REMOTING
PATTERNS

Foundations of Enterprise,
Internet and Realtime
Distributed Object Middleware

Markus Volter
Michael Kircher

Uwe Zdun

SOFTWARE DESIGN PATTERNS

‘g ‘ %S ffirs.fm Page iii Friday, September 24, 2004 8:31 PM

Remoting Patterns

Foundations of Enterprise, Internet and Realtime
Distributed Object Middleware

Markus Vélter, voelter - ingenieurburo flir softwaretechnologie,
Heidenheim, Germany

Michael Kircher, Siemens AG Corporate Technology, Munich, Germany

Uwe Zdun, Vienna University of Economics and Business
Administration, Vienna, Austria

John Wiley & Sons, Ltd

® ¢

4~ ¢

.

%E ffirs.fm Page iv Friday, September 24, 2004 8:31 PM

Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 85Q, England

Telephone (+44) 1243 779777
Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in
writing of the Publisher, with the exception of any material supplied specifically for the purpose of being
entered and executed on a computer system for exclusive use by the purchaser of the publication.Requests to
the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, South-
ern Gate, Chichester, West Sussex PO19 85Q, England, or emailed to permreq@wiley.co.uk, or faxed to (+44)
1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter cov-
ered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If profes-
sional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Volter, Markus.

Remoting patterns: foundations of enterprise, internet and realtime distributed object middleware /
Markus Volter, Michael Kircher, Uwe Zdun.

.cm.

Includes bibliographical references and index.

ISBN 0-470-85662-9 (cloth : alk. paper)

1. Computer software—Development. 2. Software patterns. 3. Electronic data processing—
Distributed processing. 4. Middleware. L. Kircher, Michael. II. Zdun, Uwe. III. Title.

QA76.76.D47V65 2004
005.1—dc22
2004018713

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 0-470-85662-9
Typeset in 10.7/13.7 pt Book Antiqua by Laserwords Private Limited, Chennai, India
from files produced by the authors
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

ﬁ%

&

‘ %S ftoc.fm Page v Friday, September 24, 2004 8:33 PM

A

Contents

Foreword
Series Foreword

Preface

How to read this book

Goals of the book

About the authors
Acknowledgments

Patterns and Pattern Languages
Our Pattern form

Key to the illustrations

1 Introduction To Distributed Systems

Distributed Systems: reasons and challenges
Communication middleware
Remoting styles

2 Pattern Language Overview

Broker
Overview of the Pattern chapters

3 Basic Remoting Patterns

Requestor

Client Proxy

Invoker

Client Request Handler

Server Request Handler
Marshaller

Interface Description

Remoting Error

Interactions among the patterns

ix
Xiii
XVii
XVii
XiX
XX
XXii
XXiii
XXViii
XXXi

—

© N =

20
27

35

37
40
43
48
51
55
59
63
66

® ¢

‘ %S ftoc.fm Page vi Friday, September 24, 2004 8:33 PM

vi Contents
4 |dentification Patterns 73
Object ID 74
Absolute Object Reference 77
Lookup 81
Interactions among the patterns 85
5 Lifecycle Management Patterns 87
Basic lifecycle patterns 88
Static Instance 90
Per-Request Instance 93
Client-Dependent Instance 96
General resource management patterns 99
Lazy Acquisition 100
Pooling 103
Leasing 106
Passivation 109
Interactions among the patterns 111
6 Extension Patterns 127
Invocation Interceptor 130
Invocation Context 133
Protocol Plug-In 135
Interactions among the patterns 138
7 Extended Infrastructure Patterns 141
Lifecycle Manager 143
Configuration Group 146
Local Object 149
QoS Observer 151
Location Forwarder 154
Interactions among the patterns 158
8 Invocation Asynchrony Patterns 163
Fire and Forget 165
Sync with Server 168
Poll Object 170
Result Callback 173
Interactions among the patterns 176

.

S ‘ %S ftoc.fm Page vii Friday, September 24, 2004 8:33 PM

Contents

9 Technology Projections

10 .NET Remoting Technology Projection

A brief history of .NET Remoting
.NET concepts — a brief introduction

A pattern map for Remoting Patterns
A simple .NET Remoting example
Remoting boundaries

Basic internals of .NET Remoting
Error handling in .NET
Server-activated instances
Client-dependent instances and Leasing
More advanced lifecycle management
Internals of .NET Remoting
Extensibility of .NET Remoting
Asynchronous communication
Outlook for the next generation

11 Web Services Technology Projection

A brief history of Web Services

A pattern map for Remoting Patterns
SOAP messages

Message processing in Web Services
Protocol integration in Web Services
Marshaling using SOAP XML encoding
Lifecycle management in Web Services
Client-Side asynchrony

Web Services and QoS

Web Services security

Lookup of Web Services: UDDI

Other Web Services frameworks
Consequences of the pattern variants used in Web Services

12 CORBA Technology Projection

A brief history of CORBA

A pattern map for Remoting Patterns
An initial example in CORBA
CORBA basics

Messaging in CORBA

Real-Time CORBA

vii

185

187

187
188
189
190
195
197
198
199
208
215
217
221
228
235

239

239
244
244
256
264
266
269
270
276
278
279
280
289

293

293
294
296
298
318
323

® ¢

A

‘ gi% ftoc.fm Page viii Friday, September 24, 2004 8:33 PM

viii

13 Related Concepts, Technologies, and Patterns

Related patterns

Distribution infrastructures
Quality attributes
Aspect-orientation and Remoting

Appendix A Extending AOP Frameworks for Remoting
References

Index

Contents

333

335
338
347
353

355
363
375

.

&

A

‘ gi% fforward.fm Page ix Friday, September 24, 2004 8:33 PM

Foreword

Many of today’s enterprise computing systems are powered by distrib-
uted object middleware. Such systems, which are common in industries
such as telecommunications, finance, manufacturing, and government,
often support applications that are critical to particular business opera-
tions. Because of this, distributed object middleware is often held to
stringent performance, reliability, and availability requirements. Fortu-
nately, modern approaches have no problem meeting or exceeding these
requirements. Today, successful distributed object systems are essen-
tially taken for granted.

There was a time, however, when making such claims about the possi-
bilities of distributed objects would have met with disbelief and
derision. In their early days, distributed object approaches were often
viewed as mere academic fluff with no practical utility. Fortunately, the
creators of visionary distributed objects systems such as Eden, Argus,
Emerald, COMANDOS, and others were undeterred by such opinion.
Despite the fact that the experimental distributed object systems of the
1980s were generally impractical — too big, too slow, or based on features
available only from particular specialized platforms or programming
languages — the exploration and experimentation required to put them
together collectively paved the way for the practical distributed objects
systems that followed.

The 1990s saw the rise of several commercially successful and popular
distributed object approaches, notably the Common Object Request
Broker Architecture (CORBA) promoted by the Object Management
Group (OMG) and Microsoft's Common Object Model (COM).
CORBA was specifically designed to address the inherent heteroge-
neity of business computing networks, where mixtures of machine
types, operating systems, programming languages, and application
styles are the norm and must co-exist and cooperate. COM, on the
other hand, was built specifically to support component-oriented
applications running on the Microsoft Windows operating system.

ﬁ%

® ¢

A

‘ gi% fforward.fm Page x Friday, September 24, 2004 8:33 PM

Foreword

Today, COM has been largely subsumed by its successor, .NET, while
CORBA remains in wide use as a well-proven architecture for building
and deploying significant enterprise-scale heterogeneous systems, as
well as real-time and embedded systems.

As this book so lucidly explains, despite the fact that CORBA and COM
were designed for fundamentally different purposes, they share a
number of similarities. These similarities range from basic notions,
including remote objects, client and server applications, proxies,
marshalers, synchronous and asynchronous communications, and inter-
face descriptions, to more advanced areas, including object identification
and lookup, infrastructure extension, and lifecycle management. Not
surprisingly, though, these similarities do not end at CORBA and COM.
They can also be found in newer technologies and approaches, including
NET, the Java 2 Enterprise Edition (J2EE), and even in Web Services
(which, strictly speaking, is not a pure distributed object technology, but
nevertheless has inherited many of its characteristics).

Such similarities are of course better known as ‘patterns’. Patterns are
generally not so much created as discovered, much as a miner finds a
diamond or a gold nugget buried in the earth. Successful patterns result
from the study of successful systems, and the remoting patterns
presented here are no exception. Our authors, Markus, Michael, and
Uwe, who are each well versed in both the theory and practice of
distributed objects, have worked extensively with each of the technol-
ogies I've mentioned. Applying their pattern-mining talents and
efforts, they have captured for the rest of us the critical essence of a
number of successful solutions and approaches found in a number of
similar distributed objects technologies.

