
ORIOT: A Source Location Privacy System for
Resource Constrained IoT Devices

Clemens Lachner, Thomas Rausch, Schahram Dustdar
Distributed Systems Group
TU Wien, Vienna, Austria

{c.lachner, t.rausch, dustdar}@dsg.tuwien.ac.at

Abstract—Privacy and Security are one of the major research
topics regarding the Internet of Things (IoT). Due to the
vast amount of devices collecting and processing sensitive data,
anonymity and privacy mechanism are needed. Source Location
Privacy (SLP) plays a key role in prohibiting adversaries from
tracing back this kind of data to its origin. In this paper
we propose a SLP preserving system that leverages techniques
from the well established Onion Routing paradigm. The system
is specifically designed for resource constrained IoT devices,
i.e., devices lacking computing power. It features combined
encryption schemes and symmetric key exchanges via Elliptic-
Curve Diffie-Hellman (ECDH). Our performance measurements,
conducted on typical resource constrained IoT devices, show the
feasibility of ORIOT and facilitate the integration into existing
or planned IoT systems, depending on SLP features.

Index Terms—onion routing, privacy, SLP, IoT, system

I. INTRODUCTION

The Internet of Things (IoT) describes a heterogeneous net-
work comprising a variety of different connected devices with
minimal to average computing power. These devices continue
to permeate deeper in our personal environment as well as
in commercial and industrial areas, by sensing, processing,
and storing all kind of data [1]. For many applications, like
in healthcare, home automation or infrastructure monitoring,
these circumstances call for privacy and security protection [2].
Integrity, confidentiality, availability, undetectability, and un-
observeability are the key elements of such protection mech-
anisms. Though features of these elements overlap, according
to [3], we place integrity, confidentiality, and availability into
the security domain; undetectability and unobserveability into
the privacy domain. Regarding privacy, we further distinguish
between data-anonymity and source location privacy (SLP).
Broadly speaking, (personal) data provided by IoT devices can
be used by adversaries to obtain or derive sensitive information
that could compromise users. Data-anonymization techniques
offer a solution to mitigate such privacy breaches. SLP, as the
name implies, aims to keep the location private, where data
was originally collected. Referring to IoT, being an intercon-
nected network, this would in most cases result in efforts to
keep the IP-address of a device private. A well established
approach to achieve this goal is Single Path Routing (SPR).
Data packets are routed to their final destination following
a specific path inside a network to make it harder for an
adversary to trace back their origin. Mix-cascades and onion
routing are prominent concepts for SPR, where DC-nets and

Tor are its most popular implementations. In this paper we
leverage principles of onion routing, where data is encapsu-
lated in multiple layers of encryption, hence the analogy to an
onion, and routed along a predefined path to its destination.
Such a path consists of various nodes called onion routers or
relay nodes. Each intermediary node removes one encryption
layer and thereby only reveals the address of the next node in
the route. Therefore, each node only knows the location of its
predecessor and successor node. This mechanism facilitates
sender anonymity. However, several weaknesses have been
found to break this anonymity, like Timing or Traffic Analysis.
The design of ORIOT is based on typical IoT systems, e.g.,
Amazon AWS IoT, where data is generated at various nodes
inside a network and sent to the cloud for further processing.
Many IoT devices are constrained by their available resources,
i.e., in most cases computing power, like microcontrollers,
that are not running any operating system. Therefore, well
established implementations of Onion Routing, e.g., Tor, are
infeasible for such devices. The main contribution of this paper
is a SLP system, specifically designed for resource constrained
IoT devices, to address this issue. It is implemented in C,
and therefore highly compatible and portable to most IoT
devices. Furthermore, we provide performance results on dif-
ferent cryptographic mechanisms that are integral parts of our
system. Experiments have been conducted on typical resource
constrained IoT devices, therefore our results facilitate the
design and development of IoT systems that rely on SLP
features, e.g., by implementing ORIOT.

The rest of the paper is organized as follows. Section II
provides an overview about related work on IoT security and
privacy. In Section III, we introduce our proposed implemen-
tation. We evaluate our approach and discuss the results in
Section IV. Finally, in Section V we conclude the paper and
give an outlook on future research.

