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rSYBL: a Framework for Specifying and Controlling Cloud Services
Elasticity
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Cloud applications can benefit from the on-demand capacity of cloud infrastructures, which offer computing
and data resources with diverse capabilities, pricing and quality models. However, state-of-the-art tools
mainly enable the user to specify ”if-then-else” policies concerning resource usage and size, resulting in a
cumbersome specification process that lacks expressiveness for enabling the control of complex multi-level
elasticity requirements.

In this paper, first we propose SYBL, a novel language for specifying elasticity requirements at multiple
levels of abstraction. Second, we design and develop the rSYBL framework for controlling cloud services
at multiple levels of abstractions. To enforce user-specified requirements, we develop a multi-level elastic-
ity control mechanism enhanced with conflict resolution. rSYBL supports different cloud providers and is
highly extensible, allowing service providers or developers to define their own connectors to the desired in-
frastructures or tools. We validate it through experiments with two distinct services, evaluating rSYBL over
two distinct cloud infrastructures, and showing the importance of multi-level elasticity control.

CCS Concepts: •Computer systems organization→ Cloud computing; •Computing methodologies
→ Planning with abstraction and generalization; Planning for deterministic actions; •Software and its
engineering→ Software design engineering;

Additional Key Words and Phrases: cloud computing, elasticity, elasticity requirements, control

1. INTRODUCTION
Web applications, workflows, and scientific applications can be offered as cloud ser-
vices [Fard et al. 2012; Tsoumakos et al. 2013]. When deploying them (ideally, auto-
matically) on various cloud infrastructures, the cloud service provider/developer usu-
ally has high level goals, e.g., testing reliability or achieving a specific level of perfor-
mance with a minimum cost, at different levels of the service, e.g., for the entire data
end or for specific parts of the data end. Current control frameworks mainly focus on
single types of services and enable the provider/developer to only specify resource level
SLA [Kouki et al. 2014]. Furthermore, they lack means to interact with the stakehold-
ers (e.g., service provider, service developer) for controlling elasticity-related tradeoffs,
e.g., the service provider cannot change requirements during runtime [Almeida et al.
2014].

As there are various types of stakeholders interested in cloud-hosted services (e.g.,
cloud service developers and cloud service providers), they might have different prefer-
ences at various abstraction levels. They have coarse or fine grained knowledge about
parts of their services. For instance, the provider knows how much s/he is willing to
pay for the entire service to be hosted on the cloud, while the developer knows quality
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indicators at different layers of the service. Therefore, there is a strong need for mecha-
nisms to specify multi-level elasticity requirements, customized for various parts of the
cloud service. To address these requirements, we need to develop means for multi-level
elasticity requirements specification targeting high level goals referring to not only re-
sources but, more importantly, to quality and cost, following the multi-dimensional
definition of elasticity [Dustdar et al. 2011]. Moreover, we need to manage both the
static description of the cloud service, and its runtime behavior, which depends on the
virtual infrastructures on which it runs.

In this paper we present SYBL, a language for specifying elasticity requirements
at different levels of abstraction in complex cloud services. We model various types of
information for the elastic service, at runtime representing it as a relational graph
which captures all the needed information for the cloud service control. We present
our approach for multi-level elasticity control which generates action plans consider-
ing the evolution of the service at different levels of abstraction. To this end, we present
our rSYBL framework, which is easily extensible, allows stakeholders to change their
requirements during runtime, and supports multiple enforcement mechanisms (e.g.,
multiple clouds, and multiple software platforms), multiple monitoring tools, and plan-
ning mechanisms. We run experiments comparing rSYBL elasticity control on two
cloud infrastructures, one private based on OpenStack1, and the Flexiant2 public cloud
infrastructure. We showcase an experimental evaluation on the importance of multi-
level service control, and analyze the performance of rSYBL under two different cloud
infrastructures (i.e., OpenStack and Flexiant).

This paper substantially extends and details our previous work presented in [Copil
et al. 2013b] and [Copil et al. 2013a] as follows: (i) we extend the service model from
[Copil et al. 2013a] to support more detailed service description; (ii) we explain the in-
formation representation process, from creating the relational graph to its population
with various types of information coming from multiple stakeholders; (iii) we detail
our multi-level service control mechanisms; (iv) we describe the rSYBL framework;
(v) we present three new experiments with rSYBL, showcasing its usefulness under
multiple settings.

The paper structure is as follows: in Section 2 we present the cloud service model for
describing different types of information related with the cloud service. In Section 3 we
show the main characteristics of SYBL, Section 4 presents the algorithm that we use
for generating action plans targeting multiple cloud service abstraction levels. Section
5 describes rSYBL framework and its main extensibility points, Section 6 presents
experiments. Section 7 compares our work with existing research while Section 8 con-
cludes the paper.

2. CLOUD SERVICE MODEL
2.1. Service units
Many types of scientific, enterprise and government cloud services have been emerg-
ing [Andrikopoulos et al. 2013; Inzinger et al. 2014], which mix a series of types of
components, e.g., Machine-to-Machine (M2M) sensors, Web services/containers, and
middleware. As shown in Figure 1, conceptually we can have a multitude of compo-
nents running in the cloud, each with various capabilities. By using cloud technologies,
on the one hand, each of these components can be re-configured during runtime. On
the other hand, the cloud infrastructure also provides computing resources where they
are executed and a series of capabilities for creating/modifying them. Therefore, these

1http://openstack.org/
2https://www.flexiant.com
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Fig. 1: Emerging cloud services control

components at runtime provide certain “service” capabilities, which we call “service
units” [Tai et al. 2012].

Currently, most cloud control techniques scale only horizontally and at resource level
the service unit (e.g., adding a new VM with the whole stack). However, understanding
service units and their capabilities entails a highly granular control, using various
types of control actions (e.g., change distribution mechanism for load balancing, change
heap size, or change version), and combinations among them. These control actions
can facilitate the fulfillment of a high range of requirements desired by cloud service
stakeholders.