Given my own long history with CORBA, I am not surprised to find
that several of the patterns that Markus, Michael, and Uwe document
here are among my personal favorites. For example, topping my list is
the Invocation Interceptor pattern, which I have found to be critical for
creating distributed objects middleware that provides extensibility and
modularity without sacrificing performance. Another favorite of mine
is the Leasing pattern, which can be extremely effective for managing
object lifecycles.

This book does not just describe a few remoting patterns, however.
While many patterns books comprise only a loose collection of patterns,

ﬁ%

.

A

‘ gi% fforward.fm Page xi Friday, September 24, 2004 8:33 PM

Foreword

xi

this book also provides a series of technology projections that tie the
patterns directly back to the technologies that employ them. These
projections clearly show how the patterns are used within .NET,
CORBA, and Web Services, effectively recreating these architectures
from the patterns mined from within them. With technology projections
like these, it has never been easier to see the relationships and roles of
different patterns with respect to each other within an entire architec-
ture. These technology projections clearly link the patterns, which are
already invaluable by themselves, into a comprehensive, harmonious,
and rich distributed objects pattern language. In doing so, they conspic-
uously reveal the similarities among these different distributed object
technologies. Indeed, we might have avoided the overzealous and tire-
some ‘CORBA vs. COM’ arguments of the mid-1990s had we had these
technology projections and patterns at the time.

Distributed objects technologies continue to evolve and grow. These
patterns have essentially provided the building blocks for the experi-
mental systems of the 1980s, for the continued commercial success and
wide deployment of distributed objects that began in the 1990s, and for
today’s Web Services integration approaches. Due to the never-ending
march of technology, you can be sure that before too long new technolo-
gies will appear to displace Web Services. You can also be sure that the
remoting patterns that Markus, Michael, and Uwe have so expertly
provided for us here will be at the heart of those new technologies as well.

Steve Vinoski
Chief Engineer, Product Innovation
IONA Technologies

March 2004

.

&

% é fforward.fm Page xii Friday, September 24, 2004 8:33 PM

K\
&

ﬁ

Sz,

S

O

R

‘ %S fseriesforward.fm Page xiii Friday, September 24, 2004 8:34 PM

Series Foreword

At first glance writing and publishing a remoting pattern language
book might appear surprising. Who is its audience? From a naive
perspective, it could only be distributed object middleware devel-
opers — a rather small community. Application developers merely use
such middleware — why should they bother with the details of how it is
designed? We see confirmation of this view from the sales personnel
and product ‘blurbs” of middleware vendors: remote communication
should be transparent to application developers, and it is the job of the
middleware to deal with it. So why spend so much time on writing —
and reading — a pattern language that only a few software developers
actually need?

From a realistic perspective, however, the world looks rather different.
Despite all advances in distributed object middleware, building distrib-
uted systems and applications is still a challenging, non-trivial task.
This applies not only to application-specific concerns, such as how to
split and distribute an application’s functionality across a computer
network. Surprisingly, many challenges in building distributed soft-
ware relate to an appropriate use of the underlying middleware. I do
not mean issues such as using APIs correctly, but fundamental
concerns. For example, the type of communication between remote
objects has a direct impact on the performance of the system, its scal-
ability, its reliability, and so on and so forth. It has an even stronger
impact on how remote objects must be designed, and how their func-
tionality must be decomposed, to really benefit from a specific
communication style.

It is therefore a myth to believe that remote communication is trans-
parent to a distributed application. The many failures and problems of
software development projects that did so speak very clearly! Failures
occur due to the misconception that “fire and forget’ invocations are
reliable, that remote objects are always readily available at their clients’
fingertips, or problems due to a lack of awareness that message-based

ﬁ%

® ¢

A

‘ gi% fseriesforward.fm Page xiv Friday, September 24, 2004 8:34 PM

Xiv

Series Foreword

remote communication decouples operation invocation from operation
execution not only in space, but also in time, and so on.

But how do I know what is ‘right” for my distributed system? How do
I know what the critical issues are in remote communication and what
options exist to deal with them? How do I know what design guide-
lines I must follow in my application to be able to use a specific
middleware or remote communication style correctly and effectively?
The answer is simple: understanding both how it works, and why it
works the way it works. Speaking pictorially, we must open the black
box called ‘middleware’, sweeping the ‘shade” of communication-
transparency aside, and take a look inside. Fundamental concepts of
remoting and modern distributed object middleware must be known
to, and understood by, application developers if they are to build
distributed systems that work! There is no way around this.

But how can we gain this important knowledge and understanding?
Correct: by reading and digesting a pattern language that describes
remoting, and mapping its concepts onto the middleware used in our
own distributed systems! So in reality the audience for a remoting
pattern language is quite large, as it comprises every developer of
distributed software.

This book contributes to the understanding of distributed object
middleware in two ways. First it presents a comprehensive pattern
language that addresses all the important aspects in distributed
object middleware — from remoting fundamentals, through object
identification and lifecycle management, to advanced aspects such as
application-specific extensions and asynchronous communication.
Second, and of immense value for practical work, this book provides
three technology projections that illustrate how the patterns that make
up the language are applied in popular object-oriented middleware
technologies: .NET, Web Services, and CORBA. Together, these two
parts form a powerful package that provides you with all the concep-
tual knowledge and various viewpoints necessary to understand and
use modern communication environments correctly and effectively.
This book thus complements and completes books that describe the
‘nuts and bolts” — such as the APIs — of specific distributed object
middlewares by adding the ‘big picture’” and architectural framework
in which they live.

ﬁ%

® ¢

g%é fseriesforward.fm Page xv Friday, September 24, 2004 8:34 PM

A

Series Foreword XV

Accept what this book offers and explore the secrets of distributed object
middleware. I am sure you will enjoy the journey as much as I did.

Frank Buschmann
Siemens AG, Corporate Technology

.

2
N

R

‘ %S fpref.fm Page xvii Friday, September 24, 2004 8:35 PM

Preface

Today distributed object middleware belongs among the basic
elements in the toolbox of software developer, designers, and architects
who are developing distributed systems. Popular examples of such
distributed object middleware systems are CORBA, Web Services,
DCOM, Java RMI, and .NET Remoting. There are many other books
that explain how a particular distributed object middleware works. If
you just want to use one specific distributed object middleware, many
of these books are highly valuable. However, as a professional software
developer, designer, or architect working with distributed systems, you
will also experience situations in which just understanding how to use
one particular middleware is not enough. You are required to gain a
deeper understanding of the inner workings of the middleware, so that
you can customize or extend it to meet your needs. Or you might be
forced to migrate your system to a new kind of middleware as a conse-
quence of business requirements, or to integrate systems that use
different middleware products.

This book is intended to help you in these and similar situations: it
explains the inner workings of successful approaches and technologies
in the field of distributed object middleware in a practical manner. To
achieve this we use a pattern language that describes the essential
building blocks of distributed object middleware, based on a number
of compact, Alexandrian-style [AIS+77] patterns. We supplement the
pattern language with three technology projections that explain how
the patterns are realized in different real-world examples of distributed
object middleware systems: .NET Remoting, Web Services, and
CORBA.

How to read this book

This book is aimed primarily at software developers, designers, and
architects who have at least a basic understanding of software develop-
ment and design concepts.

ﬁ%

® ¢

A

‘ gi% fpref.fm Page xviii Friday, September 24, 2004 8:35 PM

xviii

Preface

For readers who are new to patterns, we introduce patterns and pattern
languages to some extend in this section. Readers familiar with
patterns might want to skip this. We also briefly explain the pattern
form and the diagrams used in this book. You might find it useful to
scan this information and use it as a reference when reading the later
chapters of the book.

In the pattern chapters and the technology projections we assume some
knowledge of distributed system development. In Chapter 1, Introduc-
tion To Distributed Systems, we introduce the basic terminology and
concepts used in this book. Readers who are familiar with the termi-
nology and concepts may skip that chapter. If you are completely new
to this field, you might want to read a more detailed introduction such
as Tanenbaum and van Steen’s Distributed Systems: Principles and Para-
digms [TS02].

For all readers, we recommend reading the pattern language chapters
as a whole. This should give you a fairly good picture of how distrib-
uted object middleware systems work. When working with the pattern
language, you can usually go directly to particular patterns of interest,
and use the pattern relationships described in the pattern descriptions
to find related patterns.

Details of the interactions between the patterns can be found at the end
of each pattern chapter, depicted in a number of sequence diagrams.
We have not included these interactions in the individual pattern
descriptions for two reasons. First, it would make the pattern chapters
less readable. Second, the patterns in each chapter have strong interac-
tions, so it makes sense to illustrate them with integrated examples,
instead of scattering the examples across the individual pattern
descriptions.

