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Abstract—Edge computing describes a paradigm for combin-
ing computational resources at the edge of the network with
the cloud. Even though complementing the cloud with these
resources provides benefits, e.g., low latency, it also introduces
new challenges to the operational staff. Such challenges can be:
deciding if the applications should be placed in the cloud or at
the edge, and monitoring them at runtime to ensure that all the
application requirements are met. This becomes more challenging
when using microservices due to the complexity of the resulting
placement problem. To mitigate such concerns, we introduce an
automatic deployment framework along with a prototype imple-
mentation, called D-DAD. This framework provides a transparent
(to the operational staff) way to deploy applications with respect
to all their requirements—including the non-functional—using
mechanisms for monitoring and adapting the deployments to the
available resources in a cloud-edge environment. For evaluating
our framework, we provide results from a series of experiments
which show how the adaptation mechanism meets the application
requirements, including a ∼90% reduction of CPU utilization
violations, compared to using only the local resources.

I. INTRODUCTION

Due to the rise of the Internet of Things (IoT) and edge
computing, there is a tendency to exploit the computational
resources at the edge of the network [1]. In an industrial
context, these resources reside on premise, and may include
machines that are part of an assembly line (e.g., welding
robots), industrial PCs or low-power IoT devices. Apart from
the computational resources at the edge, there is also the cloud
which offers virtually unlimited computational resources at a
remote location, i.e., in a data center [2]. However, the devices
at the edge are in the proximity of each other and thus, the
response times among them are reduced [3]. Nevertheless,
these devices have limited resources compared to the cloud,
which restricts the number of applications that can be deployed
at the edge. On the other hand, deploying applications in the
cloud is an option only if real-time or privacy guarantees are
not primary concerns [4]. Therefore, to exploit both the cloud
and the edge, some applications should run at the edge (e.g.,
the latency-sensitive) while others should run in the cloud
(e.g., analytics, maintenance checks, etc.) [5].
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In such scenarios, the operational staff needs to cope
with the problem of deciding which is the most appropriate
deployment location of each application that needs to be
executed. This problem aggravates when using microservice
architectures [6]. By using microservices, the applications can
be comprised by a set of services [7]. Obliging the operational
staff to place each service on the available resources becomes
a tedious and error-prone task which could be automated to
free the staff of this burden. Moreover, the optimal placement
of the services may change at runtime due to resource/software
requirements and non-functional requirements (NFR), e.g., the
delay due to response times. This problem becomes even more
evident when multiple services need to be deployed frequently,
e.g., in a microservices/DevOps methodology [8].

In this paper, we cope with this problem by designing a
framework which handles the deployment of the applications
automatically, i.e., the placement decisions are transparent
to the operational staff. Moreover, the presented framework
allows the operational staff to define rules which correspond
to the requirements of the applications, including NFRs.
Furthermore, the framework monitors the performance of the
applications and adapts the deployments on the available
resources at runtime to avoid requirement violations.

The contributions of this work are the following: i) We
define a reference architecture for a framework that deploys,
monitors and adapts the execution of applications on both
cloud and edge computational resources. ii) We present a
method for cloud-edge placement which takes into account
NFRs based on user-defined rules. iii) We develop a framework
named D-DAD (Data-Driven Automatic Deployment), which
integrates the cloud-edge placement and we evaluate it based
on experiments conducted on a prototype which targets an
industrial cloud-edge environment.

The rest of the paper is structured as follows: In Section II,
we show how our approach compares to related work on
edge computing and automatic application deployment. Sec-
tion III introduces the D-DAD framework which performs
transparent application placement in cloud-edge environments.
Afterwards, Section IV presents the experimental results from
the evaluation of the proposed approach, which focus on CPU
utilization, response times and time required to calculate an
optimized placement. Finally, Section V concludes this work
and provides an outlook on future research directions.



II. RELATED WORK

There is a lot of recent research aiming at closing the gap
between the cloud and the edge. Notably, most related work
states that the goal is to extend cloud computing to the edge
of the network, rather than to replace the cloud with exclusive
computing at the edge [9]. The main reason for doing this
is to utilize the resources at the edge of the network for the
critical parts of an application which may require low latency,
while using the cloud for resource-demanding parts or when
the local resources are occupied.

