
Opportunistic Energy-Aware Scheduling for
Container Orchestration Platforms Using Graph

Neural Networks

Philipp Raith∗†, Gourav Rattihalli†, Aditya Dhakal†, Sai Rahul Chalamalasetti†,
Dejan Milojicic†, Eitan Frachtenberg†, Stefan Nastic∗ and Schahram Dustdar∗

∗TU Wien, Vienna, Austria

{p.raith, s.nastic, dustdar}@dsg.tuwien.ac.at
†Hewlett Packard Labs, Milpitas, USA

{first.lastname}@hpe.com

Abstract—Reducing the energy consumption of data centers
is critical to meeting international climate goals and lowering
operation costs. Container orchestration platforms can help
counteract this trend by optimally placing applications across the
infrastructure to increase resource utilization and reduce energy
consumption. But platforms in use today are still energy-agnostic
and do not offer any insights into energy consumption. In this
paper, we present a monitoring framework and a new modeling
approach for resource usage in data centers. The model captures
heterogeneous hardware and software and acts as input for a
Graph Neural Network (GNN) to predict power consumption.
Based on this model, we derive a set of container scheduling
algorithms that opportunistically schedule applications based on
the estimated energy impact of incoming containers. Our results
show that the GNN-based prediction model is very accurate
and achieves an average RMSE (Root Mean Square Error) of
7.5%. We have implemented a custom scheduler to demonstrate
the benefits of using our prediction, and our scheduler can
decrease energy consumption on average by 6.2% without any
code changes for the application and without increasing workload
completion time compared to the default Kubernetes scheduler.

Index Terms—GNN, Energy estimation, energy-aware sched-
uler

I. INTRODUCTION

Data centers may be responsible for around 3-13% of global

energy consumption by 2030 [1]. Therefore, platforms are

called to reduce energy consumption and increase sustainabil-

ity [2], [3]. Especially container orchestration platforms are

prevalent in today’s cloud and edge-cloud platforms because

they offer autonomous application and resource management

for large-scale application deployments [4], [5]. These plat-

forms facilitate the deployment in many application domains,

such as AI and HPC [6], [7], but also build the foundation for

other platform paradigms, such as serverless computing [4],

[8]. However, current container orchestration platforms, such

as Kubernetes or Apache Mesos, lack autonomous energy-

aware management strategies [9], [10]. Therefore, it is imper-

ative to develop more sustainable containerized platforms [3].

This study investigates energy-aware resource management

in container orchestration platforms to reduce energy con-

sumption. Specifically, we focus on an energy-aware container

scheduler using power prediction to make data centers more

sustainable, which has not been integrated yet into exist-

ing platforms and remains a relatively unstudied problem

in serverless computing [3], [11]–[13]. Energy estimation of

future applications can facilitate this development. To this end,

we introduce an end-to-end scheduling approach that includes

a monitoring system and a Graph Neural Network to estimate

energy consumption, which our scheduling algorithms use.

We introduce a novel graph model that allows us to perform

what-if estimations. For example, we can estimate the energy

consumption of a host if we schedule a specific container

onto it using historical data. Based on that, we implement

three energy-aware container scheduling algorithms that use

this prediction in a real-world setup. Therefore, the algorithms

opportunistically estimate the energy impact of applications

and base their decisions on this. However, simply estimating

the average power consumption of an application to estimate

the total energy consumption may also not be accurate, as

resource usage varies over time. Our approach solves these

challenges using a flexible graph representation. The graph-

based resource usage representation allows the combination of

arbitrary applications and hosts, accounts for different resource

phases throughout the application’s lifecycle, and supports het-

erogeneous systems. However, integrating a power-prediction

model into container-based platforms poses several challenges.

While tools exist to energy monitoring tools exist, they vary

from platform to platform, making energy estimation a univer-

sally applicable approach to estimating energy consumption.

Our energy estimation builds the foundation of our energy-

aware container scheduler, but it can also facilitate other

strategies to reduce a data center’s power consumption. For

example, estimating the power consumption of the hardware

accelerators for specific models before deployment can help

select more efficient hardware [12], cooling [14] and facilitate

the development of carbon-aware strategies.

Our contributions in this paper are as follows:

• A novel graph model for hosts and a Graph Neural Net-

work to predict the power consumption of hosts in con-

299

2024 IEEE 24th International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

979-8-3503-9566-2/24/$31.00 ©2024 IEEE
DOI 10.1109/CCGrid59990.2024.00042

20
24

 IE
EE

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

C
lu

st
er

, C
lo

ud
 a

nd
 In

te
rn

et
 C

om
pu

tin
g

(C
C

G
rid

) |
 9

79
-8

-3
50

3-
95

66
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
C

G
rid

59
99

0.
20

24
.0

00
42

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 13:37:31 UTC from IEEE Xplore. Restrictions apply.

tainer orchestration platforms. While our custom dataset

is comprised of CPU-focused profiling experiments, the

graph model can include arbitrary accelerators.

