
Towards a Serverless Platform for Edge AI

Thomas Rausch
TU Wien

Waldemar Hummer
IBM Research AI

Vinod Muthusamy
IBM Research AI

Alexander Rashed
TU Wien

Schahram Dustdar
TU Wien

Abstract
This paper proposes a serverless platform for building and
operating edge AI applications. We analyze edge AI use cases
to illustrate the challenges in building and operating AI ap-
plications in edge cloud scenarios. By elevating concepts
from AI lifecycle management into the established server-
less model, we enable easy development of edge AI workflow
functions. We take a deviceless approach, i.e., we treat edge re-
sources transparently as cluster resources, but give developers
fine-grained control over scheduling constraints. Furthermore,
we demonstrate the limitations of current serverless function
schedulers, and present the current state of our prototype.

1 Introduction

Edge AI is one of the major emerging technology trends [19],
driven by recent advancements in AI algorithms, edge com-
puting systems, and miniaturized AI accelerators [21]. De-
spite the growing demand for low-latency and privacy-aware
AI at the edge, developing, deploying and operating edge
AI applications at scale is still hard and requires immense
manual effort, which we attribute to the lack of platform sup-
port. Although cloud providers and researchers are developing
comprehensive solutions for building and operating AI appli-
cations in the cloud [13], they currently fall short of providing
programming models and tools that make it easy to seamlessly
integrate edge resources into the end-to-end AI workflow.

In this paper, we present a serverless platform to build and
operate edge AI applications in edge cloud systems. Based on
scenarios adapted from real-world use cases, we first outline
the challenges for building and operating AI applications in
such edge cloud systems. We then present our approach for a
serverless edge computing platform that provides appropriate
support for defining AI workflow functions, programming
models for synchronizing data and model artifacts between
cloud and edge devices, as well as tools for serving, training,
refining, and monitoring AI models at the edge. Specifically,
our approach elevates concepts from AI lifecycle manage-
ment into the established serverless programming model, and

Preprocess Train Evaluate Deploy

Preprocess Train Harden Compress

Bias
Detection Evaluate Deploy

Preprocess Train Evaluate

User-specific models

Base
Model

Figure 1: Prototypical AI pipelines [13]: (1) simple model
training flow, (2) extended pipeline with custom steps, (3)
hierarchical pipelines with transfer learning.

thereby enables straight-forward development of end-to-end
edge AI pipelines. We take a deviceless approach [11], i.e.,
we treat edge resources transparently as cluster resources,
but give developers fine-grained control over scheduling con-
straints via additional language constructs. Through exper-
imental analysis we uncover some of the major limitations
of current state-of-the-art serverless platforms for support-
ing edge AI applications, and then present our approach for
building a prototype of our platform.

In summary, the contributions of this paper are: (i) a require-
ments elicitation for edge AI systems from existing real-world
use cases, (ii) a design for a serverless platform that treats con-
cepts from edge AI workflows as first-class citizens, both in
the programming model and in its architecture, and (iii) a pre-
liminary analysis that demonstrates the limitations of current
state-of-the-art technologies to support our approach.

2 Edge AI Workflow Challenges

Operationalizing the AI lifecycle, from data preprocessing, to
model training, to model validation, serving and runtime mon-
itoring, is one of the major efforts in the current AI systems
space, as made evident by recent developments of production-
grade AI platforms such IBM AI OpenScale, TensorFlow
Extended [5], or ModelOps [13]. AI pipelines are still not
as well understood as traditional software pipelines, but in
our previous work we have identified several prototypical

pipelines from use cases at IBM, shown in Figure 1. However,
platforms focus mostly on cloud-based workflows, or only
treat edge resources as inferencing devices [21]. We motivate
the need for an edge AI platform that includes edge resource
in the entire AI lifecycle with additional examples and then
highlight the main challenges for realizing such a platform.

2.1 Example Use Cases

In the following we discuss example scenarios, adapted from
real-world use cases that currently use cloud-based AI plat-
forms to deliver the applications. We introduce plausible new
requirements to each use case that blend characteristics from
AI operationalization and edge computing, to highlight the
challenges of developing and operating edge AI applications.

