
Accepted at: 3rd IEEE International Conference on Fog and Edge Computing (ICFEC 2019), pp. 1–10

Optimal Placement of
Stream Processing Operators in the Fog

Thomas Hiessl, Vasileios Karagiannis, Christoph Hochreiner, Stefan Schulte
Distributed Systems Group, TU Wien, Austria

thomashiessl@gmx.at
{v.karagiannis, c.hochreiner, s.schulte}@infosys.tuwien.ac.at

Matteo Nardelli
Department of Civil Engineering and Computer Science Engineering

University of Rome Tor Vergata, Italy
nardelli@ing.uniroma2.it

Abstract—Elastic data stream processing enables applications
to query and analyze streams of real time data. This is commonly
facilitated by processing the flow of the data streams using a
collection of stream processing operators which are placed in the
cloud. However, the cloud follows a centralized approach which is
prone to high latency delay. For avoiding this delay, we leverage
on the fog computing paradigm which extends the cloud to the
edge of the network.

In order to design a stream processing solution for the fog,
we first formulate an optimization problem for the placement of
stream processing operators, which is tailored to fog computing
environments. Then, we build a plugin (for stream processing
frameworks) which solves the optimization problem periodically
in order to support the dynamic resources of the fog. We evaluate
this approach by performing experiments on an OpenStack
testbed. The results show that our plugin reduces the response
time and the cost by 31.5% and 8.8% respectively, compared to
optimizing the placement of operators only upon initialization.

Index Terms—Edge Computing, Stream Processing, Internet
of Things

I. INTRODUCTION

Internet of Things (IoT) applications aim at increasing the
quality of life in modern societies by improving domains such
as healthcare, transportation and industry [1]. To facilitate
these applications, a plethora of sensing devices produces an
enormous amount of data which is usually processed in the
cloud [2]. In order to handle this great deal of data in (near)
real-time, cloud computing infrastructures commonly employ
Data Stream Processing (DSP) frameworks like Apache Storm
or Apache Spark [3]. Such frameworks are responsible for
deploying and maintaining DSP topologies which describe
the lifecycle of the data [4]. Specifically, a DSP topology
consists of data sources generating data streams and operators
collecting the streams and performing well-defined operations
such as data filtering, processing or storing [5].

The paper at hand argues that instead of deploying DSP
topologies in the cloud which might bear high latency de-
lay [6], it may be beneficial to deploy the topologies in the fog.
This is different because the fog extends the cloud by including

This work was partially funded by the European project H2020 FORA
(Grant Agreement: 764785).

compute resources at the edge of the network [7]. While
DSP at the edge of the network has already been discussed
before [6], [8], there is—to the best of our knowledge—
no scheduling algorithm for the placement of operators, that
has been originally designed to address fog computing envi-
ronments. Thus, aspects such as the dynamic nature of the
fog resources in volatile IoT environments, are not taken
into account. However, there are approaches that formulate
optimization problems which integrate logic to replace the
scheduling algorithms of existing DSP frameworks in order
to address fog computing [9], [10]. Even though the existing
work provides fundamental insights regarding the enactment
of DSP in the fog, the formulation of the existing objective
functions does not consider leased resources or migration cost.
These are important aspects of fog computing [11], [12].

Therefore, within this paper we formulate an optimization
problem which considers various Quality of Service (QoS)
attributes (e.g., response time, availability, enactment and mi-
gration cost) in order to address fog computing environments.
To this end, we extend an existing Integer Linear Program-
ming (ILP) problem [13] by modeling additional attributes of
the fog (e.g., leased resources). Moreover, we integrate the
formulation of the optimization problem within a plugin (for
stream processing frameworks) which is compatible with the
Vienna Ecosystem for Elastic Stream Processing (VISP) [14].
This plugin solves the optimization problem and provides
DSP frameworks with commands to apply the optimized
solution. Notably, the proposed plugin allows performing the
optimization periodically during the runtime of a fog-based
DSP system. In the evaluation (cf. Section V), we show that
in a fog computing environment, this plugin in combination
with the presented optimization model, lowers the response
time and the cost, compared to optimizing statically upon
initialization, i.e., during design or deployment time.

The rest of the paper is organized as follows: The next
section presents existing work which is used as foundation for
our approach to implement fog-based DSP. Section III dis-
cusses the system model and the actual optimization problem.
Then, in Section IV, we present the internal structure of the
plugin which integrates the optimization model. Afterwards,



in Section V, we build a testbed based on OpenStack and
we evaluate the performance of the proposed plugin based
on a series of experiments which focus on response time and
cost. Finally, Section VI presents related work and Section VII
concludes the paper and proposes future research directions.

II. BACKGROUND

This section presents the background of our approach.
Section II-A discusses briefly the optimization problem of
placing operators on distributed resources and Section II-B
describes VISP.

A. Optimal Placement of Operators

Cardellini et al. [13] formulate the optimal DSP placement
(ODP) which is an ILP problem for optimizing the placement
of DSP operators. The objective function in ODP, considers
QoS attributes such as latency and availability. Each QoS
attribute is accompanied by a modifiable weight so that the
optimization goal can be adjusted according to the applica-
tions’ requirements. The available and the required processing
resources are also taken into account in order to cope with
resource heterogeneity. The developed optimization model is
integrated into Apache Storm and is executed upon the initial-
ization of a DSP application. The output of the optimization
is sent to a scheduler which places the operators of an Apache
Storm topology on the available processing resources.

Even though ODP targets distributed environments (e.g., fog
computing), the utilized objective function does not consider
leased resources or migration cost. Moreover, optimization is
only performed during deployment time, i.e., dynamic changes
during runtime are not taken into account. For these reasons,
we extend the ODP and formulate a new optimization problem,
i.e., the optimal DSP replacement (ODR) in Section III-C.