In their seminal work on the topic, Bonomi et al. [3]
discuss a conceptual middleware platform for computing using
resources that span from the cloud to the edge of the network.
This platform orchestrates the individual software components
and provides a uniform communication mechanism. Even
though this work provides sound theoretical foundation, tech-
nical implementation details are not mentioned.

Hong et al. [10] present a programming model for appli-
cations in the IoT. According to this model, an application is
divided into mobile processes which are organized hierarchi-
cally. These processes are mapped on a hierarchy of distributed
resources that reside in the cloud and the edge. This approach
presents a solution for deploying applications in a cloud-edge
environment. The D-DAD framework presented in the work
at hand, also considers the adaptation of already deployed
applications at runtime. This is done to ensure that the NFRs
remain satisfied even when the system state changes.

Another approach for deploying applications on available
computational resources is using Disnix [11]. Disnix is a
toolset that allows users to declare applications and available
resources, and then to map these applications on the resources.
However, in this approach the placement decisions are still left
to the user whereas in our approach, this is done automatically
by the proposed framework.

Matougui and Leriche [12] present a constraint-based archi-
tecture for autonomic software deployment. This architecture
enables users to declare constraints and attach them to appli-
cations. Potential deployment locations are discovered in the
network by a dedicated service. The placement decisions are
made according to the solution of a CSP (Constraint Satis-
faction Problem). However, this approach does not consider
NFRs. In the D-DAD framework, we provide the users with a
mechanism to define applications, resources and NFRs, which
infer the constraints automatically.

Skarlat et al. [13] provide a formal approach for optimizing
resource allocation in cloud and edge resources. The goal of
this work is to distribute the applications on the available
resources in such way that the latency and the cost are
minimized. However, the presented framework does not allow
the users to define rules for meeting other functional and
non-functional requirements whereas, the D-DAD framework
allows the operational staff to model various application re-
quirements.

Huber et al. [14] present an approach for dynamic run-
time adaptation of software systems. The authors propose
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Fig. 1: Architecture of the D-DAD framework.

a modeling language for describing adaptation properties
in a component-based architecture. By using this modeling
language, the adaptations are modeled in an intuitive and
machine-readable manner which makes the adaptation deci-
sions reusable by different autonomic systems. The scope of
the work by Huber et al. is to propose a modeling language
and thus, no logic for automatic placement is discussed.

The D-DAD framework presented in the work at hand,
provides a solution that enables deploying applications on
cloud-edge resources in an automatic manner, while also
monitoring and adapting the system based on user-defined
rules, thus minimizing human intervention. Furthermore, D-
DAD provides a holistic solution which comprises all the
functionality into a single framework.

III. THE D-DAD FRAMEWORK

This section introduces the D-DAD framework for auto-
matic application deployment in cloud-edge environments.
First, we present an overview of the architecture in Sec-
tion III-A and we analyze the functionality of the basic
components in Section III-B. Then, we describe the main
component interactions in Section III-C and afterwards, we
explain the deployment process in Section III-D and the
adaptation process in Section III-E.

A. High-level Architecture

The D-DAD framework follows the MAPE-K (Monitor-
Analyze-Plan-Execute on a shared Knowledge Base) model
(which is commonly applied in autonomic computing) because
of the aim to provide automatic application deployment and
minimize the human intervention [15]. MAPE-K models a
system that executes a loop with four stages which all have
access to a shared knowledge base. By implementing this
model, the system is able to manage itself in a cycle.

Fig. 1 shows the high-level architecture of D-DAD, which
follows the MAPE-K model. In this architecture, D-DAD
assumes that the operational staff and/or the CEP (Complex



Event Processing) component realize the Analyze part of the
cycle by observing the current state of the system and by
taking actions accordingly. The state of the system is given
by the Monitor part which monitors the system at runtime.
The Planning part is realized by the Deployment Planner
which queries the knowledge base for useful information and
calculates an optimized plan for placing the applications on
the available resources. Lastly, the Deployment Service imple-
ments the Execute part which performs the actual deployment
of the applications. The shared Knowledge Base is realized by
a registry service.