2.2. Elasticity requirements
Elasticity requirements are at the basis of cloud service elasticity, as they define the
elasticity behavior that the cloud service stakeholder needs. Elasticity requirements
are complex in the sense that they promote complex behavior for the elasticity of
cost, quality and resources, through describing desirable states/behaviors in specific
conditions. A complex cloud service can have multiple semantically connected service
units, grouped into service topologies. Given this, elasticity requirements should re-
fer to different cloud service parts (e.g., service unit, or service topology), and should
be formulated at various granularities by various cloud service stakeholders. Current
state of the art (see Section 7) facilitates description of low-level, infrastructure-related
requirements. The cloud service stakeholder must be able to specify requirements con-
cerning more abstract metrics (e.g., the cost per user that the stakeholder needs to
pay per hour). We identify three types of elasticity requirements, which focus on the
elasticity dimensions and the different dimensions among them: (i) cost-related elas-
ticity requirements, (ii) quality-related elasticity requirements, and (iii) elasticity re-
quirements on the relation between cost and quality. Cost and quality related require-
ments should specify expected values or expected policies under specific conditions.
Requirements which focus on the relationship between cost and quality specify trade-
offs which are acceptable for stakeholders (e.g., a cloud service designer could need to
specify that s/he is willing to pay more with 10% only if s/he receives a performance
improvement of at least 20%)

Depending on the cloud service type, elasticity requirements might be associated
with different parts of the cloud service, according to the cloud service structure. For
the entire cloud service, one should specify requirements on aggregated metrics over
the multiple parts of the cloud service (e.g., concerning the total cost). At service unit
level one specifies requirements for that part of the service (e.g., a NoSQL data node),
and all the services from the cloud provider it is using (e.g., all the virtual machines, or
monitoring services). Moreover, stakeholders could specify requirements over service
topologies, e.g., the reliability of the data topology of a multi-tier application should
be very high, as it stores sensitive information. Considering services running continu-
ously for a long time, these requirements might change due to various factors, such as
business plans, popularity increase, or cloud provider cost updates.
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Fig. 2: Linking structural, elasticity and infrastructure system information
2.3. Cloud service structure
For specifying elasticity requirements at different abstraction levels, and then control-
ling elasticity at these levels, we need to know the structure and particularities of the
cloud service. Current cloud service specification standards like TOSCA 3 and CIMI 4

facilitate the service description prior to the deployment, the description containing all
the information needed for the deployment process. However, as the purpose of these
languages is not to describe the cloud service runtime behavior, they cannot describe
mechanisms to achieve elasticity at different levels. In order to generate and enforce
control decisions during runtime, an elasticity controller would need to understand
multiple types of information, e.g., information regarding cloud service units and the
relation among them, information on the virtual resources used, or information regard-
ing the cloud service developer/provider requirements. Therefore, we develop a repre-
sentation model for our cloud service control, which overcomes the above-mentioned
issues.

The cloud service description, shown in Figure 2, is designed to provide the cloud
service elasticity controller with support for managing the cloud service. It holds dif-
ferent types of information: (i) structural/static information, (ii) virtual infrastructure
related information, and (iii) elasticity related information. The cloud service can be
seen as a graph composed of all this information, where each of the above concepts
are nodes of the graph, descriptive information regarding the concept being modeled
as node attributes and the relationships among them as edges connecting the various
nodes.

The structural information describes the logical units out of which the cloud service
is composed, and the relations between them:
— The Cloud Service represents the entire application or system, and can be further

decomposed into service topologies and service units (e.g., a game, a web application,
or a scientific application). The term cloud service that we choose to use is in accor-
dance with existent cloud service architectures and standards (e.g.,TOSCA).

3https://www.oasis-open.org/committees/tc home.php?wg abbrev=tosca
4http://www.dmtf.org/sites/default/files/standards/documents/DSP0264 1.0.0.pdf
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— The Service Unit [Tai et al. 2012] represents any kind of artifact, component or
service offering computation and data capabilities (e.g., a web service, or a data
analysis service).

— The Service Topology represents a logical grouping of service units that are seman-
tically connected and that have elasticity capabilities as a group (e.g., a tier of a
cloud service, or a part of a workflow).

— The Code Region represents a particular sequence of code for which the user can
have elasticity requirements (e.g., a data analytics algorithm).
The infrastructure related information enables the elasticity controller to be aware

which unit is deployed on which VM, or which cloud provider:
— OS Processes represent any kind of processes belonging to a cloud service that can

be associated either with code regions or with service units (e.g., a web server pro-
cess).

— Artifact is any atomic software unit or data set.
— Containers provide an additional layer of abstraction and automation (e.g., Docker5,

LXD6)
— Virtual Machine (VM) and Virtual Storage are any IaaS services of type virtual

machine and respectively storage which are purchased from the IaaS provider.
— The Virtual Cluster is a grouping of virtual machines or storage which have dif-

ferent properties (e.g., availability zone), and is offered as a service by the cloud
provider.

This information regarding the infrastructure on which the cloud service is running
is important in deciding how to control the service, since many of the actions depend
on what the cloud provider offers. The above concepts (e.g., OS processes, or virtual
cluster) are used to describe virtual resources in different cloud infrastructures7. This
information regarding the infrastructure on which the cloud service is running is im-
portant in deciding how to control the service, since many of the actions depend on
what the cloud provider offers.

The elasticity-related information facilitates the description of elasticity behavior
for service units, service topologies or entire cloud service:
— Elasticity Metrics represent metrics targeted by elasticity requirements or lower-

level metrics that are used for computing targeted metrics (e.g., cost vs. perfor-
mance, cost vs. throughput, or cost vs. availability). Elasticity metrics can be associ-
ated with any cloud service part (e.g., service unit, service topology, or code region).

— Elasticity Requirement, represents any request coming from the user regarding
elasticity of the cloud service (e.g., ”the cost should not increase by more than 20%
when the performance increases by less than 5%”). These requirements can be spec-
ified through SYBL and can be associated with any cloud service part.

— Elasticity Capability, represents any action/ mechanism/ operation through which
the elasticity of the cloud service, of the service topology or of service units can
be manipulated (e.g., the elastic reconfiguration of the data service topology for
higher availability, or the elastic creation of new processing jobs for a map-reduce
application).