II. RELATED WORK

With the increasing spread and usage of IoT devices,
security and privacy aspects have become a major research
topic in the area of IoT data protection. Suo et al. [17]
state that there are four abstraction layers in IoT. Bottom-
up these are: Perception Layer, Network Layer, Middleware
Layer and Application Layer. In their summarizing paper,
Farooq et al. [14] give an overview about possible threats
and scenarios on these different layers, where the majority of



threats are located in the Network Layer. Energy consumption
and management, as well as efficient computing algorithms
(e.g., share of workload among multiple devices) play a key
role for resource constrained IoT devices. Therefore, for the
majority of use cases concerning privacy and security aspects,
trade-offs have to be made either at design time or runtime.
An example of such a trade-off could be a stronger encryption
scheme resulting in lower data throughput. In this paper we
want to tackle those issues and minimize such trade-offs. In the
domain of Wireless Sensor Networks (WSN) various solutions
to problems dealing with SLP or anonymization have been
proposed. Most of the devices in WSN reside at the lowest
end regarding computing power and represent a subset of IoT
devices. Commonly those devices adhere to the IEEE 802.15.4
protocol, using communication frameworks like ZigBee. Be-
sides being part of a WSN, they are also integrated in smart
objects such as smart phones, tablets, smart watches, and many
others gadgets [18]. Security and privacy mechanism often
require considerable computing power that cannot be provided
by such devices. A typical pragmatic solution is the usage
of IoT gateways that are placed between (sensor) networks
and the Internet, powerful enough to facilitate more compute-
intensive security and privacy mechanisms [3], [13]. However,
there may be situations where such gateways are not desired
or possible. A well-known example in literature is the Panda-
Hunter Game, where a WSN is deployed in a forest to monitor
pandas. Hunters take the role of an adversary, trying to capture
the panda. The goal is to prevent the hunter from locating the
source, i.e., the sensor attached to a specific panda [21].
Generally speaking, privacy can be either achieved by lever-
aging data-anonymization techniques, SLP-mechanisms, or a
combination of both. Researchers have investigated several
anonymization techniques, such as simple pseudonymization,
attribute suppression, or more sophisticated approaches like
the k-Anonymization model [5]–[7], [19], [20]. However, most
of this techniques do not incorporate SLP features, especially
not for resource constrained devices. Jebri et al. [8] propose a
generic security and privacy model for IoT and WSN that
includes SLP. Their work is based on a lightweight key
agreement protocol, Identity Based Encryption (IBE), and
Pseudonym Based Encryption (PBC). To make use of an
IBE system the authors had to incorporate a Private Key
Generator (PKG) that acts as a trusted central key authority.
PBC is a technique based on IBE, and is generally used to
protect the identity of an entity. The architecture comprises
a base station, a sink node, and a set of nodes. The PKG is
integrated into the base station which stores the identities of
the nodes. Before any data is sent over the network, a setup
phase takes place in which several encryption and privacy
mechanisms, e.g., generation of private and public keys, are
configured. In order to transmit information, each node sends
its data, protected by calculated session keys, directly to the
Sink Node (SN). Due to the use of PBC, the identity of
the source node stays anonymous. Another concept which
requires less encryption overhead is Anonymous Routing
(AR). AR is a well suited concept to achieve SLP. There are