• The integration of the power prediction into Kubernetes

which builds on commonly used open-source projects for

monitoring resource usage.

• An energy-aware scheduling algorithm based on our

power prediction and integration with Kubernetes.

Our results show that the model can account for existing

accelerators and has a mean RMSE of 7.5%. On an on-

premise cluster, the scheduler evaluation includes hosts with

similar hardware specifications but observes different power

consumption due to a GPU on one. Moreover, the results

show that our energy-aware scheduler can reduce energy

consumption by 6.2% while maintaining good performance,

demonstrating the viability of our approach in real-world data

center management activities.

The remaining work is structured as follows. In Section II,

we discuss related work, and in Section III, we explain our

approach to solving the energy prediction for a workload, the

required monitoring to support the prediction, and energy-

aware scheduler algorithms. In Section IV, we talk about the

evaluation methodology for generating the training dataset and

a use case for our prediction in a Kubernetes-based custom

scheduler, and in Section V, we present and discuss the results

of our experiments in multiple scenarios. In Section VI, we

summarize our work’s next steps and conclude in Section VII.

II. RELATED WORK

While energy awareness in cloud applications and resource

management has been extensively studied [15]–[18], limited

work has been done in exploring energy awareness for con-

tainer orchestration [3], [13], [19]–[21]. To this end, we review

work spanning from carbon- and energy-aware serverless and

container-based systems to power-consumption prediction and

the use of GNNs in resource management.

A. Carbon- and Energy-Aware Approaches

We consider carbon-aware approaches related as we present

an AI model to predict power consumption, which can be

easily combined with real-time carbon emission intensities

(CEI) to build carbon-aware system management tools. Real-

time CEI updates are publicly available through different

third-party websites, such as WattTime1 and electricityMaps2.

Hanfy et al. [22] present CarbonScaler, a greedy algorithm for

carbon-aware scaling that has been integrated into Kubernetes

and evaluated using machine learning training and MPI jobs.

While our work does not consider carbon emissions, the

power consumption estimation we propose can facilitate future

carbon-aware strategies. Moreover, our power consumption es-

timation also differentiates us to other scheduling approaches.

By offloading applications to other nodes, Aslanpour et al. [11]

explore energy-aware serverless edge computing. Rastegar

1https://www.watttime.org/
2https://www.electricitymaps.com/

et al. [13] minimize CPU utilization and introduce an en-

ergy model tied to CPU utilization. In contrast, our power-

consumption prediction and the scheduler we build atop can

model different resources such as CPU, I/O, and hardware

accelerators. Caspart et al. [12] explore energy consumption of

AI workloads on heterogeneous nodes, highlighting the need

for models that predict based on resource usage and the high

impact of hardware accelerators on power consumption. Our

work aims to address this issue by proposing a flexible model

for power consumption prediction.

B. Power Consumption Prediction

Power consumption predictions have been explored from

various perspectives, such as container-based systems and

general purpose predictions. Ou et al. [23] present a random-

tree-based power consumption prediction in container-based

systems. They highlight the importance of container-level pre-

dictions, which we implicitly model by estimating the power

consumption of the host if a certain container would run on

it. Moreover, our approach follows a fine-grained power con-

sumption prediction model that allows to account for different

resource phases throughout the application’s lifecycle. Other

studies have presented linear consumption models for hetero-

geneous servers [24], reviewed energy consumption models

for data centers [25], and surveyed different models [26].

Others explore power consumption estimation using different

resource usage characteristics, such as I/O-based features

[27], [28] However, the most significant differences with our

approach are the use of a graph to model a host, the use of a

GNN for predictions, and the inherently flexible definition of

heterogeneous hosts with which intrinsic relationships can be

captured in contrast to other machine learning methods [29].

C. GNNs in Resource Management

Next, we discuss related work that uses GNNs for schedul-

ing or resource management strategies. Tulli et al. [30] use a

GNN to predict the Quality of Service (QoS) in scheduling

given a graph of containers and hosts while considering

different factors, such as temperature. The main difference

between our approach lies in the graph model and the task we

solve. We also model hosts at a much finer level. Moreover,

our GNN predicts power consumption given an application

placement, while theirs predicts QoS. Tam et al. [31] also use

GNNs to predict the performance of applications. Specifically,

they model microservice graphs as input for GNNs to predict

end-to-end latency.

III. APPROACH

Figure 1 highlights our approach of building an end-to-

end framework for energy-aware scheduling. We start by

explaining the monitoring setup and graph model definition.

A. Monitoring & Graph Definition

The monitoring infrastructure captures telemetry data for all

hosts h ∈ H in a data center. Hosts expose a set of sensors

Sh, each reporting back a single measurement (number) every

300

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 13:37:31 UTC from IEEE Xplore. Restrictions apply.