— Elasticity Relationship, represents any connection between any two cloud service
parts, which can be annotated with elasticity requirements (e.g., the connection
between two service units needs to be of high reliability). We choose using the re-

5http://www.docker.com
6http://www.ubuntu.com/cloud/tools/lxd
7Even though some names might differ, the actual concept present high degree of similarity. E.g., Flexiant2

uses Server for referring to VMs, offering Disks on the storage side, while Google Compute Engine9 is
offering various types of Instances (VMs), and Storage)
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lationship term for being in accordance with cloud service specification standards
(e.g., TOSCA).

We populate the graph constructed according to the model presented above with in-
formation from different sources (e.g., information from cloud providers regarding
cloud infrastructure, pre-deployment information such as TOSCA description, or post-
deployment associations between the static description and the virtual cloud infras-
tructure). Therefore, we do not assume that stakeholders will provide complete infor-
mation at all the levels of the cloud service.

2.4. Managing Elasticity Capabilities from Cloud Providers
The model above uses the Infrastructure System Information for enabling the elasticity
controller to describe, understand and manage the runtime information and its rela-
tion with service units, service topologies and the entire cloud service. All elements
that are part of the Infrastructure System Information can have associated elastic-
ity capabilities, described as part of the Elasticity Information. Most cloud providers
implement similar concepts describing the services they offer (e.g., Flexiant2 offers
servers, Amazon8 offers instances, and Google9 offers virtual machine, Amazon offers
Elastic Load Balancing while Google offers Global Load Balancing, although both refer
to distributing incoming requests across pools of VMs). Therefore, we use the concepts
presented in the above model for the Infrastructure System Information, in order to
describe the services used from the chosen cloud providers. Moreover, we can abstract
possible elasticity capabilities for all resources belonging to the Infrastructure System
Information, in order to be referred by other elements of the model or by the cloud
service elasticity controller.

All the elements which are part of Infrastructure System Information have associ-
ated, during runtime, (i) the properties which are used by the respective cloud service
parts (e.g., service unit, service topology, or the entire cloud service), and from the Elas-
ticity Information part, (ii) the elasticity capabilities which are available for the cloud
service controller to manage them, together with the mechanisms for triggering these
control capabilities, and (iii) elasticity metrics which give the controller the necessary
information in order to take control decisions. The elasticity capabilities of the service
units, service topologies and cloud services are composed of a list of elasticity capabil-
ities of different resources from Infrastructure System Information and are enforced
by the cloud service elasticity controller.
3. ELASTICITY REQUIREMENTS SPECIFICATION: SYBL
3.1. SYBL overview
The SYBL language for elasticity requirements specification is designed for specifying
various types of requirements described in Section 2.2. SYBL facilitates the descrip-
tion of elasticity requirements at different levels, depending on the service provider’s
knowledge on the cloud service and on his/her perspective: cloud service, service topol-
ogy, service unit, elasticity relationship, and programming/code region level. SYBL is
implemented as directives in different languages, enabling easy description of the re-
quirements, and delegating the actual difficult part of controlling the cloud service to
the SYBL runtime (rSYBL), which is the controller of the cloud service.

Listing 1 shows in BNF the constructs of the SYBL language. The monitoring direc-
tives start with the MONITORING keyword and specify new variables to be monitored.
A constraint defines elasticity requirements for the cloud service state, defining the
limits of the cloud service behavior. A strategy specifies requirements on the elastic-

8http://aws.amazon.com/ec2
9https://cloud.google.com/compute/
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ity behavior of the service. It specifies both control strategies to be enforced under
specific conditions, and WAIT, STOP or RESUME actions for the controller, which can be
paused/stopped/resumed when specified conditions hold. Therefore, with these two
constructs at the center of the SYBL language, constraints and strategies, depend-
ing on the service provider/developer knowledge about the service, we enable various
elasticity state and behavior specification mechanisms, the controllers interpreting the
language, detailed in Section 4, being in charge with determining the specific control
mechanisms which enable such service states or behaviors.

Listing 1: SYBL in Backus Naur Form (BNF)
Constraint := constraintName : CONSTRAINT ComplexCondition
Monitoring := monitoringName : MONITORING varName=MetricFormula
Strategy := strategyName : STRATEGY CASE ComplexCondition : action(

parameterList)| strategyName : STRATEGY WAIT ComplexCondition|
strategyName : STRATEGY STOP ComplexCondition|
strategyName : STRATEGY RESUME ComplexCondition

MetricFormula := metric | number |varName| MetricFormula MathOperator metric
| MetricFormula MathOperator number

ComplexCondition := Condition | ComplexCondition LogicalOperator Condition |(
ComplexCondition LogicalOperator Condition)

Condition := metric RelationOperator number| number RelationOperator metric |
Violated(name)|Fulfilled(name)

MathOperator := + | - | * | /
LogicalOperator := OR | AND | XOR | NOT
RelationOperator := <|>|>=|<=|==|!=

SYBL hides the complexity of enforcing a variety of complex calls, to different APIs
(e.g., cloud provider APIs, or bash configurations) with the help of elasticity capabilities
defined in the model in Section 2. It facilitates the service provider/developer to focus
more on the elasticity requirements which would help his/her application to behave
as desired. For referring to the current used infrastructure or platforms, it offers sev-
eral predefined functions and environment variables with pre-defined semantics. The
environment comprises different types of static and dynamic cloud information, its ca-
pabilities (e.g., whether or not it can modify the service during runtime and in what ex-
tent), as well as service-related information. When referring to the environment (e.g.,
through the predefined function GetEnv), the stakeholder needs to consider the level
at which functions or variables appear, since information and extent of control varies
with the level at which the SYBL elasticity requirement is specified. For instance, at
service topology level the service provider/developer would get environment informa-
tion regarding his/her service topology, which might be running in a different region
than the rest of the cloud service.

3.2. Expressing SYBL requirements
The SYBL language is not strictly binded to a single implementation (e.g., require-
ments can be specified as Java annotations, C# annotations, or Python decorators).
Moreover, the SYBL elasticity requirements can be injected into any cloud service de-
scription language (e.g., TOSCA) or can be specified separately through XML descrip-
tion. Current language interpretation mechanism is implemented in Java, and sup-
ports TOSCA-injected, XML-based, or Java annotation-based elasticity requirements
specification.