B. The VISP ecosystem

In our former work, we present VISP which is an ecosystem
for elastic DSP in the IoT [14]. VISP consists of two prime
components: the marketplace and the runtime. The former
is a platform for hosting the executable files of operators
and for designing DSP topologies. The runtime pulls the
operators from the marketplace and performs actions such as
instantiating, executing and monitoring the operator instances.
These instances are deployed on cloud resources, e.g., using
Virtual Machines (VMs). VISP provides the functionality of a
full-fledged research stream processing engine that includes
a data provider which helps the benchmarking of stream
processing. For this reason, we select VISP as a base for the
development of a plugin that adapts DSP to fog computing.
However, it should be noted that the work at hand can be
integrated into any DSP framework (e.g., Apache Storm or
Apache Spark) which allows adding the necessary interactions
for applying optimizations on a DSP topology.

VISP includes an elasticity component named the reasoner,
for instantiating additional operators during runtime. However,
this component does not consider resources that become
available/unavailable after the deployment of the operators.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

... ...

VISP Infrastructure
Host

 
 
 

VM

VISP Runtime

VISP Resource Pool
 
 
 

VM

Operator
Operator

 
 
 

VM

Operator

OpenStack Cloud

VISP Resource Pool
 
 
 

VM

Operator
Operator

 
 
 

VM

Operator

ODR Reasoner

VISP Data
Provider 

VM 

Data
Provider

Fig. 1: A deployment of VISP using the ODR reasoner.

Therefore, to take into account such resources, a new place-
ment method has to be designed. To this end, we introduce
the ODR reasoner plugin for VISP, which effectively replaces
the existing reasoner. This plugin integrates the formulation of
ODR and solves the optimization problem periodically during
runtime in order to support dynamic resources.

Fig. 1 depicts an example deployment of VISP using the
ODR reasoner. In this figure, VISP remains responsible for
deploying the operators while the ODR reasoner interacts
only with the VISP runtime. Specifically, in Fig. 1, VISP
is hosted on VMs which represent the available compute
nodes in the cloud and the fog. The data provider is used
for providing the data streams to the topologies which have
been enacted by the VISP runtime. The runtime manages the
available resources and provides an interface for the ODR
reasoner. The ODR reasoner polls for monitoring information
and optimizes the placement of the operators periodically.
After each optimization cycle, the ODR reasoner reports back
to the runtime with commands to improve the performance of
the DSP topology. Such commands may include instantiating
more operators or migrating an operator to another VM.

III. PROBLEM FORMULATION

In this section, we extend the system model and the prob-
lem formulation of ODP [13] in order to design the ODR
problem. For this, we first present the ODP system model
(Section III-A) including additional parameters which help in
the formulation of ODR. Then, we briefly describe the ODP
problem (Section III-B). After that, we present the formulation
of ODR (Section III-C). Specifically, ODR extends ODP with
aspects such as: resource constraints and processing duration
of the operators as well as enactment and migration cost. For
better understanding of the system model and the problem
formulation, Table I provides an overview of the used notation.

A. System Model

Our underlying fog system model includes fog-based com-
pute resources and applications running on these resources.
The available resources are represented by a graph Gres that



consists of vertices Vres marking the compute nodes and edges
Eres marking the network links between the vertices [13].
Assuming two compute nodes u and v with u, v ∈ Vres,
we define the following QoS attributes. The availability of
a compute node and a network link are denoted as Au and
A(u,v), respectively. The delay of a network link is noted
as d(u,v). The speedup of a compute node Su indicates the
speed of processing on u. Su is used in order to classify the
compute nodes based on resource capacity. We model three
resource classes as SMALL, MEDIUM and LARGE,
which contain compute nodes with similar capacities and
therefore, corresponding speedups spSMALL, spMEDIUM

and spLARGE . Thus, if u ∈ MEDIUM and v ∈ SMALL,
the same operator runs faster on u, i.e., Su > Sv .

A DSP application is represented by a topology graph
Gdsp that consists of vertices Vdsp marking the operators
and edges Edsp marking the flow of the streams between the
operators [15]. The speedup that an operator i experienced at
the deployment location of the previous optimization cycle is
denoted as Si. Based on the value of Si, we distinguish among
different resource categories as discussed later in Section III-C.

We further extend this model with additional notation for
the formulation of ODR. The enactment cost and the migration
cost are modeled as Cu and C(i,u,v), respectively. Since the
fog may include heterogeneous resources, we also model
CPU frequency P(CPU,u), number of CPU cores P(Cores,u),
memory capacity P(Mem,u) and storage capacity P(HD,u).

Each operator has the following resource requirements: CPU
frequency P(CPU,i), number of CPU cores P(Cores,i), memory
P(Mem,i) and storage P(HD,i). We also consider the operator
image size si which affects the cost in case of migrations
from one compute node to the other. The execution time of
processing k data tuples on the operator i ∈ Vdsp is modeled
as ETi. The number k results from the number of tuples that
is received from all operator predecessors when exactly one
data tuple is sent by the data source. Apart from ETi, we also
use T(actual,i) to denote the monitored value of the execution
time of processing k data tuples on the operator i. It should
be noted that T(actual,i) also includes queuing delays. This
is used later in Section III-C along with the maximum limit
of T(actual,i) that we note as T(max,i). These are used for
detecting bottlenecks i.e., when T(actual,i) > T(max,i).

Since the operator images are initially hosted in the VISP
marketplace M , we model the transfer of the images from the
marketplace to the compute nodes. We denote b(M,u) as the
data rate of transferring the image from M to u ∈ Vres. The
placement of an operator i on a compute node u is modeled
as a decision variable xi,u. In addition, the placement variable
of the previous optimization cycle is denoted as xprevi,u . We use
xprevi,u in order to calculate the migration cost from transferring
an operator i from one compute node to the other.

B. Optimal DSP Placement

According to Cardellini et al. [13] the response time of a
DSP topology is defined as the maximum delay of all the
paths in the flow of a data stream as described in Equation 1.

