
Accepted at: 4th IEEE International Conference on Fog and Edge Computing (ICFEC 2020), pp. 1–10

Comparison of Alternative Architectures in
Fog Computing

Vasileios Karagiannis, Stefan Schulte
Distributed Systems Group, TU Wien, Austria
{v.karagiannis, s.schulte}@dsg.tuwien.ac.at

Abstract—Since the proliferation of fog computing, various
distributed architectures have been proposed to extend the cloud
to the edge of the network. However, so far there exists no
study that compares different fog computing architectures, and
produces quantitative results in order to examine the efficiency
of each architecture for different use cases. Such a study
could provide guidelines for selecting an appropriate distributed
architecture for fog computing while taking into account the
requirements of the final applications.

To bridge this gap in the literature, we create a unified
system model which is able to represent the basic architectures
commonly used for fog computing, i.e., hierarchical and flat.
Furthermore, we design algorithms that can be used for creating
fog computing systems that follow these architectures, and
we perform various experiments that focus on communication
latency and bandwidth utilization. Notably, our results show that
for applications that do not have a dependency on the cloud, i.e.,
no resource-demanding tasks are involved, the hierarchical ar-
chitecture reduces the communication latency by 13% compared
to the flat. However, for applications that also include resource-
demanding tasks, the flat architecture reduces the communication
latency by 16% compared to the hierarchical.

Index Terms—Fog computing, edge computing, distributed
architectures, hierarchical architecture, flat architecture

I. INTRODUCTION

In the Internet of Things (IoT), appliances may commu-
nicate with each other in order to enable smart applica-
tions [1]. For example, smart traffic lights can interact with
the vehicles that roam the streets in order to enable traffic
management according to the actual traffic, and not based
on fixed time intervals [2]. Garbage collection trucks can
interact with the dumpsters in order to configure their schedule
to avoid the accumulation of garbage, rather than operating
on static routes [3]. Similarly, various applications can be
complemented by sensor observations, such as environmental
monitoring, healthcare, and smart grids, among others [4]–[7].
However, the computational resources of the appliances alone,
may not be sufficient to facilitate such smart applications. For
this reason, the appliances usually communicate with each
other through the cloud [8].

With the help of the cloud, the IoT became very successful
which led to more and more smart applications utilizing more
and more appliances (also referred to as smart things, or
IoT devices) [9]. Since the cloud represents computational

The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No. 764785, FORA—Fog
Computing for Robotics and Industrial Automation.

resources in data centers, it provides virtually unlimited com-
pute capacity [10]. Nevertheless, high communication latency
between the IoT devices and the cloud, along with bandwidth
limitations and privacy concerns, led to the rise of fog com-
puting [11].

Fog computing emerged to deal with these issues by exploit-
ing various compute nodes between the cloud and the smart
things, as shown in Fig. 1. These compute nodes may be, e.g.,
base stations and access points as well as cloudlets and fog
nodes which reside at the edge of the network [12], [13]. By
leveraging on such nodes, fog computing processes the IoT
data close to the data source, and only incorporates cloud-
based computational resources if necessary [14]. Furthermore,
since these compute nodes reside in closer proximity to the
smart things than the cloud, the processing takes place with
lower communication latency, and with higher bandwidth
capacity [15].

Many fog computing architectures have been proposed so
far, aiming at leveraging the edge of the network in order
to distribute the processing of the IoT data, and to lower
the communication latency [16]. Most of these architectures
describe fog computing systems with compute nodes which
are organized hierarchically in layers [17], [18]. According to
the hierarchical architecture, the compute nodes of the cloud
reside at the top of the hierarchy, the compute nodes at the
edge of the network in the middle, and the IoT devices at the
very bottom [19]. The IoT devices usually send the data to
the compute nodes at the edge. However, connections to other
nodes (e.g., to the cloud) are also possible.

Alternatives to the hierarchical architecture have also been
proposed in fog computing. The alternatives consist of flat
architectures whereby the compute nodes form connections to
each other, and communicate without the use of layers [20].
According to the flat architecture, each node forms connections
to a limited number of other nodes (i.e., neighbors), and uses
the neighbors in order to send data to nodes that reside farther
away [21].

Even though the aforementioned alternative architectures
have been proposed for fog computing, it is still unclear
under which conditions each one should be preferred. For this
reason, in this paper we create a unified system model which
is able to represent the basic fog computing architectures,
i.e., hierarchical and flat. Based on this model, we create
fog computing systems that follow these architectures, and
we perform various experiments regarding communication



Cloud:
Data centers

Core Network:
Switches,
routers

Edge Network:
Cloudlets,
base stations

Smart Things:
Cars, houses

Fig. 1: Compute nodes in fog computing.

latency and bandwidth utilization. Along with the system
model and the quantitative results which can be used for
comparing the different architectures, our contributions also
include a discussion of these results. This discussion provides
guidelines for selecting an appropriate architecture based on
the requirements of the final applications in mind.

The rest of this paper is organized as follows: Section II
contains the utilized system model, and an analysis of the
basic fog computing architectures. Consequently, Section III
presents an implementation of these architectures, and pro-
vides experimental results which aim at highlighting the main
differences regarding communication latency, and bandwidth
utilization. Finally, Section IV presents a discussion of related
work, and Section V concludes this paper.

II. FOG COMPUTING ARCHITECTURES

This section aims at presenting hierarchical and flat archi-
tectures for fog computing. To this end, Section II-A provides
a unified system model, and basic definitions which are
used hereinafter. Afterwards, Sections II-B and II-C present
hierarchical and flat architectures, respectively.

A. System Model

In this section, we design a system model which is based
on basic principles from fog computing system models from
the literature (cf. Section IV). However, compared to these
models, our system model is designed to be able to represent
various fog computing architectures. The basic building block
of our model is a compute node. A compute node may reside
in different parts of the network, i.e., at the edge of the network
(e.g., in a cloudlet or a fog node), at the access network (e.g.,
in an access point or a base station), the core network (e.g., in
a router or a gateway), or at the cloud (e.g., in a data center).