For example, Listing 2 shows a constraint specified for the service topology with ID
WebService Topology. The elasticity requirement sets the preferred response time be-
low 450 ms. We define this elasticity requirement as a subtype of Java Annotation,
triggered at runtime when the annotated method is executed and caught and inter-
preted using AspectJ.

ACM Transactions on Internet Technology, Vol. V, No. N, Article XXXX, Publication date: XXXX 2015.
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Fig. 3: Constructing runtime dependency graph
Listing 2: Example of elasticity requirements as Java Annotations

@SYBL_ServiceTopologyDirective(annotatedEntityID="WebServiceTopology",
constraints="Co3:CONSTRAINT responseTime < 450 ms;")

Listing 3 shows a strategy for the service topology with ID DataEnd Topology. The
elasticity requirement is a conditional strategy, which enforces the action scalein for
the service topology when both responseTime and the average throughput are above
predefined values.

Listing 3: Example of elasticity requirements in XML
<SYBLSpecification id="DataEndTopology" type="ServiceTopology">

<Strategy Id="St1">
<Condition >

<BinaryRestriction Type="smallerThan">
<LeftHandSide ><Metric >throughputAverage </Metric ></

LeftHandSide >
<RightHandSide ><Number >300</Number ></RightHandSide >

</BinaryRestriction >
<BinaryRestriction Type="smallerThan">

<LeftHandSide ><Metric >responseTime </Metric ></LeftHandSide >
<RightHandSide ><Number >360</Number ></RightHandSide >

</BinaryRestriction >
</Condition >
<ToEnforce ActionName="scalein" />

</Strategy >
</SYBLSpecification >

The constraint shown in Listing 4 specifies that the cost for the PilotCloudService
should be below 100$. The SYBL elasticity requirements can be easily integrated
within TOSCA policies, and interpreted by the elasticity controller.

Listing 4: Example of elasticity requirements as TOSCA Policies
<tosca:ServiceTemplate name="PilotCloudService">

<tosca:Policy name="St1" policyType="SYBLStrategy">
St1:STRATEGY minimize(Cost) WHEN high(overallQuality)

</tosca:Policy >...

4. MULTI-LEVEL ELASTICITY CONTROL
4.1. Runtime dependency graph of elastic cloud services
In order to describe the cloud service during runtime, a runtime elasticity dependency
graph is used, which has as nodes the concepts described in the model presented in
Section 2. This dynamic graph captures all the information about the structure, and
runtime information like elasticity metrics, requirements and deployment topology
during runtime and is constructed by our elasticity controller described in detail in
the following sections. Initially, the elasticity dependency graph is populated with dif-
ferent types of information, in order to construct the knowledge base for elasticity

ACM Transactions on Internet Technology, Vol. V, No. N, Article XXXX, Publication date: XXXX 2015.



rSYBL: a Framework for Specifying and Controlling Cloud Services Elasticity XXXX:9

control. Moreover, the dependency graph is populated continuously with monitoring
information, coming from MELA [Moldovan et al. 2013], Ganglia10, or other monitor-
ing tools. Figure 3 shows how the runtime dependency graph is constructed. If we take
the example of a Web service (the left side of Figure 3), the cloud user views his/her
Web service as a set of services (in this case Service C1, Service C2, and Service C3),
some of them grouped together for monitoring purposes (in this case Service Group
which consists of Service C1 and Service C3). The metrics targeted in user’s elastic-
ity requirements in this stage are high level metrics, referring to the quality, cost and
resources of services, of groups of services or even of the entire Web service. The right
part of Figure 3 shows the dependency graph being constructed at runtime by our
elasticity control. Service instances are deployed on virtual machines, in different vir-
tual clusters and virtual providers, aggregating low-level metrics for computing higher
level ones. For instance, the availability at service level would be computed from the
availability at each service part and the cost is determined from cost per I/O and VM
cost and the run-time service topology and loads.

4.2. Steps in multi-level elasticity control
Considering the model of the cloud service described through the runtime depen-
dency graph presented in the Section 2, we enable elasticity control simultaneously
for each of the described nodes, resulting in a multi-level elasticity control of the de-
scribed cloud service. The service provider/developer describes his/her cloud service
using TOSCA or other description standards. The initial deployment configuration is
specified either by the automatic deployment tool used or by the service provider/de-
veloper if a manual deployment approach is chosen. The elasticity requirements are
evaluated and conflicts which may appear among them are resolved. After that, an
action plan is generated, consisting of elasticity capabilities which enable the fulfill-
ment of specified elasticity requirements. The action plan is composed from elasticity
capabilities that have associated a series of IaaS calls, configurations, or bash/scripts
executions.

Let us consider a simple example shown in Figure 4 of controlling the entire cloud
service, e.g., by the system designer. The described elasticity requirements, Co1, Co2,
and Co3 are not conflicting, and elasticity capabilities are searched for fulfilling these
requirements. Possible elasticity capabilities are, for instance, for the case the run-
ning time is higher than 10 hours and the cost is still in acceptable limits to scale-
out for the computation service topology, increasing the processing speed. An example
of an action plan, shown in Figure 4 could be ActionPlan1=[ [increaseReplication],
[scaleOut, setThreadPool=100]]. This action plan would address performance issues
for the second elasticity requirement Co2, and availability issues for the third elas-
ticity requirement Co3. Each of the generated elasticity capabilities are mapped into
complex API calls. For instance, increaseReplication elasticity capability would con-
sist of calls for adding and configuring a new database node and configuring the cluster
for higher replication, while the scaleOut elasticity capability would be the addition
of a new virtual machine, deployment of the ComputationEnd on the new machine, and
necessary calls for the new instance of the service unit to join the computation topology
cluster.

