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Abstract—Microservices have emerged as a new approach
for developing and deploying cloud applications that require
higher levels of agility, scale, and reliability. To this end, a
microservice-based cloud application architecture advocates
decomposition of monolithic application components into in-
dependent software components called “microservices”. As the
independent microservices can be developed, deployed, and up-
dated independently of each other, it leads to complex run-time
performance monitoring and management challenges. To solve
this problem, we propose a generic monitoring framework,
Multi-microservices Multi-virtualization Multi-cloud (M3) that
monitors the performance of microservices deployed across
heterogeneous virtualization platforms in a multi-cloud envi-
ronment. We validated the efficacy and efficiency of M3 using
a Book-Shop application executing across AWS and Azure.

Keywords-microservices; monitoring; container; VM; cloud
computing

I. INTRODUCTION

The recent emergence of microservice architecture [1] has

made significant changes to the development, deployment,

and on-going maintenance of web applications. Compared

to the traditional monolithic application architecture, where

the whole application is built as a single unified system,

the microservice approach decomposes the application into

several independently executable software components or

units that coherently interoperate to deliver specific appli-

cation functionality. To enable run-time communication be-

tween microservices, approaches such as lightweight REST-

based APIs [2]–[4] have been widely adopted. Microservice-

based application architecture has also turbocharged the

DevOps [5]–[7] design philosophy by minimizing code-base

dependencies between software units.

A. Research Context

Although decomposing a monolithic application into

lightweight microservices eases DevOps processes related

to code updates, maintenance, and continuous integration,

it does not solve issues related to ongoing performance

management and monitoring. To contextualize this, consider
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Figure 1. Example Scenario for Microservices Distributed across Multiple
Cloud Datacentres.

the application deployment scenario related to a Book-Shop

application as described next.

Figure 1 illustrates a conceptual implementation of a

Book-Shop application based on the microservice architec-

ture. The Book-Shop application is a multi-layer stack which

includes, (i) User Interface, (ii) Book Search/Purchase, and

(iii) Data Storage. User Interface (UI) is deployed as a

web microservice responsible for receiving user requests

and returning content to be rendered by the SmartPhone

App or browser. Book and Purchase layers are deployed as

multiple app microservices that implement business logic for

searching the inventory and/or processing purchase requests

(e.g. credit card transaction management, users’ address

book management, coordination with distribution and the

shipping company). On the other hand, data storage is

deployed in multiple database microservices for managing

the input and output datasets.

To improve the security of users’ data as well as to

enforce data privacy regulations such as EU General Data

Protection Regulation (GDPR) [8], the owner of the Book-

Shop application may decide to distribute the microservices

across multiple private and/or public cloud environments.

For example, the microservices related to credit card trans-

actions and user’s address book management, are more likely

to be deployed on a secure private cloud data center. On the
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other hand, microservices related to the current inventory

of books are more likely to be deployed on a public cloud

data center. Accordingly the database microservices required

for provisioning data to the above microservices (address

book, inventory, etc.) will also need to be distributed across

public and private cloud data centers. Though such wide

scale distribution of microservices leads to improved security

and privacy, it complicates the ongoing performance man-

agement and monitoring as discussed next.

• The deployment environment for microservices in

multi-cloud environments is very complex as there

are numerous components running in heterogeneous

environments (VM/container) and communicating fre-

quently with each other using REST-based/REST-less

APIs. Moreover, the performance of such microservice-

based applications deployed in a multi-cloud environ-

ment can vary considerably due to the heterogeneity

such as microservice types (e.g. CPU intensive vs. I/O

intensive vs. memory intensive) and resource interfer-

ence caused by other competing microservices [9]–[14].

• As different virtualization environments implement dif-

ferent ways to allocate resource limits to microser-

vices, it complicates the performance monitoring prob-

lem. Unlike a hypervisor-based Virtual Machine (VM)

which has its own guest operating systems, resource

allocation for containerized microservices are defined

in terms of namespace and cgroups that share the host

operating system with other containers. Further, the

resource limitation in containers can be hard or soft as

compared to VM which is always strict (hard). A soft

limit allows containers to extend beyond their allocated

resource limit creating higher chances of interference

[15], [16].

