
Optimized Container Scheduling for
Data-Intensive Serverless Edge Computing

Thomas Rauscha,∗, Alexander Rasheda, Schahram Dustdara

aDistributed Systems Group
TU Wien

Abstract

Operating data-intensive applications on edge systems is challenging, due to the extreme workload and device hetero-
geneity, as well as the geographic dispersion of compute and storage infrastructure. Serverless computing has emerged as
a compelling model to manage the complexity of such systems, by decoupling the underlying infrastructure and scaling
mechanisms from applications. Although serverless platforms have reached a high level of maturity, we have found
several limiting factors that inhibit their use in an edge setting. This paper presents a container scheduling system that
enables such platforms to make efficient use of edge infrastructures. Our scheduler makes heuristic trade-offs between
data and computation movement, and considers workload-specific compute requirements such as GPU acceleration. Fur-
thermore, we present a method to automatically fine-tune the weights of scheduling constraints to optimize high-level
operational objectives such as minimizing task execution time, uplink usage, or cloud execution cost. We implement a
prototype that targets the container orchestration system Kubernetes, and deploy it on an edge testbed we have built.
We evaluate our system with trace-driven simulations in different infrastructure scenarios, using traces generated from
running representative workloads on our testbed. Our results show that (a) our scheduler significantly improves the
quality of task placement compared to the state-of-the-art scheduler of Kubernetes, and (b) our method for fine-tuning
scheduling parameters helps significantly in meeting operational goals.

Keywords: edge computing, serverless, container scheduling, machine learning

1. Introduction

The requirements of data-intensive applications that
process data located at the edge of the network are chal-
lenging the prevalent cloud-centric compute model [1, 2, 3].
Consider an urban sensing scenario [4] where sensor nodes
deployed throughout a city provide applications, such as
machine learning workflows, with real-time access to sen-
sor or camera feeds. It may be impractical or infeasible
to offload compute tasks to the cloud, because data would
have to leave the edge network, causing privacy issues, or
incurring high latency and bandwidth use. To enable this
emerging family of edge-native applications, compute re-
sources are placed at the network edge and pooled together
to form a diverse and distributed compute fabric. While
traditional cloud-native approaches to resource manage-
ment, service orchestration, and scheduling have reached
a high level of maturity, they are challenged when dealing
with key characteristics of distributed edge systems: com-
pute device heterogeneity, geographic dispersion, and the
resulting operational complexity [5].

∗Corresponding author
Email address: t.rausch@dsg.tuwien.ac.at (Thomas Rausch)
URL: https://dsg.tuwien.ac.at/team/trausch (Thomas

Rausch)

Serverless edge computing has emerged as a compelling
model for dealing with many of these challenges associ-
ated with edge infrastructure [6, 7, 8, 9, 10, 11]. It ex-
pands on the idea of serverless computing, which first drew
widespread attention when Amazon introduced in 2015
its Lambda service [12]. It allowed users to develop their
applications as composable cloud functions, deploy them
through a Function-as-a-Service (FaaS) offering, and leave
operational tasks such as provisioning or scaling to the
provider. Analogous to the idea of serverless cloud func-
tions, we imagine that edge functions can significantly sim-
plify the development and operation of certain edge com-
puting applications. Operating data-intensive edge func-
tions, and the limiting factors of state-of-the-art serverless
platforms in supporting them, is the focus of this paper.

Current serverless platforms exhibit several limitations
for enabling data-centric distributed computing [13], that
are further exacerbated by the operational properties that
underpin edge systems, in particular when making func-
tion placement decisions. Specifically, this manifests as
follows. First, they do not consider the proximity and
bandwidth between nodes [6, 13], which is particularly
problematic for edge infrastructure where the distance be-
tween compute nodes, data storage, and a function code
repository (e.g., a container registry), incur significant la-
tencies [14]. Second, fetching and storing data is typically

Preprint submitted to Future Generation Computing Systems August 17, 2020

part of the function code and left to application developers
(e.g., manually accessing S3 buckets), which makes it hard
for the platform to reason about data locality and data
movement trade-offs [6, 15]. Third, they provide limited
or no support for specialized compute platforms or hard-
ware accelerators such as GPUs [13, 16], leaving potential
edge resources that provide such capabilities underutilized.

