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Abstract—The growing number of Internet of Things (IoT)
devices generates massive amounts of diverse data, including
personal or confidential information (i.e., sensory, images, etc.)
that is not intended for public view. Traditionally, predefined
privacy policies are usually enforced in resource-rich environ-
ments such as the cloud to protect sensitive information from
being released. However, the massive amount of data streams,
heterogeneous devices, and networks involved affects latency,
and the possibility of having data intercepted grows as it travels
away from the data source. Therefore, such data streams must
be transformed on the IoT device or within available devices
(i.e., edge devices) in its vicinity to ensure privacy. In this paper,
we present a privacy-enforcing framework that transforms data
streams on edge networks. We treat privacy close to the data
source, using powerful edge devices to perform various operations
to ensure privacy. Whenever an IoT device captures personal
or confidential data, an edge gateway in the device’s vicinity
analyzes and transforms data streams according to a predefined
set of rules. How and when data is modified is defined precisely
by a set of triggers and transformations - a privacy model - that
directly represents a stakeholder’s privacy policies. Our work
answered how to represent such privacy policies in a model and
enforce transformations on the edge.

Index Terms—Edge Computing, Privacy Models, Data Stream
Transformations, Data Anonymization

I. INTRODUCTION

In recent years, the number of Internet of Things (IoT)

devices has widely increased while each device continuously

generates massive amounts of various data. Several examples

exist; for instance, a security camera in a smart factory

that produces a constant stream of high-quality images or

a sensor network in a car that opportunistically provides

live information about the road conditions. Traditionally, data

produced in such scenarios is processed or aggregated at a

central cloud server. Research literature shows that data often

can be significantly large (e.g., image, audio, video streams,

3D content, etc.) and usually requires to be processed with

low latency [1]. Nevertheless, the massive amount of data

streams, heterogeneous devices, and networks involved causes

high traffic and affects the overall latency [2].

One prominent approach that has emerged in recent years

suggests utilizing distributed computation entities (i.e., per-

ceived as edge devices) in proximity to end users, respectively

at the edge of the networks [3]. Edge devices available in

vicinity to end users can be leveraged to process various data

or workloads instead, and as such the edge emerges as a

central architectural entity. As a result, the key theme is that

these processing elements in proximity to end users first aim

to avoid user-perceived latency, reduce the need to transfer

data to the cloud, and improve privacy by analyzing released

information by users. The latter plays a core role to protect and

secure user data that is released without users’ consciousness

or information that can violate privacy policy requirements

defined by a stakeholder (e.g., company, school, etc.). In this

context, edge devices and, in general, edge architectures play

an important role because they support network affairs and

improve overall privacy protection. For instance, edge-based

infrastructures provide a seamless opportunity for accelerating

the development of data-centric tasks such as crowd-based

platforms [4], [5]. In crowd-based tasks, edge devices can act

as an intermediary entity to protect released information and

enforce various privacy strategies to make sure that sensitive

data (i.e., user information, sensory data streams, etc.) is not

released. Therefore, we need an edge-based mechanism to

prevent sensitive information to be released and to ensure for

contributed data that third parties cannot identify individuals

without their consent.

Edge-based infrastructures are heterogeneous environments

with various devices featuring different capabilities; dedicated

edge servers, network routers, telecommunication stations, or

simple edge gateways that aggregate sensor data in healthcare

or smart city environments [6]. Because of this heterogeneous

nature of edge-based infrastructures, we require a standard

format of how data has to be transformed to ensure privacy

- more precisely, one specification serves for all possible

types of edge devices. Specifically, we refer to transformations

as modifications of data or its metadata, an operation that

arbitrarily combines or discards information. Transformations

are derived from privacy policies, a set of rules on how to

transform data to ensure privacy on the data once it has passed

through the edge device. Especially, we would eliminate the

need to implement a policy multiple times for different types

of edge devices by providing a common runtime environment

on these devices where privacy transformations are executed.

For instance, an IoT device captures personal or confidential

data which is forwarded to an arbitrary device on the network’s

edge where the data stream is to be transformed. We might

choose any edge device here since the uniform environment

will analyze and transform the data stream according to the
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predefined set of privacy policies.

This paper presents a privacy-enforcing framework that

transforms data streams on the edge. We enforce privacy close

to the data source, using powerful edge devices to perform

operations that would otherwise absorb resource-limited IoT

devices whose software stacks are limited. We assume that a

central trusted entity manages edge devices and the privacy

policies for the entire data pipeline, ensuring exactly how

and when privacy is enforced. As soon as data streams flow

through an edge device that supports such transformation,

we have complete control over the information flow in our

system. Therefore, whenever an IoT device captures personal

or confidential data, an edge gateway (i.e., edge device) in the

IoT device’s vicinity analyzes and transforms the data stream

according to a predefined set of rules. Such rules build up

privacy models, a representation of their privacy policies which

consist of a set of triggers and transformations that describe

how data must be modified before it can be released to stream

subscribers.