Scheduler

Data center

GNN

Scheduler
Loop

Monitoring

Host

Host

Host

Energy-aware
Algorithm

GNN

Fast HGT

Time

CPU � I/O RD
3.34

82.21

Host

Temperature

v v

v
v

...

... CPU I/O...

Accelerators

v
v

...
Power

Graph

Sensors (Sh)

CPU %

I/O WR
Bytes

Disk %

Memory
Used %

Network
TX Bytes

I/O RD
Bytes

Fans %

...

Measurements
(mt,s,h)

Time Frames�
(tfl,h,s)

CPU%

I/O RD

3.34, 32.12, 58.89, ...

12.99, 0.3., 8.58, ...

CPU%'

I/O RD'

aggregated

aggregated

tf'l,h,s

Feature Vectors
(fv)

fCPU =� CPU%'

� I/O WR
82.21

I/O WR 12.99, 0.3., 8.58, ...

I/O WR' aggregated

fI/O =� I/O RD', I/O WR'

ResourcesFans

Fig. 1: GNN-based Energy-Aware Scheduling

second, which we denote as mt,s,h, where t is the timestamp,

s the sensor and h the host. We divide measurements into two

types, counter, and gauge, whereas counter measurements can

only increase (e.g., CPU time spent) while gauge ones can vary

(e.g., RAM usage). Based on this monitoring setup, we now

explain how to preprocess the measurements into graphs that

act as input for our GNN. We create time frames that group

n consecutive measurements per sensor and host. Throughout

our work, we set n to 10, i.e., each frame contains ten seconds

of measurements. We denote each time frame as tfl,h,s, where

l is the index of the time frame created by dividing the original

measurements mt,s,h of sensor s on host h by L, the number

of time frames. The measurements in tfl,h,s are aggregated

based on their type. In the case of a counter measurement,

we calculate the total amount of work done within a time

frame (e.g., the sum of differences between measurements).

For gauge measurements, we calculate the arithmetic mean

value of all measurements in tf l,h,s, resulting in tf′l,h,s. Next,

we can create L heterogeneous graphs for each host, each

capturing the resource usage of one time frame. A simple

way of understanding this step is by thinking of each graph

containing the aggregated time frames of each sensor of one

host. This approach allows the capturing of varying resource

usage over time, and granularity, i.e., the size of time frames

is flexible.

A heterogeneous graph (HG) is defined as G = {V,E}. V
represents the node set and E the set of edges. Each node

and edge belong to a node (N) or edge type (R). In our

implementation, node types represent different resources, each

being monitored by one or multiple sensors, and edge types

represent semantic or physical connectivity between them,

where:

N = {Host,CPU,Memory,Disk,Network,

Pressure,GPU,Fan, Temperature,FPGA, SmartNIC} (1)

R = {Host-CPU,Host-Memory,Host-Disk,Host-Network,

Host-GPU,Host-Pressure,Host-Fan,Host-Temperature,

Host-Pressure, Temperature-Memory, Temperature-CPU}
(2)

All sensors are measured on a node level, and we exclude

container-level metrics as we have seen that generalization

suffers from modeling each container as a node in the graph.

Each node v in a graph is associated with a feature vector

fv that only contains numerical values and whose length

can differ across node types. The feature vector’s values can

be static (e.g., GPU model) or dynamic (e.g., current GPU

frequency), for which we introduced the preprocessing (i.e.,

tf′l,h,s). The unweighted and undirected edges connect each

resource type with the Host node, and Temperature nodes are

connected with resource types they report the temperature on

(e.g., CPU).

B. Application Signature

The graph model also allows us to model the resource

usage of applications, which builds the base of our what-if
estimations. However, only a subset of sensors can be isolated

from the host’s resource usage. For example, we can measure

the CPU usage per application, not the temperature or fan

increase it causes. To this end, we use sensors that capture

the resource usage at the container level for the following

node types: CPU, Memory, Disk and Network using cAdvisor,

a popular monitoring tool for container-level metrics. We

introduce the application signature asa,h ∈ AppSig, (a being

the application), that represents the isolated resource usage

of an application a on a host h, in the form of graphs.

Next, we introduce a function merge : (G,G) → G that

combines a graph of an application signature and a graph

representing a host to one graph. The function adds the values

of the counter type measurements together and calculates the

arithmetic mean for gauge measurements. The application

signatures allow us to perform lightweight what-if simulations

to estimate the power consumption of a host based on its

current system resource usage and an arbitrary application.

Because as contains a set of graphs, representing the resource

usage of an application over time, our model is aware of

different resource phases during an application’s execution.

C. Graph Neural Network Architecture

The resulting graphs are used as input for our GNN.