Personal Assistants: Cognitive mobile personal assistants
continuously monitor health data via bio sensors, and can
predict and raise alerts for critical situation like critically low
blood sugar levels [7]. Key concerns in this use case are pre-
diction accuracy, inferencing latency, and data privacy, which
can be improved by integrating patients’ edge devices into the
workflow. To optimize accuracy, the training process is split
up into two phases: First, the service provider trains a base
model on a representative, anonymized [4] sample of the en-
tire population. This is a resource intensive and long-running
process that is performed in a cloud environment. Second, in
order to account for patient-specific patterns in the data, the
individual models need to be adjusted and fine-tuned for each
(type of) patient. However, these patient-specific data should
be kept private and there should be no way to associate the
data points directly with a patient’s identity. The base model is
transmitted to the edge device and refined using transfer learn-
ing techniques and data collected at runtime at the edge. This
refined model is then served on the patient’s device, thereby
enabling low-latency and privacy-aware inferencing.

Field Technicians: Field service technicians often travel to
on-site locations, including engineers maintaining power facil-
ities, mechanics fixing industrial equipment, and technicians
for an ISP. Mobile devices augmented with AI capabilities
help to identify faulty parts, recommend diagnosis paths, or
log and validate the technician’s actions [8]. Key concerns in
this use case are reliability, inferencing latency, bandwidth,
and trust. Due to limited network connectivity, AI models
need to run on the these edge devices, such as visual recog-
nition models to classify photos taken in the field. Device
equipped with AI accelerators could be used for video stream
analytics where momentary information is relevant, for exam-
ple in high-speed manufacturing lines. Being able to predict
and preload AI models on devices with limited memory can
be useful when managing fleets of devices. Context-aware
policies can help facilitate a trusted AI workflow. For ex-
ample, security constraints related to device ownership and
registration may require that data gathered in the field only
be transferred when connected to the corporate network.

General Purpose Computing

HPC

Embedded AI
(NVIDIA
Jetson)

Cluster Middleware

Train

Harden

Process

Validate

Deploy

execute

Figure 2: Efficient capability-aware execution of a complex
AI pipeline on a multi-purpose edge computer

2.2 Requirements for Edge AI Platforms

Summarizing from the described use cases, we identify the
following requirements and high-level design goals:

Operational abstractions: Orchestrating AI pipelines exe-
cution on edge resources is more involved than in cloud-based
platforms as there are no well-defined APIs and, e.g., homo-
geneous dedicated learning clusters to submit training jobs to.
Figure 2 illustrates how complex workloads are mapped to a
multi-purpose edge-compute resources to execute efficiently
and make full use of hardware capabilities. A programming
model and APIs for edge AI applications needs to hide this
operational complexity from the developer. In particular, pro-
grammers should not have to worry about the distribution
of data and the heterogeneous capabilities of edge resources.
The stickiness of tasks and resources should be easily config-
urable, and a scheduler needs to infer scheduling constraints
and goals from application and device contexts.

Context-awareness: Being aware of the context of an edge
device is essential for enabling seamless end-to-end edge AI
pipelines. From a service provider’s perspective that manages
fleets of edge devices and provides models across several do-
mains, context-awareness can help manage operational com-
plexity, by deploying models on demand to devices based
on their context. Context-aware policies can also be used to
specify retraining triggers, such as thresholds of new training
data, or device battery and charging conditions.

Artifacts as first-class citizens: Locally trained models
and data available on the edge magnifies the issues around
model and data management. To facilitate this abstraction,
our edge AI serverless platform treats models and data as first
class citizens. This allows the platform to make decisions on
where data can reside or be transferred, based on application
contexts and device constraints, and enables the scheduler to
satisfy data–function locality objectives.

Fine-grained policy control: Developers should be able
to express the context in which functions are allowed to ex-
ecute or data is transferred. However, this requires that the
programming model and API are intuitive for developers,
but expressive enough to guide the execution platform in its
decision on how to schedule functions or replicate data.

3 Related Work

Serverless computing has been proposed in both, the AI and
ML [6,15], as well as edge computing [11,18] problem space.