We present Skippy, a container scheduling system that
facilitates the efficient placement of serverless edge func-
tions on distributed and heterogeneous clusters. Skippy in-
terfaces with existing container orchestration systems like
Kubernetes, that were not designed for edge computing
scenarios, and makes them sensitive to the characteristics
of edge systems. The core component of Skippy is an on-
line scheduler, modeled after the Kubernetes scheduler,
which implements a greedy multi-criteria decision making
(MCDM) algorithm. We introduce four new scheduling
constraints to favor nodes based on (1) proximity to data
storage nodes, (2) proximity to the container registry, (3)
available compute capabilities (e.g., for favoring nodes that
have hardware accelerators), and (4) edge/cloud locality
(e.g., to favor nodes at the edge). We have found that
these constraints are a critical missing piece for making an
effective trade-off between data and computation move-
ment in edge systems. Furthermore, we recognize that
tuning scheduler parameters for effective function place-
ment is challenging, as it requires extensive operational
data and expert knowledge about the production system.
Instead, we propose a method that leverages the tight in-
tegration of the scheduler with a simulation framework,
in combination with existing multi-objective optimization
algorithms, to optimize high-level operational goals such
as function execution time, network usage, edge resource
utilization, or cloud execution cost. We show how the
scheduler and optimization technique work in tandem to
enable serverless platforms to be used in a wide range of
edge computing scenarios.

The contributions of this paper are as follows:

� Skippy: a container scheduling system that enables
existing serverless frameworks to support edge func-
tions and make better use of edge resources. Our
scheduler introduces components and constraints that
target the characteristics of edge systems.

� A method to tune the weights attached to low-level
constraints used by the scheduler, by optimizing high-
level operational goals defined by cluster operators.
To compute the optimization we introduce a server-
less system simulator we have developed.

� We demonstrate Skippy’s performance in various sce-
narios using data from our testbed and running trace-
driven simulations. We analyze emerging edge com-
puting scenarios to synthesize edge topologies.

� Open data set of traces from extensive profiling of
our edge testbed, and synthetic traces from our sim-
ulations of different infrastructure scenarios [17].

2. Related Work

Serverless computing in the form of cloud functions is
seen by many in both industry and academia as a com-
putational paradigm shift [12, 18, 19, 20]. Only recently
has the serverless model, and in particular the FaaS ab-
straction, been investigated for edge computing. Gilkson
et al. [7] proposed the term Deviceless Edge Computing,
to emphasize how serverless edge computing helps to hide
the underlying compute fabric. However, the character-
istics of edge infrastructure exacerbate the challenges of
serverless computing, such as platform architecture [8, 9],
runtime overhead [21], cold starts [22], or scheduling [6].
In a recent effort, Baresi and Mendonça [9] proposed a
serverless edge computing platform based on OpenWhisk.
They focus on the complete system architecture design and
the implementation of load balancer that considers dis-
tributed infrastructure. In industry, AWS IoT Greengrass
[18] enables on-premises execution of AWS Lambda func-
tions, Amazon’s serverless computing platform. AWS IoT
Greengrass currently allows machine learning inference on
edge devices, using models trained in the cloud. However,
the configuration of AWS IoT Greengrass devices is highly
static, since the functions running on a device are defined
using a local configuration file. In an effort to extend ex-
isting serverless runtimes to enable serverless edge com-
puting, Xiong et al. [23] implemented a set of extensions
to Kubernetes called KubeEdge. Its most important com-
ponent, the EdgeCore node agent, manages networking,
synchronizes state, and potentially masks network failures.
Our approach is complementary, in that Skippy provides
an edge-enabled scheduling system for making better func-
tion placement decisions on edge infrastructure.

There is a strong relation between serverless function
scheduling and the service placement problem (SPP). Many
variants of the SPP for different edge computing system
models and operational goals exist [24, 25, 26, 27, 28].
Typically, the problem is formulated as an optimization
problem, and an algorithm is implemented to solve an in-
stance of the problem heuristically by leveraging assump-
tions within the system model. Gog et al. [29] map the
service placement problem to a graphic data structure and
model it as a min-cost max-flow (MCMF) problem. Hu et
al. [30] pursue a similar approach by modeling the service
placement as a min-cost flow problem (MCFP) which al-
lows encoding multi-resource requirements and affinities
to other containers. Their scheduler considers the costs
for offloading tasks from the edge nodes to rented cloud
resources. Aryal and Altmann [31] map the service place-
ment problem to a multi-objective optimization problem
(MOP) and propose a genetic algorithm to make place-
ment decisions. Bermbach et al. [10] propose a distributed
auction-based approach for a serverless platform in which
application developers bid on resources. These and other
approaches [32, 33] have in common that the constraints
considered by the schedulers are defined a priori. Gen-
erally, scheduling algorithms described in academic liter-

2

ature often assume very detailed information about the
system state and service requirements, whereas in produc-
tion systems, both may not be available.