Its architecture builds on an existing one presented by Hu

et al. [32]. We use the fast implementation of the HGT

Convolutional layer, which is stacked two times, and then use

three global pooling methods (i.e., mean, max, and add) to

create a 1-dimensional vector that is passed through four linear

layers, which output the final vector containing the power

301

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 13:37:31 UTC from IEEE Xplore. Restrictions apply.

consumption predictions (min, max, avg) for a given graph

(time frame).

D. Opportunistic Energy-aware Scheduling Algorithms

We propose three scheduler variants that differ in their

decision-making, but all use the GNN for power-consumption

prediction. Specifically, we take an opportunistic approach by

viewing each container to schedule individually and its impact

on energy consumption, in contrast to others that find an

optimal placement given a set of containers.
1) Base Algorithm (GNN): The base energy-aware schedul-

ing algorithm fetches each host’s current state and adds the

signature of the container to schedule. To accomplish this,

we build graphs for each host and combine them with the

container’s application signature using the merge function.

The output of this is a sequence of graphs that represent the

estimated resource usage of the container running on the host.

Next, we use the GNN to estimate average power consumption

in Watts per graph, which we use to calculate the total energy

consumption. The last step finds the host with the minimum

estimated total energy consumption.
2) Application-Aware (GNN-Aware): We also propose an

application-aware algorithm that works similarly to the one

just described but considers the future resource usage of appli-

cations concurrently running. For example, the base algorithm

fetches the current resource usage of each host and then

adds on top the application to schedule. However, applications

already running on the host might end soon or run for a

long time—the system resource usage varies. It requires the

assumption that we have the application signature for each

application running, which allows us to estimate the remaining

run time and dynamically change the resource usage of each

prediction depending on which point of processing they are

at.
3) Packing (GNN-Packing): The last scheduling algorithm

integrates with both of the previously introduced algorithms.

The Packing strategy modifies the selection algorithm by

considering the host with the second lowest estimated total

energy consumption. We introduce a threshold with which we

determine to take this instead of the lowest. We select it if the

second one’s energy consumption is within the range of the

first one by adding the threshold on top. We set the threshold to

5% for all experiments. We do this to prefer nodes with more

applications running to further dampen the power consumption

increase.

E. Implementation

After explaining the envisioned prediction and scheduler

theoretically, we describe key aspects of our implementation.
1) Monitoring: Our monitoring system is based on

Prometheus, a time-series database that monitors the infras-

tructure by following a pull-based monitoring approach. This

means that on each host, multiple exporter applications expose

a range of metrics via HTTP. Prometheus scrapes each exporter

every second and stores it in its database. We deploy cAdvisor3

3https://github.com/google/cadvisor

Stressor Resource stres-ng Arguments

cpu CPU cpu (1- 88)
memrate Memory memrate (1-4), vm-bytes (256M)
vm Memory vm (1-10), vm-bytes (5%-50%)
iomix Disk I/O iomix (1-4), iomix-bytes (256M)

TABLE I: Stressors and parameters for profiling

to monitor containers, NodeExporter4 to monitor host metrics

and the Nvidia DCGM5 exporter to monitor GPU usage, as

well as two custom exporters for HPE iLO 6 and Xilinc’s

xbutil 7 tool to monitor FPGAs. We observe 16 dynamic

features from cAdvisor, 37 dynamic and static metrics from

NodeExporter, and fan and temperature from iLO. While

we did not run workload using hardware accelerators, we

are still monitoring it and integrate it into our graph during

preprocessing. Namely, 22 metrics for GPUs, six for FPGAs

and three for SmartNICs. We must include them because it

allows the model to learn the individual power consumption

of very similar hosts (i.e., same CPU and memory) but have

a different idle power due to equipped hardware accelerators.

2) Scheduler: The scheduler is implemented in Python and

uses a Kubernetes client library to communicate with the

API server. We use Python’s Multiprocessing library to spawn

multiple independent processes that cache monitoring data

in memory to instantaneously access telemetry data required

for inference and a scheduler loop that repeatedly takes new

applications from the scheduler queue. Upon decision-making,

the scheduler loop tells Kubernetes which host to start the ap-

plication. The GNN is implemented in Python using PyTorch

v2.0.1 [33] and uses the library PyTorch Geometric v2.3.1 [34]

, which offers an implementation of the Heterogeneous Graph

Transformer [32] network.

IV. EVALUATION

Our evaluation consists of two parts: training and validating

our GNN for power consumption and evaluating the energy-

consumption reduction when employing our energy-aware

scheduler. The cluster we used consists of three nodes, all

equipped with dual-socket AMD 7443 CPUs. Two nodes were

configured with lower TDP (Thermal Design Power), while

one was configured for full TDP. Each node was also equipped

with 256 GB of memory, and one node was also equipped with

an Nvidia A100X GPU.

A. Training Dataset

To generate training data, we use different stress-ng stres-

sors to stress certain parts of the system. This approach

allows us to generate applications with different resource usage

phases that mimic the behavior of real-world applications.