We recommend that you look closely at the sequence diagram exam-
ples, especially if you want to implement your own distributed object
middleware system or extend an existing one. This will give you
further insight into how the pattern language can be implemented. As
the next step, you might want to read the technology projections to see
a couple of well-established real-world examples of how the pattern
language is implemented by vendors.

If you want to understand the commonalities and differences between
some of the mainstream distributed object middleware systems, you

ﬁ%

® ¢

.

Goals of the book

‘ gi% fpref.fm Page xix Friday, September 24, 2004 8:35 PM

Xix

should read the technology projections. You can do this in any order
you prefer. They are completely independent of each other.

Goals of the book

Numerous projects use, extend, integrate, customize, and build distrib-
uted object middleware. The major goal of the pattern language in this
book is to provide knowledge about the general, recurring architecture
of successful distributed object middleware, as well as more concrete
design and implementation strategies. You can benefit from reading
and understanding this pattern language in several ways:

If you want to use distributed object middleware, you will benefit
from better understanding the concepts of your middleware
implementation. This in turn helps you to make better use of the
middleware. If you know how to use one middleware system and
need to switch to another, understanding the patterns of distrib-
uted object middleware helps you to see the commonalities, in
spite of different remoting abstractions, terminologies, implemen-
tation language concepts, and so forth.

Sometimes you need to extend the middleware with additional
functionality. For example, suppose you are developing a Web
Services application. Because Web Services are relatively new, your
chosen Web Services framework might not implement specific
security or transaction features that you need for your application.
You must then implement these features on your own. Our
patterns help you to find the best hooks for extending the Web
Services framework. The patterns show you several alternative
successful implementations of such extensions. The book also
helps you to you find similar solutions in other middleware imple-
mentations, so that you avoid reinventing the wheel.

Another typical extension is the introduction of ‘new’ remoting
styles, implemented on top of existing middleware. Consider
server-side component architectures, such as CORBA Compo-
nents, COM+, or Enterprise Java Beans (E]JB). These use distrib-
uted object middleware implementations as a foundation for
remote communication [VSWO02]. They extend the middleware
with new concepts. Again, as a developer of a component architec-
ture, you have to understand the patterns of the distributed object

ﬁ%

® ¢

A

‘ gi% fpref.fm Page xx Friday, September 24, 2004 8:35 PM

XX

Preface

middleware, for example to integrate the lifecycle models of the
components and remote objects.

* While distributed object middleware is used to integrate heteroge-
neous systems, you might encounter situations in which you need to
integrate the various middleware systems themselves. Consider a
situation in which your employer takes over another company that
uses a different middleware product from that used in your company.
You need to integrate the two middleware solutions to let the infor-
mation systems of the two companies work in concert. Our patterns
can help you find integration points and identify promising solutions.

* In rarer cases you might need to customize distributed object
middleware, or even build it from scratch. Consider for example an
embedded system with tight constraints on memory consumption,
performance, and real-time communication [Aut04]. If no suitable
middleware product exists, or all available products turn out to be
inappropriate and/or have a footprint that is to large, the devel-
opers must develop their own solution. As an alternative, you
could look at existing open-source solutions and try to customize
them for your needs. Here our patterns can help you to identify
critical components of the middleware and assess the effort
required in customizing them. If customizing an existing middle-
ware does not seem to be feasible, you can use the patterns to build
a new distributed object middleware for your application.

The list above consists of only a few examples. We hope they illustrate
the broad variety of situations in which you might want to get a deeper
understanding of distributed object middleware. As these situations
occur repeatedly, we hope these examples illustrate why we think the
time is ready for a book that explains such issues in a way that is acces-
sible to practitioners.

About the authors

Markus Volter

Markus Volter works as an independent consultant on software tech-
nology and engineering based in Heidenheim, Germany. His primary
focus is software architecture and patterns, middleware and model-
driven software development. Markus has consulted and coached in

ﬁ%

® ¢

‘ gi% fpref.fm Page xxi Friday, September 24, 2004 8:35 PM

A

About the authors xxi

many different domains, such as banking, health care, e-business,
telematics, astronomy, and automotive embedded systems, in projects
ranging from 5 to 150 developers.

Markus is also a regular speaker at international conferences on soft-
ware technology and object orientation. Among others, he has given
talks and tutorials at ECOOP, OOPSLA, OOP, OT, JAOO and GPCE.
Markus has published patterns at various PLoP conferences and writes
articles for various magazines on topics that he finds interesting. He is
also co-author of the book Server Component Patterns, which is - just like
the book you are currently reading - part of the Wiley series in Software
Design Patterns.

When not dealing with software, Markus enjoys cross-country flying in
the skies over southern Germany in his glider.

Markus can be reached at voelter@acm.org or via www.voelter.de

Michael Kircher

Michael Kircher is working currently as Senior Software Engineer at
Siemens AG Corporate Technology in Munich, Germany. His main
tields of interest include distributed object computing, software archi-
tecture, patterns, agile methodologies, and management of knowledge
workers in innovative environments. He has been involved in many
projects as a consultant and developer within various Siemens business
areas, building software for distributed systems. Among these were the
development of software for UMTS base stations, toll systems, postal
automation systems, and operation and maintenance software for
industry and telecommunication systems.

In recent years Michael has published papers at numerous conferences
on topics such as patterns, software architecture for distributed
systems, and eXtreme Programming, and has organized several work-
shops at conferences such as OOPSLA and EuroPLoP. He is also co-
author of the book Pattern-Oriented Software Architecture, Volume 3:
Patterns for Resource Management.

In his spare time Michael likes to combine family life with enjoying
nature, engaging in sports, or just watching wildlife.

Michael can be reached at michael@kircher-schwanninger.de or via
www.kircher-schwanninger.de

® ¢

4~ ¢

A

‘ gi% fpref.fm Page xxii Friday, September 24, 2004 8:35 PM

xxii

Preface

Uwe Zdun

Uwe Zdun is working currently as an assistant professor in the Depart-
ment of Information Systems at the Vienna University of Economics
and Business Administration. He received his Doctoral degree from the
University of Essen in 2002, where he worked from 1999 to 2002 as
research assistant in the software specification group. His research
interests include software patterns, scripting, object-orientation, soft-
ware architecture, and Web engineering. Uwe has been involved as a
consultant and developer in many software projects. He is author of a
number of open-source software systems, including Extended Object
Tcl (XOTcl), ActiWeb, Frag, and Leela, as well as many other open-
source and industrial software systems.

In recent years he has published in numerous conferences and journals,
and co-organized a number of workshops at conferences such as
EuroPLoP, CHI, and OOPSLA.

He enjoys hiking, biking, pool, and guitar playing.

Uwe can be reached at zdun@acm.org or via wi.wu-wien.ac.at/~uzdun

Acknowledgments

A book such as this would be impossible without the support of many
other people. For their support in discussing the contents of the book
and for providing their feedback, we express our gratitude.

First of all, we want to thank our shepherd, Steve Vinoski, and the
pattern series editor, Frank Buschmann. They have read the book
several times and provided in-depth comments on technical content, as
well as on the structure and coherence of the pattern language.

We also want to thank the following people who have provided
comments on various versions of the manuscript, as well as on
extracted papers that have been workshopped at VikingPLoP 2002
and EuroPLoP 2003: Mikio Aoyama, Steve Berczuk, Valter Cazzalo,
Anniruddha Gokhale, Lars Grunske, Klaus Jank, Kevlin Henney,
Wolfgang Herzner, Don Hinton, Klaus Marquardt, Jan Mendling, Roy
Oberhauser, Joe Oberleitner, Juha Parsinen, Michael Pont, Alexander
Schmid, Kristijan Elof Sorenson (thanks for playing shepherd and

ﬁ%

.

‘ gi% fpref.fm Page xxiii Friday, September 24, 2004 8:35 PM @E ‘

Al i

Patterns and Pattern Languages xxiii

proxy), Michael Stal, Mark Strembeck, Oliver Vogel, Johnny
Willemsen, and Eberhard Wolff.

Finally, we thank those that have been involved with the production of
the book: our copy-editor Steve Rickaby and editors Gaynor Redvers-
Mutton and Juliet Booker. It is a pleasure working with such proficient
people.

Patterns and Pattern Languages

Over the past couple of years patterns have become part of the main-
stream of software development. They appear in different types and
forms.