The compute nodes of the system are denoted as
n1, n2, . . . , nN . The cloud is considered to be a compute node

which is different from the others, in that it is responsible for
global coordination [9]. For this reason, the cloud is used as
an entry point for other nodes to join. Since the cloud is used
as an entry point, we assume that the cloud is the first compute
node n1. To distinguish it from the other compute nodes, the
cloud node is also denoted as C.

As fog computing architecture, we define the manner
whereby the compute nodes communicate with each other in
order to process the data from the IoT devices [22]. In the hi-
erarchical architecture, the participating compute nodes are or-
ganized hierarchically in layers, and each node communicates
with the nodes of the adjacent layers. In the flat architecture,
there are no layers. Instead, each node communicates with
other nodes in a topology that resembles a mesh network [21].
Independently of the utilized architecture, all the IoT devices
together, along with all the participating compute nodes, are
referred to as a fog computing system.

In order to be able to represent both hierarchical and flat
architectures with the same model, we use the notion of a
neighborhood H . A neighborhood includes different compute
nodes which are connected in a complete graph, i.e., each
pair of compute nodes in a neighborhood is connected by an
arc. These arcs represent the logical links among the nodes,
and can be either weighted or unweighted. When the arcs
are weighted, the values of the weights represent a proximity
measure (e.g. hop count or round-trip time). When the arcs
are not weighted, the compute nodes are agnostic of the exact
proximity to other nodes. The compute nodes that belong
to the same neighborhood are also referred to as neighbors.
Neighborhoods can have up to m neighbors. Thus, m is a
system parameter which can be used for changing the number
of neighbors that each node can have.

An example of a hierarchical architecture is shown in Fig. 2a
which shows nine compute nodes organized hierarchically
in three layers with a maximum neighborhood size m that
equals four. The compute node at the top of the hierarchy
always belongs to only one neighborhood (e.g., C in Fig. 2a).
By considering the hierarchy as a tree, the node at the top
(i.e., the root of the tree) can also be regarded a parent,
while the nodes below are children, e.g. in Fig. 2a, C is
the parent, and n2, n3, and n4 are children. Each one of the
nodes in the middle layers belongs to two neighborhoods.
One neighborhood includes the parent and siblings (i.e., same
parent), e.g., n2 belongs to a neighborhood that also includes
C, n3 and n4. The other neighborhood includes children, e.g.,
n2 belongs to a neighborhood that also contains n5 and n8.
Finally, the nodes at the edge of the network which reside at
the leaves of the hierarchy, belong to only one neighborhood
in which they are children. For example, as shown in Fig. 2a,
each one of the nodes n5, n8, n6, n9, and n7 belong to only
one neighborhood.

In the flat architecture, the number of neighborhoods that a
node can belong to, is not limited [21]. Furthermore, in this
architectural style, there are no parents, siblings, and children
because the architecture no longer resembles a tree. Instead,
every node that belongs to more than one neighborhoods, is



𝐶

𝑛7

𝑛3

𝑛6 𝑛9

𝑛5
𝑛8

Compute Node

Logical Link

Neighborhood

𝑛2 𝑛4

(a) A hierarchical fog computing system.

𝑛2

𝑛3

𝑛6

𝑛7

𝑛5 𝑛9

𝑛4

𝐶

𝑛8

Compute Node

Logical Link

Neighborhood

(b) A flat fog computing system.

Fig. 2: Fog computing systems according to different architectures (with neighborhood size that equals four).

also referred to as a liaison. For instance, in Fig 2b which
shows nine compute nodes which are organized according
to the flat architecture, C and n4 are liaisons. Liaisons are
necessary because they are used for propagating data from
one neighborhood to the other(s). Thus, every neighborhood
needs to have at least one liaison so that the IoT data can
be propagated to the other neighborhoods, and consequently
to the rest of the fog computing system. Notably, in contrast
to the hierarchical architecture which expands downwards, the
flat architecture can expand towards any direction.

Independently of the utilized architecture, the compute
nodes of a fog computing system need to host various ap-
plications in order to process the IoT data. To achieve this,
we assume an application model which is based on a widely
used model for fog computing from the literature [23]. Every
application consists of tasks. Each task can have different
latency requirements based on the functionality of the cor-
responding application. For this reason, a task can be either
delay-sensitive (e.g., for augmented reality applications) or
delay-tolerant (e.g., for analytics). The delay-sensitive tasks
are usually deployed on the compute nodes close to the
IoT devices so that the IoT data can be processed with low
communication latency. The delay-tolerant tasks, on the other
hand, can be deployed on any compute node including the
cloud.

In this model, the flow of the data starts from the IoT
devices which integrate sensors (that generate IoT data), and
send the IoT data to the compute nodes in proximity for
processing. If the processing cannot take place because these
nodes are busy (i.e., the nodes do not have enough available
computational resources), the nodes forward the IoT data to
their neighbors. If the neighbors cannot process the data either,
then the data is propagated to another neighborhood. This
is done as follows: In the hierarchical architecture, if the

data cannot be processed within a neighborhood, the parent
node propagates the data to the other neighborhood that it
belongs to. This results in propagating the data upwards the
hierarchy. In the flat architecture, a liaison node is responsible
for propagating the data to the other neighborhood(s) that it
belongs to. This process continues for as long as the nodes
are busy, and until the data reaches the cloud which is always
able to process the IoT data due to having virtually unlimited
computational resources [10].

There are various placement algorithms in the literature for
placing the tasks of an application on compute nodes that span
from the cloud to the edge of the network (e.g., [24], [25]).
Notably, such approaches usually require the graph of the com-
pute nodes (i.e., the neighborhoods) as input. Thus, our work
can be considered complementary to application placement
approaches.