4.3. Resolving elasticity requirements conflicts and generating action plans
We identify two types of conflicts: (i) conflicts between elasticity requirements target-
ing the same abstraction level, and (ii) conflicts which appear between elasticity re-
quirements targeting different abstraction levels. For the first case, sets of conflicting

10http://ganglia.sourceforge.net/
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Fig. 4: An action plan example
constraints are identified and a new constraint overriding previous set is added to the
dependency graph for each level. In the second type of conflict the constraints from
a lower level (e.g., service unit level) are translated into the higher constraint’s level
(e.g., service topology level), by aggregating metrics considering the dependency graph.
Since the problem is reduced to same-level conflicting elasticity requirements, we use
the approach for the same-level conflicting elasticity requirements and compute a new
elasticity requirement from overlapping conditions. More details on requirements res-
olution are available in [Copil et al. 2013a].

For generating an action plan for cloud service elasticity control, we formulate the
planning problem as a maximum coverage problem: we need the minimum set of ca-
pabilities which help fulfilling the maximum set of requirements. Given the current
cloud service state, we can apply a number of elasticity capabilities from the Elasticity
Capability Set ECS. As described in Equation 1, for each elasticity capability enforce-
ment, we reach a state with a set of requirements fulfilled ECx. We therefore need
the minimum set of capabilities which fulfill the maximum set of requirements. Since
maximum coverage problem is an NP-hard problem, and our research does not target
finding the optimal solution for it, we choose the greedy approach which offers an 1− 1

e
approximation.

ECS = {EC1, EC2, ..., ECn}
ECx = {Fulfilled(Rx1), ..., Fulfilled(Rxy )|Ri ∈ Requirements} (1)

The main step of the greedy approach consists of finding each time the elasticity
capability ECi fulfilling the most constraints and improving the most strategies. After
selecting an elasticity capability in this iterative process, the ECS needs to be recom-
puted since the context of the service is changed and the effect of applying ECj will be
different than before applying ECi. For now we consider that the effects of enforcing
an elasticity capability are introduced by the user, our framework presented in Section
5 offering mechanisms for easily plugging-in tools that automatically detect the effect
of an elasticity capability.

4.4. Enforcing action plans
For controlling the elasticity of cloud services, tools monitoring the elasticity and the
different types of metrics targeted by the cloud service user are necessary. Although
at the moment existing cloud APIs offer only access to low-level resources, elasticity
control of cloud services would also impose the existence of cloud APIs which take into
account the different levels of metrics or the cloud service structure.

For overcoming this situation, we use the MELA framework which aggregates low-
level metrics for achieving higher level ones, and use existent resource-level control
capabilities for manipulating higher level quality and cost. For instance, the cost of
a service unit would be composed of the different types of cost associated to each re-
source associated with the service unit, like cost depending on the number of virtual
machines, cost for intra-unit communication, or I/O cost. The cloud service cost is com-
puted as the sum of service unit cost, inter-unit communication cost, and possible li-
censing costs.
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Fig. 5: Architecture of rSYBL
Considering long running services, the stakeholders can evaluate the actions gener-

ated, and revise their requirements on the basis of application behavior. This is pos-
sible either before or after action plan enforcement, rSYBL re-running the elasticity
control loop, starting from the first step described in Section 4.1.

A roll-back mechanism for each capability allows the controller to also handle situa-
tions where the action plans do not produce the expected results when enforced. When
this is observed, the reverse actions associated with each capability in the reverse or-
der of the action plan enforcement.
5. RSYBL: ELASTICITY CONTROL AS A SERVICE
Based on the above-presented concepts and mechanisms, we develop the rSYBL frame-
work11, shown in the Figure 5. The central module of rSYBL is the Control Service,
which takes processed elasticity requirements from SYBL Specification unit, and com-
municates with Interaction Unit for enforcing found elasticity mechanisms, and with
Monitoring Information Gathering Unit for pulling monitoring and analysis informa-
tion on the cloud service. The distributed components of rSYBL are the Local Monitor
and the Local Service. The Local Monitor is part of the service units (e.g., in this case as
a weaving library) and knows when a process with SYBL programming directives has
started, or when a sequence of code annotated with SYBL has started or finished. The
Local Monitor communicates with the Local Service for sending SYBL elasticity re-
quirements, for ensuring elasticity requirements through local elasticity mechanisms,
e.g., reconfigure the service unit to accommodate higher number of customers, or in-
crease maximum thread pool size. The current rSYBL prototype supports elasticity
control of cloud services, service units, service topologies, relationships and code re-
gions for fulfilling elasticity requirements which can be specified in XML or through
Java Annotations detected at runtime with AspectJ. We tested our prototype on our
local cloud running OpenStack1 using JClouds12 for controlling virtual machines, and
on Flexiant 2 cloud using the Flexiant Cloud Orchestrator (FCO) REST API, and using
MELA for monitoring.

The rSYBL framework is designed to be easily extended, customized and used for
various applications, in different environments and focusing on various metrics. We
designed plugin mechanisms for different parts of the framework, as shown in Fig-
ure 5, currently being available various plugins for information gathering (e.g., Gan-
glia, and MELA), for interacting with cloud infrastructures and service artifacts (e.g.,

11Find the prototype implementation and further experiments at http://dsg.tuwien.ac.at/research/viecom/
SYBL
12http://jclouds.org/
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Fig. 6: Elasticity requirements processing by rSYBL
OpenStack, FCO, or Cassandra), and for control algorithms (e.g., the greedy planning
described in Section 4.3). Firstly, the specification of SYBL directives can be extended
from the point of view of the metrics that we use, and of the higher level metrics that
are defined. The link of the new metrics names with the manner of finding them in the
new plugins is done through a simple configuration file. Both the monitoring and anal-
ysis and the enforcement units can be adapted for working in different environments.
For instance, in one extreme, one may want to control the elasticity of a service which
is deployed on one or several local servers. This may be the case of a service provider
who is interested in deploying just parts of its service on the cloud, but on elastically
controlling all the cloud service. In this case, the service units which are deployed on
the cloud benefit from more mechanisms of elasticity control than the local ones, but
all can be elastically controlled with rSYBL by just specifying the control mechanisms
for each service unit or service topology which can be controlled. On the other hand,
even if the entire service is deployed on the cloud, we may need monitoring information
from different sources, e.g., one API may provide process-level information, other API
may provide quality or cost related information, and other one could provide VM-level
monitoring information. All this information can be used at the same time by rSYBL,
by using plugins for each mechanism of information gathering. These plugins will be
used by rSYBL in evaluating elasticity requirements, learning about the cloud service
behavior, and planning for next control mechanisms to be used.