Benchmark suites like FunctionBench [35] offer similar ap-

plications (e.g., matrix multiplication, disk I/O), but we want

4https://github.com/prometheus/node exporter
5https://github.com/NVIDIA/DCGM
6https://www.hpe.com/us/en/hpe-integrated-lights-out-ilo.html
7https://xilinx.github.io/XRT/master/html/xbutil.html

302

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 13:37:31 UTC from IEEE Xplore. Restrictions apply.

Benchmark CPU RAM Parameters Duration

LavaMD 4 4 GB -cores 4 -boxes1d 50 ∼100s
LavaMD 8 8 GB -cores 8 -boxes1d 50 ∼50s
Leukocyte 4 4 GB 40 40 testfile.avi ∼30s
Leukocyte 8 8 GB 50 40 testfile.avi ∼18s
srad v1 4 4 GB 1000 0.5 5020 458 4 ∼12s
srad v1 8 8 GB 0.5 5020 458 4 ∼10s

TABLE II: Rodinia applications for scheduler evaluation

to create a set of applications that focus on different resources

so that a wide range of different resource usage is exposed.

Table I shows each hardware resource’s stressors, parameters,

and value ranges. Each stressor runs for 100 seconds, and in

total, there are 72 stress tests for each host. We split the dataset

using a 5-fold approach and show the Root Mean Squared

Error (RMSE) in the results for each run. The k-fold split is

commonly used in machine learning [36]. This means we run

5 training-test splits, where one training dataset contains 4/5

of the complete dataset. The profiling data of different hosts is

included in training and test sets. In the future, other resources,

such as FPGA, should be stressed to train the model on a wider

resource usage spectrum.

To train the GNN, we use Adam Optimizer with a learning
rate of 1e-5, 125 epochs, and batch size of 5.

B. Scheduler evaluation

Our scheduler evaluation consists of five different ap-

proaches: GNN, GNN-Aware, GNN-Packing, Spreading and

Packing. GNN, GNN-Aware, and GNN-Packing are using the

algorithms we presented using the power consumption predic-

tions. The Spreading scheduling strategy balances containers,

i.e., the CPU cores and memory used, as the default Kuber-

netes scheduler does. The Packing strategy always chooses the

node with the highest number of CPU cores used. The number

of CPU cores requested and used are pre-determined, and the

applications are using the Rodinia Benchmark Suite [37]. All

applications immediately run the computation after starting

and report the results (i.e., execution duration) back for post-

experiment analysis.

Table II shows all configurations, the requests, and limits

for the number of cores and memory for Kubernetes resource

allocation and the average execution duration. We define two

scenarios based on a sinusoidal pattern. The short-running one

submits 72 containers in 209 seconds, while the longer-running

one submits 128 containers in 234 seconds.

V. RESULTS

In this section, we present the results of our evaluation.

We start by showing the results of the GNN training and,

afterward, the scheduler evaluation results.

A. Graph Neural Network

The mean RMSE of our AI model from the 5-fold evaluation

is around 7.5%, and the standard deviation is around 3%.

These encouraging results can be improved further by consid-

ering a more complex network architecture and the inclusion

of additional sensors. The selection of sensors was mainly

motivated by the use case of implementing a scheduler based

on the ability to perform what-if estimations to predict the

impact of an application on power consumption.

We also see that the model can differentiate between similar

systems observing different static power consumption. For

example, one host in the cluster is equipped with an Nvidia

A100X that increases the static power consumption by roughly

50 Watts (∼20% increase). The model can differentiate be-

tween these because we model the equipped GPU in the input.

In addition, we performed experiments with different GNN

architectures, using LSTM-based approaches and different

combinations of the presented model architecture (i.e., by

varying the number of HGT layers). Our results indicate

that there is a performance-accuracy trade-off to be made.

Specifically, with an increasingly complex model, the accuracy

increases but the performance suffers (i.e., inference speed

decreases). We saw 2x changes in terms of time to predict

but a marginal increase in accuracy (i.e., a 2% decrease of

RMSE). Based on that, we chose the non-LSTM approach.

B. Energy-Aware Scheduler

We discuss the schedulers by showing the summarized

results, looking at the power consumption over time, and

investigating the overhead our scheduler imposes.

Table III and Table IV show the results for the short-

running and long-running, respectively. The Packing scheduler

achieved the lowest total energy consumption (Wh) and lowest

EtS over all others in the short-running experiment. The GNN-
Packing algorithm is close and only has slightly higher energy

consumption, i.e., by 1.6%. The Energy-to-Solution (EtS)

metric shows the workload’s total energy consumption [38].