The most popular patterns are those for software design, pioneered by
the Gang-of-Four (GoF) book [GHJV95] and continued by many other
pattern authors. Design patterns can be applied very broadly, because
they focus on everyday design problems. In addition to design
patterns, the patterns community has created patterns for software
architecture [BMR+96, SSRB00], analysis [Fow96], and even non-IT
topics such as organizational or pedagogical patterns [Ped04, FV00].
There are many other kinds of patterns, and some are specific for a
particular domain.

What is a Pattern?
A pattern, according to the original definition of Alexander! [AIS+77],
is:

...a three-part rule, which expresses a relation between a certain context,

a problem, and a solution.

This is a very general definition of a pattern. It is probably a bad idea
to cite Alexander in this way, because he explains this definition

1. In his book, A Pattern Language — Towns ¢ Buildings * Construction [AIS+77]
Christopher Alexander presents a pattern language consisting of 253 patterns
about architecture. He describes patterns that guide the creation of space for
people to live, including cities, houses, rooms, and so on. The notion of patterns
in software builds on this early work by Alexander.

6%

ﬁ%

e
@

A

‘ gi% fpref.fm Page xxiv Friday, September 24, 2004 8:35 PM

XXiv

Preface

extensively. In particular, how can we distinguish a pattern from a
simple recipe? Consider the following example:

Context You are driving a car.

Problem The traffic lights in front of you are red. You
must not run over them. What should you do?

Solution Brake.

Is this a pattern? Certainly not. It is just a simple, plain if-then rule. So,
again, what is a pattern? Jim Coplien, on the Hillside Web site [Cop(04],
proposes another, slightly longer definition that summarizes the
discussion in Alexander’s book:

Each pattern is a three-part rule, which expresses a relation between a
certain context, a certain system of forces which occurs repeatedly in that
context, and a certain software configuration which allows these forces to
resolve themselves.

Coplien mentions forces. Forces are considerations that somehow
constrain or influence the solution proposed by the pattern. The set of
forces builds up tension, usually formulated concisely as a problem
statement. A solution for the given problem has to balance the forces
somehow, because the forces cannot usually all be resolved optimally —
a compromise has to be found.

To be understandable by the reader, a pattern should describe how the
forces are balanced in the proposed solution, and why they have been
balanced in the proposed way. In addition, the advantages and disad-
vantages of such a solution should be explained, to allow the reader to
understand the consequences of using the pattern.

Patterns are solutions to recurring problems. They therefore need to be
quite general, so that they can be applied to more than one concrete
problem. However, the solution should be sufficiently concrete to be
practically useful, and it should include a description of a specific soft-
ware configuration. Such a configuration consists of the participants of
the pattern, their responsibilities, and their interactions. The level of
detail of this description can vary, but after reading the pattern, the
reader should know what he has to do to implement the pattern’s solu-
tion. As the above discussion highlights, a pattern is not merely a set of
UML diagrams or code fragments.

ﬁ%

® ¢

gi% c02.fm Page 27 Friday, September 24, 2004 7:57 PM

A

Overview of the Pattern chapters 27

Overview of the Pattern chapters

The patterns mentioned so far detail the BROKER pattern and will be
described in Chapter 3, Basic Remoting Patterns. The following illustra-
tion shows the typical dependencies among the patterns.

INTERFACE DESCRIPTION

REQUESTOR —» REMOTING €— INVOKER
ralses raises

ERROR

CLIENT REQUEST—————— SERVER REQUEST
HANDLER Comm’i?h'cates HANDLER

We use such dependency diagrams at the beginning of each pattern
chapter. Pattern names are presented in small caps font. Participants,
like remote object, are displayed in plain font. The patterns explained
in a particular chapter are displayed in black font, while all other
pattern and participant names are displayed in gray. The chapters after
Chapter 3 present patterns that extend the elementary patterns. The
remainder of this section provides an brief overview of them.

The patterns in Chapter 4, Identification Patterns, deal with issues of
identification, addressing, and lookup of remote objects. It is important
for clients to find the correct remote object within the server applica-
tion. This is done by the assignment of logical OBJECT IDS for each
remote object instance. The client embeds these OBJECT IDS in invoca-
tions, so that the INVOKER can find the correct remote object. However,
this assumes that we are able to deliver the message to the correct
server application — in two different server applications, two different

.

4~ -~

.

gi% c02.fm Page 28 Friday, September 24, 2004 7:57 PM

28

Pattern Language Overview

objects with the same OBJECT ID might exist. An ABSOLUTE OBJECT REFER-
ENCE extends the concept of OBJECT IDS with location information.
Typical elements of an ABSOLUTE OBJECT REFERENCE are, for example,
the hostname, the port, and the OBJECT ID of a remote object.

LOOKUP is used to associate remote objects with human-readable names
and other properties. The server application typically associates proper-
ties with the remote object on registration. The client only needs to know
the ABSOLUTE OBJECT REFERENCE of the lookup service, instead of the
potentially huge number of ABSOLUTE OBJECT REFERENCES of the remote
objects it wants to communicate with. The LOOKUP pattern simplifies the
management and configuration of distributed systems, as clients can
easily find remote objects, while avoiding tight coupling between them.

The dependencies among the patterns are illustrated in the following
diagram.

looks up
objects in

ABSOLUTE OBJECT
is part of

sayuap!

Chapter 5, Lifecycle Management Patterns, deals with the management of
the lifecycle of remote objects. While some remote objects need to exist
all the time, others need only be available for a limited period. The acti-
vation and deactivation of remote objects might also be coupled with
additional tasks.

Lifecycle management strategies are used to adapt to the specifics of
the lifecycle of remote objects and their use. These strategies have a
strong influence on the overall resource consumption of the distributed
application. Chapter 5 describes some of the most common strategies
used in today’s distributed object middleware.

ﬁ%

® ¢

.

gi% c02.fm Page 29 Friday, September 24, 2004 7:57 PM

Overview of the Pattern chapters 29

The three basic lifecycle strategy patterns have the following focus:

STATIC INSTANCES are used to represent fixed functionality in the
system. Their lifetime is typically identical to the lifetime of their
server application.

PER-REQUEST INSTANCES are used for highly concurrent environments.
They are created for each new request and destroyed after the request.
CLIENT-DEPENDENT INSTANCES are used to represent client state in
the server. They rely on the client to instantiate them explicitly.

The lifecycle strategies patterns make use of a set of specific resource
management patterns internally:

LEASING is used to properly release CLIENT-DEPENDENT INSTANCES
when they are no longer used.

LAZY ACQUISITION describes how to activate remote objects on
demand.

POOLING manages unused remote object instances in a pool, to
optimize reuse.

For state management, PASSIVATION takes care of removing unused
instances temporarily from memory and storing them in persistent
storage. Upon request, the instances are restored again.

The patterns and their relationships are shown in the following figure.

Server Application LIFECYCLE MANAGER Client

\4 v
STATIC INSTANCE PER-REQUEST INSTANCE CLIENT-DEPENDENT

INSTANCE
i .

o o @
2) 2 Q
3 Q¥ 3 =
5 «© 5 3
w w
A\ 4
LAZY ACQUISITION POOLING LEASING
» PASSIVATION <
may use may use

ﬁ%

.

&

A

gi% c02.fm Page 30 Friday, September 24, 2004 7:57 PM

30

Pattern Language Overview

Chapter 6, Extension Patterns, deals with patterns that are used to
extend distributed object middleware. Examples of such extensions are
the support for security, transactions, or even the exchange of commu-
nication protocols.

To handle aspects such as security or transactions, remote invoca-
tions need to contain more information than just the operation name
and its parameters — some kind of transaction ID or security creden-
tials need to be transported between client and server. For that
purpose INVOCATION CONTEXTS are used: these are typically added to
the invocation on client side transparently and read on server side by
the REQUESTOR, CLIENT/SERVER REQUEST HANDLERS, and INVOKER,
respectively.

When the invocation process needs to be extended with behavior, for
example when evaluating security credentials in the client and the
server, INVOCATION INTERCEPTORS can be used. For passing information
between clients and servers, INVOCATION INTERCEPTORS use the INVO-
CATION CONTEXTS we have already mentioned.

Another important extension is the introduction and exchange of
different communication protocols. Consider again the example of a
secure protocol that might be needed to encrypt the invocation data
before it is sent and received using the CLIENT or SERVER REQUEST
HANDLER respectively. While simple request handlers use a fixed
communication protocol, PROTOCOL PLUG-INS make the request
handlers extensible to support different, or even multiple, communica-
tion protocols.

.

.
@

gi% c02.fm Page 31 Friday, September 24, 2004 7:57 PM

.

Overview of the Pattern chapters 31

The relationships of the patterns are illustrated in the following figure.