Ishakian et al. [15] discuss the advantages and open chal-
lenges of serving ML models using serverless functions. In
our paper, we go beyond only serving models, and consider
all steps in end-to-end AI pipelines. Carriera et al. [6] im-
plement ML workflows in serverless platforms, and outline
an approach that includes an API to develop serverless ML
functions, stateful-client resource manager, a worker runtime,
and distributed data store. Our approach extends this idea to
include management of edge resources. We further consider
the deployment, serving, and runtime monitoring of models.

Glikson et al. [11] propose an extension of the serverless
paradigm for edge computing. Termed deviceless edge com-
puting, devices execute functions are treated as transparently
as possible, in the same way that cluster resources are treated
in a cloud-based serverless scenario. Nastic et al. [18] build on
this idea and propose a programming model for serverless ana-
lytics functions, an abstraction layer over edge resources, and
a runtime mechanism to deploy, place, and schedule functions
on this abstraction layer. In industry, platforms like AWS IoT
Greengrass or Azure IoT Edge aim to provide fully-fledged
edge computing platforms. Our approach is similar in terms
of architecture, but different in that it considers AI workflow
concepts as first-class citizens in the programming model and
underlying runtime, which affects the overall design.

4 A Serverless Platform for Edge AI

4.1 Programming Model
In serverless computing, the programming model concepts
are functions, events, and triggers. The serverless platform
executes functions in response to events. Which events lead
to a function execution is defined by a trigger. We introduce
AI workflow specific extensions to the serverless program-
ming model, by elevating concepts of the AI workflow to
first-class citizens in the model to provide common abstrac-
tions that make developing edge AI workflow functions easier.
Specifically, we add (a) the notion of artifacts: data artifacts
such as training data sets, and model artifacts, i.e., machine
learning models, (b) quality gates: AI workflow specific func-
tion triggers such as model validators or drift detectors, and
(c) policies: fine-grained control mechanisms for function
scheduling. For workflow composition, we rely on systems
like ModelOps [13] or OpenWhisk composer [1], which offer
different ways to compose AI workflows. Our examples are
based on Python and the capabilities of the MXNet ML li-
brary [2], but the concepts could be applied to most languages.

Data & Models Current serverless platforms generally only
allow JSON documents to be passed between functions. When

dealing with large artifacts or streaming data, which is com-
mon in AI workflows, developers are required to manually
read and write from cloud storage services. In particular, it is
common for functions to consume or produce data or model
artifacts. Our approach provides ways to annotate such func-
tions, and provides a data API that hides platform data man-
agement tasks from the developer. Additional metadata from
the annotations allow the platform to transparently handle
data transfer and storage and respect data locality policies.

Model Selectors: We allow the injection of models into
functions based on selectors. This allows developers to define
the requirements of a functions without specifying the exact
model instance to use. For example, as shown in Listing 1
a selector can specify the type of model (regressor, or clas-
sifier), the type of data it was trained on, the type of data it
processes, or model performance metrics such as the accuracy
or robustness scores [24]. The model metadata collected by
the AI lifecycle engine ModelOps [13] facilitates this.

@consumes.model(selector={’type’: ’image_classifier’,
’data_tags’: [’machine_x’], ’accuracy’: ’ >=0.88’}}})

def inference(model , request):
data prep tasks
return model.estimate(data)

Listing 1: Artifact injection via model selector

Gates: AI pipelines need to express conditions on model
validation metrics such as bias or vulnerability validators.
Similarly, inferencing functions may be conditionally enabled
based on runtime metrics such as concept drift detectors [10].
Some examples of conditional gates are presented in Listing 2.
Gates target a specific data or model artifact, and enable the
explicit monitoring of certain metrics in the runtime of the
respective artifact.

@gate.bias(attribute = ’age’, predicate = ’<0.8’)
@gate.drift(metric = ’confidence’, predicate = ’<0.2’)

Listing 2: Conditional gates

Policies: Policies allow developers to define additional func-
tion execution conditions. The deadline policy tells the sched-
uler how quickly a function should get executed, which is
useful for inferencing functions that have low-latency require-
ments. The runtime can factor in latency incurred by data
transfer. A fn policy defines properties that a node should or
must have for a function to be scheduled on that node. The
data policy is similar to a role, and defines constraints on
data transfer. The strict keyword makes the policy a hard
constraint. For example, the function may only be executed
when the data is accessible from within the given network.