B. The Hierarchical Architecture

According to the hierarchical architecture, the participating
compute nodes are organized in two, three, or more layers.
Commonly, the nodes that reside at the edge of the network
close to the IoT devices, are placed at the lowest layer, and are
only able to provide limited computational resources [26]. For
this reason, the IoT data can be processed there with low com-
munication latency although, resource-demanding processing
might not be possible on these nodes. Nevertheless, while the
IoT data is propagated upwards the hierarchy (as discussed
in Section II-A), nodes with more computational resources
are found, but the communication latency increases as well.
Due to having the IoT devices send the data to the compute
nodes of the closest proximity, which integrate limited com-
putational resources, this architecture becomes appropriate for
applications with tasks that are not resource-demanding, and
require low communication latency. Nevertheless, there have



Algorithm 1: HNP

1 joinHierarchical(computeNode C){
2 joinResponse = joinRequest(C)
3 if joinResponse == ∅ then
4 Hnew.add(this, C)
5 Hnew.updateNeighbors()
6 else if joinResponse == H then
7 H .add(this)
8 H .updateNeighbors()
9 else if joinResponse == n then

10 joinHierarchical(n)
11 end
12 }

also been approaches that try to improve the management of
the available computational resources by placing the tasks on
compute nodes at the edge and in the cloud selectively [27].

To represent the hierarchical architecture in fog comput-
ing, we design HNP (Hierarchical architecture No Proximity)
which is described in Algorithm 1, and can be used for
organizing the participating compute nodes in layers. This al-
gorithm can represent hierarchical architectures of any number
of layers, because the number of layers of the resulting fog
computing system, depends on the number of the participating
compute nodes. Notably, HNP is proximity agnostic. This
means that the neighborhoods are represented by unweighted
graphs, and that the nodes know their neighbors, but not their
exact proximity [28].

In the following, we describe how HNP operates. To make
HNP more comprehensible, Algorithm 1 explains the steps of
the algorithm from the perspective of a new compute node
that requests to join the fog computing system, i.e., a new
node that wants to be added to a neighborhood in order to
contribute to the processing of the IoT data. In this algorithm,
each new node nnew joins through C which guides nnew to
a suitable neighborhood.

Specifically, Algorithm 1 works as follows: Initially, there
is only one compute node C which is the root node (cf. C
in Fig. 2a), and acts as the entry point to the fog computing
system (Line 1), as discussed in Section II-A. Upon request,
C examines the number of nodes in the neighborhood that
contains children. If this neighborhood is empty, then the
response of C is empty (Line 3), and this triggers nnew to
create a new neighborhood, add nnew and C (Line 4), and
then notify the neighbors (Line 5) about the arrival of nnew

(in this case, there is only one neighbor, i.e., C). This means
that nnew is added as the first child of C.

If the neighborhood that contains the children of C is not
empty, and the current size is smaller than m, then the response
of C contains this neighborhood (Line 6). Then, nnew adds
the nodes of this neighborhood as neighbors (Line 7), and also
notifies these neighbors about the arrival of nnew (Line 8) so
that they can add nnew as a neighbor. This means that nnew

is added as a child of C to a preexisting neighborhood.

Finally, if the neighborhood which includes the children of
C is at capacity, i.e., this neighborhood contains m neighbors,
then the response of C contains the address of one of its
children n (Line 9), to be used by nnew in a new join request
(Line 10). In this case, nnew requests to join the fog computing
system again using n, and the same process repeats until n
accepts nnew as a child.

In order to decide which child should be selected in a
new join request (Line 10), the parent node uses a cyclic
counter with values that correspond to the children. This means
that each child is selected interchangeably, which results in
a hierarchy that grows in breadth before growing in depth.
Notably, Fig. 2a shows a fog computing system which includes
new compute nodes that have joined the system sequentially,
i.e., C is the first, n2 is the second, n3 is the third, and so
on. Thus, based on the cyclic counter, the first three nodes
that join, i.e., n2, n3, and n4 become children of C, and
after that, each new node becomes a child of n2, n3, and n4

interchangeably. The reason we do this is that if the number
of nodes between each leaf and the cloud is the same, then
the processing from the IoT devices can be distributed evenly
among the compute nodes of the system. For instance in
Fig. 2a, each path from the edge to the cloud includes three
compute nodes (e.g., n5, n2, and C).

In order to consider proximity in the hierarchical archi-
tecture, each new node measures the proximity to existing
nodes, and joins the neighborhood which contains the nodes
of the closest proximity. In Algorithm 1 for example, instead
of having C decide which node should be used for new join
requests (Line 10), nnew can decide based on proximity. To
achieve this, when the neighborhood of children is at capacity
(Line 9), nnew receives all these children, and decides which
one to join (Line 10), after measuring the proximity to each
child (e.g., using hop count). Notably, when proximity is
considered, instead of sending the IoT data directly upwards
the hierarchy, it is possible to send the data to the neighbors on
a spanning tree. This can reduce the bandwidth utilization [21].
In Fig. 2a for example, instead of sending data from n5 to n2

directly, it has been shown that sending the data to n2 through
n8 might be more efficient due to the potential difference
in the bandwidth capacity of the paths. By following these
adaptations it is possible to implement an algorithm which
results in a hierarchical architecture with proximity awareness,
i.e., HWP (Hierarchical architecture With Proximity). Such an
algorithm is realized in Section III for comparison reasons.