The Control Service is deployed on per cloud infrastructure basis, and can control
multiple cloud services at once. For catching the events sent by the Local Monitor
which handles programming level SYBL elasticity requirements, we need to also de-
ploy on each virtual machine a Local Service instance which is part of rSYBL, and
to use inside our controlled application the Local Monitor library. The rSYBL Control
Service, Interaction Unit and Information Gathering Unit are components of rSYBL
core, being deployed on the same virtual machine and connecting to the necessary tools
for monitoring and enforcement, depending on the available plug-ins. Figure 5 shows
the current plug-ins used by rSYBL for elasticity control.

5.1. Linking elasticity requirements to enforced actions
Figure 6 shows a flow from elasticity requirements specification to the enforcement of
actions, which are mapped from an elasticity capability of scaling up at thread level
and one of scaling in at data analysis service unit level. The Java annotation based
elasticity requirement is injected by the cloud service developer into code, from where
an rSYBL library (the Local Monitor) weaves it when the annotation is triggered, and
forwards it to the rSYBL Local Service which is deployed on each VM for providing
local control. The Local Service processes the triggered requirement, checks whether
or not it can enforce it locally, and if it cannot be enforced locally sends it forward to the
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Fig. 7: Provided elasticity control plugins in rSYBL
Level Elasticity Capability Action

Infrastructure Scale In Remove Network Interface; Remove VM

Scale Out Create Network Interface; Create Disk; Create
VM

Custom Action Attach/detach disk, scale vertically
Platform Scale In Leave Cluster; Remove Artifact

Scale Out Create Artifact; Join Cluster

Reconfiguration Increase Thread Pool; Decrease Thread
Pool;Set Load Distribution Mechanism

Application Reconfiguration Set Specific Config. Param.
Custom Action Action Given by User

Table I: Example of elasticity capabilities at different control levels

Control Service. The Control Service also receives the SYBL elasticity requirement
which is described as TOSCA policy. It evaluates the received elasticity requirements,
and in case it finds suitable elasticity capabilities which are expected better fulfill de
requirements, it triggers their enforcement. As described in Section 4, the enforcement
also consists of the mapping of each of these elasticity capabilities to cloud-provided or
cloud service specific APIs, which we detail in what follows.

5.2. Elasticity capabilities used in the elasticity control process
rSYBL facilitates the control through various types of elasticity capabilities, described
through the model presented in Section 2, which are either exposed by IaaS providers,
or by software used by the cloud service. Action plans are saved in a repository, and
reused for learning their effects on the service behavior. Figure 7 shows how rSYBL fa-
cilitates the description of different complex actions which involve complex calls (right-
hand side of Figure 7) for a variety of infrastructures and platforms, in order for the
rSYBL common user to specify simple elasticity capabilities which hide a lot of com-
plexity. Moreover, the rSYBL user (e.g., a cloud service developer) can specify custom
actions (e.g., through TOSCA plans) to be executed by the controller as standalone or
as part of an elasticity capability.

In the SYBL strategies, the user can simply specify the elasticity capability name,
while the rSYBL controller is in charge with detecting the exact combination of ac-
tions necessary, from the ones presented in Table I). The table is not meant to be
exhaustive, and new actions are continuously developed by cloud providers. At in-
frastructure level for example, recently some of the providers have allowed attach-
ing/detaching disks without the need to restart the corresponding virtual machines
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Fig. 8: M2M DaaS with SYBL elasticity requirements

(e.g., Flexiant). For enforcing platform-level scale in, we have two options: either focus-
ing on platform level actions (e.g., leave cluster & remove artifact, remove network
interface), or also using infrastructure-level actions (e.g., leave cluster, remove VM,
remove network interface). rSYBL will decide on the appropriate action, depending
on the expected effect and whether or not it is possible to collocate more artifacts on the
same VM without the need for IaaS level actions. The supported platform software can
be extended by simply implementing the described actions in plugins. For the case of
the application-level actions, the user can decide to customize rSYBL by implementing
plugins or to call deployment-defined actions from SYBL strategies.

For implementing custom plugins, or supporting new monitoring/enforcement plug-
ins, three steps are necessary: (i) implementing the monitoring/enforcement interfaces
from rSYBL, (ii) adding the needed configurations (i.e., credentials or other plugin-
specific information), and (iii) adding the primitive actions offered by plugins to the
primitive actions description. The SYBL directives are not dependent on the plugins
available, as capabilities are composed of primitives associated with the service or plu-
gins. With this indirection layer, there is no need for changes in the SYBL directives
when plugins are added or removed to rSYBL.

More technical details on configuring and running the framework are available on
the rSYBL wiki13.
6. EXPERIMENTS
6.1. Controlling elasticity with rSYBL: M2M DaaS Cloud Service
Considering a machine-to-machine (M2M) DaaS14 which processes information com-
ing from various data sensors, we design the application in Figure 8, and simulate
clients which send sensor information. Specifically, the M2M DaaS is comprised of an
Event Processing Service Topology and a Data End Service Topology. The Event Pro-
cessing Service Topology consists of a Load Balancer Service Unit and an Event Pro-
cessing Service Unit, which analyzes and stores data in a NoSQL cluster, in this case
Cassandra-based, composed of a Data Controller Service Unit (i.e., Cassandra seed)
and a Data Node Service Unit (i.e., Cassandra node).