Whereas the GNN-Packing was able to reduce total energy

consumption and EtS in the long-running one. In all cases, the

Spreading scheduler performed worse and has, in comparison

to the GNN-Packing scheduler, an increase of 6.2% Wh and

consumes 5.27% W per second more on average in the long-

running one. In terms of makespan, the Packing scheduler

performed worse, making our GNN-based approaches a viable

solution to balance between the two goals. Interestingly, the

performance, indicated by the Mean Performance factor that

shows the increase to the average duration, is similar across

the different approaches, even though the Spreading spread the

workload across nodes. The reason for this is that the workload

submits enough jobs to saturate all hosts, which makes the

sharp difference in Watts (i.e., a decrease of ∼5%) very good.

1) Power Draw over time: Figure 2 shows the power

over time for the long-running experiment setup. It is clearly

visible that the Packing approach maintained a low power

consumption. We also see a sharp increase of power con-

sumption for the Spreading because it chooses all nodes

equally and, therefore, will also pick nodes with higher power

consumption which results in higher energy consumption. Our

model can differentiate between nodes and pick the low-

energy ones. While Packing did not select this node due to the

implementation, our GNN could predict that the other nodes

303

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 13:37:31 UTC from IEEE Xplore. Restrictions apply.

Wh Makespan (s) EtS (J) Mean Performance (factor) Std. Performance (%) Mean Power Consumption (W)
Scheduler

GNN 89.27±0.3 260±0.71 105206±331.63 1.28±0.021 22.2±1.03 403±1.55
GNN-Aware 90.05±0.11 259±0.71 104967±915.7 1.29±0.022 20.13±0.12 403±2.95
GNN-Packing 88.84±0.39 260±0.71 104250±782.06 1.31±0.01 20.72±0.45 398±3.95
Packing 87.44±0.39 261±2.83 102039±221.32 1.32±0.004 18.44±0.43 390±2.82
Spreading 90.69±0.35 251±2.12 106854±806.81 1.27±0.033 23.26±1.89 424±0.69

TABLE III: Results of individual schedulers for the short experiment

Wh Makespan (s) EtS (J) Mean Performance (factor) Std. Performance (%) Mean Power Consumption (W)
Scheduler

GNN 141.69±1.07 336±1.41 169078±341.53 1.37±0.004 22.35±0.47 502±2.83
GNN-Aware 140.75±0.09 332±2.83 168130±1623.52 1.34±0.008 20.98±0.92 506±0.78
GNN-Packing 139.17±0.79 332±0.71 168039±439.82 1.36±0.016 23.78±0.61 504±3.24
Packing 141.14±1.29 339±0.71 168273±178.19 1.39±0.012 21.88±0.84 495±0.7
Spreading 148.38±2.28 335±2.12 178960±87.68 1.20±0.003 18.54±1.56 532±3.25

TABLE IV: Results of individual schedulers for long experiment

are more energy-efficient and select those on purpose. This

circumstance, including the fact that Packing will have a very

high performance degradation, due to the strategy of filling up

nodes, proves that our algorithms can strike a good balance

between Packing and Spreading.

Fig. 2: Power over Time (long-running experiment)

2) Scheduling Overhead: The last aspect of our evaluation

is the scheduling overhead caused by using the GNN. For this,

we measured the time from preprocessing to postprocessing

the selection algorithm. The mean overhead is around 250ms

which can be improved upon by using GPUs for inference.

It also shows the potential of our approach because we were

still able to reduce makespan and energy consumption.

VI. FUTURE WORK AND LIMITATIONS

An important task to alleviate this proof of concept to a

production-ready solution is considering more edge cases than

we covered. Specifically, what should the scheduler do in case

of the arrival of new applications? If the application has never

been run on any host, we must resort to a default scheduling

strategy (i.e., Packing). Once the application has been run on

a node, we can use its isolated monitoring from cAdvisor.

This entails implementing continuous learning using MLOps

[39] to fine-tune the system during run time. While our model

learns the power consumption of the host instead of on a per-

application base, we still need to incorporate newly available

data. Lastly, to become a viable production system scheduler,

scalability, and energy efficiency experiments have to be made

to guarantee energy savings concerning the scheduling over-

head. We also think the GNN can facilitate the creation of a

clustering method to identify similar workloads [40]. This way,

the GNN-based scheduler can take historical data of similar

workloads for its decision. Moreover, resource interference-

aware scheduling methods can be used by taking advantage

of this clustering approach by avoiding placing applications

from the same cluster together. Reducing energy consumption

is not an exclusive goal of cloud data centers but also plays

a vital role in the edge-cloud continuum where devices might

be battery-powered [41]. The ability to support heterogeneous

devices is, in this context, even more important. Our initial

graph model can be extended with domain-expert knowledge

and models of complex relationships between components to

increase its accuracy. While in this work, we only model

hardware accelerators but did not run profiling experiments,

we plan to run more Rodinia benchmarks [42], [43] on AMD

FPGAs and GPUs to extend the applicability of our model.

VII. CONCLUSION

This work introduces a novel model to represent hosts and

host components in a data center as graphs. Atop the graph,

we implement and train a Graph Neural Network to predict the

power consumption over a specific time frame. The model’s

mean RMSE is ≈ 7.5% and can facilitate the development of

energy-aware data center management strategies differently.