C. The Flat Architecture

Similar to the hierarchical, in the flat architecture the cloud
is considered to be the initial entry point to the fog computing
system, and may also be used as a global point of coordination.
However, in contrast to the hierarchical, in the flat architecture
any existing compute node of the system can be used as an
entry point. As a result, the neighborhoods are formed based
on the nodes that are used as entry points, and may consist
of nodes with very diverse capacities [21]. Consequently,
when the liaisons propagate the IoT data, this data does not



Algorithm 2: FNP

1 joinFlat(computeNode nep){
2 joinResponse = joinRequest(nep)
3 if joinResponse == ∅ then
4 Hnew.add(this, nep)
5 Hnew.updateNeighbors()
6 else if joinResponse == H then
7 H .add(this)
8 H .updateNeighbors()
9 end

10 }

necessarily head towards the cloud (which is the case in the
hierarchical architecture as discussed in Section II-B). Thus,
the assumption that more computational resources are found
when the IoT data is propagated to other neighborhoods, as
discussed in Section II-B, does not hold anymore.

In order to organize the compute nodes of a fog computing
system in a flat architecture without proximity awareness, we
design FNP (Flat architecture No Proximity). The steps of FNP
are shown in Algorithm 2 which explains the algorithm from
the perspective of a new compute node that requests to join the
fog computing system. In this algorithm, each new compute
node nnew joins through a node that acts as the entry point
nep to the fog computing system, which can be any preexisting
node of the system (initially, it is C).

Upon request (Line 1), nep examines the neighborhoods that
it belongs to. If all of these neighborhoods are at capacity (or
nep does not belong to any neighborhoods), nep sends back an
empty response (Line 3). The empty response triggers nnew

to create a new neighborhood, to add nnew and nep (Line 4),
and to notify nep about the arrival of nnew (Line 5). This
means that nnew is added as the first neighbor of nep in a
neighborhood that includes only nnew and nep. More nodes
can be added to this neighborhood upon request, and until
the size of the neighborhood reaches m. If nep belongs to
a neighborhood which is not at capacity, nep sends back a
response that contains this neighborhood (Line 6). Then, nnew

adds the nodes of this neighborhood as neighbors (Line 7),
and notifies the neighbors about the arrival of nnew (Line 8).
This means that nnew is added to a preexisting neighborhood
of nep.

In order to make the compute nodes that follow the flat
architecture aware of the proximity of their neighbors, each
node needs to take proximity measurements (e.g., using hop
count). To achieve this, the following adaptations are required.
After nnew requests to join, the compute node which acts
as the entry point nep, may send back a response with a
neighborhood (Line 6). In case nep belongs to many neigh-
borhoods, then nep sends a response which contains all of
these neighborhoods. This allows nnew to take proximity
measurements, and to select the neighborhood that contains the
neighbors of the closest proximity. By doing this, an algorithm
which results in a flat architecture with proximity awareness

can be created, i.e., FWP (Flat architecture With Proximity).
We implement FWP in Section III for comparison purposes.

Notably, the layout of a fog computing system created using
FNP depends on the nodes that are used as entry points. For
instance, in Fig. 2b only the nodes n4 and C have been used
as entry points. This is why all the other nodes are gathered
around n4 and C. Additionally, since new neighborhoods
always include nep and nnew, and because nnew does not
belong to other neighborhoods (since nnew is new), only nep

can become a liaison. Thus, not using specific nodes as entry
points ensures that these nodes will not become liaisons. This
can be useful for scenarios with resource-constrained compute
nodes which may have enough computational resources to
process the IoT data, but not enough to also propagate the
data to other neighborhoods.

III. EVALUATION

In order to build hierarchical and flat fog computing systems
as discussed in Sections II-B and II-C, we implement a
prototype of the proposed algorithms in Java. The source
code of the prototype along with the code used for this
evaluation, and the produced numerical results, can be found
in the project repository [29]. By using this prototype, it is
possible to build testbeds with various compute nodes that
communicate with each other either hierarchically or based
on the flat architecture, as discussed in Section II.

To evaluate the different architectures and produce represen-
tative results which apply to the general case, rather than indi-
vidual deployments, we perform extensive simulations. Since
alternative fog computing simulators assume hierarchical or-
ganization among the compute nodes [30], such simulators
are not suitable for flat architectures. For this reason, along
with the prototype, we also build a simulator which we use
for this evaluation. This simulator can be used for performing
experiments with a configurable number of compute nodes
which form both hierarchical and flat fog computing systems.

As discussed in Section II, the examined approaches are: the
hierarchical HNP (no proximity) and HWP (with proximity),
and the flat FNP (no proximity) and FWP (with proximity).
Since all of these approaches were introduced with a neighbor-
hood size that equals four (as shown in Figs. 2a and 2b), we
keep the same neighborhood size in order to make the resulting
fog computing systems more comprehensible. Nevertheless,
different neighborhood sizes have also been examined in
preliminary experiments, and exhibit similar behavior.

In order to perform experiments, first we emulate a fog
computing environment. To do this, we build a network that
consists of multiple connected access points, and resembles
the Internet topology, as shown in Fig. 3. Then, we use the
nodes of this network as compute nodes. Notably, to take into
account the various network nodes of the infrastructure which
do not take part in the processing of the data, we consider only
the nodes with one arc as compute nodes. The others (i.e., the
access points) are considered as nodes of the infrastructure,
and are only accounted for when measuring proximity based
on hop count.



Fig. 3: Example of a generated network with 500 compute
nodes.

Based on this setup, we perform 30 experiments with
500 compute nodes for each one of the different approaches
(i.e., HNP, FNP, HWP, and FWP). These numbers allow us
to capture the general behavior of the system according to
the different architectures. For each experiment, we create a
randomly generated underlying network (such as the network
shown in Fig. 3) using the uniform distribution. The experi-
ments we conduct for this evaluation produce results regarding
communication latency, which are presented in Section III-A,
and results regarding bandwidth utilization, which are pre-
sented in Section III-B. Afterwards, we provide a discussion
of these results in Section III-C.