TABLE I: Notation of the problem formulation

Symbol Description
Gdsp Graph representing the DSP topology
Edsp Edges of Gdsp (streams)
Vdsp Vertices of Gdsp (operators)
Gres Graph representing the available resources
Vres Vertices of Gres (compute nodes)
Eres Edges of Gres (logical links)
ETi Execution time (sec) of i ∈ Vdsp (per tuple)
Cu Enactment cost of u ∈ Vres per second
C(i,u,v) Cost for migrating i ∈ Vdsp from

u ∈ V i
res to v ∈ V i

res
si Size (MB) of image of i ∈ Vdsp
T(actual,i) Actual processing time of i ∈ Vdsp (per tuple)
T(max,i) Maximum processing time of i ∈ Vdsp (per tuple)
P(Cores,u) Available number of cores in u ∈ Vres
Su Processing speedup of u ∈ Vres
Si Processing speedup of i ∈ Vdsp in

previous optimization cycle
Au Availability of u ∈ Vres
A(u,v) Availability of (u, v) ∈ Eres

d(u,v) Network delay (sec) of (u, v) ∈ Eres

M Node hosting the marketplace M /∈ Vres
b(M,u) Data rate (MB/s) between M and u ∈ Vres
xi,u Placement of i ∈ Vdsp on u ∈ Vres
y(i,j)(u,v) Placement if (i, j) ∈ Edsp on (u, v) ∈ Eres

xprevi,u Placement of i ∈ Vdsp on u ∈ Vres
in the previous optimization cycle

R Response time of a topology Gdsp

Ri(x) Response time of an operator i ∈ Vdsp
V i
res ⊆ Vres Subset of nodes where i ∈ Vdsp can be placed

A path is a sequence of edges connecting multiple vertices.
The delay of a path Rp is defined in Equation 2 whereby the
first addend reflects the time spent for processing tuples within
all operators along the path and the second addend reflects the
delay of sending data tuples within the network. The Ri(x)
in Equation 3 denotes the response time of a single operator
and the D(i,j)(y) in Equation 4 denotes the delay between
operator i and j. This definition of response time applies also
for the formulation of ODR (in Section III-C).

R = max
p∈πGdsp

Rp(x, y) (1)

with

Rp(x, y) =

np∑
k=1

Rik(x) +

np−1∑
k=1

D(ik,ik+1)(y) (2)

Ri(x) =
∑

u∈V i
res

ETi
Su

xi,u (3)

D(i,j)(y) =
∑

(u,v)∈V i
res×V

j
res

d(u,v)y(i,j),(u,v) (4)

The availability of a DSP topology assumes independent
compute nodes u ∈ Vres and network links (i, j) ∈ Eres
as expressed in Equation 5. Since quadratic or higher order
equations cannot be solved as ILP problems, multiplications of
the decision variables xi,u and y(i,j),(u,v) are avoided by using
the logarithm of the DSP availability. Equation 8 describes
the logarithm applied on Equation 5, with log(Au(x)) = au



and log(Au(x, y)) = au,v . Even though this application is not
correct in all cases, it holds for the ODP model [13]. The
same definition of availability applies also for the formulation
of ODR (in Section III-C).

A(x, y) =
∏

i∈Vdsp

Ai(x) ·
∏

(i,j)∈Edsp

A(i,j)(y) (5)

with

Ai(x) =
∑

u∈V i
res

Auxi,u (6)

A(i,j)(y) =
∑

(u,v)∈V i
res×V

j
res

A(u,v)y(i,j),(u,v) (7)

logA(x, y) =
∑
i∈Vdsp

∑
u∈V i

res

auxi,u+

+
∑

(i,j)∈Edsp

∑
(u,v)∈V i

res×V
j
res

a(u,v)y(i,j),(u,v) (8)

1) Objective Function: The objective function of ODP is
described in Equation 9 which focuses on response time and
availability. This objective function is formulated according to
the Simple Additive Weighting (SAW) method which simpli-
fies the addition of QoS attributes [16]. According to SAW, ob-
jective functions use different weights for each QoS attribute.
Each weight wi has a value such that the sum

∑
i wi = 1. The

influence of each QoS attribute in Equation 9 is balanced using
normalization. To normalize the values of the QoS attributes, a
division by Rmax−Rmin and logAmax−logAmin is performed
as shown in Equation 9. Rmax and Rmin are the maximum and
minimum response times of a DSP topology.

Similarly, logAmax and logAmin represent the maximum
and minimum availability. The variable r denotes R(x, y)
and the constraint of Equation 10 ensures that r is greater
or equal to the response times of all the topology paths.
Considering that r has to be minimized, it is valid to have
r = maxp∈πGdsp

Rp(x, y) = R(x, y).

max
x,y,r

F ′(x, y, r) with

F ′(x, y, r) = wr
Rmax − r

Rmax −Rmin
+

+ wa
logA(x, y)− logAmin

logAmax − logAmin
(9)

subject to:

r ≥
np∑
k=1

∑
u∈V ik

ETi
Su

xik,u+

+

np−1∑
k=1

∑
(u,v)∈V ik

res×V
ik+1
res

d(u,v)y(ik,ik+1),(u,v) ∀p ∈ πG (10)

Other constraints which apply on Equation 9 are: i) The
required resources of an operator i are less than the provided
resources of the compute node u that hosts i. ii) One compute
node hosts up to one operator. iii) If y(i,j),(u,v) equals to one,

operators i and j are deployed on nodes u and v, respectively.
iv) The variables xi,u and y(i,j),(u,v) which represent the
placement decisions after the optimization, are Boolean.

C. Optimal DSP Replacement

In this section, we extend the formulation of ODP to better
fit fog computing environments. To this end, we integrate the
formulations of: migration cost (C(i,u,v)), enactment cost (Cu)
and processing time (T(actual,i)) which have been defined in
Section III-A. Specifically, we formulate ODR as follows.

The enactment cost is the cost of running DSP topologies on
the available resources. We model Cop(x) as total enactment
cost per second as shown in Equation 11.

