. The last condition (3e) guarantees that the averaged energy
consumption requirements of task xt

n cannot exceed the total
energy consumption caps ecn.

Theorem 1: The long-term energy constraint can be satisfied
when limT →+∞E{Qt

n}/T = 0.
Proof: Based on (2), we obtain the following:

Et
n − Ēn ≤ Qt+1

n −Qt
n (4)

We take the exponential function for each side for a more
intuitive representation.

1

T

T −1∑
t=0

E{Et
n − Ēn} ≤ E{QT

n}
T (5)

Based on (1), in order to satisfy the energy constraints in this
system, the following expression must guaranteed:

lim
T →+∞

E{QT
n}

T = 0 (6)

In addition, f(At∗) is the optimal solution of P1 as we men-
tioned above, and L(Qt) =

∑N
n=1

1
2 (Q

t
n)

2 is a mathematical
expression that gives a visual representation of the magnitude
of Qt. Then we have:

E(L(QT
n)− L(Q0

n)) +

N∑
n=0

T∑
t=0

E{f(At)|Qt
n}

≤ T +
T
2

N∑
n=0

(ecn − Ēn)
2 − η

T∑
t=0

N∑
n=0

(Qt
n) + T log |f(At)|

(7)

where log |f(At)| is a commonly used method to measure the
optimal result achieved by an approximation algorithm, accord-
ing to [30]. Clearly, we have

E(L(QT
n )) ≤ T

(
T
2

N∑
n=0

(ecn − Ēn)
2

+ log |f(At)|+ Z

(
N∑

n=0

E{f(At)π} − f(At∗)
))

(8)

whereZ is the positive control parameter, and f(At)π is a policy
for P1. AsT tends to infinity, the right term of the above equation
can be expressed as follows:

lim
T →+∞√

1

T

(
T
2

∑N

n=0
(ecn − Ēn)2 + log |f(At)|+ Z · ϕ

)
= 0

(9)
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where ϕ =
∑N

n=0 E{f(At)π} − f(At∗) for the simple expres-
sion. Based on the above derivation, it is possible to prove that
Theorem 1. can be satisfied when limT →+∞ E{Qt

n}/T = 0.
Theorem 2: The optimization problem is NP-Hard.
Proof: Considering N tasks with Ebudget offloading budget,

the total energy consumption cannot exceed the offloading bud-
get for each task regardless of what offloading scheme is used
for the time slot. Dn represents system latency for task xn, and
En represents energy consumption for task xn. Based on this,
the optimization problem proposed to solve is given as:

minimize

∑n=N
n=1 Dn

N
(10a)

s.t.
∑
n∈N

En ≤ Ebudget. (10b)

Then, this instance of our problem corresponds to the Knap-
sack problem if we define Dn

N = −pn [31], this instance corre-
sponds to the optimization problem:

maximize
∑
n∈N

pn (11a)

s.t.
∑
n∈N

En ≤ Ebudget. (11b)

Therefore, the optimization problem of this computation of-
floading scheme is NP-Hard. This completes the proof.

It is rather challenging to achieve the above objective since
the computation offloading optimization problem is NP-Hard
according to [16], [28], [32]. It isn’t easy to settle by utilizing
conventional methods. Furthermore, the computation offloading
decision is memoryless with a sequential decision-making pro-
cess. Therefore, we formulate the task computation offloading
as an MDP minimization problem. Nevertheless, traditional
approaches have extremely high computation complexity, which
may have limitations in practical applications, especially in a
communication-constraint MEC environment. In the next sec-
tion, we design an online computation offloading mechanism
in the communication-constraint MEC network. This approach
addresses the challenges mentioned above, effectively working
in real-time.

IV. ONLINE TASK OFFLOADING WITH RESOURCE ALLOCATION

In this section, we model the defined delay and energy con-
sumption minimization MDP problem for satisfactory users’
QoE, which can be represented by tuple (S,A,R,O, γ). Symbol
S is the global state space, A is the action space, and R is
the rewards. Symbols γ and O represent the discount factor
and observations, respectively. The offloading framework makes
decisions by searching the policy strategy π for each agent
and minimizes the long-term reward R which interacts with
the MEC environment. In the following, we provide a detailed
introduction to the information on the elements in the considered
MDP.