The rest of the paper is structured as follows. Section II

gives an overview of our approach along with a motivating

example used throughout the paper. In Section III, we describe

in detail the framework, the processes, and details of the

proposed architecture. Related work is considered in Section

IV. Finally, Section V concludes the paper and outlines future

work directions.

II. USE CASE & MOTIVATION

The most intuitive examples of areas that can benefit from

such applied privacy models are those within surveillance envi-

ronments. Specifically, private information might be recorded

unintentionally just because a person or object was present in

the area by the time data was collected. We can imagine an

office building where the meeting room has a camera for secu-

rity reasons. It might not be desired to capture the content of

a given presentation or laptop screen; otherwise, confidential

information might be leaked by somebody who gets hold of the

live stream or a recording. The exact rules and restrictions for

privacy can be extracted from the company’s policies that they

have agreed on within their enterprise; those will be translated

into a privacy model on how to transform data before it can

be released to the public or recorded internally. Transforming

written agreements directly into privacy models is itself an

ongoing challenge as described in [7] and [8], so we stick to

manual conversion here. Once a company has come up with

a model representing their privacy policies, it is a rule that

laptop screens are blurred out in every video frame. This has

to be ensured before anybody can consume the video stream.

Supposedly, a conventional camera installed within the office

cannot perform this video transformation directly. This task

will be performed in the device’s vicinity on the network edge

before directly streaming the video to recipients.

Edge gateways provide sufficient computational resources to

perform stream transformations close to the data source; this is

especially important with the emergence of GPU-accelerated

single-board computers. For instance, NVIDIA Jetson [9],

Fig. 1. Transforming streamed data according to a privacy model.

can be installed close to IoT devices to perform fast image

recognition. In Figure 1 it is depicted how a captured image

from an IoT device is transferred to an edge device in its

vicinity. The edge device transforms the data by the rules

defined in the deployed privacy model before being streamed

to an audience or being recorded internally.

Privacy models can describe all sorts of stream transforma-

tions; some of them might seem unrealistic from a state-of-

the-art perspective because they can hardly be supported with

current technologies. For instance, detecting who is speaking

and removing a certain audio layer from the video stream, but

doing the same for images by detecting an individual in a video

frame seems well possible. Machine Learning (ML) models

have already shown that they can successfully identify celebri-

ties after being trained on a sufficient number of images [10],

so this can be the case for a company’s employees as well.

Suppose an ML model is regularly extended with new faces

or voices that have been learned. In that case, the respective

privacy model might as well need to be updated, and changes

propagated to edge gateways. To maintain the interoperability

of heterogeneous edge gateways, these devices have to support

a consistent environment that allows to frequently (re-)deploy

models and perform the described transformations on handled

data streams. In case that the model is extended with novel

transformations that are not yet supported by the edge device’s

environment, the environment has to be upgraded equivalently

on all edge devices in the network. Hence, the environment

that supports the transformations can be extended arbitrarily

with new transformations by a company or an agency as they

see fit. Still, the structure of the model itself should not change.

IoT devices are not limited to generating audio and video

data, neither should the enforcement of privacy policies on

edge devices be. In the context of a smart city, cameras and

sensor networks can capture all kinds of information of vehicle

movement within the road and parking network, like their

exact speed, location, and car type. Edge gateways in these in-

frastructures can be located in a traffic junction’s vicinity or in
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Fig. 2. Defining triggers and transformations for the privacy model.

a parking garage, where sensor data is aggregated before being

transferred to a central monitoring unit. To avoid any misuse

of the collected data, like tracking an individual’s movement,

private information (e.g., car plate) is either not captured or

removed by a transformation imposed by a deployed privacy

model. However, it might still be possible to track this car’s

movement. Supposed there is a car type that is not common

in the area, as an outstanding sports car. The mere appearance

of this car in any traffic junction or parking area allows for

precise tracking of this car because the lack of equivalent cars

makes it easy to track down this one car. For static data, it is

well reported how to release a tuple only if there are sufficient

similar values in the data set. Specifically, this is commonly

known as k-anonymity [11]. However, it is possible to perform

this anonymization on streams as well [12] by maintaining a

history of processed tuples and releasing a tuple only if there

have been sufficient similar tuples in the recent past.

Several different examples exist where edge gateways can

help protect privacy on streamed data. Therefore, some of

these examples might only emerge soon, even though the

gateway could already provide the most common stream anal-

ysis methods and transformations. In this sense, we advocate

that the edge gateway capabilities must be easily extendable

according to stakeholder needs [13]. For instance, a precise

anonymization technique (i.e., blurring a face) is just an

extension that an edge gateway can support. A policy manager

can then combine these transformations into a privacy model.