B. Research Contributions

Currently, there are multiple monitoring frameworks e.g.

docker stat [17], cAdvisor [18], DataDog [19], Amazon

cloud watch [20], CLAMS [21], available to monitor the

applications running in the cloud. However, most of the

frameworks are either cloud provider specific e.g. [Microsoft

Azure Fabric Controller], or virtualization architecture spe-

cific e.g. cAdvisor. These monitoring tools are not able to

satisfy the performance monitoring requirements of complex

microservices deployed across multiple cloud data centers.

Based on the aforementioned challenges, this paper ad-

dresses the research question:

• How to monitor the performance of multiple

microservice-based applications deployed on

heterogeneous virtualization platforms distributed

across different cloud data centers?

To answer the above question, this paper makes the

following new contributions:

• It introduces a novel system, Multi-microservices Multi-
virtualization Multi-cloud Monitoring (M3) that pro-

vides a holistic approach to monitor the performance of

microservice-based application stacks deployed across

multiple cloud data centers.

• It implements the M3 system based on a decentralized

agents based approach that provides the ability to inde-

pendently monitor heterogeneous cloud environments

(e.g. different virtualization and cloud service provider

platforms). M3 is cloud agnostic as it implements its

own API stack for networking, communication, and

managing monitoring data.

• It validates the proposed monitoring system M3 on a

real testbed that includes Amazon Web Services and

Microsoft Azure Cloud. Detailed experimental analysis

verifies the efficacy of our proposed M3 monitoring

system.

The rest of this paper is organized as follows. Section

II discusses recent related work. The system design of M3
is presented in Section III. Section IV presents the proof

of concept implementation of M3, and Section V discusses

the outcomes of the experimental evaluation. The paper

concludes with giving some future work suggestions in

Section VI.

II. RELATED WORK

Docker [17] provides inbuilt monitoring tool docker stats,

to examine the resource usage metrics of running containers.

The various metrics provided by Docker stats are the basic

CPU, memory, block I/O and network parameters. Docker

stats capture the overall performance of the container, how-

ever multiple microservices deployed inside the conatiner

(if any) may lead to performance degradation which cannot

be captured. An open source framework, cAdvisor [18]

also monitors the performance of containers giving different

system parameters. However, it needs to execute one more

container for each application stack component executing in

a distributed cloud environment which consumes additional

system resources.

There are some cloud specific monitoring frameworks

available such as Amazon CloudWatch [20], Azure Monitor

[22]. These frameworks are platform specific and able to

monitor only the intended platforms i.e. Amazon Cloud-

Watch is able to monitor only the hosts deployed in Amazon

cloud environment and not in Azure environment. Some

other commercial monitoring frameworks e.g. DataDog [19],

Prometheus [23] are available that are cloud agnostic but

provide limited functionality. DataDog is an agent-based

system that sends data only to the DataDog server while

Prometheus stores the result in a time series database. Both

of them support only containers and the support is also

limited to some specific cloud providers.

Various monitoring frameworks are also proposed in

academia that capture the changing system performance.
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Table I
COMPARISON OF RELATED WORK

Monitoring Parameter Related Work M3
[17] [18] [19] [20] [22] [21] [24]

Virtual Machine (VM) � � � � � � � �

Container � � � � � � � �

Multiple Cloud � � � � � � � �

In [21], Alhamazani et al. present CLAMS, which is an

application monitoring framework for multi-cloud platforms.

The model retrieves the QoS performance for different cloud

layers. However, their monitoring framework is limited to

monitor the VM performance only. Moreover, the model

is specific for monitoring only web applications. In [24],

the authors present the PyMon framework that collects

system resources for network edge devices using Docker

management API. However, it may not be able to monitor

the VM performance. In addition to this, there are some

benchmarking framework available that also monitors the

specific system parameters [25].

As discussed above, existing monitoring solutions do not

have the ability to monitor the performance of microservices

running inside multi-virtualization heterogeneous cloud en-

vironments (container/VM). Our proposed work (M3) differs

from the aforementioned solutions as it can be used to

monitor the performance of microservices running inside

containers or VMs distributed across multiple cloud envi-

ronments.

A comparison of different related works with our pro-

posed M3 is presented in Table I.

III. M3 SYSTEM DESIGN

The proposed M3 system consists of two main com-

ponents, namely the monitoring manager and the mon-

itoring agent. Monitoring agents are placed inside each

container/VM that tracks the performance of the underlying

microservices. Monitoring agents do not care whether the

underlying VMs/containers are homogeneous or heteroge-

neous or are deployed on which cloud infrastructure. The

monitoring agents collect the system-level statistics for each

service and send the information to the manager. The man-

ager deployed in a distant server collects the information

from different monitoring agents and stores this data in

the associated database for further performance analysis and

management.