A. Based Elements

1) Observation/State: The observation can be repre-
sented by O = {ot = [otn]N}, n ∈ N, t ∈ T }, where otn =
{xt

n, b
t
m,n, e

t
n, Q

t
n} is the partial observations for each TD.

Therefore, we have partial observations on ∈ Ω according
to some observation function O(s, n) : S ×N → Ω, where
S = {st} is the global state. As mentioned before, variables
xt
n = {ztn, ctn, dt,max

n }, symbols ztn, ctn, and dt,max
n represents

the requested CPU cycles, the data size, and the delay toleration
of task xt

n at time slot t, respectively. Correspondingly, symbol
btm,n represents the channel bandwidth between TD n and EN
m at time slot t. Thus, we can obtain communication delay
Dt,t

m,n for offload task xt
n to EN m. In addition, ecn is the energy

consumption caps of TD n; Qt
n is the virtual energy queue of

TD n ate time slot t.
2) Action: The action space can be represented by

A = {at = [atn]N , n ∈ N, t ∈ T }, where atn = {χn,
χm,n}n∈N,m∈M .

3) Reward: The immediate reward received by agents after
taking action at at observation st can be represented by rt :
S ×A → R. Since our objective is to maximize the QoE of
users, we defined rt = f(At∗)At∗∈At related to P1.

B. Optimization Problem Formulation

We need to find a policy π that can minimize the MDP
problem for satisfactory users’ QoE from a long-term perspec-
tive. In other words, we prepare to minimize the cumulative
reward defined above. Then, our optimization problem can be
formulated by:

P2 V ∗(st) = min
at

[rt + γEst,at
[V (st+1)]], (12a)

s.t. Constraints (3b)– (3d) (12b)

where V ∗(st) is the optimal observation value of the formulated
MDP. We can obtain the value of V (st) from the critic network
which will be described in Section V. The policy π can be found
by π∗ = argminat

[rt + γEst,at
[V (st+1)]].

However, the above formulation of the optimization problem
cannot be directly solved by DRL-based methods (i.e., tradi-
tional policy gradient-based optimization methods). First, the
actions defined in (3a) are coupled to each other, and a change
in one element can significantly impact the other elements. For
instance, a change in the TDn energy consumption virtual queue
can affect the generation of task offloading decisions, affecting
the completion times of tasks generated by other TDs. Further-
more, this system considers rewards are affected by multiple
TDs and ENs. However, there is no centralized management to
train policies, and servers must train their policies independently.
Inspired by Multi-agent deep reinforcement learning (MADRL),
we solved this problem using multi-agent reinforcement learning
with an actor-critic structure.

Nevertheless, this algorithm generally lacks consideration of
realistic situations, such as real-world scenarios that are usually
bound by communication conditions (when an emergency oc-
curs, the network may be weaker or interrupted). Maintaining
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Fig. 3. Schematics of the communication multi-agent deep reinforcement learning framework.

coordination among TDs is more difficult when the communica-
tion medium is shared among many TDs. Therefore, we propose
a communication-scheduled multi-agent reinforcement learning
that can effectively reduce signal collisions during the execution
of intelligent algorithms for situations where bandwidth is lim-
ited.

V. ONLINE TASK OFFLOADING SCHEME

A. The Whole Algorithm

To address the aforementioned problem, we propose a task
offloading method based on an actor-critic model approach.
Four neural networks are utilized in this procedure: the online
critic network and its target network; the online actor network
and its target network. By implementing action at in response
to observation ot, the actor-network can be indicated to be
in accordance with policy π. The corresponding Q value is
computed by the critic network using the current network state
st and action at of each TD. Q value can be calculated by
Q(st, at) = E[r̄t|st, at] . In addition, we adopt the Prioritized
Experience Replay (PER) technique [33], based on Temporal-
different to design importance sampling weight of experience.
The schematics of the communication multi-agent deep rein-
forcement learning framework are illustrated in Fig. 3.