Cop(x) =
∑
i∈Vdsp

∑
u∈V i

res

Cuxi,u (11)

The migration cost is the cost that derives from all planned
migrations after each optimization cycle. This cost is shown in
Equation 12 as the sum of each single migration cost C(i,u,v).
The single migration cost is described in Equation 13 and
considers the operator image size si and the data rate b(M,v) of
pulling the operator image from the marketplace to a compute
node. The division of these two variables (si and b(M,v))
equals to the duration of loading the image in the destination
node v ∈ V ires. The multiplication of this duration (v ∈ V ires)
with Cu represents the cost of migrating an operator i to a
node u.

Cmig(x) =
∑
i∈Vdsp

∑
u∈V i

res

∑
v∈V i

res\{u}

C(i,u,v)x
prev
i,u xi,v (12)

C(i,u,v) =
si

b(M,v)
Cu (13)

For response time and availability, we use the definitions
of ODP as shown in Equations 1-4 and 5-8, respectively.
However, we modify the speedup used in Equation 3 to support
various resource classes. Thus, the speedup Su is assigned with
one of the three speedup values according to the resource class
of the node u ∈ Vres.

Su =


spsmall if u ∈ SMALL

spmedium if u ∈MEDIUM

splarge if u ∈ LARGE
(14)

1) Objective Function: Following the example of ODP
which uses the SAW technique, we add three more weighted
QoS attributes to the objective function of Equation 9. These
are: the budget constraints, the processing duration constraint
and the resource constraints, as explained below. The resulting
objective function of ODR is shown in Equation 15.

F ′cost = F ′(x, y, r) + wcop
Copmax − Cop(x)
Copmax − Copmin

+

+ wcmig

Cmigmax − Cmig(x)
Cmigmax − Cmigmin

(15)

The budget constraints are used for limiting the amount
of the enactment cost. We use the variable B in Equations 16



and 17 as a limit for the enactment cost Bop and the migration
cost Bmig , respectively. This is done to penalize the operator
replacements in order to regulate the cost and keep the
performance at a certain level [17].

Cop(x) ≤ Bop (16)
Cmig(x) ≤ Bmig (17)

The processing duration constraint serves as a trigger for
redeploying operators. This constraint ensures that operators
are deployed on compute nodes with enough resources (i.e.,
higher speed-up Su) and that the processing duration does
not exceed a maximum limit. We use this constraint to avoid
bottlenecks when the preceding operators send many tuples to
an overloaded operator. In this case, migrating the overloaded
operator to a node of a higher category (e.g., medium or large)
which processes tuples faster, reduces the processing duration.

To formulate the maximum limit of the processing duration,
we consider the processing duration of tuples as shown in
Equation 18. The left-hand side of the equation is the pro-
cessing duration that results if operator i is deployed on a
compute node u with speedup Su. This side has to be less or
equal to the limit Tmax,i, which resides in the right-hand side
of the equation.∑

u∈Vres

T(actual,i)
Si
Su
xi,u ≤ T(max,i) ∀i ∈ Vdsp (18)

The resource constraints replace the generic resource ca-
pacity constraint of ODP [13]. Specifically, Equations 19-21
model CPU, memory and storage, respectively. Equation 19
ensures that the required CPU of the operator is less or equal to
the CPU capacity of the host compute node. CPU is considered
as the product of the number of CPU cores and the CPU
frequency (this product is also referred to as vCPU). CPU is
formulated this way so that operators with high requirements
of CPU frequency can also be hosted in nodes that have
low CPU frequency but are equipped with many CPU cores.
Similarly, high CPU frequency can cover the shortage of CPU
cores. Finally, Equations 20 and 21 ensure that the resource
requirements of an operator are less or equal to the capacity of
the host compute node for memory and storage, respectively.∑
i∈Vdsp

P(CPU,i)P(Cores,i)xi,u ≤ P(CPU,u)P(Cores,u)

∀u ∈ Vres (19)∑
i∈Vdsp

P(Mem,i)xi,u ≤ P(Mem,u) ∀u ∈ Vres (20)

∑
i∈Vdsp

P(HD,i)xi,u ≤ P(HD,u) ∀u ∈ Vres (21)

IV. THE ODR REASONER

In this section, we present the ODR reasoner which in-
tegrates the optimization problem of ODR (as presented in
Section III). The internal structure of the ODR reasoner
comprises the following components (cf. Figure 2):

Fig. 2: The internal structure of the ODR reasoner.

The VISP ODR Reasoner API is the northbound interface
for receiving optimization requests from the VISP runtime.
As an optimization request, we consider the initial call that
VISP used to make to the predecessor of the ODR reasoner,
i.e., the reasoner (cf. Section II), which is now redirected to
the ODR reasoner. After the submission of an optimization
request to the API, a Metric Provider and a Resource Manager
are instantiated. The Resource Manager is responsible for the
parameters of the system model, which are related to the
available resources. The Metric Provider is responsible for the
following variables:

• Response time boundaries for Rmax and Rmin assigned
by monitoring the response time R (cf. Equation 1).
These values are used for the normalization of the QoS at-
tributes in the objective function (cf. Equations 9 and 15).

• Availability boundaries for Amax and Amin assigned
by monitoring the availability A(x, y) (cf. Equation 5).
These values are used for the normalization of the QoS at-
tributes in the objective function (cf. Equations 9 and 15).

• Enactment cost boundaries for Copmax and Copmin rep-
resenting the max and min enactment cost Cop(x) (cf.
Equation 11). These are used for the normalization of the
QoS attributes in the objective function (cf. Equation 15).

• Migration cost boundaries for Cmigmax and Cmigmin

which represent the max and min migration cost Cmig(x)
calculated according to Equation 12. These values are
used for the normalization of the QoS attributes in the
objective function (cf. Equation 15).

• Execution time ETi for each operator i ∈ Vdsp. These
values are assigned by monitoring the deployment of the
DSP topology on the available resources.