B. Basic Components

The basic components in the proposed architecture, also
shown in Fig 1, are the following:

1) App Model: This component provides a model that
aims at capturing the diversity of the applications and their
requirements. An application is considered to consist of one
or more services which may communicate with each other.
To fully model the functionality of an application, the App
Model allows users to define not only the services but also
all their dependencies. Regarding the services, the modeled
parameters include the NFRs (e.g., response times) and the
resource requirements (e.g., CPU, memory). Regarding the
dependencies, modeled parameters include the properties of
the environment (e.g., offer elastic scalability), installed pro-
gramming languages needed for the runtime of a service,
permissions (e.g., to make a service publicly available) and
licenses (e.g., to prevent the deployment on certain hosts).
Moreover, services can have dependencies among each other,
which is the case since many services together form one more
complex application. We allow users to reuse existing services
in order to build complex systems because this is common in
microservice architectures which is the target of our work.

Regarding the resources, we consider a combination of
cloud and edge hosts. Each service can be associated with
a host, which indicates the place that the service runs. When
a service is deployed on a host, a metadata file is created.
This file contains the necessary information to communicate
with this service, i.e., an identifier (e.g., IP address and port
number) which can be used for initiating contact and the
utilized communication protocol which can be HTTP, MQTT
or similar [16]. Furthermore, each service is accompanied by
an artifact identifier which can be used for downloading and
executing the respective service.

2) Device Manager: The Device Manager is a lightweight
service that runs on every participating device at the edge of
the network. This is similar to what Bonomi et al. refer to
as a Foglet [3]. This component is responsible for starting
and stopping the services as well as monitoring the resource
utilization (e.g., CPU utilization) and pushing it to the cloud.
This is done in order to reduce the overhead of sending
the monitoring information to the cloud, compared to having
each service reporting to the cloud separately. To reduce
the communication overhead even more, each service pushes
individual monitoring information to the Device Manager

through a socket using a JSON syntax which prevents the
services from having to implement a message broker (e.g.,
using MQTT or similar).

Notably, a separate instance of the Device Manager runs on
all the hosts, which provides a level of abstraction between the
available resources and the system. Since the Device Manager
exposes the same API from all the hosts, we do not need to
be concerned with individual device settings or parameters.

3) Deployment Planner: The Deployment Planner calcu-
lates an optimized plan for placing a set of services on the
available resources. To optimize the placement of the services,
we formulate a CSP and we fill it with the services’ dependen-
cies from the App Model. Moreover, we consider the monetary
cost of resource utilization (e.g., for using cloud resources) and
the resource cost of the invoked migrations. After acquiring
this information, the Deployment Planner builds the optimiza-
tion model and forwards this model to a CSP solver (e.g.,
the Choco solver) which integrates the necessary algorithms
to produce an optimized solution. This solution corresponds
to the optimized placement plan for distributing the services
on the available resources. After the optimized placement
has been produced, the Deployment Planner translates the
output of the solver to a format compatible with the internal
algorithms of our system.

4) Deployment Service: The Deployment Service is re-
sponsible for initiating new deployments. This can be done
manually when the operational staff triggers the deployment
of a service on a host, semi-automatically using a Continuous
Integration server after a new version of a service has been
committed, built and passed all tests, or automatically by
another component of the system. Other components that
can trigger the execution of the services on the devices
are: the Deployment Planner (i.e., according to an optimized
placement) and the CEP Engine (see below), according to user-
defined rules. Specifically, in such cases these components
send a list of services to each affected Device Manager which
follow the list to start/stop services. This list is also sent to
the cloud for starting/stopping the services there.

Notably, the deployment actions are decoupled from the
operations required to calculate an optimized placement plan.
This is done so that each one of the components can be
replaced without compromising the functionality of the sys-
tem. This is especially useful for performing updates and
maintenance tasks.

5) Monitoring Component: This component consists of two
parts: the QoS (Quality of Service) Watcher and the CEP
Engine. The QoS Watcher receives monitoring information
from the Device Manager and forwards this information to
the CEP Engine. The CEP Engine analyzes the monitoring
information and decides if an alert has to be raised based on the
user-defined rules, i.e., compares the monitoring information
with the rules. If an alert is raised, the QoS Watcher is notified
to take an action according to the alert. This component is used
for creating events, i.e., if the CPU utilization of a host exceeds
a certain threshold, to send a notification to the operational
staff or to deploy more instances of the service.
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Fig. 2: Interactions among the components of D-DAD for deploying, monitoring and adapting the services.

In addition to analyzing the monitoring information and
taking actions, the Monitoring Component also provides the
feature to visualize the metrics. This allows the operational
staff to acquire an overview of the state of the system and
manually decide if adapting the deployments, the service
dependencies or the rules is necessary. By enabling users to
interfere with the system in this manner, we aim at providing
the operational staff with the flexibility to handle undesirable
system states in the way they see fit.