@policy.deadline(’2s’)
@policy.fn(node = ’user_device’, capability = ’gpu’)
@policy.data(network=[’company_network’], strict=True)

Listing 3: Different policy annotation

Example Function: A common scenario in the use cases
we described are user or device-specific models refined from
a base model using device-local data. Listing 4 shows how
such a function can be defined using our programming model.
To satisfy the constraints, the scheduler runs this function
only a user’s device (given by the usr variable), and when
data is available within the specified network.

@consumes.model(selector={’urn’: ’model:base’})
@consumes.data(batch = 100, selector =...)
@produces.model(type=’regressor’, urn=’model:user:{usr}’)
@policy.fn(node = ’local’)
@policy.data(network = ’local’, strict=True)
def refine(model: ModelArtifact , data: DataArtifact):

ndarr = data.to_ndarray() # data artifact API
transfer learning code
return refined_model

Listing 4: Example function with several constraints

4.2 Execution Platform
By building on an existing serverless platform such as Open-
Whisk or Knative, and the AI workflow execution engine
ModelOps, we can focus on the necessary extensions to sup-
port our programming model. In particular, we leverage the
container orchestration system underlying the serverless plat-
form, and AI lifecycle metadata (such as model performance
metrics) gathered by ModelOps. We outline the additional
components and mechanisms in the remainder of this section.

Function Scheduler: Efficient and effective scheduling of
functions to both edge and cloud resources is at the core of our
approach. It goes beyond state-of-the art serverless scheduling
for cloud-based clusters in that it considers device capabilities,
inter-node proximity (e.g., latency between nodes), and data
locality (e.g., to enforce privacy constraints or trade off data
transfer costs). Figure 3 shows how the scheduler would place
a function in one of our examples. Furthermore, to be feasible
for the use in a provider setting, the scheduler should scale
to handle a high number of multi-tenant edge cloud clusters.
The core instance of the scheduler runs in the cloud to handle
most requests, but should scale to the edge when necessary,
e.g., for large tenant-specific cluster configurations.

Function Preprocessor: The function preprocessor com-
piles the annotations of a function into soft and hard con-
straints used as input for the scheduler. A complex composi-
tion of policies can potentially generate many constraints that
present a serious scalability challenge current for state-of-the-
art monolithic schedulers, as we will show in Section 5. Fur-
thermore, the preprocessor interprets the use of variables, and
creates functions instances as necessary. For instance, in the
example Listing 4, the use of {usr} in the @produces.model
annotation together with the ’local’ function policy, will
lead to a fan-out to all user specific devices on record.

Locality-Aware Data Management: Our platform pro-
vides a data API that hides platform data management from
the user. Data and model artifacts are dynamic proxies that
resolve data at runtime using metadata from the annotations

Network (edge, private)

node:{user}

container

Network (cloud)

f(x)
model

u

data

data locality node

model
b

Figure 3: Data locality aware execution of Listing 4

and network topology information gathered by the underlying
container orchestration platform. Data is resolved either in
batches from local caches replicated from cloud-data stores,
or streamed over the network. When functions return an arti-
fact, the runtime finds an appropriate data store that respects
data locality and other policies.

5 Prototype & Preliminary Evaluation

This section reports our insights developing a prototype of
the system described in Section 4. In particular, we outline
the limitations of current state-of-the-art technologies.

5.1 Testbed & Simulator
We extended the cluster-based edge computer testbed pre-
sented in [20], parts of which are shown in Figure 2, adding
several Raspberry Pi 3 Model B+ clusters with AI acceler-
ators, and several NVIDIA Jetson TX2 modules. We have
distributed clusters across different locations on our university
campus, and connected them via the on-premises OpenStack
cloud of the CPS/IoT Ecosystem project [14]. Furthermore,
we are extending the AI pipeline execution simulator we built
for ModelOps to support heterogeneous edge cloud setups.
Data from the testbed will serve as simulation parameters.

5.2 Prototype
Most serverless technologies such as OpenWhisk, Knative, or
OpenFaas, use containers and in particular Kubernetes as an
execution platform. We therefore found it useful to explore
Kubernetes as a runtime environment for our platform and
extend it where necessary. Also, we observe that Kubernetes
is increasingly becoming a universal resource scheduler [17].