• Network delay d(u,v) for all links (u, v) ∈ Eres. These



values are requested from the VISP runtime.
• Speedup Su for each u ∈ Vres. These are assigned based

on the size of the node u (small, medium or large). The
resource capacities are requested from the VISP runtime.

Both the Resource Manager and the Metric Provider request
the required data from the VISP Client which pulls data from
the VISP runtime. All data is stored in the form of graphs,
metrics, and optimization settings to an in-memory Storage.

After storing the data, the Scheduler which is triggered
periodically (based on fixed time intervals), passes the opti-
mization parameters to the ILP Model Solver. This component
integrates an ILP solver which returns the optimized placement
according to the formulation of ODR. To ensure that all the
dynamic changes are incorporated into the optimization model,
the ILP Model Solver does not consider information from
previous optimization cycles. After solving the optimization
problem, the optimized placement is converted to a VISP-
compatible format by the Reconfiguration Manager which
sends the placement commands to the VISP runtime.

Notably, before passing the optimization parameters to the
ILP Model Solver, the Scheduler invokes the Persistence Strat-
egy Selector. This component limits the amount of operator
replacements by either pinning an operator to a node or by
minimizing the migration cost. This is done for achieving
only partial deployment persistence of the optimized place-
ment over time. Deployment persistence refers to limiting the
operator replacements because frequent changes are costly and
may lead to inefficient resource utilization [17].

To make the ODR reasoner suitable for environments that
process huge amounts of data (e.g., in IoT and fog computing
scenarios), we enable the handling of many DSP topologies
at the same time. To achieve this, each optimization request
is assigned to an ID. Every time the Scheduler invokes
the aforementioned components, the ID of the corresponding
optimization request is used as a parameter. This way, multiple
topologies can be saved in the Storage and be optimized
periodically. This feature also enables one instance of the ODR
reasoner to be able to handle many VISP runtimes.

V. EVALUATION

This section provides the evaluation of the ODR reasoner.
First, Section V-A describes the fog computing environment
we set up. Then, Section V-B presents results from running
the ODR reasoner in this environment. The results we show
focus on response time (as defined in Equation 1), total
cost (including enactment and migration cost as defined in
Equations 11 and 12, respectively) and total score which
represents the maximized value of the objective function (as
defined in Equation 15). These specific metrics are selected
in order to show that the ODR reasoner lowers the response
time and the cost, compared to optimizing statically only upon
initialization.

A. Evaluation Environment

To evaluate the ODR reasoner, we set up an OpenStack-
based private cloud. OpenStack is used for creating VMs

to host the VISP ecosystem and the operators. Three types
of VMs are provisioned with different resource capacities:
i) m1.medium with vCPU = 3 (product of CPU cores and
CPU frequency in GHz), memory = 2 GB and storage = 40
GB. ii) m2.medium with vCPU = 5, memory = 3 GB and
storage = 40 GB. iii) m1.xlarge with vCPU = 15, memory =
5 GB and storage = 40 GB. The ODR reasoner is developed
as a VISP plugin in Java, using the Spring Boot library for
implementing the API that enables communication with VISP.

For solving the proposed optimization problem, the ODR
reasoner requires an ILP solver (as explained in Section IV)
such as the IBM CPLEX, the GUROBI or the MOSEK. In
our case, we use the Java API of the IBM CPLEX due to its
compatibility with the ODR reasoner (which is also developed
in Java) and the intuitive interfaces. Using CPLEX we can
create an ILP optimization model, define the objective function
and add various constraints. Specifically, the ILP solver first
instantiates IloLinearNumExpr objects which are used for
expressions of numerical variables of any type (e.g., resource
capacities). Then, to build an optimization model using these
variables, an IloModeler object is used. The IloModeler is
also used for constructing the constraints and the objective
function. Finally, an IloCplex object which integrates the tools
to solve various mathematical programming models, collects
all the modeled expressions in order to be able to solve the
optimization problem of ODR.

To ensure that the ILP solver produces a satisfactory solu-
tion within a reasonable amount of time despite the dynamic
changes of the fog resources, we configure CPLEX to stop
optimizing when at least one out of two conditions is met:
i) The processing duration exceeds a predetermined time limit.
ii) The value of the objective function reaches a predetermined
threshold. In both cases, CPLEX stops and returns the maxi-
mized solution.

To emulate a fog computing environment, we set up three
VISP runtimes (using Redis, MySQL and RabbitMQ for
achieving reliable communication/storage) as shown in Fig. 3.
One runtime is considered to be in the cloud managing two
VMs (u ∈ Vres). The other two runtimes are considered to
be fog nodes and each one manages one VM (u ∈ Vres).
To emulate the dynamic resources of a fog environment, one
fog node joins the network 20 minutes after the beginning of
the experiments. This is necessary for the system to stabilize
so that the observed changes after this time period, can be
attributed to the dynamic resources.

Moreover, we manipulate the network delays among the
compute nodes using the Traffic Control (tc) utility1. The
communication between the cloud VMs bears no network
delay whereas, reaching a fog VM from the cloud requires
400 ms of delay, due to the remote location. The fog VMs
are assumed to reside close to each other and thus, the
communication between them requires 10 ms of delay.

For this fog computing environment, we assume a DSP
topology with four operators, a data source, and a data sink

1https://linux.die.net/man/8/tc



VISP Infrastructure Host
 
 
 
 
 
 

VM
RabbitMQ

 
MySQL

 
Redis

VISP Runtime Cloud

VISP Resource Pool
 
 
 
 
 
 

m1.medium
 

VM

OpenStack Cloud

VISP Infrastructure Host
 
 
 
 
 
 

VM
RabbitMQ

 
MySQL

 
Redis

VISP Runtime Fog Node 1

VISP Infrastructure Host
 
 
 
 
 
 

VM
RabbitMQ

 
MySQL

 
Redis

VISP Runtime Fog Node 2

VISP Resource Pool
 
 
 
 
 
 

m2.medium
 

VM

VISP Resource Pool
 
 
 
 
 
 

m2.medium
 

VM

VISP Resource Pool
 
 
 
 
 
 

m1.xlarge
 

VM

Fig. 3: The fog computing environment used in the evaluation.

as shown in Fig. 4. The source is configured to generate data
tuples with sinusoidal frequency (on average, one message per
second) to account for different load cases. The operators are
configured to have fixed processing times ETi of 100, 250,
500 and 1000 ms for operator 1, 2, 3 and 4, respectively. Each
operator starts with size: small, because scaling to medium and
large occurs during runtime (if needed) by the ODR reasoner.