A detailed discussion about the design and working of the

monitoring agent and monitoring manager is given below.

A. Monitoring Agent

A Monitoring Agent is a software component that col-

lects the information from a microservice running inside

containers/VMs. It has the ability to work in different cloud

platforms. Agents will wait for the requests coming from

the manager to push monitoring information to the manager.

M3 uses HTTP requests as a communicating system for

transferring information between agents and managers.

+ Register()
+ SendData()
+SetConfiguration() 

SmartAgent

SystemAgent ProcessAgent

1 - Register

Database

Manager

Manager 
Executer

SmartAgent

2 - Push

3 - Change Configuration

API a)

b)

Figure 2. Monitoring Agents Model (a); Communication Model between
Manager and Agents (b).

The Monitoring Agent is packaged into a jar file and

configured to run during the container/VM boot process. All

monitoring agents extend a common agent, called SmartA-

gent, which consists of two components (SystemAgent and

ProcessAgent) as shown in Figure 2 (a). SmartAgent repre-

sents a service consisting of three operations, firstly agent

registration information must be sent to the manager using

a “PUT” request. Next, the agent will send data periodically

to the manager using a “POST” request. Finally, agent con-

figuration will be sent to the manager using “GET” request

that can update agent configuration parameters. SystemAgent
monitors the system as a whole, for example, a container or

a virtual machine while ProcessAgent monitors the specific

process running on that system. The agent utilizes the func-

tionalities provided by SIGAR to retrieve the microservice

metrics and other custom built APIs. SIGAR helps in getting

the information parameters for the specific microservice.

Using these functionalities, the agent monitors the specified

features for each microservice. All the information is pushed

to the manager after getting a pull request from the manager.

B. Monitoring Manager

The monitoring manager is a software component that

receives monitoring information from agents deployed in-

side containers/VMs scattered in the heterogeneous cloud

environments. It also provides an API for accessing data

saved by the database and other services or applications.

Communication between manager and agents is based on

pull- or push-based mechanisms. The manager makes use of

the “RESTLet” library in building the clients accessing the

services of the agents. For each registered monitoring agent,

the manager starts a thread that coordinates a ”RESTLet”

client for accessing the agent data. Each time the data of a

monitor agent is received, the manager stores the results in

a MySQL database for further analysis.

The information transfer between the monitoring SmartA-

gent to the monitoring manager occurs using a sequence

of steps as shown in Figure 2 (b). First, the SmartAgent

sends a registration request to the manager, and the manager
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Figure 3. M3 Data Acquisition Model.

receives the request and registers the SmartAgent, an access

key and an endpoint are sent with the data returning to

the SmartAgent. Second, the manager executor (uses Push

technique) is enabled to receive the data sent by the SmartA-

gent using their IP address and gets the metrics. Lastly,

SmartAgent periodically queries the manager for its con-

figuration (Change Configuration). Dynamic configuration

enables real-time agent management.

The monitoring agents send the metrics information using

RESTful APIs. There are multiple methods to transfer data

from agent to manager. The two most common architectures

to transfer the data supported by M3 are (a) centralized

architecture and (b) decentralized architecture. In central-

ized architecture, the manager is located centrally and all

the agents are one hop distance to the manager. There is

direct communication between the manager and the agent.

This is the easiest way of communication, however it may

lead to one point failure. To avoid this, M3 also supports

decentralized architecture where each cloud has a local

monitoring manager that collects information from all the

resident containers. There exists a global manager that

collects information from all the local managers.

The complete process of microservice monitoring is rep-

resented in the form of a data acquisition model as given

in Figure 3. It consists of three steps, initially the system

administrator starts the monitoring agent (Step 1). Further,

the administrator registers the agent to the manager (Step

2). Next, the agent continuously monitors the system (mi-

croservices, containers, or VMs). Finally, all the monitoring

agents send the monitored information periodically to the

manager (Step 3). The manager stores the received data in

a shared database and also processes any query (if received)

related to the performance of the microservices.