A. Experimental Results: Communication Latency

To examine the communication latency in each one of
the architectures, we measure the number of hops among
neighbors. We assume that the number of hops between two
compute nodes is an indicator of proximity, and that proximity

Fig. 4: Proximity of the neighbors (in hops).

can be associated with communication latency. To count the
hops, we initiate the transmission of a message from the cloud
to its neighbors. Each neighbor that receives this message
repeats the transmission to its neighbors until the message
is spread epidemically to all the compute nodes. Each time
the message is sent to a neighbor, we count the number of
hops of the path between the sender and the receiver. For each
one of the examined fog computing architectures, we repeat
this experiment 30 times in randomly generated networks, and
we plot the number of hops of all the paths in Fig. 4. The
average and the standard deviation of these values, are shown
in Table I.

The average proximity among the neighbors in HNP is
similar to FNP, and is approximately 6 hops. When taking
into account the proximity among the compute nodes, the
average proximity drops for both the hierarchical and the flat
architecture. However, in HWP the average proximity drops
to 4.41 hops, while in FWP the average proximity drops to
5.07 hops. This means that considering proximity reduces the
communication latency among neighbors by approximately
28% in the hierarchical architecture, and by approximately
16% in the flat architecture. Furthermore, we notice that in
HWP the average proximity is approximately 13% less than
in FWP.

As indicated by Fig 4, the communication latency in HWP
and FWP is reduced compared to HNP and FNP. The reason
for this is that, as discussed in Sections II-B and II-C, in
HWP and FWP the new compute nodes select neighbors
according to proximity measurements. Furthermore, we note
that in HWP the communication latency is lower than in FWP.
This happens because in the hierarchical architecture, the join
request of a new compute node can be propagated downwards
the hierarchy, until a neighborhood with nearby nodes is found.
In FWP on the other hand, a new compute node examines the
neighborhoods around the entry point, rather than exploring
other neighborhoods of the system. Thus, the search space in
FWP is smaller than in HWP, and the candidate neighborhoods
are fewer. This reduces the chances of finding a neighborhood
with compute nodes in proximity.

Apart from the proximity among the neighbors, we also
measure the proximity of the cloud, which is considered as
an indicator of the communication latency required to reach
the cloud. This is an important metric because fog computing
operates on a cloud-to-thing continuum which means that
interactions with the cloud are likely. Such interactions occur
mainly when the compute nodes at the edge or close to
the edge of the network, do not have enough computational

TABLE I: Average and standard deviation of the proximity
values in Fig. 4.

HNP FNP HWP FWP
Average
Value 6.16 6.05 4.41 5.07
Standard
Deviation 1.49 1.47 1.69 1.54



Fig. 5: Proximity of the cloud (in hops).

resources to process the IoT data. To examine this commu-
nication latency in each architecture, we count the number
of hops between the cloud and the compute node at the edge,
which resides the farthest away. To do this, we send a message
from the cloud to all the other compute nodes. Then, we
count the hops to reach each one of these nodes, and we
find the maximum number of hops. This number corresponds
to the node which resides the farthest away. We repeat this
experiment 30 times in randomly generated networks for each
architecture, and we plot the results in Fig. 5. The average and
the standard deviation of these values are shown in Table II.

The average proximity of the cloud in HNP is 82.5 hops, and
is slightly lower than in FNP (85.93 hops). When considering
the proximity among the nodes, the proximity of the cloud in
HWP increases to 126.23, which is approximately 35% more
than HNP. Finally, when taking into account the proximity
of the nodes in FWP, the proximity of the cloud increases
to 105.63 which is approximately 19% higher than FNP, and
approximately16% lower than HWP.

Surprisingly, according to Fig. 5, the proximity of the cloud
increases when taking into account the proximity among the
nodes. The reason that this happens is that in architectures
that consider proximity, the compute nodes tend to form
longer paths to reach the cloud. In Fig. 4, we notice that
HWP provides the lowest proximity among neighbors. This
is achieved by placing many nodes between the cloud and
the edge of the network, which reduces the latency to reach
the neighbors. However, this also means that in order to send
a message from a compute node at the edge of the network
to the cloud, this message has to go through more neighbors.
Thus, the path from the edge to the cloud includes more nodes,
increasing the communication latency to the cloud.

Moreover, in Fig. 5 we note that the communication latency
to reach the cloud in FWP is lower than HWP. The reason
for this is that as shown in Fig. 4, HWP manages to place
neighbors close to each other, but creates longer paths to the
cloud. FWP still reduces the communication latency among
the neighbors compared to FNP, but not as much as HWP.

TABLE II: Average and standard deviation of the proximity
values in Fig. 5.

HNP FNP HWP FWP
Average
Value 82.5 85.93 126.23 105.63
Standard
Deviation 4.3 9.01 13.81 16.27

As a result, the paths are not as long as in HWP, and the
communication latency to reach the cloud is lower. Hence, we
note that there is a trade-off between low proximity to the
neighbors, and low proximity to the cloud.

B. Experimental Results: Bandwidth Utilization

To measure the bandwidth utilization among the different
architectures, we perform the following experiment: We send
a message from the cloud to all the other nodes, and we
count the number of hops traveled until all the nodes receive
this message. This is considered as an indicator of bandwidth
utilization because each time a message travels from one node
to the other, a part of the available bandwidth of the link
that connects these two nodes, is used. In HNP and FNP, the
message is sent to the neighbors, and each neighbor repeats
the transmission until all the nodes have received the message.
In HWP and FWP, since each compute node is aware of the
proximity to its neighbors, the message is sent to the neighbors
on a spanning tree, which has been proposed to reduce
bandwidth utilization (as discussed in Section II-B). We repeat
this experiment 30 times on randomly generated networks, and
we plot the bandwidth utilization of each architecture in Fig. 6.
The average and the standard deviation of these values, are
shown in Table II.

Fig. 6 shows that the average bandwidth utilization in HNP
is similar to FNP, with a number of hops that is slightly higher
than 3000 hops. When considering the proximity among the
nodes, this number drops significantly. In FWP, the average
number of required hops drops to 2529.9 which is approxi-
mately 16% less than FNP. In HWP, the average number of
hops drops to 2200.37, which means approximately 28% less
than HNP, and approximately 13% less than FWP.