The ODR reasoner repeats the optimization every 4 minutes
which allows time for the system to stabilize after each
optimization cycle. For this evaluation, we allow the system to
operate for 50 minutes consecutively, so that the effect of the
optimizations can be noticed through the observed metrics.
Moreover, the results we present in Section V-B are based
on the average values from running 3 experiments (each one
lasting 50 minutes).

To take into consideration the different aspects of the cost
related to placement, we account for depreciation, maintenance
and leasing, which all add up to the total cost that is measured
in currency units (CU) per second. Depreciation refers to the
allocated cost of an asset (e.g., hardware resources) based on
the initial purchase expense and the duration over which the
investment is amortized [18]. Maintenance refers to the cost
of keeping the resources at a functional state without defects.

Fig. 4: The DSP topology used in the evaluation.

Finally, the Leasing cost is a price that has to be paid to the
owner of the resources (if the resources are leased).

The cloud VMs can be leased for a cost of 15.5 CU/s for
m1.medium and 20.5 CU/s for m2.medium. These numbers
represent the cost of using cloud services whereby the cost of a
VM is associated with the respective compute resources. Since
these resources are not owned, we do not consider depreciation
and maintenance cost.

Fog node 1 resides on-premise (leasing: 0 CU/s) and has
a maintenance cost of 29.5 CU/s. This cost is higher than
a VM of the same compute resources in the cloud because
dedicated on-premise resources are more expensive than cloud
resources [19]. Fog Node 2 also resides on-premise, but
the associated compute resources are shared among multiple
clients. Since the execution of data processing in fog node
VMs is not free of charge [20], the maintenance cost is shared
among all the clients and thus it remains low (1.5 CU/s). Both
fog nodes have depreciation cost of 1 CU/s. We also consider
an optimization server which hosts the ODR reasoner and
solves the optimization problem for a total optimization cost
of 3 CU/s.

To provide a baseline for the evaluation, apart from ex-
ecuting the ODR reasoner (dynamic optimization), we also
perform the same experiments using static optimization. Static
optimization executes the actions related to the optimization
and placement of a DSP topology only on system startup.
Since the motivation for periodic optimization is due to the
dynamic resources of the fog, having a baseline that represents
static optimization may reveal if the periodic approach is
actually more suitable for fog computing. A more detailed
technical analysis of the evaluation environment as well as the
implementation of the ODR reasoner can be found in [21].

B. Evaluation Results

In this section, we present the average values (standard
deviations are shown in Table II) of the evaluation results
which focus on response time (Section V-B1), total cost and
total score (Section V-B2). Moreover, we show a summary of
the values of all the QoS attributes in Section V-B3.



10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

Time (min)

R
es

po
ns

e 
T

im
e 

(s
)

Dynamic
Static

Fig. 5: Response time when the objective function considers
equal QoS attributes.

10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

Time (min)

R
es

po
ns

e 
T

im
e 

(s
)

Dynamic
Static

Fig. 6: Response time when the objective function focuses on
minimizing response time.

1) Response Time: Fig. 5 shows the response time of the
DSP topology (as defined in Equation 1) throughout the 50
minutes of the evaluation. We notice that the response time
of the dynamic optimization (ODR) is permanently lower
than the response time of the static optimization. What is
interesting in this figure, is that the dynamic line starts lower.
The explanation for this is that the monitoring data on startup
are not exactly the same for the two cases. This can lead to
changes in the boundary parameters (e.g., Rmax and Rmin,
cf. Section IV), which in turn influence the outcome of the
objective function (cf. Equation 15). For this reason, the
static optimization achieves higher total score when focusing
on other QoS attributes of the objective function (e.g., cost,
availability). This can lead to placements that are more cost-
efficient but bear longer response time.

When fog node 2 becomes available (after 20 minutes,
as indicated by the horizontal red line in Fig. 5), the ODR
reasoner performs replacements which significantly decrease
the response time to 1.3 seconds. Compared to the 1.9 seconds
of the static optimization, the reduction achieved by ODR
amounts to 31.5%. This reduction derives from the ODR
reasoner because it exploits the fog node 2 during runtime
by moving operators to the fog. This lowers the response time

10 20 30 40 50

0
10

20
30

40

Time (min)

C
os

t 
(C

U
/s

)

Dynamic total cost
Dynamic enactment cost
Static total cost

Fig. 7: Cost when the objective function considers equal QoS
attributes.

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (min)

To
ta

l S
co

re
 

Dynamic
Static

Fig. 8: Total score when the objective function considers equal
QoS attributes.

of the DSP topology since the communication between the fog
nodes has low delay.

To acquire the results of Fig. 5, we configure all the QoS
attributes of the objective function (cf. Equation 15) to have
equal weights (i.e., wr = wa = wcop = wcmig

= 0.25). By
modifying these weights, we can configure ODR to achieve
optimality by focusing on different QoS attributes.

To unveil the maximum potential of ODR with regard to the
response time, we run the same experiment again, but modify
the weights of the objective function to focus on response
time (i.e., wr = 1 and wa = wcop = wcmig

= 0). We plot
the results in Fig. 6 which shows that contrarily to Fig. 5,
both lines start with the same value of response time (at 1.9
seconds). This happens because in this case, both approaches
achieve optimality by lowering the response time.