The interaction between agents and the MEC environment
can be organized as follows. At the beginning of each time slot
t, tasks are generated by TD. In our considered system, TD
acts as a learning agent and collects task information (i.e., task
size), EN information (i.e., computing capacity), and network
information (i.e., bandwidth). In contrast to traditional MADRL,
the agent schedules this information by solving the problem P2
directly. Instead, a new actor-network is designed to encode
this information and generate weights for each agent. Then,
select which agent can participate in subsequent training. The
information of these agents that have been selected is fed into

the algorithm to generate the offloading strategy. The TD then
performs the task based on the offloading strategy and broadcasts
this information to the other TDs. At the start of the next time
sequence, all agents make a new offloading strategy based on
the current information.

In the learning process, the environment receives and executes
the action returned by the Agent. Subsequently, the Agent returns
a next state st+1 and a reward rt. Throughout the course of
this procedure, the Agent produces a sequence of state samples.
These serve as valuable resources for subsequent training ses-
sions, thereby optimizing the sample utilization rate. However,
these state samples do not conform to the independence and
identical distribution assumption inherent in the majority of deep
learning algorithms. To address this discrepancy, the method
incorporates the use of an experience replay mechanism. An
experience replay memory, denoted as D, is designed to retain
previous experiences, represented as (st, at, rt, st+1). To miti-
gate the issue of temporal correlation in recurrent experiences,
it is recommended to uniformly sample small batches of such
experiences, denoted as D′, and subsequently update the online
networks of both the Actor and Critic at each discrete time step.
This practice of mixing recent experiences with past ones has
been shown to be effective in reducing the temporal correlation
between repeated experiences, thereby facilitating more efficient
and stable learning in reinforcement learning tasks.

To enhance the efficacy of sample utilization and learning
rate, this approach incorporates a sample policy known as the
Prioritized Experience Replay (PER) mechanism, as proposed
by Schaul et al. [33]. By employing the PER mechanism,
the learning process from experience replay becomes more
efficient. Algorithm 1 presents the pseudo-code outlining the
methodology. Within this mechanism, the estimation of the
Temporal-Difference Learning (TD-error), denoted as σi, is
recorded as the Q value, which signifies the extent to which the
Agent has assimilated knowledge from the current experience.
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Algorithm 1: Priority Experience Replay.

This value is expressed as follows:

σi=ri + γ
[
max
a1′ ,a2′

Qμ′
(x′, a1′ , a2′)−Qμ(x, a1, a2)

]
|a′

j=μj(sj)

(13)
The magnitude of the TD-error value reflects the extent to

which the intensive reading of sample predictions can be im-
proved, presenting an opportunity for significant learning for
the Agent. A large TD-error value indicates substantial potential
for improvement in the Agent’s understanding of the sample.
Conversely, a very small or negative TD-error value suggests
that the Agent’s behavior is contrary to the correct direction. By
employing the PER strategy, the Agent can effectively learn
from successful experiences while avoiding the selection of
incorrect operations based on unfavorable experiences. This
approach enhances the overall quality of the learning strategy.
To formalize this concept, we introduce the TD-error value as
denoted by σi, Based on this value, we define the sampling
probabilityPi for Agent i as follows:Pi =

pα
i∑
j p

α
j

, whereα is the

control parameters for sorting quantity for priority. j is the index
of the minibatch sample. pi = |σi|+ ε, and ε is a small positive
constant that can prevent the critical case of this transition from
reconsidering once an error with zero probability occurs. The
replay frequency of certain samples is altered due to the higher
values of Pi resulting in a potential bias in the replay process.
To address this issue, Importance Sampling (IS) weights can be
employed to mitigate the introduced deviation:

ηi =

(
1

N
· 1

Pi

)β

(14)

The correction degree can be adjusted using the parameter β.
During the Q value learning update process, ηiσi is utilized in
place ofσi. To ensure training stability, the weight is consistently
normalized to 1

maxi ηi
.

B. Neural Network Initialization

In this subsection, we provide the detailed introduction for
the neural network initialization of the proposed algorithm and
the model training.