We showcase the feasibility of using our GNN in scheduling

containers, where we can reduce energy consumption by an av-

erage of 6.2% while also completing the workload faster than

a scheduler working like the default Kubernetes scheduler.

However, improving energy efficiency is only a partial solution

as it has become clear that we should focus on reducing carbon

emissions as well. Therefore, deploying only energy-aware

strategies might not be enough, and carbon-aware ones are

required. Our approach to predicting energy consumption can

facilitate building new carbon-aware strategies.

304

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 13:37:31 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. S. Andrae and T. Edler, “On global electricity usage of communica-
tion technology: trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157,
2015.

[2] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre
energy consumption under the european code of conduct for data centre
energy efficiency,” Energies, vol. 10, no. 10, 2017. [Online]. Available:
https://www.mdpi.com/1996-1073/10/10/1470

[3] P. Patros, J. Spillner, A. V. Papadopoulos, B. Varghese, O. Rana, and
S. Dustdar, “Toward sustainable serverless computing,” IEEE Internet
Computing, vol. 25, no. 6, pp. 42–50, 2021.

[4] P. Raith, S. Nastic, and S. Dustdar, “Serverless edge computing—where
we are and what lies ahead,” IEEE Internet Computing, vol. 27, no. 3,
pp. 50–64, 2023.

[5] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, “Exploring po-
tential for non-disruptive vertical auto scaling and resource estimation
in kubernetes,” IEEE International Conference on Cloud Computing,
CLOUD, vol. 2019-July, pp. 33–40, 7 2019.

[6] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Mashup: making
serverless computing useful for hpc workflows via hybrid execution,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2022, pp. 46–60.

[7] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a
serverless architecture,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 1288–1296.

[8] S. Nastic, P. Raith, A. Furutanpey, T. Pusztai, and S. Dustdar, “A
serverless computing fabric for edge & cloud,” in 2022 IEEE 4th
International Conference on Cognitive Machine Intelligence (CogMI).
IEEE, 2022, pp. 1–12.

[9] P. Czarnul, J. Proficz, A. Krzywaniak et al., “Energy-aware high-
performance computing: survey of state-of-the-art tools, techniques, and
environments,” Scientific Programming, vol. 2019, 2019.

[10] G. Rattihalli, N. Hogade, A. Dhakal, E. Frachtenberg, R. P. Hong En-
riquex, P. Bruel, A. Mishra, and D. Milojicic, “Fine-grained hetero-
geneous execution framework with energy aware scheduling,” IEEE
International Conference on Cloud Computing, 2023.

[11] M. S. Aslanpour, A. N. Toosi, M. A. Cheema, and R. Gaire, “Energy-
aware resource scheduling for serverless edge computing,” in 2022
22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2022, pp. 190–199.

[12] R. Caspart, S. Ziegler, A. Weyrauch, H. Obermaier, S. Raffeiner, L. P.
Schuhmacher, J. Scholtyssek, D. Trofimova, M. Nolden, I. Reinartz
et al., “Precise energy consumption measurements of heterogeneous
artificial intelligence workloads,” in International Conference on High
Performance Computing. Springer, 2022, pp. 108–121.

[13] S. H. Rastegar, H. Shafiei, and A. Khonsari, “Enex: An energy-aware
execution scheduler for serverless computing,” IEEE Transactions on
Industrial Informatics, 2023.

[14] S. MirhoseiniNejad, H. Moazamigoodarzi, G. Badawy, and D. G. Down,
“Joint data center cooling and workload management: A thermal-aware
approach,” Future Generation Computer Systems, vol. 104, pp. 174–186,
2020.

[15] S. Bharany, S. Sharma, O. I. Khalaf, G. M. Abdulsahib, A. S.
Al Humaimeedy, T. H. H. Aldhyani, M. Maashi, and H. Alkahtani, “A
systematic survey on energy-efficient techniques in sustainable cloud
computing,” Sustainability, vol. 14, no. 10, 2022. [Online]. Available:
https://www.mdpi.com/2071-1050/14/10/6256

[16] Y. Fan, Z. Lan, T. Childers, P. Rich, W. Allcock, and M. E. Papka, “Deep
reinforcement agent for scheduling in hpc,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2021, pp. 807–
816.

[17] Y. Fan, Z. Lan, P. Rich, W. Allcock, and M. E. Papka, “Hybrid workload
scheduling on hpc systems,” in 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2022, pp. 470–480.

[18] D. Nichols, A. Marathe, K. Shoga, T. Gamblin, and A. Bhatele,
“Resource utilization aware job scheduling to mitigate performance vari-
ability,” in 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2022, pp. 335–345.