many ways to implement, integrate, and extend this concept
for applications that operate with sensitive data where the
source has to stay anonymous. Palmieri et al. [11] proposed a
protocol for AR between different interconnected networks. It
is designed specifically for IoT applications and is based on
the Spatial Bloom Filter (SBF) data structure. Furthermore,
all routing information is encrypted using an additive and
multiplicative homomorphic encryption scheme. However, as
stated by the authors, this cryptographic system may not
be suitable for computationally constrained devices. Another
protocol that specifically targets resource-constrained mobile
ad hoc networks, was proposed by Moldovan et al [9]. Their
group-based anonymous on-demand routing protocol works in
a similar way to Tor. After detecting all nodes in network, a
secret handshake with all nodes is performed by a dedicated
trusted network administrator. Afterwards, for two neighboring
nodes a secure common key is computed. Further crypto-
graphic processes ensure resistance against different attacks,
e.g., Message Coding Attacks. Specific request and response
messages, which are partially broadcasted inside the network,
are used to establish a communication path between source
and target nodes, comprising pairs of securely linked nodes.
Each node is known to others under a pseudonym, which is
used to forward a message along the path, while keeping
private both source and target. Referring to SLP in IoT,
we assume that the source location relates to an IP-Address
of a device. Especially in WSN, SLP problems are closely
tied to real geolocation privacy of an entity, but the used
techniques are similar and related to IP-Address privacy. To
achieve geolocation privacy, Mutalemwa et al. [12] proposed a
strategic location-based random routing approach. According
to their scheme, data packets are encrypted and routed over the
network according to the physical location of a source node. To
determine a routing path, intermediary strategically positioned
diversion nodes are randomly selected based on their distance
to the source node. Successive packets are routed through
different routing paths. Simulation results demonstrate that
their approach makes it difficult and confusing for an adversary
to trace back the origin of such data packets. In IoT, especially
when dealing with resource constrained devices, such security
and privacy mechanisms require several trade-off decisions to
be made, as stated earlier. Techniques that leverage broadcast-
ing mechanisms or rely on heavy network traffic in general
will automatically cause a higher energy consumption of all
devices. Computational intensive encryption mechanisms on
the other hand are infeasible for scenarios where data is sent
over the network with high frequency.
In this paper we combine several above mentioned security and
privacy techniques and incorporate them into an onion routing
system, similar to Tor, targeted for resource-constrained IoT
devices, to minimize the above mentioned trade-offs. Com-
pared to other approaches, our system does not rely on heavy
cryptographic algorithms to provide anonymity. On the other
hand, ORIOT avoids network broadcasting strategies as used
by different proposed SLP systems. By setting a specific path
length for our message transfer, a well balanced trade-off



between network load and SLP level is achieved.

III. ONION ROUTING SYSTEM

In this section we describe our proposed onion routing
system called ORIOT. First we present an overview of the
systems architecture. Second we explain the setup phase that is
performed by a device when integrated into the system. Third
we describe the path assembling strategy that is performed
before sending data. Finally we present the encryption and
actual routing processes.

A. Overview

The architecture comprises multiple devices (nodes) which
are constrained in their computing power, and a single more
powerful device acting as a central form of registry, therefore
simply called Registry. Figure 1 shows the overall architecture.
We proceed to explain each step, as marked by the correspond-
ing number in blue circles.

Registry

n1

n2

n5

n3

n4

Sink

n0

{n
0
: T

1
,T

2
,T

3
,T

4
,T

5
}

T
0
(n

0
, )1

{n
i
: … }

2 {T
1
,...,T

5
}

4 5

...

T
1
, s

1

...

Pool
3

6

4

Fig. 1. Overview of the ORIOT architecture

Devices that are part of a network are called nodes (de-
picted as n0, n1, ... in Figure 1), which collect or process
data provided by various sources such as sensors or system
events. In our experiments we use various microcontroller
development boards to act as our typical resource constrained
IoT devices. In our experimental setup, all devices are part
of a local network and are fully connected to each other. The
systems architecture focuses on mechanisms implemented for
and operating on the Transportation Layer of the OSI model.
The idea is, that if a node wants to send a message to a
specific destination (e.g., the cloud), the data is encrypted
several times (depicted as layered circles in Figure 1) and sent
to the destination via multiple hops (depicted as continuous
arrows in Figure 1) across the network. In our setup, each node
sends its data to a specific destination, e.g., a cloud server or
sink. In WSN terminology this would refer to a sink node.
Preliminary, nodes are provided with the public key of the
cloud server. All messages are initially encrypted in a way
so that only the cloud server can read the message (end-to-
end encryption). However, our system design is not limited
to sending messages to only one particular destination. The
first step for a node that wants to send a message, is to ask
the Registry for a designated IP-Pool. This IP-Pool comprises
tuples of IP-Address and corresponding public key of nodes in
the network. After receiving the IP-Pool, the node randomly

selects a subset of the given tuples, which will represent
the path along data is subsequently routed and transferred to
its final destination. A more detailed description of this IP-
Pooling mechanism will be provided in the path assembling
section later on. Similar to Tor, the first node of a routing
path acts as Entry Node (the only node which is actually able
to see the source IP-Address) and the last node acts as Exit
Node which sends the data to the final destination. A layered
encryption strategy ensures that every node along a routing
path only knows the IP-Address of its predecessor node and
its successor node.