When the fog node 2 becomes available in Fig. 5, we
notice that the line drops for three optimization cycles in a
row until it reaches a response time of 1.26 seconds (i.e.,
33.5% reduction). Notably, the response time drops for three
optimization cycles even though ODR aims at achieving global
optimum in every cycle. This happens because the monitoring
data reported to ODR after executing the initial optimization,
aid in applying further improvements.



2) Total Cost and Total Score: Fig. 7 shows the value of
the cost (CU/s) throughout the time of the experiments. The
dashed line represents the total cost of the static optimization
which consists of the enactment cost and the initial optimiza-
tion cost. The dot-dash line represents the enactment cost of
ODR and the solid line represents the total cost of ODR which
is the sum of the enactment, migration and optimization cost.
To acquire the results of Fig. 7, we configure equal weights
for the QoS attributes.

In Fig. 7, we notice that the enactment and total cost of ODR
exhibit similar behavior. This happens because the migration
cost is low compared to the enactment cost. Thus, the differ-
ence in these two lines is due to the fixed optimization cost
which is charged per second. Regarding the static optimization,
the optimization cost decreases to 0 after the first optimization
cycle because the respective resource is released.

By comparing dynamic total cost with static total cost,
we see that the ODR bears the additional optimization cost.
However, this cost is compensated by the placement decisions
which take place after the available resources change (i.e., fog
node 2 becomes available). Notably, even before fog node 2
becomes available, ODR finds a placement that costs less than
the initially optimized placement. This is visible through the
line that shows the ODR enactment cost which is lower than
the static line right before fog node 2 appears. Hence, ODR
can reduce the cost not only due to changes in the available
resources but also, by integrating the monitoring data in the
optimization process. The total cost savings of ODR compared
to the static optimization amount to 3.09 CU/s (i.e., 8.8%).

Fig. 8 shows the total score based on the optimization
goal (maximized value) of ODR as defined in Equation 15.
Even though ODR starts at the same point with the static
optimization, in the next two points it scores lower. This can be
explained by the cost of the optimization which occurs periodi-
cally. In the next point, it scores higher because the monitoring
data help to find changes that improve performance. After fog
node 2 becomes available (vertical red line in Fig. 8), ODR
scores lower due to the cost of performing the replacements
that derive from the optimization due to the new available
resources. From that point on, ODR scores higher for the rest
of the execution time since the new resources have been taken
into account. To acquire the results of Fig. 8, we configure
equal weights for the QoS attributes.

3) Summary of QoS Attributes and Cost: Table II provides a
summary of the results from the aforementioned experiments,
including average values and respective standard deviations of

TABLE II: Average values of QoS attributes and cost.

Static Dynamic
Average Response Time (sec) 1.98 (σ = 0.12) 1.62 (σ = 0.01)
Average Availability 0.35 (σ = 0.07) 0.40 (σ = 0.06)
Enactment Cost (CU/s) 34.91 (σ = 2.09) 29.05 (σ = 0.65)
Migration Cost (CU/s) - 14.47 (σ = 1.17)
Optimization Cost (CU/s) 0.27 (σ = 0) 3 (σ = 0)
Total Cost (CU/s) 35.19 (σ = 2.09) 32.10 (σ = 0.65)
Cost Savings (CU/s) - 3.09 (σ = 2.65)
Average Total Score 0.62 (σ = 0.05) 0.78 (σ = 0.04)

all the QoS attributes. Based on this table, we notice that on
average, ODR performs better than the baseline with regard
to response time, availability, enactment cost, total cost and
total score. For these values we use again, equal weights for
the QoS attributes (i.e., wr = wa = wcop = wcmig

= 0.25).

VI. RELATED WORK

As mentioned in Section I, the number of approaches aiming
at applying DSP at the edge of the network is still quite low.
Nevertheless, in this section we describe related works.

Sajjad et al. [6] discuss benefits from applying DSP
in a decentralized manner. In this work, the authors de-
sign SpanEdge which unifies stream processing across geo-
distributed resources. SpanEdge considers resources from two
layers: central data centers and near-the-edge data centers. In
this setting, SpanEdge places the operators near the edge with
the goal to reduce latency and cost. Even though the goal
of our work is similar, SpanEdge focuses on mechanisms to
group the operators together so that the communication bears
low latency. On the contrary, the focus of our work is to
achieve low latency using formal methods, i.e., by solving
an optimization problem.

Renart et al. [8] implement an edge-based DSP framework.
This framework allows users to define how the data streams are
processed according to origin location and content. Therefore,
this work aims at applying data-driven DSP by enabling the
data to form dynamic stream processing topologies at the edge.
To achieve this, the authors propose an overlay network which
coordinates the execution of the streaming workflows across
the geographically distributed edge resources. Thus, this work
focuses on a overlay network for forming the DSP topologies
whereas, in our work we deploy the topologies according to
the solution of an optimization problem.

Cardellini et al. [9] propose an extension to ODP [13] which
we have also used as a basis in the work at hand. The resulting
Optimal DSP Replication and Placement (ODRP) problem
copes with the increased volume of data by replicating and
placing operators on distributed compute resources. ODPR
focuses on two aspects of the problem: the optimal number
of replicas for each operator and the placement of each
replica. Even though using replication may have the potential
to minimize the response time, the cost increases with each
new replica. The formulation of ODPR considers requirements
such as response time, inter-node traffic, cost and availability.
In our work, we also take into account the cost of enacting
DSP topologies and the cost of migrating operators, which are
necessary for DSP that targets fog computing environments.

Amarasinghe et al. [10] propose an optimization framework
for minimizing the end-to-end latency of DSP topologies.
The formulation of the optimization problem is based on R-
storm [22]. The authors introduce two types of constraints,
namely the residency constraints which are related to the
location of the operator and the resource constraints which are
related to resource utilization. On top of such constraints, in
our work we also model the processing duration which ensures
that the operators have enough resources during runtime.



Moreover, we model the budget constraint for limiting the
cost of running DSP topologies. These extra constraints are
crucial to fog computing for the case that the operators are
deployed on leased resources.