The actor network is the set ofnper-agent individual actor net-
works, where each agentn’s individual actor network consists of
a triple of the following networks: an observation encoder (OE)
foe
n : on 
→ in, an action selector (AS) fas

n : (on, I ⊗ J ) 
→
an, and a weight generator (WG) fwg

n : on 
→ vn. Here, on
is the partial observation of agent n, and in is the encoded

Algorithm 2: Scheduled Multi-Agent Deep Reinforcement
Learning (SMDRL).

Algorithm 3: Offloading Scheme Based on SMDRL.

message generated by the neural network foe
n . I = [in]N is the

vector of each n’s encoded message in, and N is the number of
agents in this system. Correspondingly, J = [jn]N , jn ∈ {0, 1}
represents whether the agent is scheduled, and operator “⊗”
concatenates all the scheduled agents’ messages. The schedule
profile J is determined by the scheduler, which can be repre-
sented mathematically as a mapping from the weights vn of all
agents (generated by the neural network fwg

n ) to the set J . And
the combination of this concatenation with the schedule profile
implies that only those agents scheduled in J are permitted to
disseminate their messages to all other agents. In addition, we
introduce the notation θoen , θasn , and θwg

n to represent the pa-
rameters of the observation encoder, action selector, and weight
generator for agent n, respectively.

It is important to emphasize that the distributed execution
of agents plays a critical role in determining the outcomes of
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the offloading strategy. Various scheduling mechanisms can
be employed to manage the agents effectively. In this study,
we adopt a straightforward weight-based scheduling algorithm.
Once the weight of each agent is determined, they are sched-
uled according to their weights, adhering to predefined rules.
Drawing inspiration from wireless scheduling protocols [34],
we opt for the Top(k) mechanism to schedule the agents. This
mechanism involves selecting the top k agents from a pool of
all agents based on their respective weight values.

The scheduler determines the schedule profile J , which is
a mathematical mapping from all agents’ weights ς = [vn]N
(calculated by fwg

n ) to J . The scheduler of each agent is trained
accordingly, based on the utilization of the Top(k) algorithm.
When the available bandwidth is limited, it may be necessary
to employ a scheduler during each training epoch to regulate
the transmission of knowledge between agents. Specifically,
a predetermined number of agents, denoted as k, are allowed
to transmit their knowledge to other agents. This collaborative
approach is designed to optimize the overall reward while min-
imizing the completion delay.

The primary objective shared by models OE, WG, and AS
is to effectively manage the constraints imposed by limited
bandwidth. Additionally, these models aim to acquire a com-
prehensive understanding of the significance of individual agent
observations and function as schedulers within the weight-
based scheduling mechanism, utilizing the weights generated
by each agent’s WG. Through their collaborative efforts, these
three modules synergistically adapt to time-varying observa-
tions, enabling intelligent decision-making. Specifically, after
the scheduler gets J , it further gets I based on I = [in]N .
The observation on and I ⊗ J of each agent are fed into an
action selector to take an excellent action an to maximize the
reward.

At each time slot t, the scheduling profile J undergoes
changes based on the observations of each agent, resulting
in the incoming information I being a combination of inputs
from multiple agents. Policy modifications implemented in the
weight generator have the effect of modifying the distribution
of incoming data, which is subsequently fed into the scheduler.

The dependencies of these three modules are tightly coupled,
consequently. Thus, it is imperative for the AS should adjust
to this alteration in the scheduling. Inspired by the actor-critic
framework, we have incorporated a conventional critic network
to facilitate the simultaneous training of all three networks in a
centralized manner.