Constraint Compiler & Function Scheduling: Func-
tions are typically executed in Kubernetes pods (the atomic
deployable compute units), which are assigned a cluster node
at runtime by the scheduler. The scheduler first selects a set
of feasible nodes by evaluating predicate functions, i.e., hard
constraints, for each node, such as exceeding resource limits
or required node labels. Second, all feasible nodes are scored
by priority functions, i.e., soft constraints.The default priority
functions score nodes by, e.g., their resource utilization or
container image locality. Finally the highest scoring node is

(a) Scheduling delay (Borg) (b) Scheduling throughput

Figure 4: Experiment results showing (a) CDFs of scheduling
delay with the Borg cluster setup, and (b) scheduling through-
put for different cluster sizes

selected for provisioning. This approach lends itself well to
our programming model where we generate hard and soft
constraints from the function annotations. Several constraints
from Kubernetes can be re-used for our approach, such as
image locality that favors nodes where a specific container
image is already available, or taints and tolerations which
allow a pod to specify node preferences in the form of key
value pairs. We are developing additional mechanisms for,
e.g., considering inter-node proximity and data locality.

5.3 Limitations and Engineering Challenges

Scalable Function Scheduling: We doubt that the mono-
lithic design of Kubernetes will work well for edge computing
providers, where a large number of tenants consolidate edge
devices to form huge cluster configurations. To assess the task
placement latency of the Kubernetes default scheduler, we re-
constructed its fundamental parts in Python using SimPy [16].
Our implementation is open source [3] and we plan to ex-
tend it to provide a Python-based alternative to the default
Go implementation. So far we have implemented the queuing
mechanism, as well as the main control loop covering node se-
lection, predicate, and priority function execution. We ran two
experiments with varying number of scoring functions (soft
constraints), which we found to be the largest influence factor
on scheduling latency. First, we synthesized a cluster config-
uration from the Google Borg Cluster trace [22] containing
12583 machines with different characteristics. Second, we
evaluated the raw scheduling throughput given different num-
ber of nodes. Figure 4 shows the results, which roughly match
those of a recent Kubernetes performance evaluation [9].

The results show that the scheduling throughput drastically
drops with the number of nodes and soft constraints. Even
with 5000 nodes and fewer than 10 constraints, the scheduler
struggles to process more than 10-15 functions per second.
As our approach potentially generates a large number of con-
straints for each function, and multi-tenant edge/cloud plat-
forms may include huge node populations, the scheduler must
maintain a high throughput under these conditions.

The results highlight the limitations of Kubernetes’ queue-

based monolithic scheduler. We are hence exploring alterna-
tive architectures. Omega [23], a disaggregated shared-state
scheduler, has been designed to cope with Google’s real-life
production workload. Firmament [12] promises to accom-
plish sub-second latencies for placing more than ten thousand
machines by using multiple min-cost max-flow (MCMF) op-
timizations. Combining these models could be a promising
approach for operating edge cloud systems in general.

Hybrid Edge/Cloud Orchestration: Kubernetes manages
its own network once set up, but requires all nodes to be
publicly addressable. This is a reasonable approach if all
cluster nodes are confined in a single data center. However,
managing and orchestrating edge resources from the cloud is
more complex as nodes are typically behind private networks
or firewalls. There is currently no out-of-the-box solution that
addresses this issue. Further investigation is needed on how
to transparently consolidate cloud and edge resources in a
scalable way (without point-to-point integrations like VPNs).

Supporting Heterogeneous Architectures: Clusters with
heterogeneous architectures are not a common use case yet,
which is why Docker images are typically only available
on x86 CPU architectures. Many OpenWhisk components,
for example, have no official multi-arch images, requiring
significant effort to run on ARM architectures. Furthermore,
with the increasing support for additional architectures and
growing ecosystem of machine learning libraries, there will
be a considerable amount of function images to manage. Edge
nodes with limited storage capabilities necessitate intelligent
eviction strategies, further increasing operational complexity.