Many online container schedulers, such as the ones
from Docker Swarm, Kubernetes, or Apache Mesos, im-
plement a greedy MCDM procedure. A key phase in this
procedure is scoring, i.e., calculating the score of a feasi-
ble node by invoking a set of priority functions, building
a weighted sum of priority scores, and selecting the high-
est scoring node for scheduling. The Kubernetes scheduler
implements this procedure in a very general and flexible
way [34], which is why we build on its model, as it gen-
eralizes to many other container schedulers. It allows to
dynamically plug in and configure different hard- and soft-
constraints, theoretically even at runtime. It is unclear
whether and how existing SPP approaches could be im-
plemented in this framework. Our work is an effort to
examine how ideas from service placement in edge com-
puting, such as using latency and proximity awareness for
placement decision, can translate to, or be implemented
in, these types of schedulers.

3. Background & Application Scenarios

This section outlines the domain for which we have
developed our system. We discuss different application
and infrastructure scenarios to motivate serverless edge
computing and highlight systems challenges we uncovered
during initial experiments. Furthermore, we provide back-
ground on the operational underpinnings of serverless plat-
forms using as examples Kubernetes and OpenFaaS.

3.1. Data-Intensive Serverless Edge Computing

Many modern application scenarios require data pro-
cessing at the edge of the network, close to where data
is generated. Typical characteristics and requirements as-
sociated with data-intensive edge computing applications
can be summarized as follows:

� heterogeneous workloads: the application is com-
posed of multiple functions that have different com-
putational requirements (e.g., GPU acceleration)

� locality sensitive: some parts of the application are
locality sensitive, e.g., should not be executed in the
cloud because consumers are located at the edge

� latency sensitive: some parts of the application are
required to provide service quality at low latency

� high bandwidth requirements: some parts of the ap-
plication may exchange large amounts of data

Research has shown that edge AI applications that deal
with video or image data typically have all of these re-
quirements [2, 3, 35, 36]. Smart city scenarios are also
an illustrative example. Data from sensor and camera ar-
rays distributed throughout the city can be used to create

analytics models such as traffic risk assessment, crowd be-
havior, flooding or fire spreading models, or ecosystem/-
plant monitoring [2]. They could also serve as sensory in-
put for cognitive assistance applications [2, 3]. Serverless
computing may be a good model for implementing such
applications at scale on a distributed compute fabric [6].

We implemented a prototypical edge computing appli-
cation that has the characteristics and requirements de-
scribed above. Specifically, we found the most generaliz-
able application to be a machine learning (ML) workflow
with multiple steps, where each step has different com-
puting requirements, and needs to make efficient use of
a diverse set of edge resources. We consider a typical
ML pipeline with three steps [37], where each step can be
implemented as a serverless function: (1) data prepro-
cessing, (2) model training (that can be accelerated by
GPUs), and (3) model serving. In our concrete example
we use the MNIST dataset to train an image classifier be-
cause of the dataset’s availability allowing reproducability.

A serverless function is essentially an event handler
that reacts to some event. For example, in case of model
training, the event would be triggered by the previous ML
workflow step, i.e., the data preprocessing. An example of
a serverless function written in Python that implements
an ML training step is shown in Listing 1. In OpenFaaS,
the platform packages function code and its dependencies
into a container image, pushes it to a registry, from where
the code is pulled by a compute node after scheduling.

import boto3
import numpy
... import ML libraries such as tensorflow or mxnet

def handle(req):
s3 = boto3.client(’s3’)
with open(tmpfile , ’wb’) as f:

s3.download_fileobj(’bucket ’, req[’train_data ’], f)

data = numpy.load(f)
model = train_model(data , req[’train_params ’])

s3.upload_fileobj(serialize(model), ’bucket ’,
request[’serialized_model ’]’])

Listing 1: Example of a data-intensive serverless function.

The model training function involves: (1) connecting to
an S3 server, downloading the training data from the file
object encoded in the request (which was previously gener-
ated by the data preprocessing step), converting the data
into some appropriate format for running a training algo-
rithm, and then uploading the serialized model. As every
data-intensive function has a similar format, i.e., fetching,
processing, and then storing data, we previously developed
a higher-level abstraction for these functions [6]. Specifi-
cally, we elevate fetching and storing data as platform fea-
tures, which allows the platform to reason over metadata
of the function, e.g., which specific data is pulled (encoded
by a URN for example) to locate the closest data store that
holds the data. We use this feature in the scheduler (see
Section 4.3.1) for determining the trade-off between data
and computation movement. Figure 1 shows a comparison
between the size of container images for each function of

3

Preprocessing Training Serving
0

200

400

600

800

Si
ze

 in
 M

B 533 550 589

231 221

1

Container image vs function data size

Container Data

Preprocessing Training Serving
0

10

20

30

40

50

Du
ra

tio
n

(s
) ed

ge
clo

ud
ed

ge
clo

ud
ed

ge
clo

ud

Transfer time (cloud vs edge)

Figure 1: Comparison of container image sizes and total data trans-
ferred by functions. The right figure shows the time spent on either
container image or data transfer in either cloud or edge networks.