C. SMDRL-Algorithm

In the system under consideration, distributed execution with
centralized training is implemented. During distributed execu-
tion, each agent performs its own actor and scheduler mech-
anism and requires three agent-specific parameters, namely
θasn , θwg

n , and θoen . When training with the critic network, similar
to other MADRL algorithms [35], [36], we use a centralized
training approach to minimize the loss function of the col-
laborative regression. We set yk = rk + γV̄ (st+1), and ŷk =
rk + γQ̄(sk+1, f̄

i
wg(ok+1,Jk+1)). Then, problem P2 is also

equivalent to the follow:

minL(θasn , θwg
n , θoen )=

∑
k

(yk − V (sk))
2+ (ŷk −Q(s, vk))

2)

(15)
The training process of actor network is separated into two

components in centralized training: 1) weight generator, 2)
observation encoder and action selector. To update the actor net-
work, the estimation of the action-value function Qπ

θc
(s, ς) and

the state value function Vθc(s) is performed using a centralized
critic that is parameterized by θc. The critic has the ability to
utilize the global state s as an input, which encompasses all of the
agent’s observations as well as any supplementary information
pertaining to the environment. The training methods employed
for these two components will be comprehensively elucidated
in the subsequent section.

We regard the aggregation of agents’ WGs as a unified neural
network denoted asμθwg

n
, which functions as a mapping from on

to vn. This neural network is parameterized by θW = [θwg
n ]N .

The complete policy gradient of the ensemble of WGs can be
expressed as follows:

�θW J(θW , ·) = E
ς�μθW

[�θW μθW (o)

×�ςQθc(s, ς)|ς=μθW (o)
] (16)

where s is the global state corresponding to o in a sample. We
sample the policy gradient for a suitable amount of experience
in the set of all scheduling profiles, i.e., K = {J |

∑
ji
< k}.

The partial observation on of each agent undergoes processing
through the OE and the AS. To improve notation efficiency,
we combine the OE foe

n and AS fas
n of all agents into a unified

aggregated networkπθa(a|o,J ). The aggregated network can be
represented by the parameters θa = {θoe, θas}. The aggregation
network, referred to asπθa , utilizes an iterative back-propagation
method and an actor-critic strategy for learning. The objective
function is defined as follows:

�θaJ(·, θa) = E
s�ρπ,a�πθa

[�θa logπθa(a|o,J )

× [r + γVθc(s
′)− Vθc(s)]] (17)

where s and s′ represent global observations that correspond to
the current and subsequent stages, respectively. The distribution
of observations is represented by the symbol ρπ . We can acquire
the value of Vθc(s) from the centralized critic and subsequently
employ gradient ascent to modify the parameters θa.

D. Computational Complexity Analysis

To determine the computational complexity of our algorithm,
we analyze the computational complexity of three modules
(Actor network, Critic network and the Scheduler mechanism).
Let denote P as the number of UEs in this system, K is the
requirement based on TopK mechanism,Q is the dimensionality
of the UE’s state space, U is the number of experiences sampled
in each round of training, and V is the max episode during the
training process. For the Actor network, let set the hidden layer
dimension to l, according to [37], the complexity of the network
is O(UQ2 · l2). Second, for the Critic network, the complexity
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TABLE II
PARAMETERS SETTING

of the network is related to both P and Q, which is O(P 2 ·Q2)
according to [37]. For the Scheduler mechanism, the complexity
is O(PKQ) according to Algorithm 1. Moreover, assume that
the computation complexity for the training of one experience
is O(L), where L is the number of multiplication operations in
the neural network, the computation complexity of the proposed
algorithm is O(LKP 2Q2U · l2) according to [17]. Finally, the
offloading scheme based on the SMDRL algorithm has a com-
putational complexity of O(|S| · |A|) since all respective states
and actions in S and A are evaluated to identify observation o∗.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithm based on the offloading scheme by simulation.

A. Parameter Settings

To evaluate the long-term rewards of organizations, we em-
ploy TensorFlow 1.15 framework to compare the performance of
several methods. In this MEC computation offloading scenario,
the simulation is designed in a small cell in radius with 20
TDs and 8 ENs. Throughout the experiments, we suppose a
scenario where TDs are randomly distributed within an area
of 350m× 350 m. Here, we consider that the different perform
distinct computation capabilities of TDgn, uniformly distributed
between 0.5 and 3.5 GHz. Then computation capabilities of EN
fm are distributed between 31.5 and 51.5 GHz. Similar to [38],
the channel bandwidths between the TDs and ENs range from [4,
20] MHz. For the task execution, the task tolerance delay follows
the uniform QoE between [5, 30] seconds. While the task data
sizes ctn follow the uniform distribution on [100, 1000] KB, the
requested CPU ztn ranges from [10, 50] cycles per bit. For the
design of the SMDRL, the experience replay memory, denoted
as D is allocated a size of 1024 [17]. The batch D′ comprises
three sizes: 128, 256, and 512. The target network parameter
is set at 0.8. Additionally, the parameters α and β for the PER
method are assigned values of 0.9 each [38]. Regarding the target
network, the parameters αQ, αμ, and τ for the PER method are
established as 0.9, 0.9, and 0.001, respectively. These parameter
choices have been empirically verified as suitable for DRL
applications [17]. The remaining Key evaluation parameters are
listed in Table II.