6 Conclusion

It is clear that edge computing will play a critical role in the
future of AI applications. However the added complexity from
AI workflows and edge AI requirements make it difficult to
program and operate such applications. Also, providers are
challenged to scale their platforms to a large number of tenants
with diverse edge cloud configurations. We proposed a server-
less platform that elevates concepts from the AI workflow to
first-class citizens, and provides a more approachable way to
develop and operate edge AI functions. Our deviceless func-
tion scheduling approach respects device capabilities (such as
added AI accelerators), and data locality, and can thereby hide
complex operational data and model management tasks from
the developer. The scheduling approach considers both edge
and cloud resources for function execution, and places func-
tions according to contextual policies. In an initial technology
evaluation, we found that the main limitations of state-of-the-
art serverless scheduling approaches are low throughput when
functions have many soft constraints, and the lack of a notion
of node proximity in the platforms. Disaggregated schedulers
appear to be a promising alternative that we will investigate
in future iterations of our system.

Discussion Topics

In keeping with the workshop format, in this section we dis-
cuss a) what kind of feedback we are looking to receive b) the
controversial points of the paper c) the type of discussion
this paper is likely to generate in a workshop format d) the
open issues the paper does not address, and e) under what
circumstances the whole idea might fall apart

a) We are looking forward to hearing more opinions from
edge computing and AI practitioners whether the pro-
gramming model has the correct level of abstraction,
and what could be added or what should be rethought.
Furthermore, we hope to learn what evaluation charac-
teristics other systems researchers view as relevant for
the platform we are proposing.

b) The additional AI workflow abstraction make the pro-
gramming model very high-level, and it is possible that
it is too inflexible for what we are aiming at. Further-
more, it is still unclear whether the deviceless approach
(serverless edge computing where devices are treated
completely transparently) really works for edge comput-
ing applications. We make several assumptions that it
does (see Topic d).

c) We hope to spark a broader discussion over i) the use-
fulness of serverless edge computing and whether it
is worth investigating further, in particular intelligent
scheduling of workloads to resources with specific capa-
bilities transparently from the user (i.e., what has been
termed deviceless computing); and ii) current opportuni-
ties to generalize edge AI workflows to a degree that the
community can begin developing well-defined method-
ologies around them (similar to DevOps workflows).

d) A key requirement for fully realizing deviceless pro-
gramming that has been largely unaddressed in general
is transparent distributed data management at the edge.
In particular, it is unclear how data replication and con-
sistency issues will be solved. We have yet to look into
approaches for solving this, but in this paper we make
the assumption that there is one. We hope that, as more
edge AI use cases appear, the requirements for data man-
agement will become clearer.

e) Our idea builds on the premise that the current “bring
your own device” approach of large cloud vendors, where
users connect their edge devices with a cloud platform
(such as AWS Greengrass, or Google IoT Edge), will
prevail. Huge cluster configurations and the need for high
function scheduling throughput will be relevant mostly
in such a scenario. Furthermore, it is possible that the
programming model is too high-level for a translation
engine to create good soft and hard constraints.

References

[1] Apache OpenWhisk Composer. https://github.
com/apache/incubator-openwhisk-composer.

[2] MXNet: a scalable deep learning framework. https:
//mxnet.apache.org/.

[3] sched-sim: serverless scheduler simulation. https:
//git.dsg.tuwien.ac.at/serverless-edge-ai/
sched-sim.

[4] Charu C Aggarwal and S Yu Philip. A general sur-
vey of privacy-preserving data mining models and algo-
rithms. In Privacy-preserving data mining, pages 11–52.
Springer, 2008.

[5] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah
Fiedel, Chuan Yu Foo, Zakaria Haque, Salem Haykal,
Mustafa Ispir, Vihan Jain, Levent Koc, and Others. Tfx:
A tensorflow-based production-scale machine learning
platform. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1387–1395. ACM, 2017.

[6] Joao Carreira, Pedro Fonseca, Alexey Tumanov, An-
drew Zhang, and Randy Katz. A Case for Serverless
Machine Learning. Workshop on Systems for ML and
Open Source Software at NeurIPS 2018, 2018.

[7] IBM Corporation. Medtronic builds a cognitive mo-
bile personal assistant app to assist with daily diabetes
management, 2017. IBM Case Studies.

[8] IBM Corporation. An AI-powered assistant for your
field technician. Technical report, 2018.