[19] A. Tzenetopoulos, C. Marantos, G. Gavrielides, S. Xydis, and
D. Soudris, “Fade: Faas-inspired application decomposition and energy-
aware function placement on the edge,” in Proceedings of the 24th
International Workshop on Software and Compilers for Embedded
Systems, 2021, pp. 7–10.

[20] P. Sharma, “Challenges and opportunities in sustainable serverless
computing,” 2022.

[21] D. C. Wilson, S. Jana, A. Marathe, S. Brink, C. M. Cantalupo, D. R.
Guttman, B. Geltz, L. H. Lawson, A. H. Al-rawi, A. Mohammad,
F. Keceli, F. Ardanaz, J. M. Eastep, and A. K. Coskun, “Introducing
application awareness into a unified power management stack,” in 2021
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2021, pp. 320–329.

[22] W. A. Hanafy, Q. Liang, N. Bashir, D. Irwin, and P. Shenoy, “Car-
bonscaler: Leveraging cloud workload elasticity for optimizing carbon-
efficiency,” arXiv preprint arXiv:2302.08681, 2023.

[23] D. Ou, C. Jiang, M. Zheng, and Y. Ren, “Container power consumption
prediction based on gbrt-pl for edge servers in smart city,” IEEE Internet
of Things Journal, 2023.

[24] X. Zhang, J.-J. Lu, X. Qin, and X.-N. Zhao, “A high-level energy con-
sumption model for heterogeneous data centers,” Simulation Modelling
Practice and Theory, vol. 39, pp. 41–55, 2013.

[25] K. M. U. Ahmed, M. H. Bollen, and M. Alvarez, “A review of data
centers energy consumption and reliability modeling,” IEEE Access,
vol. 9, pp. 152 536–152 563, 2021.

[26] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 732–794, 2015.

[27] Z. Zhou, J. H. Abawajy, F. Li, Z. Hu, M. U. Chowdhury, A. Alelaiwi,
and K. Li, “Fine-grained energy consumption model of servers based
on task characteristics in cloud data center,” IEEE access, vol. 6, pp.
27 080–27 090, 2017.

[28] T. Khan, W. Tian, S. Ilager, and R. Buyya, “Workload
forecasting and energy state estimation in cloud data
centres: Ml-centric approach,” Future Generation Computer
Systems, vol. 128, pp. 320–332, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X21004155

[29] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
2021.

[30] S. Tuli, S. S. Gill, M. Xu, P. Garraghan, R. Bahsoon, S. Dustdar,
R. Sakellariou, O. Rana, R. Buyya, G. Casale et al., “Hunter: Ai based
holistic resource management for sustainable cloud computing,” Journal
of Systems and Software, vol. 184, p. 111124, 2022.

[31] D. S. H. Tam, Y. Liu, H. Xu, S. Xie, and W. C. Lau, “Pert-gnn: Latency
prediction for microservice-based cloud-native applications via graph
neural networks,” in Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, ser. KDD ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 2155–2165.
[Online]. Available: https://doi.org/10.1145/3580305.3599465

[32] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous
graph transformer,” in Proceedings of The Web Conference
2020, ser. WWW ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 2704–2710. [Online]. Available:
https://doi.org/10.1145/3366423.3380027

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Informa-
tion Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019.

[34] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[35] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD). IEEE, 2019, pp. 502–504.

[36] T.-T. Wong and P.-Y. Yeh, “Reliable accuracy estimates from k-fold cross
validation,” IEEE Transactions on Knowledge and Data Engineering,
vol. 32, no. 8, pp. 1586–1594, 2020.

[37] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[38] T. Wilde, A. Auweter, M. K. Patterson, H. Shoukourian, H. Huber,
A. Bode, D. Labrenz, and C. Cavazzoni, “Dwpe, a new data center

305

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 13:37:31 UTC from IEEE Xplore. Restrictions apply.

energy-efficiency metric bridging the gap between infrastructure and
workload,” in 2014 International Conference on High Performance
Computing & Simulation (HPCS), 2014, pp. 893–901.

[39] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine learning operations
(mlops): Overview, definition, and architecture,” IEEE Access, vol. 11,
pp. 31 866–31 879, 2023.

[40] A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Müller, “Graph
clustering with graph neural networks,” Journal of Machine Learning
Research, vol. 24, no. 127, pp. 1–21, 2023. [Online]. Available:
http://jmlr.org/papers/v24/20-998.html

[41] G. R. Russo, V. Cardellini, and F. L. Presti, “Serverless functions
in the cloud-edge continuum: Challenges and opportunities,” in 2023
31st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). IEEE, 2023, pp. 321–328.

[42] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC), ser. IISWC ’09. USA:
IEEE Computer Society, 2009, p. 44–54. [Online]. Available:
https://doi.org/10.1109/IISWC.2009.5306797

[43] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Understanding
performance differences of fpgas and gpus,” in 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2018, pp. 93–96.

306

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 13:37:31 UTC from IEEE Xplore. Restrictions apply.