Fig. 4. Performance of different algorithms with respect to number of TDs.

In addition, we compare the designed computation offloading
algorithm with the following four schemes:

1) Local Computing (LC): All tasks are processed on TD
without offloading.

2) Edge Computing (EC): Each TD selects EN for task
offloading which minimize the task completion delay.

3) Soft Actor-Critic (SAC) [39]: It is a classic centralized
DRL method that can schedule the offloading strategy in
a centralized manner, which is used in [14].

4) MADDPG [35]: It is a decentralized MADRL method
that can schedule the offloading strategy in a decentral-
ized manner and without communication between agents,
which is used in [16].

B. Experimental Results

1) Performance Based on Different Numbers of TDs: Fig.
4(a) illustrates the performance of normalized task completion
delay for LC, EC, SAC, MADDPG, and the proposed algorithm,
SMDRL, with different numbers of TDs. We take the average
value after all experiments are executed more than 10 times
and normalized value in the range of [0,1]. In Fig. 4(a), as the
amount of TDs grows, the normalized task completion delay
of each algorithm increases. This is because as the number of
TDs increases, generated tasks within the MEC system increase
accordingly. Facing a large number of computation tasks and
limited computation and communication resources, many TDs
will occupy the channel and cause massive delays.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2024 at 11:32:07 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: COMPUTATION OFFLOADING IN RESOURCE-CONSTRAINED MULTI-ACCESS EDGE COMPUTING 10675

Fig. 5. Performance of different algorithms with respect the task generated
rate.

Moreover, we look at how the number of TDs affects the
normalized energy consumption of these computation offloading
algorithms. In Fig. 4(b), as the amount of TDs grows, the
normalized energy consumption of each algorithm increases.
The energy consumption of LC and EC tends to increase linearly
as the number of TDs increases. Specifically, the energy con-
sumption of SAC, MADDPG, and our algorithm shows a slow
upward trend. It can be drawn that our proposed method based
on computation offloading scheme is near-optimal and reduces
the energy consumption of the whole system by 1.2% and 11.3%
compared with SAC and MADDPG, respectively. This is due to
the fact that our algorithm introduces energy consumption deficit
queues and is able to generate suitable offloading decisions based
on real-time conditions.

2) The Impact of Task Generation Possibilities: Fig. 5(a)
shows the task completion delay for different task generation
probabilities of different strategies. For the purpose of com-
paring the effects of different task generation probabilities, the
rates were set from 0.1 to 0.9. As the task generation probability
increases, the task completion delay increases for the five of-
floading strategies. It is noteworthy that our proposed offloading
scheme is optimal no matter what task generation probability
is set. This is because as the probability of task generation
increases, more tasks are generated in the system. Afterward,
more tasks need to be scheduled in the system. Thus, when the
resources available for allocation in the system are fixed (i.e.,
the number of ENs is fixed), the average task completion delay
becomes large.

Next, we further investigate the impact of the task generated
probability of each TD on the task completion rate in Fig. 5(b).
In the case of tasks exceeding their completion constraints (that

Fig. 6. Task completion rate in the context of TDs’ energy caps.

is, exceeding the tolerance delay dt,max
n or energy consumption

caps ecn), the process is deemed to be failed. Thus, the task
completion rate can be calculated by dividing the number of
successful tasks by the total number of tasks. With increased
task generation probability, all offloading strategies decline
in their success rates. This is because as more tasks are added to
the system, more resources have to be allocated to completing
those tasks. However, some tasks cannot be processed in a
timely manner, resulting in a lower average task completion rate.
Additionally, our algorithm consistently has the highest success
rate and slowest decreasing trend among the various offloading
strategies. The results indicate that our algorithm does better
when dealing with heavy MEC systems.