[9] Hongchao Deng. Improving kubernetes scheduler per-
formance, 2016. CoreOS Blog. Online. Posted 2016-02-
22. Accessed 2019-03-14.

[10] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pech-
enizkiy, and Abdelhamid Bouchachia. A survey on con-
cept drift adaptation. ACM Comput. Surv., 46(4):44:1–
44:37, March 2014.

[11] Alex Glikson, Stefan Nastic, and Schahram Dustdar. De-
viceless edge computing: Extending serverless comput-
ing to the edge of the network. In Proceedings of the
10th ACM International Systems and Storage Confer-
ence, SYSTOR ’17, 2017.

[12] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert
N. M. Watson, and Steven Hand. Firmament: Fast, cen-
tralized cluster scheduling at scale. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 99–115, Savannah, GA,
2016. USENIX Association.

https://github.com/apache/incubator-openwhisk-composer
https://github.com/apache/incubator-openwhisk-composer
https://mxnet.apache.org/
https://mxnet.apache.org/
https://git.dsg.tuwien.ac.at/serverless-edge-ai/sched-sim
https://git.dsg.tuwien.ac.at/serverless-edge-ai/sched-sim
https://git.dsg.tuwien.ac.at/serverless-edge-ai/sched-sim

[13] Waldemar Hummer, Vinod Muthusamy, Thomas
Rausch, Parijat Dube, and Kaoutar El Maghraoui.
Modelops: Cloud-based lifecycle management for
reliable and trusted ai. In 2019 IEEE International
Conference on Cloud Engineering (IC2E’19), Jun 2019.

[14] Haris Isakovic, Denise Ratasich, Christian Hirsch,
Michael Platzer, Bernhard Wally, and Thomas Rausch et
al. Cps/iot ecosystem: A platform for research and ed-
ucation. In Proceedings of the 14th Workshop on Em-
bedded and Cyber-Physical Systems Education (WESE
2018), 2018.

[15] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving deep learning models in a serverless
platform. In 2018 IEEE International Conference on
Cloud Engineering (IC2E), pages 257–262, 2018.

[16] Norm Matloff. Introduction to discrete-event simulation
and the simpy language. Davis, CA. Dept of Computer
Science. University of California at Davis. Retrieved on
August, 2(2009):1–33, 2008.

[17] Janakiram MSV. How kubernetes is transforming into
a universal scheduler, 2018. The New Stack. Online.
Posted 2018-09-07. Accessed 2019-03-14.

[18] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev,
B. Koteska, M. Kostoska, B. Jakimovski, S. Ristov, and
R. Prodan. A serverless real-time data analytics plat-
form for edge computing. IEEE Internet Computing,
21(4):64–71, 2017.

[19] Kasey Panetta. 5 Trends Emerge in the Gartner Hype
Cycle for Emerging Technologies, 2018. Gartner, 2018.

[20] Thomas Rausch, Cosmin Avasalcai, and Schahram Dust-
dar. Portable energy-aware cluster-based edge comput-
ers. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 260–272, 2018.

[21] Thomas Rausch and Schahram Dustdar. Edge intelli-
gence: The convergence of humans, things, and ai. In
2019 IEEE International Conference on Cloud Engi-
neering (IC2E’19), Jun 2019.

[22] Charles Reiss, Alexey Tumanov, Gregory R Ganger,
Randy H Katz, and Michael A Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of the Third ACM Symposium on Cloud
Computing, page 7. ACM, 2012.

[23] Malte Schwarzkopf, Andy Konwinski, Michael Abd-
El-Malek, and John Wilkes. Omega: flexible, scalable
schedulers for large compute clusters. In SIGOPS Euro-
pean Conference on Computer Systems (EuroSys), pages
351–364, Prague, Czech Republic, 2013.

[24] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi,
Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel.
Evaluating the Robustness of Neural Networks: An Ex-
treme Value Theory Approach. arXiv preprint, page
arXiv:1801.10578, jan 2018.

	Introduction
	Edge AI Workflow Challenges
	Example Use Cases
	Requirements for Edge AI Platforms

	Related Work
	A Serverless Platform for Edge AI
	Programming Model
	Execution Platform

	Prototype & Preliminary Evaluation
	Testbed & Simulator
	Prototype
	Limitations and Engineering Challenges

	Conclusion