IV. IMPLEMENTATION

Our proposed monitoring system M3 is implemented

in Java and works for both containers and VMs

running on any host operating system (Linux, Win-

dows or Mac OS). The agents are implemented using

the SIGAR (https://github.com/hyperic/sigar/) and RESTLet

(https://restlet.com/) libraries which enables them to run

on any cloud providers. SIGAR is a multiplatform library

(Unix, Windows, Solaris, FreeBSD, Mac OS, etc.) written

in Java that provides an API for accessing operating system

information while RESTLet is a Java library that makes it

easy to develop HTTP REST APIs. The M3 system uses

SIGAR to obtain various system parameters, namely CPU

usage, Memory usage, Free Memory, Network usage, etc.

RESTLet is used to develop the services for the monitoring

agents that allows the manager to access the agents’ moni-

toring data.

There are some strict networking requirements for both

manager and agent. The manager must be deployed on

a machine with a global IP address, so that the agent

can access the manager from any network. Every 30 sec-

onds, the agent queries (GET) the manager to download

its configuration file ensuring the dynamic configuration.

Communication between the manager and the agent occurs

exclusively via HTTP in order to avoid any security or

firewall blockages. The manager can dynamically change

the agent’s data forwarding rate to manage the overload of

requests on the network.

For our experiment, we considered a Book-Shop appli-

cation as discussed in Section I that is implemented using

three types of microservices, namely Tomcat, MySQL and

Nginx. These microservices are executed inside either VMs

or containers distributed across multiple clouds. The Book-

Shop application is distributed into three tiers with User

Interface service as the first layer (Web tier), Book and

Purchase services in the second layer (Application tier), and

finally Storage service (data storage) in the third layer. In

User Interface, we considered two microservices (Tomcat,

Nginx). In Book and Purchase services, we have either

one or two microservices (Tomcat and MySQL). In the

Storage service, we have one microservice (MySQL). A

User Interface service receives a request from JMeter to

communicate with the Book or Purchase services by using

HTTP, and the application tier will communicate with the

database by using the JDEC library (SOCKET network).

User Interface receives an HTTP request when selecting

a book and forwards this to the Book service. The Book

service receives a request, sends a query to MySQL, and

returns 500 entities to the User Interface. The Purchase

service receives a request from JMeter to save a purchase in

MySQL and updates the book entity.

We used Apache JMeter (https://jmeter.apache.org/) to

generate HTTP requests to test the capability of M3’s

system. The test consists of 100 users each having different

requests. We generate 900 requests to simulate the users’

behaviour. Each request for book select gets 500 entities.

We made three tests to capture metrics with the monitoring

agent reading data at 1 second, 5 seconds and 10 seconds.

The operations and requests made during the experimen-

tal evaluation are presented in Figure 4. All requests are
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Figure 4. Simulation Web Application Pattern.

initiated by Apache JMeter, which simulates the user (req.

1), or simulates another application (req. 4). The choice

of the various types of requests is based on the premise

of covering the main types of load operations in a data

persistence service, namely: data query, insertion and update

requests, as well as requests intermediated by a proxy. All

requests made by the JMeter are of the “GET” type. The first

request flow focuses on query operations and is initiated by

request 1 which is directed to the User Interface service.

The User Interface receives request 1 through the Nginx

web server, which acts as a proxy and forwards it to Tomcat

(req. 2). The User Interface Tomcat receives the request and

creates a new “GET” request to the Book service (req. 3).

Request 3 is received by the Tomcat of the Book service that

makes a query to MySQL (req. 6). The second request flow

is responsible for the insert and update operations. Request 4

is initiated by JMeter and is directed to the Purchase service.

Purchase service Tomcat receives the “PUT” request (req. 4)

for insertion of a Purchase. This request is decomposed into

two others: request 5 and request 7. Request 5 updates the

quantity of books in the inventory using the Book service as

an intermediary. Request 7 inserts a Purchase into MySQL.

V. EXPERIMENTAL EVALUATION

Based on the defined set up as discussed in Section IV,

we conducted an experimental evaluation for our proposed

monitoring system M3. The test application is deployed

across Amazon EC2 and Microsoft Azure in both container

and VM environments. To demonstrate the effectiveness of

the M3 system, we perform an extensive set of experiments

by varying the workload configurations to measure different

system parameters, e.g. CPU, Memory, latency.