B. Setup Phase

The setup phase is a specific piece of code that is executed
only once when a device is started. It can be divided into two
essential steps:

1) Encryption Setup: In our setup we incorporate an end-
to-end encryption scheme, i.e., only our designated destination
cloud server is able to read a message in plaintext. Similar
to TLS we use a combination of asymmetric and symmetric
encryption. First, a node generates a random secret key which
is later on used to encrypt the message. Second, the generated
key is encrypted with the public key of the cloud server. With
its private key, the cloud server is able to decrypt the shared
secret which is then used to decrypt the actual message.
The next step in setup phase is the generation of a public and
private key pair. As described later, those are used for our
layered encryption scheme.

2) Network Setup: After the encryption setup has finished,
every node publishes its previously generated public key to
the Registry, which saves this information as a tuple of
< PublicKeyNode, IP -AddressNode > in a list. The Reg-
istry then randomly adds those tuples to a specifically sized
pool (e.g., 10 tuples stored in one pool), depending on the
size of the network, and the available storing capacities of the
device hosting the registry. However, a pool must contain at
least a minimum of three nodes. To further increase the level
of anonymity we recommend using one specific pool for each
node in the network, although pools could be reused if storage
on the registry node is limited. Pools should be randomly
reorganized, based on a configurable staleness factor. The
actual value of this staleness factor (e.g., 10 minutes) is
determined by the expected traffic over the network, i.e., how
frequently data will be sent from a node. After pools are
created, every node in the network will be assigned one pool.
After the encryption and pooling steps are completed, a node
starts listening for incoming data. All communication (except
for the key exchange described in the path assembling section,
which is based on TCP) is ideally based on, but not limited
to, UDP because of two major reasons:

• A node only sends data and never expects an answer
(except during the key exchange).

• UDP has a noticeable network performance advantage
over TCP.

To that end, the node opens a predefined common port and
waits for specific instructions.



C. Path Assembling

A routing path comprises five nodes in total. We refer to the
first node as the source node and the last node as the cloud
server. Intermediary nodes are called relay nodes. Though it
would be possible to add more than three relay nodes to a path,
we advise against it, as this increases network load without
providing any more security or anonymity [22]. In our example
the IP-Address of the cloud server is known to each node,
therefore it is not a part of the path assembling scheme. If
a node wants to send a message, it opportunistically starts
building a transfer route. Opportunistically means, that to this
end, a node building a path will not know if another node,
that will be selected as part of this path, is actually online or
working properly. When assembling a routing path, the node
randomly selects exactly three tuples out of its stored IP-Pool.
These tuples correspond to our relay nodes and will form the
intermediary path to the cloud server. For each relay node,
the source node starts a key exchange (depicted by dashed
arrows in Figure 1) by sending a InitiateKeyExchange request.
If an addressable relay node receives this request, the process
of generating a common symmetric key is initiated. If no
response is received by the source node after a predefined
timeout, it removes the corresponding tuple out of its IP-Pool
and notifies the Registry about the faulty node. If there are too
many faulty nodes (this threshold can be adjusted at design
time), a node requests a new pool from the registry. However,
if the node receives a response, the common symmetric
key generation is established via the Elliptic-Curve Diffie-
Hellman (ECDH) key exchange protocol [10]. All calculated
symmetric keys are stored for each relay node for the layered
encryption process later on. It is up to the developer if and
how long previously negotiated symmetric keys are cached on
the source node and the relay nodes for later reuse or not.
This becomes particularly interesting if a node in the network
is replaced, possibly resulting in an IP-Key (either asymmetric
or shared) mismatch. The corresponding pseudocode is shown
in Algorithm 1, but does not cover any caching mechanism or
requests for a new entire pool.