Preprocessing Training Serving
0

200

400

600

800

Si
ze

 in
 M

B

1 10 58

231 221

1

Container image vs function data size

Container Data

Preprocessing Training Serving
0

10

20

30

40

50

Du
ra

tio
n

(s
) ed

ge
clo

ud
ed

ge
clo

ud
ed

ge
clo

ud

Transfer time (cloud vs edge)

Figure 2: The same calculation as Figure 1 when subtracting shared
layers between images and only considering unique image size.

our application, and the total amount of data each func-
tion has to transfer during its execution. It also shows
a back-of-the-envelope calculation on how much time the
cloud or edge spends on transferring either container im-
ages or data for each function step. We consider a typical
scenario, where an edge network has a 1 GBit/s internal
bandwidth, 25 MBit/s uplink and 100 MBit/s downlink.
Data is located at the edge, and the container registry is
located in the cloud, which also has an internal bandwidth
of 1 GBit/s. We can see that the difference in uplink and
downlink bandwidth play a significant role in trading off
data and computation movement.

Docker uses a layered file system, meaning that layers
can be shared between container images. Because most
containers build on similar base images, the unique image
size when considering shared layers if often much smaller.
For distributing container images this means that, if the
base image has already been downloaded by some con-
tainer, downloading a different container image that uses
the same base image will also be much faster. When in-
specting the images of our specific application, we found
that almost 90% is shared across images. Figure 2 shows
the same calculation as above, illustrating that, now, most
of a function’s latency comes from pulling data.

3.2. Edge Cloud Compute Continuum

A challenging aspect of edge computing are the ex-
tremes of the compute continuum [5]. We have built an
edge computing testbed that reflects this, which we de-
scribe in more detail in Section 6.1. For the edge compute
nodes, we consider the following computers and architec-
tures. We have presented various application scenarios
for each in [38]. (1) Small-scale data centers that use
VM-based infrastructure and are placed at the edge of the

Clou
d V

M

Int
el

NUC

Rasp
be

rry
 Pi

Jet
son

 TX
2

0

20

40

60
Data preprocessing (s)

Clou
d V

M

Int
el

NUC

Jet
son

 TX
2

0

50

100

150

Model training (s)

Clou
d V

M

Int
el

NUC

Rasp
be

rry
 Pi

Jet
son

 TX
2

0

5

10

Model serving (s)

Figure 3: Average execution time and standard deviation of ML
workflow functions in seconds on different device types illustrating
both workload and device heterogeneity.

network, often termed cloudlets [14]. (2) Small form–
factor computers, such as Intel’s Next Unit of Comput-
ing (NUC) platform with built-in CPUs are used in, e.g.,
Cannonical’s Ubuntu Orange Box [39]. (3) Single Board
Computers (SBCs) such as ARM-based Raspberry Pis
used as IoT gateways or micro clusters [40]. (4) Embed-
ded AI hardware, such as NVIDIA’s Jetson TX2 that
provide GPU acceleration and CUDA support [41].

We have profiled our ML workflow steps as OpenFaaS
functions on these different devices. Table 2 lists the hard-
ware specifications of the device instances we used. Fig-
ure 3 shows the results of 156 warm function executions.
The Raspberry Pis were not able to run the model train-
ing step as they ran out of memory. The results show the
impact of extreme device heterogeneity. Also, we can see
that the model training step benefits greatly from GPU ac-
celeration, performing better on a Jetson TX2 compared
to an Intel NUC despite the NUC’s powerful i5 processor.

3.3. Cluster Infrastructure Scenarios

The lack of available reference architectures for edge
systems and data on real-world deployments, make it chal-
lenging to evaluate edge computing systems in general [38].
Cloud computing architectures are fairly well understood,
and traces such as the Borg cluster data [42], allow well
grounded systems evaluations. To evaluate our approach
under different conditions in a simulated environment, we
use the Edge Topology Synthesizer framework [38] to syn-
thesize plausible cluster configurations, which we draw
from three different existing or emerging application sce-
narios. Table 1 summarizes the cluster configurations for
our testbed, and each scenario which we describe below:

S1: Urban Sensing. More and more cities are deploying
sensor arrays and cameras to enable Smart City applica-
tions that require real-time data on urban environments [4].
These sensors are often attached to IoT gateways, and
complemented by proximate compute resources such as
cloudlets [14] to process sensor data. For this scenario,
we assume a total of 200 sensor nodes, where each node
is equipped with two SBCs (e.g., for data processing and
communication). Furthermore, we assume that through-
out the city, there are installations of cloudlets that com-
prise an Intel NUC, and two embedded GPU devices per

4

Scenario Category nodes % of compute device types
VMs SBC NUC TX2

Our Testbed 7 14 57 14 14
S1: Urban Sensing edge 1 170 3 39 19 39
S2: Industry 4.0 hybrid 110 40 40 10 10
S3: Cloud regions cloud 450 100 0 0 0

Table 1: Cluster configurations of different scenarios.