Finally, Dautov et al. [23] also design a solution for stream
processing at the edge. In this approach, the authors present
a stream processing architecture for spreading workloads
among a cluster of edge devices. The proposed solution is
implemented based on Apache NiFi and is shown to perform
faster than stream processing in the cloud. Dautov et al. focus
on architecture and implementation details whereas in our
work, apart from describing the architecture of the proposed
components, we also focus on the formulation and integration
of a formal optimization problem.

VII. CONCLUSION AND FUTURE WORK

Stream processing frameworks are a popular solution for
processing data in the cloud. Usually, such frameworks deploy
a set of operators on cloud resources and ensure that the data
is processed according to the predefined operations. In this
paper, we leverage on the fog computing paradigm to perform
stream processing in the fog which extends the cloud to the
edge of the network. To this end, we formulate an optimization
problem (ODR) that targets fog computing environments.
In addition, we build a plugin (ODR reasoner) for DSP
frameworks. This plugin (which is loosely coupled with VISP)
performs periodic optimizations and provides frameworks with
commands to exploit the fog resources. The conclusions from
the evaluation of the ODR reasoner show that the cost of
using fog resources can be compensated by the gain in other
QoS attributes. Moreover, we notice that performing dynamic
optimizations can have a positive impact on performance even
when the available resources are stable. This happens because
the information from monitoring the operators during runtime,
can aid the optimization to find further improvements.

The goal of the evaluation in the paper at hand, is to
show the general applicability of our proposed optimization
approach. In the future, we plan to evaluate optimization
approaches in more complex settings, e.g., with a larger
number of resources and operators, and with a more volatile
behavior. Regarding the optimization, the ODR is currently
based on an ILP problem. However, ILPs bear concerns related
to scalability and thus, studying ways to reduce the complexity
of this problem is a promising research direction. Hence, we
will work on heuristics that approximate the optimal solution.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of
things,” Transaction on IoT and Cloud Computing, vol. 3, no. 1, pp. 11–
17, 2015.

[3] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, et al., “Benchmarking
streaming computation engines: Storm, flink and spark streaming,” in
2016 IEEE international parallel and distributed processing symposium
workshops (IPDPSW), pp. 1789–1792, IEEE, 2016.

[4] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar, “Stream Process-
ing for the Internet of Things,” in 9th International Conference on Cloud
Computing, pp. 100–107, IEEE, 2016.

[5] U. Çetintemel, D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska,
M. Cherniack, J.-H. Hwang, S. Madden, A. Maskey, A. Rasin, et al.,
“The Aurora and Borealis Stream Processing Engines,” in Data Stream
Management (M. N. Garofalakis, J. Gehrke, and R. Rastogi, eds.), Data-
Centric Systems and Applications, pp. 337–359, Springer, 2016.

[6] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“SpanEdge: Towards unifying stream processing over central and near-
the-edge data centers,” in IEEE/ACM Symposium on Edge Computing
(SEC), pp. 168–178, 2016.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
its Role in the Internet of Things,” in MCC Workshop on Mobile Cloud
Computing, pp. 13–16, 2012.

[8] E. G. Renart, J. Diaz-Montes, and M. Parashar, “Data-driven stream
processing at the edge,” in 2017 IEEE 1st International Conference on
Fog and Edge Computing, pp. 31–40, 2017.

[9] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
replication and placement for distributed stream processing systems,”
ACM SIGMETRICS Performance Evaluation Review, vol. 44, no. 4,
pp. 11–22, 2017.

[10] G. Amarasinghe, M. D. de Assunçao, A. Harwood, and S. Karunasekera,
“A Data Stream Processing Optimisation Framework for Edge Comput-
ing Applications,” in IEEE 21st International Symposium on Real-Time
Distributed Computing, pp. 91–98, 2018.

[11] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 27–32,
2014.

[12] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K.-K. R. Choo, and M. Dlodlo,
“From cloud to fog computing: A review and a conceptual live vm
migration framework,” IEEE Access, vol. 5, pp. 8284–8300, 2017.

[13] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator placement for distributed stream processing applications,” in
10th ACM International Conference on Distributed and Event-based
Systems, pp. 69–80, 2016.

[14] C. Hochreiner, M. Vögler, P. Waibel, and S. Dustdar, “VISP: An Ecosys-
tem for Elastic Data Stream Processing for the Internet of Things,” in
20th International Enterprise Distributed Object Computing Conference,
pp. 19–29, 2016.

[15] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “SPADE:
The System S Declarative Stream Processing Engine,” in 2008 ACM
SIGMOD International Conference on Management of Data, pp. 1123–
1134, 2008.

[16] K. P. Yoon and C.-L. Hwang, Multiple Attribute Decision Making: An
Introduction, vol. 104. Sage publications, 1995.

[17] M. Woodside, Z. Li, J. Chinneck, and M. Litoiu, “Adaptive Cloud
Deployment using Persistence Strategies and Application Awareness,”
IEEE Transactions on Cloud Computing, vol. 5, pp. 277–290, 2015.

[18] X. Li, Y. Li, T. Liu, J. Qiu, and F. Wang, “The method and tool of cost
analysis for cloud computing,” in Cloud Computing, 2009. CLOUD’09.
IEEE International Conference on, pp. 93–100, IEEE, 2009.

[19] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pp. 1–14, ACM, 2010.

[20] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy,
survey and future directions,” in Internet of everything, pp. 103–130,
Springer, 2018.

[21] T. Hiessl, “Optimizing the placement of stream processing operators in
the fog,” Master Thesis, TU Wien, 2017.

[22] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-Storm:
Resource-aware Scheduling in Storm,” in 16th Annual Middleware
Conference, pp. 149–161, 2015.

[23] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, and A. Pu-
liafito, “Pushing Intelligence to the Edge with a Stream Processing
Architecture,” in IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pp. 792–799, 2017.