K&

X

INVOCATION
INTERCEPTOR O,
o,

= V
Q\O\‘\ie"o‘ § ks s
A \(\00)b/‘

INVOCATION CONTEXT

(2] P
N)
9 >
Q ()
\ 4 " ¢
»
»
by, -0
996, . 3\
PROTOCOL

PLUG-IN

L

sasn
/sejeald

Chapter 7, Extended Infrastructure Patterns, deals with specific imple-
mentation aspects of the server-side BROKER architecture.

The LIFECYCLE MANAGER is responsible for managing activation and
deactivation of remote objects by implementing the lifecycle manage-
ment strategies described in Chapter 5, typically as part of the
INVOKER.

To be able to configure groups of remote objects — instead of config-
uring each object separately — with regard to lifecycle, extensions, and
other options, CONFIGURATION GROUPS are used.

For monitoring the performance of various parts of the system, such as
the INVOKER, the SERVER REQUEST HANDLER, or even the remote objects
themselves, QOS OBSERVERS can be used. These help to ensure specific
quality of service constraints of the system.

To make infrastructure objects in the distributed object middleware
follow the same programming conventions as remote objects, while
making them inaccessible from remote sites, LOCAL OBJECTS can be

.

.
@

ﬁ%

.

gi% c02.fm Page 32 Friday, September 24, 2004 7:57 PM

32

Pattern Language Overview

used. Typical LOCAL OBJECTS are LIFECYCLE MANAGERS, PROTOCOL PLUG-
INS, CONFIGURATION GROUPS, and INVOCATION INTERCEPTORS.

ABSOLUTE OBJECT REFERENCES identify a remote object in a server. If the
remote object instances are to be decoupled from the ABSOLUTE OBJECT
REFERENCE, an additional level of indirection is needed. LOCATION
FORWARDERS allow this: they can forward invocations between different
server applications. This allows load balancing, fault tolerance, and
remote object migration to be implemented.

The following figure shows the Extended Infrastructure Patterns and
their relationships.

QOS OBSERVER

monitors

A .
»

LOCATION
FORWARDER

manages
lifecycle for

LOCAL OBJECT

LIFECYCLE MANAGER

CONFIGURATION
GROUP

updates
client's

optimizes
resource
consumption

dL
Y

The last patterns chapter in the book, Chapter 8, describes Invocation
Asynchrony Patterns, and deals with handling asynchronous invoca-
tions. It presents four alternative patterns that extend ordinary
synchronous invocations:

* FIRE AND FORGET describes best-effort delivery semantics for asyn-
chronous operations that have void return types.

ﬁ%

.

&

.

gi% c02.fm Page 33 Friday, September 24, 2004 7:57 PM

Overview of the Pattern chapters 33

* SYNC WITH SERVER sends an acknowledgement back to the client
once the operation has arrived on the server-side, in addition to the
semantics of FIRE AND FORGET.

* POLL OBJECTS allow clients to query the distributed object middle-
ware for replies to asynchronous requests.

* RESULT CALLBACK actively notifies the requesting client of asyn-
chronously-arriving replies.

The following figure illustrates the patterns and their interactions.

POLL OBJECT <« - » RESULT CALLBACK
alternatives

ynsai
YlUIM SpUS)Xa

FIRE AND FORGET <« - SYNC WITH SERVER
extends with acknowledgement

&

S ‘ %S c07.fm Page 143 Friday, September 24, 2004 8:04 PM

Lifecycle Manager 143

Lifecycle Manager

The server application has to manage different types of lifecycles for
remote objects.

g g da
S

The lifecycle of remote objects needs to be managed by server applica-
tions. Based on configuration, usage scenarios, and available resources,
servants have to be instantiated, initialized, or destroyed. Most impor-
tantly, all this has to be coordinated.

The server application has to manage its resources efficiently. For
example, it should ensure that only those servants of remote objects
that are actually needed at a specific time are loaded into memory.

It is not only the creation and loading of servants that is expensive, but
also their destruction and clean-up. Clean-up and destruction might
involve invoking a destructor, releasing an ABSOLUTE OBJECT REFER-
ENCE, invoking custom clean-up routines, and recycling servants using
POOLING.

The lifecycle strategies should not be mixed with other parts of the
distributed object middleware, as the strategies can become quite
complex, but need to be highly configurable. Specifically, it should be
possible for application developers to customize lifecycle strategies, or
even implement their own lifecycle strategies.

Therefore:

Use a LIFECYCLE MANAGER to manage the lifecycle of remote objects
and their servants. Let the LIFECYCLE MANAGER trigger lifecycle oper-
ations for servants of remote objects according to their configured
lifecycle strategy. For servants that have to be aware of lifecycle
events, provide Lifecycle Callback operations [VSWO02]. The LIFE-
CYCLE MANAGER will use these operations to notify the servant of

.

t

g%é c07.fm Page 144 Friday, September 24, 2004 8:04 PM

144 Extended Infrastructure Patterns
upcoming lifecycle events. This allows servants to prepare for the
events accordingly.

oo T T T «j » | T T TTTTT T T

: Server Process 2d) «invoke :

! T e—— Remote | |

o= /I 2b) invocationArrived(objID,). 2¢) activate() Obiect :

. Invoker ['S |
2a) «invoke» L] -] |
T Lifecycle 2f) deactivate() :

/ : |2e) invocationDone(objID, ...) Manager I
| |

| |

| « N Framework | |

|| Sewer i 1a)oreate " | “ace | |

| Application | J1b) registerLifecycleManager(...) I }

—

A LIFECYCLE MANAGER is typically created by the server applica-
tion during start-up, and is registered with the distributed object
middleware’s INVOKER. Before an invocation is dispatched, the
INVOKER informs the lifecycle manager. If the servant is not active,
the LIFECYCLE MANAGER activates it. The INVOKER dispatches the
invocation. After the invocation returns, the LIFECYCLE MANAGER is
informed again and can deactivate the servant if required.

v v V2
E

The LIFECYCLE MANAGER enables modularization of the lifecycle strat-
egies, including activation, PASSIVATION, POOLING, LEASING and
eviction, as explained in Chapter 5, Lifecycle Management Patterns. Such
strategies are important for optimization of performance, stability, and
scalability.

The LIFECYCLE MANAGER, with its strategies, is either implemented as
part of the INVOKER, or closely collaborates with it. If multiple different
lifecycle strategies have to be provided, different LIFECYCLE MANAGERS
can be available in the same server application.

The INVOKER triggers the LIFECYCLE MANAGER before and after each
invocation. This allows the LIFECYCLE MANAGER to manage the creation,
initialization, and destruction of servants.

For complex remote objects, for example those that have non-trivial
state, it can become necessary to involve the servants in lifecycle
management by informing them about upcoming lifecycle events. For
this, the LIFECYCLE MANAGER invokes Lifecycle Callback operations
implemented by the servant. For example, when using PASSIVATION, a
remote object’s state has to be saved to persistent storage before the

ﬁ%

.

.
e

gi% c07.fm Page 145 Friday, September 24, 2004 8:04 PM

.

Lifecycle Manager 145

servant is destroyed. After the servant has been resurrected, the servant
has to reload its previously saved state. Both events are triggered by the
LIFECYCLE MANAGER via Lifecycle Callback operations, just before the
servant is passivated and just after resurrection.

Triggering the LIFECYCLE MANAGER can be hard-coded inside the
INVOKER, but it can also be ‘plugged in’ using an INVOCATION INTER-
CEPTOR Besides the synchronous involvement of the LIFECYCLE
MANAGER when triggered by an INVOKER, a LIFECYCLE MANAGER imple-
mentation can also become active asynchronously, for example to scan
for remote objects that should be destroyed because some lease has
expired.

To decouple remote objects from servants, the LIFECYCLE MANAGER
must maintain the association between OBJECT ID and servant. This
mapping is either kept separately in the LIFECYCLE MANAGER or is
reused from the INVOKER Additionally, the LIFECYCLE MANAGER also
has to store information about which lifecycle state each servant is in.

Besides all the advantages of decoupling lifecycle strategies from the
INVOKER, the LIFECYCLE MANAGER also incurs a slight performance over-
head, as it has to be invoked on every request of a remote object.

The LIFECYCLE MANAGER pattern applies the Resource Lifecycle Manager
pattern [KJ04] to the management of remote objects. It integrates several
existing patterns, such as Activator [Sta00] and Evictor [HV99].

.

*
.

t

g%é c07.fm Page 158 Friday, September 24, 2004 8:04 PM

158

Extended Infrastructure Patterns

Interactions among the patterns

First, let us look at the LIFECYCLE MANAGER. For illustrative purposes,
we will show how persistent state can be realized for remote objects in
combination with POOLING. In the following example we assume that
the developers of the server application have configured the distrib-
uted object middleware to use a custom developed LIFECYCLE MANAGER
Note that these interactions are just examples of how the patterns can
be implemented — many other alternatives exist.