Device Arch CPU RAM

VM x86 4 x Core 2 @ 3 GHz 8 GB
SBC arm32 4 x Cortex-A53 @ 1.4 GHz 1 GB
NUC x86 4 x i5 @ 2.2 GHz 16 GB
TX2 aarch64 2 x Cortex-A57 @ 2 GHz 8 GB

256-core Pascal GPU

Table 2: Device type specifications.

sensor node camera for, e.g., video processing tasks. To
meet peak demands, 30 VMs hosted at a regional cloud
provider are added as fallback resources into to the cluster.
In terms of network topology, we assume that each munic-
ipal district forms an edge network. Each edge network
has an internal LAN bandwidth of 1GBit/s and connected
with 100/25 MBit/s down/uplink to the internet. Cloud
nodes have an internal bandwidth of 10GBit/s and a direct
1GBit/s uplink to the internet. These data are plausible
extensions of the urban sensing project Array of Things
(AoT) [4], which operates a deployment in Chicago that
currently consists of about 200 sensor nodes. Each AoT
node contains two SBCs, and is connected via a mobile
LTE network to the Internet.

S2: Industry 4.0. Edge computing is considered a key
component in realizing Industry 4.0 concepts such as smart
manufacturing or the Industrial IoT (IIoT) [43]. For this
scenario, we assume that several factories at different lo-
cations are equipped with edge computing hardware, and
each location has an on-premises but provider-managed
cloud (e.g., a managed Microsoft Azure deployment, where
on-premies cloud resource use is billed). We assume ten
factory locations, each having 4 SBCs as IoT gateways, 1
Intel NUC, 1 Jetson TX2 board, and 4 VMs on the on-
premies cloud. The numbers are plausible extensions to
the prototypes presented in [43], and the general trend
towards using embedded AI hardware for analyzing real-
time sensor and video data in IIoT scenarios [44]. Each
edge and on-premies cloud has a data store. The SBCs are
connected via 300MBit/s WiFi link to an AP that has a
10 GBit/s link to the edge resources, and a 1Gbit/s link
to the on-prem cloud. Premises are connected via 500/250
MBit/s internet down/uplink.

S3: Cloud Federation. To compare our system in non-edge
computing scenarios, we also consider a cloud computing
configuration where there are no edge devices and less het-
erogeneity than in edge scenarios [42]. We model a cloud
federation scenario across three cloud regions, where each
region has, on average, 150 VMs. All regions contain sev-
eral nodes with data stores. Region one has slightly more
VMs and more storage nodes than the others. The band-
width is 10 GBit/s within a region, and 1 GBit/s cross-
region. These data match the results of a recent bench-
mark on cross-region traffic of AWS [45]. We assume that
each region has local access to a container registry, e.g.,
through a CDN.

3.4. Technical Background: Kubernetes & OpenFaaS

Our system is designed to extend existing platforms
that enable serverless computing and FaaS deployments,
such as Kubernetes and OpenFaaS. Because our prototype
was developed for these two systems, we present technical
background on the interplay between the two. The core
mechanisms, however, are found in similar systems.

3.4.1. Kubernetes & Container Scheduling

Kubernetes is a container orchestration system used
for automating application deployment and management
in distributed environments. It is a popular runtime for
serverless computing, micro-service-based application de-
ployments, and, increasingly, Function-as-a-Service (FaaS)
platforms [34]. Using Kubernetes, FaaS platforms can
package function code into lightweight container images,
and can then make use of all the features of the Kuber-
netes platform, such as scheduling, autoscaling, or request
routing. The Kubernetes scheduler is one of the critical
components of the platform. The task of the scheduler
is to assign a pod (the atomic unit of deployment in Ku-
bernetes) to a cluster node. A pod can consist of one
or more containers, shared storage volumes, network con-
figuration, and metadata through which the pod can, for
example, communicate its resource requirements. The Ku-
bernetes scheduler is an online scheduler, meaning it re-
ceives pods over time and generally has no knowledge of
future arrivals. It is therefore different from many SPP
solutions that schedule several services at once [24]. Sim-
ilar to many resource schedulers of real-world systems, it
employs a greedy MCDM procedure, which we formalize
in Section 5. Hard and soft constraints are implemented
as follows. First, the available cluster nodes are filtered by
predicate functions. These functions evaluate to true or
false, and represent hard constraints that eliminate nodes
incapable of hosting a pod, e.g., because they are unable
to provide the resources requested by a pod. Second, the
remaining set of feasible nodes are ranked by priority func-
tions that represent soft constraints to favor nodes based
on their suitability for hosting the pod. Calculating the
score for a pod–node tuple involves invoking each active
priority function, normalizing the values of each function
to a range between 0 and 10, and building a weighted sum.
The highest scoring node is then selected for placement.
Kubernetes provides a variety of predicate and priority
functions that can be configured in the scheduler. How-
ever, as we describe in more detail in Section 4.3.1, the