C. Interactions among the Components

Fig. 2 shows the main interactions among the components
of the D-DAD framework, which take place for deploying,
monitoring and adapting the services. First, the Deployment
Service is invoked either manually or automatically, as ex-
plained in Section III-B4. Then, the Deployment Service sends
a request to the Deployment Planner which contacts the App
Model. The App Model gathers information about the current
state of the system and the metadata of the services. Based
on the metadata, the App Model also decides which hosts
can be considered as potential deployment locations (based
on the available resources) for the services and forwards all
this information to the Deployment Planner. Upon receiving
the required information, the Deployment Planner builds and
solves a CSP in order to produce an optimized placement plan
which contains the mapping of the services on the hosts. This
plan is sent to the Deployment Service which deploys the
services by instructing the Device Managers (of the affected

devices) to download the respective artifacts and to start the
services.

Upon initialization, each service registers with the Device
Manager and starts streaming monitoring metrics (regarding
resource utilization). The Device Manager sends these metrics
to the QoS Watcher which stores them for further analysis
and also forwards them to the CEP Engine. The CEP Engine
examines and compares the metrics with the user-defined rules.
If one or more of the rules are broken, the CEP Engine raises
the respective alerts and notifies the QoS Watcher which stores
the callbacks associated with these alerts. The QoS Watcher
executes the callbacks, which usually result in an automatic
update of the system state. An update can mean that, e.g.,
a new deployment is triggered or that some services should
stop in order to reduce the load on the hosts. Instead of an
automatic update, the callback can also result in sending a
notification to the operational staff, if this is preferred.

D. Cloud-Edge Deployment

During the cloud-edge deployment, the Deployment Planner
solves a CSP and produces a placement plan which meets all
the requirements of the services. Before accepting a placement
plan is valid, we make sure that four prime constraints are met:
i) Each service is associated with one host. ii) Each service
has the necessary permissions and licenses to be deployed at
the host that the placement plan indicates. iii) The resource
demands of a service do not exceed the available resources
of the host. iv) Hosts can provide the required software–



considering also the compatibility with the the versions of the
required software–to run the services.

To ensure i), we use an array of variables µ with size |S|,
whereby S is the set of services and we restrict the domain
of variables from 1 to |H|, whereby H is the set of potential
(cloud and edge) hosts. The value h at index s means that the
service indicated by s is deployed at host h. This way, each
service is associated with exactly one host. To ensure ii), we
restrict µs to certain hosts such that:

∀s ∈ S : lµs ∈ αs

whereby αs is the set of locations of allowed hosts which
can be used for the deployment of the service and lµs

is the
location of the selected host. To ensure iii), we define the
variables δ, ρ and %. δh is the set of services deployed at host
h, ρrh indicates the available resources of type r ∈ R (e.g.,
CPU), whereby R is the set of the overall resources at host
h. % indicates the resource demand of resource r for service
s. For each host h with deployed services dh this constraint
applies:

∀r ∈ R : (
∑
s∈δh

%rs) ≤ ρrh

Finally, to ensure iv) we define the variables σ and ς . σrh
indicates the set of available versions of software sw ∈ SW ,
whereby SW is the set of all the available software at host
h. ς indicates the compatible versions of software sw with
service s using the following constraint for each service s
which is deployed on a host h:

∀sw ∈ SW : (σswh ∩ ςsws ) ⊆ ςsws

When defining the cost function of a placement plan in
the CSP, we model cloud and edge resources differently with
regard to cost. This is done because the resources of the
cloud incur additional (leasing) cost compared to the resources
at the edge, which reside on premise and thus, require no
additional cost. Moreover, the cost function takes into account
the number of migrations resulting from an optimized deploy-
ment plan, since migrations also incur additional (resource-
and overhead-related) cost. To allow the operational staff to
decide how the cost affects the objective function, we provide
the possibility to assign weights on the different parts of the
objective function.

If the optimization process does not produce a valid place-
ment plan, i.e., there is no possible mapping of the services
on the hosts, which meets all the requirements, the operational
staff is informed. In this case, the staff should reconsider the
requirements and the available resources.