Both Amazon EC2 and Microsoft Azure machines

are running Linux Operating System Ubuntu:16.04

(https://www.ubuntu.com/) on which a Docker platform

(version 17.06.1 − ee − 1) (https://www.docker.com/),

was installed to execute the microservices. The VM

configuration of Azure is StandardA1v2, with 1 vCPU

and 2 GB of memory. We considered four such VMs. The

Amazons VMs were of t2.micro type, with 1 VCPU and 1
GB of memory for each machine. Here also we considered

two VMs for our experiment.

To emulate the behavior of the Book-Shop application

Table II
MICROSERVICES SCENARIOS DEPLOYED AT CONTAINERS AND VMS

Environment Scenario Containers VMs
Microsoft Azure
Fabric [M]
+
Amazon Web
Services (AWS)
[A]

Multi-cloud
Virtualization
only (S1)

1 - Book/Purchase
(Tomcat + MySQL)
[M]
1 - User-Interface
(Nginx + Tomcat) [A]

Microsoft Azure
Fabric [M]
+
Amazon Web
Services (AWS)
[A]

Multi-cloud
Containers
only (S2)

1 - Book (Tomcat
+ MySQL) [M]
1 - Purchase (Tomcat
+ MySQL) [M]
1 - User-Interface
(Nginx + Tomcat) [A]

Microsoft Azure
Fabric [M]
+
Amazon Web
Services (AWS)
[A]

Multi-cloud
Cross
Containers /
VM (S3)

1 - Book/Purchase
(Tomcat) [M]
1 - MySQL [M]

1 - User-Interface
(Tomcat + Nginx) [A]

as discussed in the previous section, VMs and containers

were installed with different software. For the web server,

we chose Tomcat (Version 7) (http://tomcat.apache.org/)

and Nginx (Version 1.13.7) (https://nginx.org/en/) while

for Database, we considered MySQL (Version 5.7)

(https://www.mysql.com/). All container images used were

obtained from the Docker Hub (https://hub.docker.com/)

portal.

The machine configurations on which experiments were

conducted are as follows: first machine used Java (Ver-

sion 8) on the virtual machine guest OS, second ma-

chine had Docker platform installed and used Docker-

Compose file (version 1.18.0) for which we used one

image (https://hub.docker.com/-/tomcat/) for Tomcat and

(https://hub.docker.com/-/mysql/) for MySQL, third machine

used the same configuration as second machine with differ-

ent services and the final machine had the Docker platform

installed and used Docker-Compose file which consisted of

two images: first image for Tomcat and the second image for

MySQL. In Amazon, we used two machines, one of them

used Java virtual machine, the other installed the Docker

platform and the applications using Docker-Compose file

which consisted of one image for Tomcat and another for

Nginx.

We evaluated the proposed system under the following

three scenarios as is shown in Table II:

• Scenario 01 – Deploying two microservices (Tomcat

and MySQL) for Book and Purchase services in one

VM deployed in Microsoft Azure (represented as M).

In addition, one VM running two microservices (Nginx

and Tomcat) for the User Interface service, which is

deployed in Amazon Web Services (represented as A).

• Scenario 02 – We deployed two microservices (Tomcat

and MySQL) for the Book service running in the first

container; and two microservices (Tomcat and MySQL)

for the purchase service running in another container;

all containers are deployed in Azure (M). In addition

to this, we deployed two microservices (Tomcat and

Nginx) for the User Interface service in one container
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Table III
REQUEST RESULTS FOR ALL SCENARIOS

Service Name Scenario Lat. Average
(1 Sec)

Lat. Average
(5 Sec)

Lat. Average
(10 Sec)

User Interface-
Amazon

S1 7.984 8.186 8.185

Purchase-Azure S1 12.65 12.699 12.04
Books-Azure S1 10.063 10.082 9.381
User Interface-
Amazon

S2 1.56 1.567 2.296

Purchase-Azure S2 16.005 16.107 15.783
Books-Azure S2 0.152 0.141 0.169
User Interface-
Amazon

S3 10.167 10.407 16.868

Purchase-Azure S3 8.607 7.574 5.088
Books-Azure S3 16.131 17.097 8.787

which deployed in Amazon Web Services (A).

• Scenario 03 – We deployed one microservice (Tom-

cat) for Book and Purchase services running in the

first container and one microservice (MySQL) running

Database in another container; all containers are de-

ployed in Azure (M). In addition, one VM running

two microservices (Nginx and Tomcat) for the User-

Interface service is deployed in Amazon Web Services

(represented as (A).