5

default priority functions do not perform well in edge sce-
narios. In particular, they do not consider the critical
trade-off between data and computation movement which
we have highlighted earlier. In the remainder of this paper,
we use the terminology of Kubernetes (i.e., pod, node, pri-
ority function), to refer more generally to a unit of deploy-
ment, cluster resource, and soft constraint, respectively.

3.4.2. OpenFaaS

OpenFaaS is a serverless framework that uses Kuber-
netes as both execution runtime and deployment platform.
Function code is packaged into Docker containers, and a
small watchdog is added to the container that executes
the function based on HTTP calls triggered by events or
through invocations of the OpenFaaS API gateway. With
OpenFaaS, the Kubernetes scheduler is triggered in two
situations: an initial manual deployment of new functions,
or automated function replica creation through autoscal-
ing. If an OpenFaaS user runs the faas-cli deploy com-
mand to deploy function code, the code is packaged into a
Kubernetes pod, and the pod is placed in the scheduling
queue. Subsequent requests to the function triggered by
events or HTTP endpoint calls are forwarded to Kuber-
netes, which takes care of load balancing requests among
running replicas. This is the case if the function’s autoscal-
ing policy is set to at least one replica, and is useful to
avoid cold starts for functions that are invoked frequently.
A cold start refers to a function invocations where the con-
tainer image has to be downloaded and the container is
started for the first time, which incurs significant latency.
For short-lived functions that are not invoked frequently,
and would otherwise block a node’s resources despite be-
ing idle, OpenFaaS allows a scale-to-zero policy, which re-
moves such idle functions from nodes after a short time.
This is useful for functions such as the data pre-processing
or training step in our ML pipeline. In this case, a request
to a function immediately triggers a replica creation and
therefore scheduling.

4. Skippy – Design and Prototype Implementation

Skippy is designed to integrate with existing container
orchestration systems, allowing them to satisfy the require-
ments of data-intensive edge computing applications de-
scribed in Section 3. Skippy adds runtime components
and domain concepts that make such systems sensitive to
device capabilities; locality between nodes, data and con-
tainer images; and cloud/edge network context. To do so,
Skippy requires a minimal interface to the container or-
chestration system. We demonstrate this by building a
prototype for Kubernetes. This section describes Skippy,
its individual components, the scheduling logic, and the
integration with Kubernetes and OpenFaaS.

4.1. System Overview

We briefly outline the main components of Skippy. Fig-
ure 4 shows the specific integration with Kubernetes.

Figure 4: Overview of Skippy’s components and their interaction in
a deployment with Kubernetes.

� metadata schema: Skippy makes heavy use of con-
tainer and node labels, which are supported by many
container platforms, to communicate information about
functions and compute nodes to the scheduler. Skippy
uses various mechanisms to automate labeling, such
as the skippy-daemon or annotation parsing as de-
scribed in [6]. All metadata labels of Skippy have
the prefix *.skippy.io.

� skippy-daemon: a daemon that runs on all cluster
nodes alongside the primary node agent (e.g, kubelet
in the case of Kubernetes). It scans a node’s compute
capabilities, such as the availability of a GPU, and
then labels the node with the corresponding meta-
data. It can do this periodically to react to pluggable
capabilities, such as USB attached accelerators.

� skippy-scheduler: the Skippy scheduler is an on-
line scheduler that is sensitive to the characteristics
of edge systems. It requires access to the cluster
state and a programmatic way of binding contain-
ers to nodes. In the case of Kubernetes, the kube-
apiserver provides these features via REST APIs.

� data index & bandwidth graph: Functions can
access data via storage pods that host MinIO in-
stances (an S3 compatible storage server), distributed
across the cluster. Skippy currently does not auto-
matically manage these storage nodes. Replication
and data distribution is left to other system compo-
nents. However, Skippy dynamically discovers stor-
age nodes, keeps an index of the file tree, and is sen-
sitive to the proximity between compute and storage
nodes by using the bandwidth graph.