E. Monitoring and Adaptation

When running applications in a production environment, it
is very important to monitor the runtime behavior. There is
plenty of motivation for doing this, e.g., to ensure that all
the applications operate properly, to make sure that all the
requirements are met or to observe if additional resources
are necessary. Apart from providing this kind of insights into

the applications’ behavior, monitoring can also be used for
adapting the applications on the available resources at runtime.

To achieve this, we use the Device Manager which is
installed on every host of our system. Each running service
shares its process ID with the Device Manager. Through this
ID, the device manager collects information about the utilized
resources of each service, e.g., CPU and memory utilization.
However, there are additional service-specific metrics that each
service sends to the Device Manager, e.g., RTT (Round Trip
Time) of requests, capacity/availability of queues, and task
execution times. To achieve this, when a service registers with
the Device Manager upon initialization, the Device Manager
assigns an identifier (e.g., IP address and port number) to the
service, through which the service streams the application-
specific metrics. These metrics are stored locally but also, they
are forwarded to the cloud for further processing and analytics.

The monitoring information of the Device Manager is then
used for raising alerts at runtime, according to the user-defined
rules. These rules refer to conditions that automatically trigger
certain events. Such conditions can be related to resource
utilization (e.g., the CPU utilization is above a specific thresh-
old for a certain amount of time), response times (e.g., the
communication delay between services which are hosted on
different locations), etc. The aim of these rules is to adapt
the execution of the services to the available resources and to
ensure that all the services’ requirements remain satisfied at
runtime. The outcome of these rules can be: the notification
of the person in charge (e.g., via e-mails or pop-up alerts),
the reduction of the number of services on a specific host,
the scaling of a service, etc. Moreover, if the performance
of the system is not satisfactory, a user-defined rule can
trigger the redeployment of certain/all the services, which
may lead to better placement decisions. Thus, the goal of this
runtime adaptation mechanism is to prevent the violation of the
services’ requirements by taking appropriate actions to refine
the system execution.

IV. EVALUATION

In this section, we present the evaluation of the proposed
framework. First, we describe the application scenario which
we consider for this evaluation in Section IV-A and then,
we present a prototype implementation along with technical
details, which is used for running the experiments, in Sec-
tion IV-B. Finally, we analyze the results of the evaluation
in Section IV-C. Specifically, these results are related to the
runtime adaptation of the services (cf. Section IV-C1) and the
service placement process (cf. Section IV-C2).

A. Evaluation Scenario

For the evaluation scenario, we consider a basic analytics
use case prominently featured in industrial contexts. In this
scenario, the goal is to predict the state of the machines
and devices, based on sensor readings and by using machine
learning techniques [17]. We assume that there is a service in
place, which sends the sensor readings to the cloud in order



to train a machine learning model which classifies the state of
a machine. Hereinafter, we refer to this process as scoring.

Traditionally, the process of training the machine learning
model occurs in the cloud due to the required (intense) pro-
cessing. However, the placement of scoring is decided by the
operational staff, i.e., either in the cloud or locally at the edge.
The former case incurs communication delay and additional
monetary cost. The latter bears no long-distance communica-
tion delay and no additional cost (see Section III-D). However,
the primary tasks of the edge devices in the industry, have
stringent requirements, e.g., the operation of a welding robot.
Therefore, it is very important to make sure that such critical
tasks are not affected by secondary processes like scoring. To
this end, if the resources at the edge operate at full capacity
executing critical tasks, the scoring should be performed in
the cloud. To avoid a slow and error-prone human intervention,
switching between edge and cloud should be done dynamically
by the framework according to resource utilization and the
requirements of the deployed services.

Considering this scenario, in this evaluation we employ the
D-DAD framework to solve this problem by automatically
deciding if the scoring service should be deployed at the edge
or in the cloud. Moreover, once the services are deployed, the
framework monitors and adapts the deployments at runtime
in order to satisfy all the requirements, e.g. latency delays,
resource utilization. The aim of considering this scenario is to
demonstrate that the proposed framework can unify cloud and
edge resources in a transparent manner and exploit their com-
plementary characteristics to ensure that all the requirements
(including NFRs) are met.

B. Evaluation Environment

The edge devices are emulated using Amazon EC2 in-
stances. The selected instances we use have a single 2.4 GHz
CPU core and 0.5 GB of RAM. Since the resources at the edge
of the network are expected to be limited, we assume that these
capacities resemble the resources of an edge device. On such
an emulated edge device, we install a Device Manager and a
data acquisition software which provides the sensor readings.
Moreover, we install a service which sends the readings to
the cloud in order to train the scoring process. The scoring
process is also loaded on a device at the edge for performing
local scoring (although training occurs only in the cloud).