Custom i:Invocation s1:Remote Obiect s2:Remote
Invoker Lifecycle — Object =plect Object
Data Pool
Manager Servant — Servant
T T T T T
invoke(i,c) | I I I |
»L s1:=invocationArrived(i) | : :
».
PT7] id == getiD() | : :
> l l
s1:= getlnstalnce() : g :
T | . Ll
: | activate()
| 1
opt [no free instance in pool]) : : «Create»
| |
: : init()
| |
: : activate()
| |
| |
| | T |
loadState(id, someDBConnection) : :
t > | |
] ! g ! !
someOperation(x,y) I | |
T = nvosationD = g8 : :
s1 := invocationDone(i |
SN 1 | :
saveState() | I I |
- > | |
returnToPool(ro) |-|—| | |
f + > !
: | deactivate() :
|
| , |
N |
. I !

In the figure above the LIFECYCLE MANAGER obtains a servant from a
pool of servants. After the servant is activated (or optionally created
lazily), the state associated with the given OBJECT ID is loaded from
persistent storage. The operation is executed, and finally the state of the
remote object is passivated and the servant is put back into the pool.

.

.
e

ﬁ%

t

g%é c07.fm Page 159 Friday, September 24, 2004 8:04 PM

Interactions among the patterns 159

Remote object servants that are to be used with this LIFECYCLE
MANAGER need to implement up to five lifecycle operations [VSW02]:
init, activate, and deactivate to be compatible with POOLING, and 1o0ad-
state and saveState to be compatible with the persistent state handling
used by PASSIVATION.

Next we look at a possible scenario for CONFIGURATION GROUPS. Let us
first look at how a server application sets up two CONFIGURATION
GROUPS. One contains a LIFECYCLE MANAGER that uses pooling, whereas
the other contains a persistency LIFECYCLE MANAGER, as well as a trans-
action INVOCATION INTERCEPTOR to make the persistency accesses
transactional. For each of the CONFIGURATION GROUPS the group object
has first to be instantiated. Next, INVOCATION INTERCEPTORS and LIFE-
CYCLE MANAGERS for the group have to be created and registered.
Finally, the group has itself to be registered with a group registry of the
distributed object middleware.

«create» I—,_—l

Server txGroup: txi: pl:Persist stdGroup: ol:Pooling Config
Application Config Transaction Lifecycle Config Lifecycle Group
Application Group Interceptor Manager Group Manager Registry

1 T
«create»

t »
registerinterceptor(txi) |-|—|

«create»

A 4

registerLifecylcleManager(pl)

—>EI':|

registerConfGroup(txGroup)

«create»

«create»

A 4

registerLifecylcleManager(ol)
1

registerConfG}oup(sthroup)

.

e

R

‘ %S c09.fm Page 185 Friday, September 24, 2004 9:02 PM

9 Technology Projections

In the pattern language presented in earlier chapters we did not
provide known uses for each of the patterns, just generic examples. We
provide more substantial examples for the whole pattern language in
the following chapters, in which we look at a specific technology, show
how the patterns are applied, and how they relate to each other. In
these chapters we emphasize the focus on the pattern language as a
whole — instead of focusing on single patterns within the language.
Instead of calling these chapters ‘Examples of the pattern language’ we
call them technology projections’.

Each subsequent technology projection is intended to emphasize
specific features of the pattern language:

* .NET Remoting. NET Remoting provides a generally usable, flex-
ible and well-defined distributed object middleware. It has a nice
and consistent API and can easily be understood, even by novices.
It is already widely used and is thus an important remoting tech-
nology. We use C# as the example programming language.

* Web Services. Web Services are currently one of the hottest topics
in the IT industry. Basically, they provide an HTTP/XML-based
remoting infrastructure. Our technology projection here focuses
especially on interoperability. Java, as a programming language,
and Apache Axis, as a framework, are used for most of the exam-
ples, but we also discuss other Web Services frameworks, such as
.NET Web Services, IONA’s Artix, and GLUE.

* CORBA and Real-time CORBA. CORBA is certainly the most
complex, but also the most powerful and sophisticated distributed
object middleware technology available today. In addition to being
language-independent and platform-interoperable, there are also
implementations for embedded and real-time applications. Our

1. ‘Technology projection’ is a term we first heard from Ulrich Eisenecker.

ﬁ%

® ¢

A

‘ gi% c09.fm Page 186 Friday, September 24, 2004 9:02 PM

186

Technology Projections

technology projection for CORBA will focus especially on quality
of service aspects. C++ is used in the examples.

Please note that these chapters cannot serve as complete and full tuto-
rials for the respective technologies. They are really just meant to help
you understand the patterns, as well as the commonalities and trade-
offs of the technologies.

Reading the technology projections will of course give you a basic
understanding of the respective technology, but to use one of the
described technologies in practice, you should probably also read a
dedicated tutorial.

At the beginning of each of the three technology projections, we present
a pattern map that illustrates the relationships between the Remoting
Patterns and the architecture of the respective technology. To provide a
guide to where we are in this overall architecture, in the left-hand
margin we display thumbprints of the full pattern map shown on pages
190, 242 and 293. The thumbprint on the left shows an example that
denotes that we are in the server application. This example is taken
from the .NET technology projection.

.

&

A

%S c10.fm Page 187 Friday, September 24, 2004 9:03 PM

10

.NET Remoting Technology
Projection

NET provides an easy to use but yet powerful distributed object
middleware that follows the patterns described in the first part of this
book very closely. NET Remoting is a powerful and flexible distributed
object middleware. We use the C# programming language exclusively
for our examples, although we could have also used other .NET
languages such as VB.NET or C++.NET.

Note that we cannot go into every detail of .NET Remoting in this
chapter. You can find more information for example in [Bar02], [Ram02],
and [Sta03].

A brief history of .NET Remoting

NET Remoting was introduced as part of Microsoft’s .NET platform.
From the developer’s perspective, .NET replaces the older Windows
programming APIs such as the Windows 32-bit API (Win32 API), the
Microsoft Foundation Classes (MFC) and, with regard to remoting,
DCOM - although DCOM will live on as part of COM+ [Mic04d]. We
don’t want to compare DCOM and .NET Remoting here, except to say
that they have almost nothing in common, and that developing with
NET Remoting is much simpler and more straightforward than
DCOM [Gri97].

Note that, technically, .NET does not replace the older APIs, but it is
built on top of them. This is, however, invisible to developers.

NET Remoting is an infrastructure for distributed objects. It is not
ideally suited to building service-oriented systems. Microsoft is plan-
ning to release a new product in 2006 (currently named Indigo) that
provides a new programming model for Web Services-based, service-
oriented systems on top of .NET. It will be possible to migrate .NET
Remoting applications, as well as applications using .NET Enterprise
services, to Indigo. At the time of writing, further information on

ﬁ%

® ¢

A

‘ gi% c10.fm Page 188 Friday, September 24, 2004 9:03 PM

188

.NET Remoting Technology Projection

Indigo can be found at [Mic04b] — we also summarize some key
concepts in Outlook for the next generation on page 235.

.NET concepts — a brief introduction

This section explains some basics that should be understood in outline
before reading on.

Just as Java, .NET is based on a virtual machine architecture. The
virtual machine is called Common Language Runtime (CLR), also named
runtime in this section. The runtime runs programs written in *.NET
assembler’, the Microsoft Intermediate Language (MSIL). Many source
languages can be compiled into MSIL, including C#, C++, VB.NET,
Eiffel. Since everything is ultimately represented as MSIL, a great deal
of language interoperability is possible. For example, you can let a C++
class inherit from a C# class.

.NET supports namespaces to avoid name clashes. Just as in C++, a
namespace is logically a prefix to a name. Multiple classes can exist in
the same namespace. In contrast to Java, there is no relationship
between namespaces and the file system location of a class.

Assemblies are completely independent of namespaces: assemblies are
the packaging format, a kind of archive, for a number of .NET artifacts,
such as types, resources, and metadata (see below). The elements of a
namespace can be scattered across several assemblies, and an assembly
can contain elements from any number of namespaces. So, namespaces
are a means to structure names logically, whereas assemblies are used
to combine things that should be deployed together. It is of course good
practice to establish some kind of relationship between namespaces
and assemblies to avoid confusion, for example to put all the elements
of one namespace into the same assembly.