We conducted experiments where the manager would push

system and process level statistics regarding services running

on two public clouds. For results analysis, the metrics

obtained for manager were related to all JMeter tests. As

mentioned previously, the JMeter tests generate 900 requests

to simulate the workload in order to validate the agents’

ability to capture performance metrics for all three scenarios.

A. Latency Time Results

M3 measured the average latency time in milliseconds for

the workload requests in each scenario (shown in Table III),

as well as the agents sending the monitoring information

to the manager every 1, 5, 10 seconds respectively. The

values captured for latency clearly show the computational

difference of multi-virtualization (containers/VMs) case in

multi-cloud environments. As we can see, the User Interface

service in (S2) has the least average latency (maximal 2.296
for 10 sec) as compared to (S1) and (S3). The reason behind

this is that (S2) used container architecture while (S1) and

(S3) used VM architecture. Also, for the Book and Purchase

service, (S2) gets better performance when compared to (S1)

and (S3). Overall, S2 provides the best performance for all

scenarios. It shows that the use of container architecture per

service in multiple cloud exploits the hardware of the virtual

machine more efficiently.

B. CPU Results

The CPU values for all scenarios are shown in Figure 5.

When analysing S1, for the entire interval of workload

test, all microservices were run in VMs, and submitted in

Azure and Amazon. The monitoring agents send monitoring

information to the manager every 1, 5 and 10 seconds

respectively. As shown in Figure 5(A), Tomcat microservice

of User Interface for 10 sec in Amazon is not affected like

that observed during 1 and 5 seconds. The reason behind

this is that it has a larger duration as compared to the

case when manager sends every 1 or 5 seconds. It shows

that the monitoring agents get correct data about CPU for

different microservices that reveals the effectiveness of M3.

The highest average CPU usage is noticed in Amazon for

Nginx microservice of User Interface in 1 second with

2.10% and for Tomcat of User Interface in 1 second is

1.80%. In contrast, the highest average CPU usage for all

microservices running in Azure is that for MySQL in 5

seconds (7.10%) which is not much different for Tomcat

for 1 second duration (7.05%).

For evaluating S2 in Azure containers, the highest average

usage of CPU is for Tomcat microservice for the Book

service that was running in container (C1) 10 seconds is

6.80%, and not that much different for Tomcat that was

running in container (C2) of the Purchase service in 10
seconds which is 6.60%. For MySQL microservice of the

Book service running in container (C1) in 10 seconds, the

CPU usage is 4.90% and for MySQL that was running in

container (C2) for Purchase service in 5 seconds, the CPU

usage is 4.10%. However, the average usage of CPU for

all microservices running in the Amazon container which

consists of Nginx and Tomcat microservices is practically

the same in all 1, 5 and 10 second durations with 7.00% as

shown in Figure 5(B).

For the evaluation of S3, the highest average usage of CPU

in Amazon for Nginx microservice of User Interface in 10
seconds is 1.90% and similarly for Tomcat in 10 seconds

is 1.90%. However, the highest average usage of CPU for

Tomcat microservice for that running in container (C1) in

10 seconds is 5.80% and in 1 second is 5.10%. MySQL mi-

croservice running in container (C2) in 10 seconds duration

has 5.45% CPU usage and in 5 seconds is 4.50% as shown

in Figure 5(C).

C. Memory Results

The results obtained for the memory consumption shows

the statistics regarding metrics values for the agents mon-

itoring both the public clouds in Figures 6. By using

M3, we can gather fine-grained data from complex multi-

tiered applications and can understand the performance of

microservices. For instance, in S1 running in Azure VMs as

shown in Figure 6(A), the highest average memory usage for

microservices (Tomcat and MySQL) of Book and Purchase

services are practically the same in 5 seconds (1025 MB),

while in 10 seconds Tomcat uses 1010 MB and MySQL

uses 1022 MB from the total memory of the VM which

is 1912 MB. Compared to Amazon which is running a

VM, the biggest amount of memory used by microservices

(Tomcat and Nginx) of User Interface in 10 seconds are

the same at a value of 215 MB, while in 5 seconds Nginx
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Figure 5. CPU Usage (Percentage) for Microservices on: (A) VMs in Amazon and Azure, (B) Containers in Amazon and Azure, (C) VM in Amazon
and Two Containers in Azure. [For the ease of presentation, we used the following abbreviation Nginx (N), Tomcat (T), and MySQL (M)].
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Figure 6. Memory Usage (MB) for Microservices on: (A) VMs in Amazon and Azure, (B) Containers in Amazon and Azure, (C) VM in Amazon and
Two Containers in Azure. [For the ease of presentation, we used the following abbreviation Nginx (N), Tomcat (T), and MySQL (M)].
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Figure 7. CPU Usage (Percentage) (A) and Memory Usage (MB) (B) for
Manager