For this evaluation, we monitor the state of 45 machines
and thus, every second there are 45 requests to the scoring
services. To enable the D-DAD framework to scale in order
to cope with the potential load from managing an industrial
environment, we deploy all the framework-internal services,
apart from the Device Manager, in the cloud (as shown in
Fig. 1). Finally, in order to simulate the primary tasks (i.e.,
the critical services) of the edge devices, which must not be
affected by the scoring, we use a script that occupies 30–60%
of the CPU (randomly using a uniform distribution).

The local scoring service is implemented in C# and includes
bindings for the R programming language in order to use
additional R libraries. By default, the scoring takes place

locally due to the benefits of utilizing the resources at the edge.
This continues until the CEP Engine instructs the framework
to deactivate local scoring, which forces the service to forward
the data to the cloud and execute the scoring there. The
CEP Engine is configured to raise the alert which causes
this behavior when the CPU utilization of an edge device
exceeds 75%. This aims at preventing a device from becoming
overloaded so that the primary tasks of the edge devices are
not affected.

Moreover, we configure an alert when the RTT of the scor-
ing service takes longer than 600 milliseconds. This specific
value is selected because as long as an action responds within a
second, the framework is still estimated to be responsive to the
operational staff [18]. To avoid being affected by performance
spikes, we measure these values based on 15-second averages.

After intense experimentation with our framework, we also
define the following additional conditions in order to adhere
even better to the aforementioned NFRs (i.e., the CPU uti-
lization and the RTT): i) If the CPU utilization in the last
15 seconds has an average value which is greater than 70%
and a maximum value which is greater than 90%, move the
scoring to the cloud. ii) If the RTT of the requests to the
scoring service in the last 15 seconds has an average value of
above 550 milliseconds and a maximum value of above 900
milliseconds, move the scoring to the edge.

C. Evaluation Results

1) Runtime Adaptation: The goal of this experiment is to
show that by using the proposed framework, we also adhere to
the NFRs of a service (as much as possible). To this end, we
define two NFRs as explained in Section IV-B, i.e., the CPU
utilization of the edge devices (per 15-second averages) should
remain under 75% and the RTT of the requests to the scoring
service should take less than a second. For these two metrics,
we plot figures (see Fig. 3 and 4) which show the values of
the measurements per second (blue lines) and per 15-second
average (green lines). Also, since we determine the state of
multiple devices, i.e., 45 machines per second, we compute the
exponential weighted average using the least squares method
with a smoothing factor of 0.5 and we plot it per second (red
lines), to show the general tendency of the framework. The
alerts of violating the NFRs are: to perform the scoring locally
if the RTT takes a long time and to perform the scoring in the
cloud if the CPU utilization is high.

Fig. 3 shows the CPU utilization throughout 10 minutes
of execution time. Fig. 3a shows the CPU utilization of
performing the scoring exclusively at the edge, which remains
mostly between 65% and 85%. The 15-second average of
the CPU utilization exceeds the threshold 158 times. Fig. 3b
shows the CPU utilization when scoring occurs exclusively
in the cloud, which remains mostly between 40% and 80%.
However, the 15-second average is substantially lower than
when using local scoring (i.e. at the edge) and never exceeds
the threshold. Fig. 3c shows the CPU utilization when we
enable runtime adaptation using the user-defined rules, as
described in Section IV-B. The peaks and the valleys of the
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Fig. 3: CPU utilization for local scoring (a), cloud scoring (b) and with runtime adaptation (c).
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Fig. 4: RTT of requests for local scoring (a), cloud scoring (b) and with runtime adaptation (c).

figure show when scoring occurs at the edge or in the cloud,
respectively. The 75% threshold is exceeded 13 times, which
indicates a reduction of nearly 90%, compared to local scoring.

Fig. 4 shows the RTT of a request to the scoring service,
i.e., the period from the time a sensor reading is received
from the data acquisition service until the response is received
and processed. Fig. 4a shows the RTT of using only local
scoring, which has a maximum value of nearly 120 ms since
no data needs to be transferred to the cloud. The RTT threshold
of one second is never exceeded. Fig. 4b shows the RTT of
scoring in the cloud which takes substantially longer since
the requests are sent over the Internet. The RTT threshold of
one second is exceeded 2 times. Fig. 4c shows the RTT of
scoring when we enable runtime adaptation using the user-
defined rules, as described in Section IV-B. The peaks and
the valleys of the figure correspond to scoring in the cloud
or the edge, respectively. The RTT threshold of one second is
exceeded 3 times.