We deploy the M2M DaaS service on two different cloud infrastructures: (i) using
Flexiant2 cloud provider, we deploy on their public cloud, and (ii) on our OpenStack1-
based private cloud. We simulate data sensors which send information to Event Pro-
cessing Service Topology with a python-based load generator which sends random data
to our M2M DaaS. As the two clouds considered are different, they differ in relia-

13https://github.com/tuwiendsg/rSYBL/wiki
14M2M DaaS prototype: https://github.com/tuwiendsg/DaaSM2M
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Setting Flexiant OpenStack
Small instance GB:CPU 2GB:2CPU 1GB:1CPU
Small instance price 6 Flexiant Units/h 3 OpenStack Units/h
Network interface card price 0.13 Flexiant Units/h 0.13 OpenStack Units/h

Table II: Experiment Unit Costs

Fig. 9: Event Processing Service Topology on Flexiant public cloud

bility, in the estimated cost, and in quality characteristics, even when using similar
resources. Table II shows the settings of our experiments in terms of estimated cost.
The Flexiant cloud provider costs vary with the user type, and it is manually set by
Flexiant cloud administrators. For our case, the price for an instance with 2 GB and
2 CPU is 6 units per hour, where the units can be bought at varying prices (from
11£ per 1000 units to 4700£ per 500000 units). From OpenStack we select an m1.small
instance, with 1 GB and 1 CPU, and compute an equivalent cost of half the number
of units from Flexiant (based on our assumption that OpenStack private cloud units
are much cheaper than Flexiant units due to maintenance costs, e.g., electricity, or ad-
ministration). The price of a network interface card, associated by default with each
instance is 0.13 units, which we also set for OpenStack cloud experiment settings.

The SYBL elasticity requirements are associated with the M2M DaaS at different
levels (e.g., cloud service level, service topology level). Since the cloud infrastructures
are different, the requirements have to be adjusted for the providers, as they provide
different performance at different costs. For Flexiant, we set a requirement of keeping
response time less than 8 ms (see Co3 for Flexiant case), while for the OpenStack
private cloud we set the requirement of maintaining response time below the limit
of 200 ms (see Co3 for OpenStack case). As we have equated the costs for the two
providers considering resources provided, we maintain the same cost requirement for
the two cases (see Co4).

Figure 9 shows how the Event Processing Service Topology of the DaaS cloud
service is affected by rSYBL control actions on the Flexiant cloud. An action enforce-
ment is reflected in a change of cost, the deployment of a new instance with the neces-
sary configurations being reflected in a cost increase, while the removal of an instance
associated to a unit being reflected in a decrease in cost. We can see that starting from
minimal deployment configuration (1 VM per service unit), rSYBL manages to find
a level of resources configurations where any control enforcements do not affect the
quality characteristics as it was the case in the first part of the experiment, when the
response time has a short peak of 180 ms. For the second case presented in Figure 10,
running on OpenStack cloud, the evolution of the service is different since the cost (i.e.,
the actual price which needs to be paid at the end of the day) is smaller, while the per-
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Fig. 10: Event Processing Service Topology on OpenStack-based private cloud

Config. DB
Controllers

DB
Nodes Workload Total execution time Cost (Units)

Config1 1 3 Workload1 44 min 9.13
Config2 2 2 Workload1 28.4 min 5.88
Config1 1 3 Workload2 >3h+connection failures > 37.56
Config2 2 2 Workload2 102.75 min 21.53

Table III: Cost and execution time: comparison on different workloads
formance (e.g., response time for the Event Processing Topology) is as well smaller,
rSYBL having to allocate a lot of resources.

6.2. Analyzing multiple levels of control: YCSB+Cassandra Cloud Service
In the second part of our experiments, we use a cloud service with two service topolo-
gies: one made from YCSB15 Cassandra clients, the second one being a Cassandra16

cluster, with two types of service units: Cassandra Seed (the unit acting as the con-
troller of the cluster), and Cassandra Node. We experiment taking different level of
control actions for the Cassandra NoSQL cluster. For the current experiment, the num-
ber of actions available is limited to scaling in and out at service unit level and at
service topology level, by adding/removing virtual machines hosting data nodes, or by
instantiating entire new data clusters, and making the proper configurations for them
to receive requests from the YCSB clients.

To show the importance of higher level elasticity control, Table III presents perfor-
mance and cost data on different Data Service Topology configurations and different
workloads. We use two update-heavy YCSB workloads17, the Workload 1 having ten
times less operations to be executed than Workload 2. We assume the OpenStack costs
in experiment above (see Table II).The first important reason for enabling topology
level elasticity is that multiple clusters remove the single-point of failure problem,
decreasing the probability of failures, imminent for the case of highly intensive work-
loads with a single Cassandra seed. We show how 2 clusters (Config 2) can decrease
the final cost as opposed to a single cluster (Config 1), and more importantly that it can
avoid errors due to overloading. For instance, for the more intensive and longer work-
load, Workload 2, a single cassandra cluster, although with multiple virtual machines
for the slave component, reaches a point where it cannot serve requests anymore, in
case only the service unit level control is enabled.

15https://github.com/brianfrankcooper/YCSB
16http://cassandra.apache.org/
17https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
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Fig. 11: Requirements fulfillment on Flexiant and OpenStack
Therefore, enabling various types of actions, and creating controllers that differenti-

ate among them taking into consideration the effect they have not only on the current
part of the cloud service which is being reconfigured, but on the overall cloud service
and on various other parts as well, can greatly improve cloud services elasticity. With
the capability to control service’s elasticity both at service unit level and at topology
level, rSYBL can improve the elasticity of cloud services both from the performance
and from the cost perspective.

6.3. rSYBL performance analysis
rSYBL needs a dedicated VM, but can be collocated with other service management
tools like MELA. The overhead of running rSYBL is CostVM+CostNetwork eGress, where
CostVM is the cost of a VM for current cloud provider, given that we know approxi-
mately how long we would like the service hosted, and we can choose a subscription-
based cost schema for this VM, and the cost of communicating among regions belonging
to the same cloud provider CostNetwork eGress, for the case we have a multi-region de-
ployment. For the stable workload case, this cost is not justified since we have no need
for elasticity, as we can create the optimum static configuration and use it. In the case
the workload is variable, it makes sense to try to reduce the bigger cost which usually
are connected with virtual machines and storage disks.