used 205 MB and Tomcat used 206 MB from the total

allocated memory of the VM which is 992 MB. As shown

in Figure 6(A), the memory consumption on Azure is larger

than Amazon. The larger memory use on Azure could be

explained by the difference of virtual hardware configuration

between the two clouds. Also, the User Interface service

only forwards the requests to the Book service which does

more processing because it processes MySQL queries and

translates the results to JSON Object which is sent to the

underlying services.

For S2 as shown in Figure 6(B), running containers in

Azure, the highest amount of memory used by MySQL

microservice for the Purchase service in container (C2) in

10 seconds is 476 MB and for Tomcat for Purchase service

in container (C2) in 10 seconds is 469 MB. Usage for

MySQL microservice of Purchase service in container (C1)

in 10 seconds is 469 MB and Tomcat for the Purchase

service in container (C1) in 10 seconds is the same for

Tomcat microservice in (C2) which is 469 MB from the total

allocated memory of the container (1920 MB). In contrast to

this the highest amount of memory used for all microservices

(Nginx and Tomcat) of User Interface running containers in

Amazon is the same for both microservices in 10 seconds at

425 MB, which is not much different for 5 seconds (Nginx

and Tomcat) where both have the same memory usage which

is 393 MB, and in 1 second Tomcat used 382 MB while

Nginx used 372 MB from the memory total of the container

which is 992 MB.

In S3 as shown in Figure 6(C), running in Azure con-

tainers, the highest memory usage by the Tomcat microser-

vice for the Book service in container (C1) and MySQL

microservice of the Purchase service in container (C2) in 10
seconds is the same (471 MB) while Tomcat in container

(C1) in 5 seconds is 280 MB, and MySQL in container

(C2) in 5 seconds is 279 MB from the total memory of

the container which is 1912 MB. Compared to Amazon

running in VM, the average amount of memory used by

microservices (Tomcat and Nginx) of User Interface in 10
seconds is the same with the value of 289 MB, Tomcat in

5 seconds is 277 MB, and Nginx in 5 seconds is 230 MB

from the total memory size of the VM which is 992 MB.

In order to measure the overhead caused by the manager,

an experiment is conducted in which the manager process is

monitored for CPU and memory usage while an increasing

number of concurrent agents were registered. The amount

ranged from 2 to 64 concurrent agents. The results obtained

from the performance manager of increasing number of

agents are plotted on the CPU and Memory as shown

in Figure 7. The results show that the increase in the

number of agents affects both the increase in CPU usage (A)

and memory usage (B). CPU utilization increases by 20%

between 2 to 64 concurrent agents, with a more significant

increase from 16 to 32 agents. The use of memory has a
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more linear behaviour presenting a 27 MB increase from 2
to 64 concurrent agents.

The collected results show the effectiveness of using the

M3 model in Docker and VM deploying microservices. Our

contribution is to validate monitoring multi-virtualization in

multi-cloud services as well as the possibility of monitoring

individual processes in multi-process containers and VMs

running microservices.

VI. CONCLUSION

In this paper, we propose and deploy M3 – a novel

system for efficient and effective monitoring of applica-

tions based on multi-virtualization (containers/VMs) multi-

microservices deployed in multi-cloud environments. The

proposed solution provides users the ability to monitor the

performance of microservices that run inside containers and

VMs, and report their metrics performance in real-time. The

solution uses an agent-based architecture in order to scale

from a centralized to a decentralized architecture to suit the

demands of monitoring such complex services-based appli-

cations. We developed a proof-of-concept implementation of

the proposed solution using a Book-Shop application with

Docker containers and VMs deployed in Amazon and Azure

cloud environments. The proposed system was evaluated

under diverse scenarios with evaluation outcomes validating

the effectiveness of M3 in the monitoring of microservices in

multi-virtualization multi-cloud environments. In the future,

we will collect a large set of data using M3 from production-

ready systems to develop efficient deployment and orches-

tration strategies for microservices.
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