NET provides many features that are known from scripting or inter-
preted languages. For example, it provides reflection: it is possible to
query an assembly for its contained artifacts, or to introspect a type
to find out its attributes, operations, supertypes, and so on. It is also
possible to create .NET types and assemblies on the fly. codebom and
the Reflection.Emit namespace provides facilities to define types, as
well as their complete implementation.

ﬁ%

.

‘ gi% c10.fm Page 189 Friday, September 24, 2004 9:03 PM

A

.NET Remoting pattern map 189

Attributes are another very interesting feature. Many .NET elements,
such as types, member definitions, operations, and so on, can be anno-
tated with attributes in the source code. For example the [Serializable]
attribute specifies that the annotated type should be marshaled by
value in the case of a remote invocation. Developers can define their
own attributes, which are .NET types themselves. The compiler then
instantiates them and serializes them into the assembly, together with
the compiled MSIL code. At runtime it is possible to use reflection to
find out about the attributes of a .NET element and react accordingly.

In addition to processes and threads, there are additional execution
concepts in .NET, such as application domains. While threads only define
a separate, concurrent execution path, processes in addition define a
protection domain. If one process crashes, other processes remain
unaffected. As a consequence, communication between processes
involves a significant overhead due to process context switching.
NET application domains provide the context of a protection domain
independently of the separate, concurrent execution path, and without
the context switching overhead.

.NET Remoting pattern map

The following illustration shows the basic structure of the .NET
Remoting framework. It also contains annotations of pattern names
showing which component is responsible for realizing which pattern.

® ¢

%E c10.fm Page 190 Friday, September 24, 2004 9:03 PM

.

190 .NET Remoting Technology Projection

The following overview does not show the behavioral patterns (Life-
cycle Patterns and Client Asynchrony Patterns).

r-o T T T T T T T T T T T T T T \ ST T T T T T T T T T T T T T T T T \
! Client | : Server |
STTTTT TTTTTT T T T | piiininininlnluingb 1> INTERFACE
b ! | | Remote] "I DESCRIPTION
| g% ! ! !'| oObject ' Remot
- ; | . emote
: | Client | I i | Object
. ! # | L Szrver ::/
P s S s i ——
12 | | r pp L N
: : Transparent L CLIENT PR.OXY : |
: : Proxy | / | | : LOOKUP
e |REQUESTOR L
o, | | 1l
| =9 | INVOCATION Dispatcher 11
©
: § E- : Real Proxy «| /INTERCEPTOR Sink ::—'-'—I 0 / INVOKER
| | | | l
P E i ! ~L_ LIFECYCLE
| | Sink < INVOCATION }: Sink MANAGER
[[® T 1 CONTEXT |
S : '
__________________ | —
mmEE = Formatter e it Formatter [
l l Sink * | MARSHALLER—-e gink ¥
|
| 58 PROTOCOL H
25 | L~ PLUGINS ™ H
[| . o | | ~e : 1!
| 9};,‘ | Channel Sink Channel Sink 1 :
il i
[T < N N e s == > |1
=2 .NET Runtime ! | .NET Runtime I'
l | € d——————- —-—— 11
I | .\). 1!
L i
\ | |
_____ N _ - N7y T T T T T T =r
CLIENT SERVER
REQUEST REQUEST
HANDLER HANDLER

Thumbnails of this diagram in the margin serve as an orientation map
during the course of this chapter, by highlighting the area of the above
diagram to which a particular paragraph or section relates.

A simple .NET Remoting example

To introduce .NET Remoting we will start with a simple example.
Instead of using the stereotypical “Hello World!", we use a different but
equally simple example in which we build a distributed system for the
medical domain. Our introductory example comprises a remotely-
accessible PatientManager object that provides access to the patients’
data in a hospital’s IT system.

.
@

ﬁ%

%&% %S c10.fm Page 191 Friday, September 24, 2004 9:03 PM

A simple NET Remoting example 191

S Let us consider the remote object first. In .NET, a remotely-accessible

%Er object must extend the MarshalByRefobject class, as shown in the
following example. MarshalByRefobject is thus the base class for all
—] remotely-accessible objects in .NET. The name is an allusion to the fact
that the object will not be marshaled (that is, serialized) to a remote
machine. Instead only the remote object’s reference will be marshaled
to the caller if an instance is passed as an operation parameter or as a
return value.

1]

using System;
namespace PatientManagementServer

{
public class PatientManager: MarshalByRefObject

{
public PatientManager()

{}
public Patient getPatientInfo(String id)

{

return new Patient(id);

}
}
}

Here we define the patientManager class, which provides a single
operation to retrieve a patient object. The class resides in the
PatientManagementServer namespace.

NET does not require a separate interface for remote objects — by

default, the public operations of the implementation class are available

remotely. To make sure we do not need the remote object class defini-

tion (PatientManager) in the client process, we provide an interface that

1 %j defines Publicly.-a\‘Iailable operations. In alccordance wit}} NET narr.u'ng

i conventions, this interface is called IpatientManager. It is located in a

uu namespace PatientManagementshared, which we will use for the code that

]! isrequired by client and server. The namespaces PatientlanagementServer

and PatientManagementClient will be used for server-only and client-
only code, respectively.

namespace PatientManagementShared

{

public interface IPatientManager

{

}
}

Patient getPatientInfo(String patientID);

® ¢

4~ -~

%S c10.fm Page 192 Friday, September 24, 2004 9:03 PM

192

I

1]

i

.NET Remoting Technology Projection

The implementation must now of course implement this interface to
ensure that the PatientManager is subtype-compatible with 1PatientManager.
This is necessary because the client will use the 1Patientmanager inter-
face to declare references to remote patientManager objects.

namespace PatientManagementServer

public class PatientManager: MarshalByRefObject,
IPatientManager

{
public PatientManager()

{}
public Patient getPatientInfo(String id)

{

return new Patient(id);
}
}
}

The operation getPatientInfo returns an instance of patient. This class
is a typical example of a Data Transfer Object [Fow03, MicO4c,
Sun04a], which is serialized by value when transported between
server and client (and vice versa). In .NET such objects need to
contain the [Serializable] attribute in their class definition, as shown
below. Note that, just as for the interface, the patient class is also
defined in the PatientManagementShared assembly, because it is used by
both client and server.

namespace PatientManagementShared

[Serializable]
public class Patient

{
private String id = null;
public Patient(String _id)

{
id = _id;

public String getID()
{

return id;

}
}
}

To continue, we need to get a suitable server application running for
our initial example. This needs to set up the Remoting framework and
publish the remote object(s). We postpone the details of setting up the

ﬁ%

® ¢

%S c10.fm Page 193 Friday, September 24, 2004 9:03 PM

A simple NET Remoting example 193

Remoting framework, and thus just use a ‘black box” helper class' to do
this for us, RemotingSupport. With this, the server application becomes
extremely simple:

using System;

using RemotingHelper;

using System.Runtime.Remoting;
using PatientManagementShared;

namespace PatientManagementServer

{

class Server

{

static void Main(string[] args)
{
RemotingSupport.setupServer();
RemotingConfiguration.RegisterWellKnownServiceType (
typeof (PatientManager), "PatientManager",
WellKnownObjectMode.Singleton);
RemotingSupport.waitForKeyPress();
}
}
}

The second line of the main method is the interesting part: here we
publish the patientManager remote object for access by clients. The regis-
tration also includes a definition of a name by which the remote object
will be available to clients. The following URL will serve the purpose
of an ABSOLUTE OBJECT REFERENCE:

http://<the serverHost>:<the port>/PatientManager

Note that there is no central LOOKUP system in .NET: clients have to
know the host on which an object can be looked up by its name. They
therefore must use the URL above. The URL contains information
about the transport protocol used to access the object. Since .NET
supports different communication channels (see below), it is possible,
after appropriate configuration, to reach the same object using a
different URL. An example using the TCP channel is:

tcp://<the serverHost>:<another port>/PatientManager

1. This class is not part of the NET Remoting framework, we have implemented it
for the sake of this example. The class itself consists just of a couple of lines, so it
does not hide huge amounts of complex code. We show its implementation
later.

® ¢

4~ -~

é%%

A

%S c10.fm Page 194 Friday, September 24, 2004 9:03 PM

194

T

-

1]

.NET Remoting Technology Projection

Note also that we use LAZY ACQUISITION here. wellKnownObject-
Mode.Singleton specifies that only one shared instance is accessible
remotely at any time. This instance is created only when the first
request for the patientManager remote object arrives. For details of the
activation mode, see Activation and bootstrapping on page 208.