3) The Impact of Energy Caps: Fig. 6 investigates the per-
formance of normalized task completion rate for LC, EC, SAC,
MADDPG, and the proposed algorithm, SMDRL, with dif-
ferent TD’s energy consumption. We take the average value
after all experiments are executed more than ten times and the
normalized value in the [0,1] range. As shown in Fig. 6, the
SMDRL algorithm perpetually obtains a higher task completion
rate than the benchmark algorithm, mainly while the TDs’
energy consumption caps are short. Furthermore, this confirms
that SMDRL is very effective for TDs with energy constraints.
When the TDs’ energy caps increase, all algorithms achieve a
higher completion rate, which gradually climbs and eventually
stabilizes. It is possible to extend the TD cap so that tasks can
have enough energy to support transmission or processing. In
practical terms, this implies that beyond a certain threshold
of energy availability, the MEC system becomes less prone to
task abandonment, as tasks can adequately harness the energy
resources at their disposal. Consequently, any further increase
in the energy caps for TDs is unlikely to induce significant
alterations in the system’s performance, affirming the saturation
of task completion rates under such conditions. This observation
underscores the importance of optimizing energy constraints for
TDs to strike a balance between resource utilization and task
completion efficiency within the MEC framework.

4) The Impact of Bandwidths: Table III illustrates the impact
of normalized processing delay with different bandwidths for
three algorithms. It is possible to verify the delay constraint
when the bandwidth between the TD and the EN is narrow.
Thus, in Table III, the offload delay is significant when the
bandwidth is only 1 MHz. This observation underscores the intri-
cate interplay between bandwidth limitations and offload delay,

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2024 at 11:32:07 UTC from IEEE Xplore.  Restrictions apply. 



10676 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 11, NOVEMBER 2024

TABLE III
NORMALIZED PROCESSING DELAY (S) WITH DIFFERENT BANDWIDTHS

thereby emphasizing the critical role of bandwidth availability
in meeting delay constraints within the system architecture. As
the bandwidth increases, the EN can easily provide offloading
for TD with transmission delay below the constraint. Table III
shows that as bandwidth increases to 4 MHz, the reduction
in processing delay decreases. This is because a bandwidth of
4 MHz is sufficient for a light offload requirement, while a heavy
load requires a relatively large bandwidth. This observation
underscores the nuanced relationship between bandwidth provi-
sioning and processing delay, highlighting the need for tailored
bandwidth allocation strategies based on the nature and intensity
of offload requirements. Furthermore, the SMDRL algorithm
perpetually obtains better performance than the benchmark al-
gorithm. When the bandwidth is insufficient (i.e., 1 MHz), the
proposed scheme reduces the offload delay by 30%.

VII. CONCLUSION

In this paper, we solve a computation offloading optimization
problem of maximizing the QoE of users in the MEC system
with multiple TDs and ENs. Technologically, we identified the
problem of time-coupling of energy consumption and introduced
an energy deficit queue to decouple the problem. In addition,
a scheduled communication multi-agent deep reinforcement
learning is proposed to identify offloading schemes for learning
to schedule communication between agents in fully collabo-
rative multi-agent tasks. Specifically, a new actor network is
proposed to compress observations effectively and select more
rewarding actions in view of the cooperative task currently.
Numerical results show that the proposed SMDRL is effective
and superior to the baseline algorithms on normalized energy
consumption and task completion rate.

In our future work, we will design architectures that introduce
incentives and penalties for computational offloading mecha-
nisms to generate a more balanced and realistic approach. At
the same time, the solution is more practical by considering
the mobility of edge devices and the possible design of task
migration in a practical MEC system. Furthermore, we will
explore potential alternatives, such as partial observations or
selective information gathering, to balance the need for accurate
state information and the practical constraints of data collection.
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