D. Encryption and Routing

After a routing path has been determined, the message
encryption process is initiated. The corresponding pseudocode,
denoted in Algorithm 2 covers the encryption layering process.
First the message M is encrypted with the key K generated
in the setup phase resulting in the message MK .

The encrypted message for the cloud server, i.e., the inner-
most layer of the onion L0, will be in the form of:

L0 = {MK ,KEC} (1)

where KEC is K encrypted with the public key of the cloud
previously done in the setup phase.

After that the first layer L1 of encryption is added to L0 in
Form of:

L1 = EncKN2
{L0, IPCS} (2)

Input: pool [T0, T1, T2, ...Tn]
Result: path[3]< T, sharedKey > of tuples Tx where

x ∈ [0..n], and corresponding shared keys,
respectively

while count(path) < 3 do
rT = getRandomTupleFromPool;
if path !contains(rT) then

// perform ECDH key exchange
sharedKey = InitiateKeyExchange(rT);
if sharedKey then

// save established key to
corresponding tuple

keyAdd(path, sharedKey);
else

// handle timeout and
maxFaults

end
end

end
Algorithm 1: Path Assembling

Subsequently, for each remaining node, an additional cor-
responding encryption layer will be added in form of

L2 = EncKN1{L1, IPN2}
L3 = EncKN0

{L2, IPN1
} (3)

where EncKNi
is an encryption function with the symmet-

ric key previously exchanged with node Ni and IPNi
is the

IP-Address of the successor relay node, with i ∈ [0, 1, 2].

Input: msg, path[3], cloudPubKey, rndKey, cloudIP
Result: Multiple Encrypted Message (Onion)
// encrypt message for cloud server
mk = encryptCloudMessage(msg, rndKey);
kec = encryptKey(rndKey, cloudPubKey);
lyr = composeCloudMessage(mk, kec);
ip = cloudIP;
// add encryption layers
for i = count(path) - 1 .. 0 do

key = getKeyFromNodeInPath(path, i);
if i != 2 then

ip = getIPFromNodeInPath(path, i+1);
end
addLayer(lyr, ip, key);

end
Algorithm 2: Layered Encryption

The final multiple encrypted message will be sent from the
source node to the first relay node via a specific ForwardMes-
sageRequest. If a relay node receives such a request it will
then be able to decrypt one layer with its symmetric key and
will forward the message to the next relay node, respectively,
or in case of the last relay node, to the cloud server.



TABLE I
TESTBED OVERVIEW OF RESOURCE CONSTRAINED IOT DEVICES

Device Name Processor CPU Speed SRAM Flash Memory

Arduino MKR1000 WiFi Cortex-M0+ 32-Bit 48 MHz 32 KB 256 KB
Wemos ESP8266 D1 mini Xtensa LX106 32-Bit 80-160 MHz 160 KB 4 MB
Espressif ESP32-WROOM-32 Xtensa LX6 32-Bit DualCore 160-240 MHz 512 KB 4 MB

TABLE II
PERFORMANCE RESULTS OF CRYPTOGRAPHIC ALGORITHMS ON A SINGLE NODE

Key Generation (ECDH 1) Symmetric Key Calculation (ECDH 3) AES-256 ChaCha20-256

MKR-1000 0.492s 0.501s 68.04kB/s (14.35µs/B) 543.94kB/s (1.80µs/B)
ESP8266 0.082s 0.097s 211.56kB/s (4.62µs/B) 3,149.09kB/s (0.31µs/B)
ESP32 0.026s 0.027s 1,859.84kB/s (0,53µs/B) 4,078.84kB/s (0,24µs/B)

IV. PERFORMANCE AND BOUNDARIES

This section presents performance measurements and re-
sulting boundaries of ORIOT. Our testbed comprises three
microcontroller development boards with integrated WiFi ca-
pabilities, acting as typical resource constrained IoT devices.
Table I provides an overview of the selected hardware.