Notably, this experiment shows that for the reduction of
90% of NFR violations with regard to the CPU utilization,
there are only 3 violations with regards to the RTT. It should
also be noted that the cloud is utilized for a smaller amount of
time since the scoring occurs also at the edge, which lowers
the monetary cost of using cloud resources.

Finally, we show Table I to summarize the observed NFR
violations. For these results, we repeat the experiment 3 times
for each method (i.e., cloud scoring, local scoring, or using
adaptation). This table shows that when using the runtime
adaptation, the NFR violations related to the CPU utilization

drop significantly, compared to local scoring. At the same time,
the NFR violations related to RTT are only increased slightly.
Compared to cloud scoring, at a first glance it seems that
the runtime adaptation causes slightly more NFR violations.
However, when looking closely at Fig. 3 and 4, we note
that the runtime adaptation is able to provide the low CPU
utilization of the cloud scoring with the low RTT of the local
scoring. For this reason, we consider these results satisfactory
since we combine cloud and edge resources and we enable
the operational staff to define rules for using these resources
according to the requirements of the services, in a transparent
manner.

2) Service Placement: In this experiment, we examine
how much time is required to solve a CSP and produce an
initial placement plan. To do this, we generate a multitude of
fictional services and hosts. Regarding the hosts, we define
four types of edge devices, each one integrating different
software and resource capacities. Regarding the services, we
define five different types with different software and resource
dependencies. Moreover, we define the placement options of
the services, i.e., only at the edge, only in the cloud and either

TABLE I: NFR violations when using different methods.

Metric Method Average σ (std. deviation)
Latency Local 0% 0%

Cloud 0.39% 0.08%
Mixed 0.94% 0.34%

CPU Load Local 34.28% 15%
Cloud 0% 0%
Mixed 1.94% 0.21%
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Fig. 5: Compile and solving time of a CSP with 60 hosts.

at the edge or the cloud. Commonly, the resource-demanding
applications are deployed in the cloud while the applications
with low resource demands run at the edge. Therefore, we
define the cloud-only services with high resource demands,
the edge-only services with low resource demands and the
services which can be deployed in both types of resources,
with moderate resource demands.

Fig. 5 shows the required time for solving the CSP when
using 60 hosts and an increasing number of services. At
the end of the experiment, 215 services are deployed. For
this number of services whereby ∼25% of them are edge-
only, ∼25% of them are cloud-only, and ∼50% of them can
be deployed on both resource types, solving the CSP takes
approximately 10 seconds, while the compilation of the model
takes approximately 30 seconds.

Due to the complexity of the problem, a large number
of hosts and services require the respective amount of time
for producing a solution. However, for the intended use,
i.e., the operational staff deploying services on premise with
occasional use of the cloud, the performance is satisfactory.
Notably, we stop the solving process after the first solution
is produced. Even though this does not guarantee an optimal
solution, it does guarantee the fastest feasible solution. Pre-
sumably, allowing the solving time to execute for longer time
periods, may produce better placements.

V. CONCLUSION

In this paper, we present the D-DAD framework which uni-
fies cloud and edge resources and provides a way to perform
application placement in an automatic manner. Moreover, the
framework is able to integrate user-defined rules which are
taken into account when producing a placement plan. These
rules are also considered during the adaptation process of the
framework which occurs at runtime and ensures that all the
requirements of the applications remain satisfied. To evaluate
this approach, we build a prototype and we perform a series
of experiments which focus on CPU utilization and RTT of
the requests. The results show that our framework can provide
low CPU utilization due to using the resources in the cloud
combined with low RTT of the requests due to using the
resources at the edge.

Future plans in this line of work include designing a service
which can automatically detect computational resources that

join and leave the system in order to integrate such re-
sources without user intervention. Another promising research
direction would be to improve the optimization process of
the application placement. Currently, the D-DAD framework
performs application placement based on a CSP which may
take a long time to solve, if very large numbers of hosts and
applications are used. Therefore, researching ways to reduce
the complexity of this problem or working on heuristics for
approximating the optimal solution in a timely manner, can be
useful.
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