This calls for a modular separation of the transformation

functions from the edge gateway, allowing developers to define

new transformations and analysis methods that fit a company’s

demands without modifying the gateway’s source code.

III. THE FRAMEWORK

There are three significant parts of the proposed framework

that need to be addressed—first, the structure of the privacy

model and how rules and transformations are expressed. After-

wards, one should note how these models should be executed

on the streamed data. And third, the structure of the edge

network. Specifically, one should note how data is streamed

between an IoT device and an edge gateway. Furthermore, an

interesting point is how the output data can be consumed after

assuring that all privacy policies have been respected.

In a streaming scenario, the most natural representation of

how a privacy model can be expressed is a flow diagram,

expressing how data is step-by-step analyzed to find certain

patterns in the stream and then transforming the data in case a

condition was fulfilled. Figure 2 shows how we define triggers

and transformations on an image; such cause-and-effect rules

can as well be chained so that one rule only applies once

another has come true. The privacy model builds up to a set

of such rules that are expressed in an acyclic graph, where

the next step can always be determined by following the flow

towards its end. The streamed data type already restricts what

triggers and transformations are possibly defined in the privacy

model, e.g., image recognition with a subsequent replacement

does not make any sense if the stream tuples contain car plates

paired with locations. A model compiler is executed on the

edge gateway before applying a privacy model to assure that

it matches a valid grammar.
Some triggers and transformations do not require a state,

like static analysis of images containing a specific pattern.

These operations can easily be expressed as stateless lambda

functions that are chained together in the aforementioned

acyclic graph, passing the result on to the next step before

eventually returning the result to the stream subscribers. How-

ever, in some cases, we would need to keep a state similar to

the example with z-anonymity in Section II. In these cases,

the environment has to supply temporary storage that lambda

functions can address for such matters. AWS lambdas [14],

and NVIDIA Deep Streams [15] are examples of how such

functions can be combined by dragging and dropping them

through a UI. This approach supposedly does not require any

programming skills from the responsible defining the privacy

model. The model graph itself is defined in a central cloud ap-

plication from where it is deployed to all edge gateways. After

compilation, the model is active and incoming data streams are

analyzed and transformed according to the defined criteria.

Lambda functions and the privacy model are maintained in

distinct modules, separated from the stream processing. This

allows the gateway to continuously transform a data stream

without resetting active connections whenever a new privacy

model or new lambda functions are received. Updates of the

privacy model and the lambda functions must be as lightweight

as possible to not impact the device and network performance,

maintaining a stable stream latency.
Edge gateways must not only handle in- and outgoing data

streams but also decode stream data and re-encode it after

performing the transformations imposed by the privacy model.

WebRTC [16] is primarily a protocol for continuous streaming

of videos and other data between two peers. However, one

peer can be extended with routing functionalities to receive

and forward data streams between multiple clients; this role is

called a Selective Forwarding Unit (SFU) and is assumed by

the edge gateway. Figure 3 contains all the major parts of the

architecture:

1) A cloud application where a policy manager can define

new lambda functions and policy models, which com-

municates with the edge gateways through their exposed

REST endpoint for configuration.

2) Multiple IoT devices that stream data to the edge gateway
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Fig. 3. Conceptual framework.

through a supported protocol, including but not limited to

WebRTC. If there were a serial connection to the gateway,

it could use that for transfer.

3) Different types of stream consumers which can be con-

sumer devices or even recorders. Regardless of their

purpose, they must all support the WebRTC protocol.

4) The core of the topology is the SFU, which is deployed on

the edge gateway. It receives new models and functions

through a REST endpoint without interrupting the on-

going stream connection. Incoming stream packages are

decoded and transformed according to an active privacy

model before streaming them to connected peers.

The SFU establishes connections to producer and consumer

devices through a dedicated Session Description Protocol

(SDP), which contains information about the session and the

data type to be transferred. Once both peers have agreed on the

content of the stream, they establish a peer-to-peer connection.

WebRTC provides more than one channel to communicate

between peers through the given connection [16]: a media

stream that itself consists of two encoded tracks - audio and

video - that do not need to have a relation (i.e., originate from

the same video file), and the data channel, a bidirectional

connection that can exchange any data encoded in text or

byte arrays. In this framework, data is always transferred and

analyzed in frames; this is the same for audio, video, or other

streamed data. This means that privacy violations that would

only emerge from analyzing multiple consecutive frames at

once cannot be detected. The SFU waits for incoming frames

on each channel, which are then analyzed and transformed

according to the privacy model. Depending on the type of data

that arrives, the SFU’s environment has to provide different

analysis methods. For instance, if we want to stream video

frames over the SFU, we need to analyze incoming frames

with a suitable environment that supports video operations,

like OpenCV [17]. Through our privacy model we can then

express a function that detects privacy violating patterns in the

video frame (trigger). Once we detect e.g. a face in the video

frame, the respective area is blurred (transformation) and the

frame is routed to connected consumer devices. Extending the

SFU with other environments makes it possible to analyze and

transform data frames in various ways.