A prototypical implementation was developed in C using
the Arduino IDE v.1.8.7 running on 64bit Linux Mint 19.1.
Code execution on such microcontrollers is divided in a setup
phase (where code runs only once), and a loop phase. We
are particularly interested in the performance of cryptographic
functions, rather than round trip times (RTT) or data transfer
(e.g., pools) which are heavily prone to network latency
affected by various unstable environmental factors like signal
strength or interferences. In the setup phase, we investigate
key generation, specifically a 256bit private and public key
pair via Ed25519 elliptic-curve cryptography. Symmetric Key
exchange (ECDH) and encryption layering is done in the loop
phase. The first phase of ECDH is the generation of a public
and private key, already done in the setup phase. In the second
phase of ECDH the public keys are exchanged between the two
parties. The performance of this step relies solely on network
traffic, therefore it is not covered by our measurements. In the
third phase, a common secret key is derived from calculations
that take the secret key of a communication partner and the
previously exchanged public key of the other partner as input.
Due to the nature of the algorithm, the third phase of ECDH
performs similar to the first phase, but for better readability
we measure and present it separately.
All symmetric encryption, i.e., creating the onion, is done
using the AES block cipher with a 256bit key in CTR mode
of operation. Additionally, we measured the layering process
using the ChaCha20 stream cipher with a 256bit key, as
a lightweight alternative. However, we remark that modern
microprocessors, like the ESP32, come with built in hardware
acceleration capabilities for AES and ECC.
Table II displays the obtained results. The performance of
symmetric ciphers is expressed as limitation and throughput.
Limitation corresponds to the time it takes for an algorithm to
process one byte of data, given in µs per byte (µs/B), while

throughput describes how many bytes can be processed in one
second (B/s). With provided throughput and limitation values,
boundaries for a specific network can be then calculated
individually. For symmetric ciphers, values outside brackets
correspond to limitation, while values in brackets correspond
to throughput. Each of those values correspond to adding one
layer of encryption. To get a close approximation of the time
needed to create all layers of encryption, i.e., the whole onion,
the results need to be multiplied by the number of layers. Due
to the nature of the used symmetric ciphers, time needed for
encryption is almost exactly the same as for decryption. Values
of asymmetric operations represent the time needed in seconds
for the whole operation to finish, be it either key generation
or deriving a common symmetric key.
The execution time of the cryptographic algorithms scale
linearly with CPU frequency. This becomes particularly in-
teresting if energy consumption is a critical design aspect of
an IoT system using ORIOT. Devices like the ESP8266 and
ESP32 can easily be underclocked, i.e., running the CPU at a
lower frequency, hence consuming less energy.

V. CONCLUSION

This paper presents a source location privacy preserving
network system and its architectural concepts, specifically de-
signed to operate on resource constrained IoT devices. Similar
to Tor, it leverages techniques of the onion routing principle.
Symmetric and asymmetric cryptography are combined with
a path assembling strategy to realize anonymity of a node
transmitting messages in a network to a specific destination.
Furthermore, we evaluated the performance of incorporated
cryptographic algorithms on a set of typical resource con-
strained IoT devices. Those results can facilitate the design
and development of an IoT system implementing ORIOT.
However, there are still open challenges we need to address.
Future work will include packet padding and noise generation
to mitigate attacks like timing/traffic analysis. Furthermore, we
want to investigate energy consumption properties of ORIOT
and relevant optimizations, if necessary.



REFERENCES

[1] Vermesan, Ovidiu, and Peter Friess, eds. Internet of things: converging
technologies for smart environments and integrated ecosystems. River
Publishers, 2013.

[2] Daubert, Joerg, Alexander Wiesmaier, and Panayotis Kikiras. ”A view
on privacy & trust in IoT.” Communication Workshop (ICCW), 2015
IEEE International Conference on. IEEE, 2015.

[3] Funke, Sebastian, et al. ”End-2-End privacy architecture for IoT.”
Communications and Network Security (CNS), 2015 IEEE Conference
on. IEEE, 2015.

[4] Arasteh, Sima, Seyed Farhad Aghili, and Hamid Mala. ”A new
lightweight authentication and key agreement protocol for Internet of
Things.” Information Security and Cryptology (ISCISC), 2016 13th
International Iranian Society of Cryptology Conference on. IEEE, 2016.

[5] Liu, Fang, and Tong Li. ”A clustering-anonymity privacy-preserving
method for wearable iot devices.” Security and Communication Net-
works 2018 (2018).