The reason for having reduced bandwidth utilization in
HWP and FWP, is that taking into account the proximity
among the nodes, results in logical links among neighbors,
which match the underlying network. This means that when
sending a message to a neighbor, this message travels a
shorter distance on the underlying network, which leads to less
traveled hops, and lower bandwidth utilization. Furthermore,
when each node is aware of the proximity of its neighbors,
sending messages on a spanning tree may reduce the num-
ber of traveled hops required to send messages, even more.
However, this is not possible in HNP and FNP because the
proximity among the nodes is not considered.

Notably, HWP utilizes significantly less bandwidth than
FWP. The reason for this is that this hierarchical architecture,
as shown in Fig 4, is more efficient at connecting neighbors



Fig. 6: Bandwidth utilization of sending a message to all the
compute nodes (in hops).

based on proximity, and at matching the logical links with
the underlying network. FWP still reduces the bandwidth
utilization compared to FNP, but not as much as HWP, since
the neighbors in FWP are, by average, not as close to each
other as in HWP (as shown in Fig 4).

C. Further Discussion

By comparing hierarchical and flat fog computing archi-
tectures with and without proximity awareness, we note that
each architecture may prove efficient for different use cases.
The hierarchical architecture without proximity awareness, can
be very efficient for applications that leverage on compute
nodes at the edge of the network, but also require frequent
communication with the cloud (cf. Fig. 5). Such applications
can be related to use cases such as online storage, which may
need to execute tasks at the edge (e.g., data compression), but
also include resource-demanding tasks (e.g., feature extraction
using machine learning). These tasks are preferably executed
in the cloud, due to the limited computational resources at the
edge [26].

The flat architecture without proximity awareness shares
similar properties with the hierarchical (without proximity
awareness), and can be useful for similar use cases. However,
the proximity to the cloud is slightly increased (cf. Fig. 5),
while the bandwidth utilization is slightly decreased (cf.
Fig. 6). These properties may make the flat architecture more
appropriate for dealing with use cases with larger files which
require more bandwidth.

The hierarchical architecture with proximity awareness ex-
hibits the lowest communication latency (cf. Fig. 4) among
neighbors compared to all the alternatives, and also the lowest
bandwidth utilization (cf. Fig. 6). However, this is accom-
panied by the highest communication latency to reach the
cloud (cf. Fig. 5). These properties make the hierarchical
architecture (with proximity awareness) more suitable for
critical applications which require low communication latency
with the compute nodes at the edge, and do not necessarily
need to interact with the cloud. Use cases that can benefit from

TABLE III: Average and standard deviation of the bandwidth
utilization values in Fig. 6.

HNP FNP HWP FWP
Average
Value 3073.17 3017.2 2200.37 2529.9
Standard
Deviation 98.17 103.61 44.76 60.02

this, may be, e.g., industrial manufacturing and industrial IoT,
because such use cases commonly include applications with
stringent latency requirements [31].

Finally, the flat architecture with proximity awareness can
be considered as the general-purpose fog computing architec-
ture, because it provides a balance between low communica-
tion latency with low bandwidth utilization. This is supported
by all the examined criteria in which the flat architecture (with
proximity awareness) provides moderately good results, i.e.,
low communication latency among the neighbors (cf. Fig. 4),
low communication latency with the cloud (cf. Fig. 5), and
low bandwidth utilization (cf. Fig. 6).

IV. RELATED WORK

We identify related work both in papers that propose a
system model and a fog computing architecture, and in review
papers which aim at discussing differences among the already
proposed architectures. For this reason, in Section IV-A we
present various fog computing architectures from the literature,
and in Section IV-B we discuss related review papers.

A. Related Fog Computing Architectures

Fog computing was introduced using the hierarchical archi-
tecture [32] although, flat architectures were soon found to be
prominent as well. For this reason, related approaches using
both architectural styles are discussed below.

Sinaeepourfard et al. [28] propose a hierarchical fog com-
puting architecture for managing the data from the IoT devices.
This architecture consists of a cloud compute node at the top,
while the other compute nodes which are closer to the IoT
devices, are organized in layers below. The number of layers
in this architecture depends on the number of participating
compute nodes, and increases when more nodes join. In this
approach, there are no actual proximity measurements among
the nodes. Instead, it is assumed that the latency to reach the
cloud is high, whereas the latency to reach the other compute
nodes is low. The goal is to reduce the communication latency
of processing the IoT data. To achieve this, the data is stored
temporarily in the compute nodes of low layers. If the data
is not requested, it moves upwards the hierarchy until the
cloud is reached. Even though this approach provides a sound
architecture for hierarchical fog computing, alternative archi-
tectures are not examined. In our work, we examine various
fog computing architectures, and we discuss the differences
based on quantitative results.

Nguyen et al. [33] present a three-layer hierarchical ar-
chitecture in which a service provider deploys services on



available compute nodes at the edge of the network. These
services are deployed in the proximity of the IoT devices
in order to reduce the communication latency. To estimate
proximity, the authors propose a mathematical model to cal-
culate the round-trip times of messages. Furthermore, in this
work each compute node is able to discover if a service is
deployed in neighbor nodes, in order to manage the available
computational resources in an efficient manner. Summed up,
this approach provides an efficient and robust architecture for
computing at the edge of the network. However, the reason
that a three-layer hierarchical architecture is chosen in not
discussed, and there is no comparison with alternatives. In
our work, we design both hierarchical and flat fog computing
architectures, and we examine the differences.