Controlling the service by using rSYBL empowers the user to specify the require-
ments s/he is interested in, at the level and for the unit which fits best, since most
of the times, the user knows best what is his/her budget, and what are is the desired
quality. As rSYBL’s main goal is fulfilling user’s requirements, we analyze the degree
with which rSYBL manages to fulfill user requirements, for the M2M DaaS described
in Section 6.1. We compare rSYBL control outcome with two stable cases which are
manually configured for this experiment: (i) under-provisioning strategy (fixed config-
uration with minimum resources used with rSYBL - 4 VMs), and (ii) over-provisioning
strategy (fixed configuration with maximum resources used with rSYBL - 14 VMs in
Flexiant and 17 VMs in OpenStack). When computing the cost for the case of running
with rSYBL control strategy, we factor in the cost for rSYBL to run as part of the M2M
DaaS cost. We want to understand whether and how much the elasticity performance
impact affects requirements (i.e., each control action initially decreases performance,
and needs a ’cool-down period’ [Gambi et al. 2013]).

Analyzing the comparison from Figure 11, we can see that rSYBL is better than both
under-provisioning and over-provisioning strategies, on both cloud providers used. In
the over-provisioning case, while most of the times the response time requirement is
fulfilled, the one on cost (Co4) and the one on data end CPU usage are not fulfilled
(Co2), due to the fact that we have a continuously high number of resources for the
Event Processing Service Topology, for which the maximum resources of the Data
End Service Topology allocated by rSYBL in Section 6.1 are not enough. For the cur-
rent framework, rSYBL takes only reactive actions, reason for which the cases in which
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one requirement is violated is quite large. We see as future work incorporating into
rSYBL predictive decision making, thus decreasing the number of cases in which re-
quirements are violated.
7. RELATED WORK
7.1. Cloud services requirements specification
Resource re-allocation and requirements specification have been a focus usually from
the SLA fulfilment or scheduling and resource allocation perspectives. Hamid et al.
[Fard et al. 2012] approach static scheduling with a different view, defining a multi-
objective optimization algorithm and demonstrating its usefulness on real-world ap-
plications. The authors consider makespan, economic cost, energy consumption and
reliability in their multi-objective list scheduling algorithm. Han et al. [Han et al.
2012] describe an approach for fine-grained scaling at resource level in addition to the
VM-level scaling, which uses a lightweight scaling algorithm for improving resource
utilization while reducing cloud providers’ costs. Our approach differs from this re-
search work in three main points: we support (i) multiple levels of elasticity control
based on (ii) user-specific, high level requirements with (iii) multiple elasticity dimen-
sions.

Martin et al. [Martin et al. 2011] present an attempt to tackle the problem of elas-
ticity from the point of view of resource and elasticity in SaaS based clouds. The au-
thors propose relating cost with quality: cost per performance metric (C/P) and cost per
throughput (C/T). However, existing approaches have not developed flexible languages
for controlling multi-dimensional elastic properties. [Galán et al. 2009] proposes an ex-
tension of OVF for service specification in cloud environments describing resource as
well as business rules and enforcing them through resource allocation/de-allocation.
Kouki et al. [Kouki et al. 2014] propose extending Cloud Service Level Agreement
(CSLA) with features for cloud management, showing the degree of SLA fulfillment
with and without elasticity for different cloud levels (SaaS, IaaS). In contrast with
these approaches, our main focus is describing elasticity requirements and the dif-
ferent granularities at which they can be specified by developers, end-users or cloud
providers.

The major difference between existing work and our approach from elasticity re-
quirements specification perspective is that our work tackles elasticity requirements
specification from more than one perspective (resource, quality, cost) and at differ-
ent levels of granularity, thus assigning the user the capacity of specifying when the
application should scale throughout its execution and, most importantly how.
7.2. Elasticity control of cloud services
Elasticity control of storage based on resources and quality has been focused by various
research work, e.g., adaptively deciding how many database nodes are needed depend-
ing on the monitored data in [Tsoumakos et al. 2013]. Yu et al. [Yu and Thain 2012]
propose an approach for resource management of elastic cloud workflows. They present
a generic workflow architecture with components such as makeflow (that parallelizes
large complex workflows on clusters grids and clouds) and master-work-workers.

Chard et al. [Chard et al. 2015] propose an approach for cost-aware heterogeneous
resources provisioning for scientific workflows. The authors study the impact of using
both by using spot and on-demand AWS instances, and different availability zones.
Almeida et al. [Almeida et al. 2014] propose a branch and bound approach for optimally
selecting services from multiple clouds during runtime. Based on the software product
lines paradigm, the proposed approach scales well in selecting optimal resources, even
for high number of possible configurations. In [Kranas et al. 2012] the authors propose
a framework for automatic scalability using a deployment graph as a base model for
the application structure. The authors introduce elasticity as a service (ElaaS), cross-
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cutting different cloud stack layers (SaaS, PaaS, IaaS), to offer SLA fulfillment while
decreasing operational costs.

Compared to the above-mentioned work, we control elasticity not just in terms of re-
sources but also in terms of quality and cost and use application structure for propos-
ing an accurate multiple level control of elasticity of cloud services. Furthermore, they
lack user-customized elasticity control. We propose a user oriented elasticity control
in which the user (cloud service creator, application developer, etc.) specifies how the
cloud service should behave for achieving the elasticity property. Moreover, we argue in
favor of an elastic services control aware of the structure of the elastic service, profiting
from this knowledge for a multiple levels elasticity control of cloud services.

8. CONCLUSIONS AND FUTURE WORK
Using current state-of-the-art solutions, cloud service developers are capable to solely
control virtual resources, by specifying intricate policies concerning system-level met-
rics. We presented a solution for multi-level cloud service elasticity control, consider-
ing requirements associated to multiple abstraction levels. rSYBL framework is open-
source, extensible, and can be customized for different cloud providers and cloud ser-
vices, having various preferences in terms of elasticity control. We base our control
mechanisms on the user-provided requirements, and on cloud service pre-deployment
information and runtime information. This way, we empower the users to steer the
control by specifying their needs, at the service level they possess knowledge for (e.g.,
in the case s/he is aware of how or what should be controlled at the data end but not at
the business end), and the level of detail which they are comfortable with (e.g., if the
cloud provider knows only requirements about cost in relation to the number of clients
they expect, s/he is not needed to specify response time requirements).

As future work, we will focus on integrating rSYBL framework with techniques for
accurately estimating effects, and employing these estimations for better control of
cloud services elasticity. These improvements will also open the road for predictive
control, and for studying the conditions under which the predictive or reactive control
is better.
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