Last but not least, we need a client. This is also relatively straightforward:

namespace PatientManagementClient

{

class Client

{

static void Main(string[] args)

{
RemotingSupport.setupClient();

IPatientManager patientManager =
(IPatientManager)Activator.
GetObject (typeof (IPatientManager),
"http://localhost:6642/PatientManager");
Patient patient = patientManager.getPatientInfo("42");
Console.WriteLine("ID of the "+
"retrieved Patient:"+patient.getID());

First we invoke the setupClient operation on the RemotingSupport class.
Then we look up the remote object using the URL scheme mentioned
above. We use the Activator class provided by the NET framework as
a generic factory for all kinds of remote objects. The port 6642 is defined
as part of the RemotingSupport.setupServer operation called by the
Server.Main operation. Note that we use the interface to declare and
downcast the returned object, not the implementation class. We then
finally retrieve a Patient from the remote PatientManager and, for the
sake of the example, ask it for its ID.

Setting up the framework

We use the RemotingSupport helper class to set up the Remoting frame-
work. Internally, this class uses a .NET API to do the actual work.
Alternatively, it is also possible to set up Remoting using certain
elements in the application configuration XML file. Each .NET applica-
tion can have an associated configuration file that controls various
aspects of the application’s use of the .NET framework. The file must be

ﬁ%

® ¢

‘ gi% c10.fm Page 195 Friday, September 24, 2004 9:03 PM

.

Remoting boundaries 195

loaded by the program manually. The file contains, for example, the
versions of assemblies that should be used, security information, as well
as setup information for Remoting. Although we show a snippet of the
XML file later in this chapter, we will not consider it in detail in this book.

Assemblies for the simple example

Assemblies in .NET are binary files that are used for deployment. An
assembly is represented by a DLL (dynamically loaded library) or an
executable. As recommended above, all elements of a particular
namespace are put into the same assembly, so we use the following
assemblies in this example:

* PMshared contains artifacts that are needed by client and server.

* RemotingHelper contains everything needed to set up the .NET
Remoting framework.

* puserver contains all the code for the server.
* puMclient contains all the code for the client.

The following illustration shows the assemblies, the classes they
contain, and the dependencies among the assemblies.

«assembly» PMClient —— P «assembly» PMShared

Iég Client Eg Patient «interface»

IPatientManager

fm———————

«assembly» PMServer

_)
_>
lég : Eg Remoting
Server PatientManager

Support

«assembly» RemotingHelper

T
L
|

Remoting boundaries

While distributed object middleware is typically used to communicate
between two processes that are usually located on different machines,
4 this is technically not completely correct for NET Remoting.

I
Iy

il
1]

.

ﬁ%

e
@

A

gi% c10.fm Page 196 Friday, September 24, 2004 9:03 PM

196

.NET Remoting Technology Projection

.NET provides two important additional concepts: application domains
and contexts. The following illustration shows the relationship of the
concepts, while the next two sections explain some details.

* * - . *
Machine [@—>» Process @—P A%F:)I:f;::?n <@ ——» Context
*
-~ __ can only be in
. ~1 one domain at
atime
*
» Thread

Application domains

In a .NET managed environment a process can contain several appli-
cation domains. An application domain is a logically-separate ‘space’
inside a process. Applications running in different application
domains are isolated from each other — faults in one application
domain cannot affect the code running in other application domains
inside the same process. This is mainly achieved by verifying the
loaded MSIL code with respect to boundary violations. The code is
only executed if no such violations are detected. As a consequence,
application domains provide the same isolation features as
processes, but with the additional benefit that communication
between application domains need not cross process boundaries.
Using application domains improves communication performance
and scalability, since crossing process boundaries is avoided.
However, to communicate between two application domains, .NET
Remoting has to be used.

Note that application domains are not related to threads. An application
domain can contain several threads, and a thread can cross application
domains over time. There is a distinct relationship between assemblies
and application domains, though. A specific assembly is always
executed in one application domain. For example, you can run the same
assembly in several application domains, in which case the code is
shared, but the data is not.

ﬁ%

.

&

R

%S c10.fm Page 197 Friday, September 24, 2004 9:03 PM

Basic internals of NET Remoting 197

i B3

Application domains can be set up manually using the AppDomain.create-
Domain operation. This takes a set of parameters such as the domain’s
working directory, the configuration file for the domain, as well as the
search path the runtime uses to find assemblies. Once an application
domain is set up, you can use the Load operation to load a specific
assembly into the domain. unload allows you unload the assembly
without needing to stop the process. Finally, you can create instances of
a Type in a specific application domain using the createInstanceFrom
operation.

In the remainder of this chapter, we will however consider Remoting
from the perspective of crossing process boundaries.

Contexts

Contexts provide a way to add INVOCATION INTERCEPTORS to objects
running in the same application domain. Again, NET Remotingis used
to insert proxies that handle interception, thus contexts can be used as
CONFIGURATION GROUPS. Details are explained later in the section on
INVOCATION INTERCEPTORS, or in [Low03].

Basic internals of .NET Remoting

In contrast to other platforms, such as natively-compiled C++, the NET
platform is a relatively dynamic environment. This means that reflec-
tive information is available, instances can be asked for their types, and
types can be modified, or even created, at runtime. As a consequence,
many classes for which you would have to generate and compile source
code manually on a native platform can be generated on the fly by the
NET runtime — no separate source code generation or compilation step
is required.

An example of such an automatically-generated class is the CLIENT
PROXY. You never see any source code for these classes, and there is no
code-generated server-side skeleton as part of the INVOKER. The
INVOKER — called a dispatcher in NET —is a .NET framework component
that uses reflection, as well as the information passed in remote method
invocation requests, to invoke the target operation on the remote object
dynamically.

ﬁ%

® ¢

gi% c10.fm Page 198 Friday, September 24, 2004 9:03 PM

A

198 .NET Remoting Technology Projection

As usual, the communication framework is an implementation of the
BROKER pattern [BMR+96]. This, as well as the CLIENT REQUEST HANDLER
and SERVER REQUEST HANDLER, form an integral part of the .NET frame-
work, and are also supported by the NET runtime itself.

Each remote object instance has a unique OBJECT ID. Using Visual
Studio.NET’s debugger, we can look into the state of a remote object
instance and see the unique OBJECT ID, called _objurI. In case of our
PatientManager, it looks like the following:

/e478bad4_abcO_43al_ae5e 4f7f9bd2c644/PatientManager

Another attribute of the PatientmManager remote object instance is the
ABSOLUTE OBJECT REFERENCE. This reference contains several attributes:
among others, it contains the OBJECT ID shown above and the commu-
nication information in the form of one or more channelbata objects. The
URL is the same as the one we introduced before, which allows clients
to access remote objects: tep://172.20.2.13:6642

As we shall see later, a remote object can be accessed remotely
through several different channels. Channels are communication
paths that consist besides other things of a protocol and a serialization
format. A channel is connected to a network endpoint with a specific
configuration. In the case of TCP, this would be the IP address and the
port, here 6642. Channels have to be configured when the server
application is started.

Error handling in .NET

— REMOTING ERRORS are reported using subclasses of System.SystemExcep-
%Er tion. For example, if the CLIENT REQUEST HANDLER is unable to contact
ple, Q
the server application because of network problems, it throws a webEx -
ception or a SocketException (both extending SystemException) to the
client, depending on whether a TCP or an HTTP channel is used to
access the remote object. To distinguish application-specific exceptions
from REMOTING ERRORS clearly, a convention says that application excep-
tions must not subclass systemexception: instead it is recommended that

il
il

.

4~ -~

%S c10.fm Page 199 Friday, September 24, 2004 9:03 PM

ﬁ%

Server-activated instances 199

I

1]

il

you use System.ApplicationException as a base class. An example of a
user-defined exception follows:

using System;
using System.Runtime.Serialization;

namespace PatientManagementShared

{
[Serializable]
public class InvalidPatientID: ApplicationException

{

public InvalidPatientID(String _message) : base(_message)

{

}

public InvalidPatientID(SerializationInfo info,
StreamingContext context):
base(info, context)

{}

}
}

Note that the class has to provide a so-called ‘deserialization constructor’
(the constructor with the serializationInfo and StreamingContext param-
eters) and it has to be marked [Serializable], otherwise the marshaling
will not work: The exception’s body is empty, because we have no addi-
tional parameters compared to Exception.

Server-activated instances

NET provides two fundamentally different options for activating
remote objects:

* Remote objects can be activated by the server. In this case, a client
can just contact a remote object and does not have to worry about
its creation and destruction.

* Remote objects can be created and destroyed explicitly by a client.

The lifecycle of these CLIENT-DEPENDENT INSTANCES is thus
controlled by a specific client, and not by the server.

This section considers alternatives for server-side activation, while the
following section examines CLIENT-DEPENDENT INSTANCES more
extensively.

—

® ¢