Santos et al [34] propose a fog computing architecture for
enabling automatic resource discovery for IoT services. In this
architecture, the compute nodes communicate with each other
without hierarchical control, but by using distributed hash
tables (DHTs). This approach does not take into account actual
proximity measurements, but instead, it relies on the DHTs
for organizing the nodes. DHTs provide node lookup opera-
tions whereby the compute nodes can exchange information
regarding the placement of the IoT services, e.g., the amount
of available computational resources of each node. Thus, the
authors propose a flat architecture based on DHTs in order
to enable the participating compute nodes to communicate
with each other, and to facilitate applications. Notably, the
efficiency of this approach is not compared to a hierarchical
architecture. In our work, we design both hierarchical and
flat architectures, and we discuss efficiency aspects regarding
communication latency and bandwidth utilization.

In our former work [21], we propose a flat fog computing
architecture in which each compute node communicates with
few nodes in proximity. To measure proximity, we propose
the use of hop count. Each compute node in this architec-
ture can receive a request for application execution. Upon
request, the node distributes the computations of an application
among the neighbor compute nodes. Furthermore, we propose
a messaging mechanism which sends the data to neighbor
nodes on a spanning tree in order to reduce the bandwidth
utilization. However, this work does not discuss alternative
architectures, which raises questions regarding the efficiency
of the proposed mechanisms (e.g., the messaging mechanism)
when applied to a hierarchical architecture. In the work at
hand, we discuss both hierarchical and flat architectures, and
we examine the efficiency of messaging neighbors on each
one of these architectures, in order to show the differences.

Notably, various fog computing architectures have been
proposed so far. As described in the discussion above, some
of these architectures are hierarchical, and make use of layers
to organize the compute nodes, whereas others are flat, and
do not use layers. Independently of this, in some architectures
the notion of proximity is integrated, and the compute nodes
consider proximity measurements (e.g., round-trip times or
hop count) when communicating with each other. In other
architectures, the proximity among the nodes is assumed

without any actual measurements. However, to the best of our
knowledge, no related work provides a comparison between
hierarchical and flat fog computing architectures regarding
communication latency and bandwidth utilization. For this
reason, the work at hand presents a unified system model
which is able to represent both architectures, and conducts
an evaluation of these architectures in order to examine the
differences.

B. Related Fog Computing Reviews

Varshney and Simmhan [35] provide a taxonomy of ap-
proaches for specifying and solving the problem of application
placement in compute nodes that span from the cloud to
the edge of the network. To this end, the authors present a
literature review of fog computing architectures and models,
and focus on the placement techniques that have been proposed
so far. Thus, this work can benefit developers and researchers
that are concerned with developing, designing, and selecting
appropriate placement algorithms for fog computing. However,
guidelines for selecting an appropriate fog computing archi-
tecture, which is the aim of the work at hand, are not provided.

Buyya et al. [36] present a manifesto which discusses
various aspects of cloud and fog computing, and aims at
identifying challenges, state-of-the-art solutions, and poten-
tial limitations. This work discusses different fog computing
architectures along with emerging trends and future research
directions. Notably, in this work the communication among the
compute nodes and the utilized architecture (i.e., networking
aspects), are considered as a challenge, and various related
works are discussed. However, the differences between using
a hierarchical and a flat architecture are not discussed. In
our work, we examine these differences based on quantitative
results.

Varghese and Buyya [37] discuss various computing ar-
chitectures and models for decentralizing the cloud, and for
computing at the edge of the network. Moreover, the ad-
vantages of such architectures are analyzed, and potential
future research challenges are discussed. However, this work
does not compare the alternative architectures, and does not
provide any quantitative results to show the differences. On
the contrary, in our work we discuss alternative architectures in
fog computing, we implement the different approaches, and we
conduct various experiments. Based on the results, we are able
to provide guidelines for selecting an appropriate architecture
according to the requirements of the final applications in mind.

V. CONCLUSION

Within this paper, we present and compare hierarchical and
flat architectures for fog computing. To this end, first we create
a unified system model which is able to represent both of
these architectures. Then, we build both hierarchical and flat
fog computing systems, and we perform various experiments
in order to evaluate the communication latency, and the band-
width utilization of each architecture. Finally, according to the
results which quantify the differences between hierarchical and
flat architectures for fog computing, we provide a discussion



of these results, which can be used as guidelines for selecting
an appropriate architecture based on the target use case.

A promising research direction on this topic, is to examine
the reasons for which each architecture performs differently,
and to consider combining different approaches in order to
tailor the performance of a fog computing system to the target
applications. To achieve this, hybrid architectures which use
different approaches for the different parts of the system, may
have great potential.

REFERENCES

[1] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of
things,” Transaction on IoT and Cloud Computing, vol. 3, no. 1, pp. 11–
17, 2015.

[2] B. K. Al-Shammari, N. Al-Aboody, and H. S. Al-Raweshidy, “Iot
traffic management and integration in the qos supported network,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 352–370, 2017.

[3] T. Anagnostopoulos, A. Zaslavsy, A. Medvedev, and S. Khoruzhnicov,
“Top–k query based dynamic scheduling for iot-enabled smart city waste
collection,” in International Conference on Mobile Data Management
(MDM), vol. 2, pp. 50–55, IEEE, 2015.

[4] Y. Li, A.-C. Orgerie, I. Rodero, B. L. Amersho, M. Parashar, and J.-M.
Menaud, “End-to-end energy models for edge cloud-based iot platforms:
Application to data stream analysis in iot,” Future Generation Computer
Systems, vol. 87, pp. 667–678, 2018.

[5] P. Rathore, A. S. Rao, S. Rajasegarar, E. Vanz, J. Gubbi, and
M. Palaniswami, “Real-time urban microclimate analysis using internet
of things,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 500–511,
2017.

[6] A. Shukla and Y. Simmhan, “Toward reliable and rapid elasticity
for streaming dataflows on clouds,” in International Conference on
Distributed Computing Systems (ICDCS), pp. 1096–1106, IEEE, 2018.

[7] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
computing: A new paradigm for edge/cloud integration,” IEEE Cloud
Computing, vol. 3, no. 6, pp. 76–83, 2016.