4.2. Node and Function Metadata Collection

As any scheduler, Skippy depends on certain infor-
mation about the cluster state and the job requirements.
Skippy makes heavy use of metadata about functions and

6

compute nodes in the cluster to communicate this informa-
tion to the scheduler. We use the Skippy daemon to collect
node metadata, and a high-level programming API to col-
lect function metadata. The node metadata are stored and
accessed via the cluster orchestration system. In the case
of Kubernetes, this is stored in etcd, a distributed key-
value store. If the orchestrator does not provide a storage
system, Skippy can also store the metadata in memory.

4.2.1. Node Metadata: Skippy Daemon

The Skippy daemon is deployed as a container on all
cluster nodes. It automatically probes a node’s capabil-
ities and maintains its Skippy-specific labels. Currently,
the daemon probes if a node provides an NVIDIA GPU,
the availability and version of a CUDA installation, and
if the node is running a MinIO storage pod. The daemon
code allows straight-forward addition of custom capability
probes. When nodes are added to the cluster at runtime,
the Skippy daemon labels the node with an appropriate lo-
cality label (edge/cloud). The system overhead of running
the daemon is minimal given a fairly simple Python imple-
mentation. It requires roughly 120 MB of disk space and
25-40 MB of RAM depending on the CPU architecture,
making it feasible even for resource constrained devices.

4.2.2. Function Metadata: Annotation Parsing

In previous research, we have proposed a programming
model for data-intensive serverless edge computing appli-
cations [6] that allows developers to express operational re-
quirements directly in their code, which is then translated
into scheduler constraints. Examples include: execution
deadlines, hardware requirements, or privacy rules. List-
ing 2 shows the example function from Listing 1 re-written
with this high-level API.

from skippy.data import DataArtifact , ModelArtifact ,
consumes , produces , policy

... import ML libraries such as tensorflow or mxnet

can have multiple data annotations
@consumes.data(urns = ’my_bucket:train_data ’)
@produces.model(urn = ’my_bucket:model’)
@policy.fn(capability = ’gpu’)
def handle(req , data: DataArtifact) -> ModelArtifact:

arr = data.to_ndarray ()
model = train_model(arr , req[’train_params ’])
return model

Listing 2: Example of training function with metadata annotations.

By analyzing the function metadata, Skippy would la-
bel this function with the labels shown in Listing 3. These
are then used as input for the priority functions described
in Section 4.3.1. Metadata do not necessarily have to be
specified in the code, but could be attached as, e.g., an
additional YAML deployment file.

{
’data.skippy.io/recv’: [’my_bucket:train_data ’],
’data.skippy.io/send’: [’my_bucket:model’],
’capability.skippy.io/gpu’: ’’

}

Listing 3: Example function labels resulting from metadata parsing.

4.3. Skippy Scheduler

The Skippy scheduler enables serveless platforms to
schedule edge functions more efficiently. It is based on
the default Kubernetes MCDM scheduling logic described
in Section 3.4.1. We introduce two additional components
that are commonly missing in state-of-the-art container
schedulers: (1) a static bandwidth graph of the network
holding the theoretical (or estimated) bandwidth between
nodes, and (2) a storage index that maps data item iden-
tifiers to the storage nodes that hold the data. These two
extra components facilitate our priority functions.

4.3.1. Edge-Friendly Priority Functions

We introduce four priority functions that target re-
quirements of edge computing applications and character-
istics of edge systems, which complement common schedul-
ing constraints found in, e.g., Kubernetes [46]. The addi-
tional functions are motivated by the following observa-
tions: First, in many data-intensive edge computing ap-
plications, data is stored at edge locations. Yet, container
clusters typically rely on centralized cloud-based reposi-
tories such as Dockerhub for managing container images.
When scheduling pods that operate on data, there is there-
fore an inherent trade-off between sending computation to
the edge or sending data to the cloud, as we have high-
lighted in Section 3 and Figure 1. The two priority func-
tions LatencyAwareImageLocalityPriority and DataLocal-
ityPriority help the scheduler make this trade-off at run-
time. Second, the increasing diversity of specialized com-
pute platforms for edge computing hardware provide new
opportunities for accelerating the equally diverse work-
loads. The CapabilityPriority matches tasks and nodes
based on their requirements and advertised capabilities,
respectively. Third, it is often the case that functions
should prioritize execution at the edge for a variety of
reasons. The LocalityTypePriority enables the system to
respect these placement preferences.

We explain each function in more detail and provide al-
gorithmic descriptions. Note that the Kubernetes sched-
uler expected normalized values from priority functions,
which are the result of mapping the range of scores to an
interger range [0..10]. We omit the code for this step.