[6] Otgonbayar, Ankhbayar, Zeeshan Pervez, and Keshav Dahal. ”Toward
anonymizing iot data streams via partitioning.” Mobile Ad Hoc and
Sensor Systems (MASS), 2016 IEEE 13th International Conference on.
IEEE, 2016.

[7] Personal Data Protection Commission of Singapore, ”Guide to
Basic Data Anonymization Techniques”, https://www.pdpc.gov.sg/-/
media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Anonymisation
v1-(250118).pdf

[8] Jebri, Sarra, Mohamed Abid, and Ammar Bouallegue. ”An efficient
scheme for anonymous communication in IoT.” Information Assurance
and Security (IAS), 2015 11th International Conference on. IEEE, 2015.

[9] Moldovan, George, Anda Ignat, and Martin Gergeleit. ”Group-Based
Anonymous On-Demand Routing Protocol for Resource-Restricted Mo-
bile Ad Hoc Networks.” International Conference on Ad-Hoc Networks
and Wireless. Springer, Berlin, Heidelberg, 2013.

[10] Diffie, Whitfield, and Martin Hellman. ”New directions in cryptography.”
IEEE transactions on Information Theory 22.6 (1976): 644-654.

[11] Palmieri, Paolo, Luca Calderon, and Dario Maio. ”An Anonymous Inter-
Network Routing Protocol for the Internet of Things.” Journal of Cyber
Security and Mobility 6.2 (2017): 127-146.

[12] Mutalemwa, Lilian, and Seokjoo Shin. ”Strategic Location-Based Ran-
dom Routing for Source Location Privacy in Wireless Sensor Networks.”
Sensors 18.7 (2018): 2291.

[13] Hoang, Nguyen Phong, and Davar Pishva. ”A TOR-based anonymous
communication approach to secure smart home appliances.” Advanced
Communication Technology (ICACT), 2015 17th International Confer-
ence on. IEEE, 2015.

[14] Farooq, Muhammad Umar, et al. ”A critical analysis on the security
concerns of internet of things (IoT).” International Journal of Computer
Applications 111.7 (2015).

[15] Gope, Prosanta, and Tzonelih Hwang. ”Untraceable sensor movement
in distributed IoT infrastructure.” IEEE Sensors Journal 15.9 (2015):
5340-5348.

[16] Landsiedel, Olaf, et al. ”Core: A Peer-To-Peer Based Connectionless
Onion Router.” Proceedings of IEEE GLOBECOM, Globalcommunica-
tions Conference (Washington DC, USA. 2007.

[17] Suo, Hui, et al. ”Security in the internet of things: a review.” Computer
Science and Electronics Engineering (ICCSEE), 2012 international con-
ference on. Vol. 3. IEEE, 2012.

[18] Vermesan, Ovidiu, and Peter Friess, eds. Internet of things: converging
technologies for smart environments and integrated ecosystems. River
Publishers, 2013.

[19] Cao, Jianneng, et al. ”Castle: Continuously anonymizing data streams.”
IEEE Transactions on Dependable and Secure Computing 8.3 (2011):
337-352.

[20] Zakerzadeh, Hessam, and Sylvia L. Osborn. ”FAANST: fast anonymiz-
ing algorithm for numerical streaming data.” Data privacy management
and autonomous spontaneous security. Springer, Berlin, Heidelberg,
2011. 36-50.

[21] Kamat, Pandurang, et al. ”Enhancing Source-Location Privacy in Sensor
Network Routing.” The 25th IEEE International Conference on Dis-
tributed Computing System, 2005,599-608.

[22] Tor Project, ”You should people choose their path length”, https://2019.
www.torproject.org/docs/faq.html.en#ChoosePathLength

https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Anonymisation_v1-(250118).pdf
https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Anonymisation_v1-(250118).pdf
https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Anonymisation_v1-(250118).pdf
https://2019.www.torproject.org/docs/faq.html.en#ChoosePathLength
https://2019.www.torproject.org/docs/faq.html.en#ChoosePathLength

	Introduction
	Related Work
	Onion Routing System
	Overview
	Setup Phase
	Encryption Setup
	Network Setup

	Path Assembling
	Encryption and Routing

	Performance and Boundaries
	Conclusion
	References