[8] D. N. Jha, P. Michalak, Z. Wen, P. Watson, and R. Ranjan, “Multi-
objective deployment of data analysis operations in heterogeneous iot
infrastructure,” IEEE Transactions on Industrial Informatics, pp. 1–11,
2019.

[9] P. Varshney and Y. Simmhan, “Demystifying fog computing: Charac-
terizing architectures, applications and abstractions,” in International
Conference on Fog and Edge Computing (ICFEC), pp. 115–124, IEEE,
2017.

[10] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, “Multitier
fog computing with large-scale iot data analytics for smart cities,” IEEE
Internet of Things Journal, vol. 5, no. 2, pp. 677–686, 2017.

[11] J. Hasenburg, M. Grambow, and D. Bermbach, “Towards a replication
service for data-intensive fog applications,” in Symposium on Applied
Computing (SAC), pp. 1–4, ACM, 2020.

[12] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya,
“Focan: A fog-supported smart city network architecture for manage-
ment of applications in the internet of everything environments,” Journal
of Parallel and Distributed Computing, vol. 132, pp. 274–283, 2019.

[13] M. Satyanarayanan, “The emergence of edge computing,” IEEE Com-
puter, vol. 50, no. 1, pp. 30–39, 2017.

[14] J. McChesney, N. Wang, A. Tanwer, E. de Lara, and B. Varghese,
“Defog: fog computing benchmarks,” in Symposium on Edge Computing
(SEC), pp. 47–58, ACM, 2019.

[15] A. Brogi, S. Forti, and A. Ibrahim, “Predictive analysis to support fog
application deployment,” in Fog and edge computing: principles and
paradigms, pp. 191–222, Wiley, 2019.

[16] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: a survey on architectures, infrastructure, and algorithms,”
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[17] O. Skarlat, V. Karagiannis, T. Rausch, K. Bachmann, and S. Schulte, “A
framework for optimization, service placement, and runtime operation
in the fog,” in International Conference on Utility and Cloud Computing
(UCC), pp. 164–173, IEEE, 2018.

[18] N. Maleki, M. Loni, M. Daneshtalab, M. Conti, and H. Fotouhi, “Sofa:
A spark-oriented fog architecture,” in Annual Conference of the IEEE
Industrial Electronics Society (IECON), vol. 1, pp. 2792–2799, IEEE,
2019.

[19] T. Zhang, J. Jin, X. Zheng, and Y. Yang, “Rate adaptive fog service
platform for heterogeneous iot applications,” IEEE Internet of Things
Journal, vol. 7, no. 1, pp. 176–188, 2020.

[20] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, and
M. Parashar, “A computational model to support in-network data analysis
in federated ecosystems,” Future Generation Computer Systems, vol. 80,
pp. 342–354, 2018.

[21] V. Karagiannis, S. Schulte, J. Leitão, and N. Preguiça, “Enabling
fog computing using self-organizing compute nodes,” in International
Conference on Fog and Edge Computing (ICFEC), pp. 1–10, IEEE,
2019.

[22] V. Karagiannis, “Compute node communication in the fog: Survey and
research challenges,” in Workshop on Fog Computing and the IoT (IoT-
Fog), pp. 36–40, ACM, 2019.

[23] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 26–35, 2017.

[24] V. Karagiannis and A. Papageorgiou, “Network-integrated edge comput-
ing orchestrator for application placement,” in International Conference
on Network and Service Management (CNSM), pp. 1–5, IEEE, 2017.

[25] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware ap-
plication module management for fog computing environments,” ACM
Transactions on Internet Technology (TOIT), vol. 19, no. 1, pp. 1–21,
2018.

[26] R. Ranjan, O. Rana, S. Nepal, M. Yousif, P. James, Z. Wen, S. Barr,
P. Watson, P. P. Jayaraman, D. Georgakopoulos, M. Villari, M. Fazio,
S. Garg, R. Buyya, L. Wang, A. Y. Zomaya, and S. Dustdar, “The next
grand challenges: Integrating the internet of things and data science,”
IEEE Cloud Computing, vol. 5, no. 3, pp. 12–26, 2018.

[27] N. Auluck, O. Rana, S. Nepal, A. Jones, and A. Singh, “Scheduling
real time security aware tasks in fog networks,” IEEE Transactions on
Services Computing, pp. 1–14, 2019.

[28] A. Sinaeepourfard, J. Garcia, X. Masip-Bruin, and E. Marin-Tordera,
“Data preservation through fog-to-cloud (f2c) data management in
smart cities,” in International Conference on Fog and Edge Computing
(ICFEC), pp. 1–9, IEEE, 2018.

[29] “Project repository,” in www.bitbucket.org/BasilKaragiannis/sonproject/.
Accessed online: 9 Feb. 2020.

[30] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[31] S. Chen, Y. Zheng, K. Wang, and W. Lu, “Delay guaranteed energy-
efficient computation offloading for industrial iot in fog computing,”
in International Conference on Communications (ICC), pp. 1–6, IEEE,
2019.

[32] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Workshop on Mobile Cloud Computing
(MCC), pp. 13–16, ACM, 2012.

[33] T.-D. Nguyen, E.-N. Huh, and M. Jo, “Decentralized and revised
content-centric networking-based service deployment and discovery
platform in mobile edge computing for iot devices,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4162–4175, 2019.

[34] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards dynamic
fog resource provisioning for smart city applications,” in International
Conference on Network and Service Management (CNSM), pp. 290–294,
IEEE, 2018.

[35] P. Varshney and Y. Simmhan, “Characterizing application scheduling
on edge, fog, and cloud computing resources,” Software: Practice and
Experience, pp. 1–38, 2019.

[36] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan,
B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. Netto, et al.,
“A manifesto for future generation cloud computing: research directions
for the next decade,” ACM computing surveys (CSUR), vol. 51, no. 5,
pp. 1–38, 2018.

[37] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Generation Computer Systems,
vol. 79, pp. 849–861, 2018.