The bottleneck of this architecture is supposed to be the

edge gateway, more precisely decoding and encoding the

packages and running the model’s functions on the packages.

As the chain of triggers and transformations grows that was

explained for Figure 2, the latency of the stream grows

equally. This requires monitoring to give feedback on how

long the chain of transformations and the en-/decoding process

takes. One mechanism that can be implemented to cope with

increasing or unstable latency is an adaptive bitrate, regulating

the video quality according to the network quality and the

transformations’ time. In other words, if the network quality

is low, then the video bitrate is decreased by the SFU and the

IoT devices, respectively.

All data transferred is encrypted using WebRTC [18].

Essentially, WebRTC communicates through Transport Layer

Security (TLS), which is used to secure HTTPS connections;

therefore, any stream data sent over a media stream or data

channel is as secure as any other data sent or received by a web

browser. Since WebRTC is a peer-to-peer connection between

two agents, the data never passes through web or application

servers. This drastically reduces opportunities to have the data

intercepted.

IV. RELATED WORK

Anonymizing streaming data is one measure to protect the

privacy of data contributors. Authors in [19], propose data

collection schemes for IoT sensors that do not give evidence

of the data source. This can be seen as an extension because it

obfuscates the connection of an IoT sensor and the measured

data; nevertheless, removing private information from the data

is still an ongoing challenge. In [20], the authors present

an edge-based system that removes private attributes from

sensor data. They propose an ML model that identifies which

attributes to erase in the transformation step. However, they

did not extend their approach to continuous data streams and

privacy models representing a company’s policies.

The authors in [8] discuss how role-based access control

schemes can be expressed through privacy models. They

implemented an edge-based system where data is consumed

over a message broker after transformation. Their privacy

models focused on a variety of access control restrictions

combined with token-based authorization. More generally,

in [21], the authors discuss privacy considerations on edge,

including stream processing and anonymization techniques

that can be applied, like the aforementioned z-anonymity.

They also discuss how federated learning protects privacy by

maintaining training data in the edge level, a thought that [22]

pursue for image recognition with deep learning. Furthermore,

the authors assess the advantages of edge networks for ML and

how a model can be trained and extended on the go. Still, the

low latency in edge computing is also advantageous for other

feedback mechanisms. Especially important in the context of

this paper, the authors in [23] present how video streams can

be transformed on edge. If the latency of the received stream

drops due to increased processing on the edge device, they

scale up to several stream transformation workers. Maintaining

a low and stable latency by such means is definitely a
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useful extension for stream transformations scenarios. Still,

it requires an unavoidable overhead in communication and the

means to scale edge devices horizontally.

The above-mentioned research works show that the edge has

found a lot of attention for various tasks, including enforcing

privacy policies. Up to now, research literature shows that

transformations on edge were dedicated entirely to specific

and selected operations (e.g., image removal). Nevertheless,

it remains a step towards a general model of how to specify

policies and enforce a variety of transformations expressed

by the introduced framework. As mentioned above, several

research works exist on specifying privacy requirements for

enterprises. However, these works focus on business processes

and do not consider low levels aspects such as removing

confidential attributes in a continuous data stream.

V. CONCLUSION & FUTURE WORK

We have presented a privacy-enforcing framework that

describes how data streams are transformed on edge networks

close to the IoT device’s data source. The two primary

components of this architecture were how to specify policies

in a privacy model through chained lambda functions and

enforce these rules on streamed data. We assume that the

data is contributed and received through an SFU, responsible

for routing the data and, most importantly, decoding stream

packages, transforming its content, and re-encoding it. All

data communicated through WebRTC is secured with TLS;

therefore, the data flowing through the IoT device, over the

SFU, to the stream consumer is encrypted. Due to the absence

of a central cloud server we have a small number of peers

handling the stream, which drastically reduces the chance

of having the data intercepted. Additionally, as soon as the

stream leaves the SFU, the potential damage of having data

intercepted is significantly lower since the information that is

considered confidential has been removed.

This paper is only a small step towards a general framework

for specification and operation of privacy models for data

streams on the edge. Regarding future work, we first plan to

implement the proposed framework as a proof of concept in a

suitable programming environment which supports the desired

features. Afterwards, we will evaluate this prototype in terms

of streaming latency and performance to see to what extent it is

applicable in a desired usage scenario. By doing so, we narrow

down problems that the framework might present, whereby it

can be improved gradually.
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