LatencyAwareImageLocalityPriority. Favors nodes where
the necessary container image can be deployed more quickly.
We use knowledge about the network topology to estimate
how long it will take in an ideal case to download the im-
age. Algorithm 1 shows pseudocode for the function. Be-
cause the bandwidth graph is static and does not consider
actual available bandwidth during runtime, the calculation
is only an approximation. Making a plausible estimate of
actual network download speed would be too complicated
for a priority function, which has minimal runtime knowl-
edge and needs to execute quickly. However, together with
the implementation of the DataLocalityPriority, the func-
tion allows us make a heuristic trade-off between fetching
the container image, or fetching data from a data store.

7

Algorithm 1: LatencyAwareImageLocalityPri-
ority

Result: Estimation of how long it will take to
download a pod’s images

1 Function score:
Input: pod
Input: node
Input: bandwidthGraph

2 size ← 0;
3 for container in pod’s list of containers do
4 if container’s image is not present on node

then

5 size
+←− size of the container’s image;

6 end

7 end
8 bandwidth ← bandwidthGraph[registry][node];

9 time ← size
bandwidth

;
10 return time;

DataLocalityPriority. Estimates how much data the func-
tion will transfer, and favors nodes where the data trans-
fer happens more quickly. We leverage the high-level data
API we have described in [6], to label functions that per-
form read or write operations on the data stores. Specif-
ically, a function is labeled with the data item identifiers
it reads or writes. We query the storage index to get all
storage nodes that hold the specific data item. The data
size can be queried through the MinIO S3 API. We then
make the same network transfer time estimations as in
LatencyAwareImageLocalityPriority using our bandwidth
graph. Algorithm 2 shows pseudocode for the function.

Algorithm 2: DataLocalityPriority

Result: Estimate how long it takes for a node to
transfer the required runtime data

1 Function score:
Input: pod
Input: node
Input: storageIndex, bandwidthGraph

2 time ← 0;
3 for urn in values of ’data.skippy.io/recv’ do
4 storages ← storageIndex[urn];
5 bandwidth ←

mins∈storages(bandwidthGraph[s][node]);
6 size ← of data item urn;

7 time
+←− size

bandwidth
;

8 end
9 for urn in values of ’data.skippy.io/send’ do

10 ... analogous to ’recv’
11 end
12 return time;

CapabilityPriority. Checks the compute platform require-
ments of a function, and favors nodes that have those ca-
pabilities (e.g., a GPU for a ML training function). The
implementation uses node and function metadata gathered

Algorithm 3: CapabilityPriority

Result: Scores how many of a pod’s requested
capabilities are provided by a node

1 Function score:
Input: pod
Input: node

2 nodeCapabilities ← get all of node’s labels starting
with capability.skippy.io;

3 podCapabilities ← get all of pod’s labels starting
with capability.skippy.io;

4 score ← 0;
5 for podCapability in podCapabilities do
6 if nodeCapabilities contains podCapability ∧

values are equal then

7 score
+←− 1

8 end

9 end
10 return score;

by the Skippy daemon and function annotation parsing.
Algorithm 3 shows pseudocode for the function.

LocalityTypePriority. Favors nodes in a certain locality,
e.g., nodes located at edge or in the cloud. Through the
programming model we have described, developers can
specify a high-level placement prioritization, e.g., for pre-
ferring nodes in a certain network context. It checks the
presence of the same values of locality.skippy.io/type in
pod and node labels. We omit the code for this function.

4.4. Integration with OpenFaaS

To enable the deployment of applications as server-
less functions, our prototype makes use of OpenFaaS. It
provides a framework for defining function deployments,
an API gateway through which all function requests are
routed, and several runtime components to manage moni-
toring, alerting, and autoscaling. OpenFaaS’ runtime driver
for Kubernetes is faas-netes, which deploys functions as
Kubernetes pods, and then delegates scheduling decisions
to the Kubernetes scheduler. We modified faas-netes to la-
bel pods resulting from OpenFaaS function deployments,
to indicate that these pods should be scheduled by Skippy
instead of the default Kubernetes scheduler. Otherwise
Skippy integrates with OpenFaaS only via Kubernetes, in
that Skippy schedules the pods created by faas-netes.

4.5. Serverless Simulator

Part of our system is a discrete event simulator built
with SimPy [47] to simulate the basic behavior of server-
less function execution on container systems. It serves two
purposes: 1) it allows experiments in different large-scale
scenarios that we could not perform on our small-scale
testbeds, and 2) it is used to estimate goal functions in our
optimization technique described in Section 5. The simula-
tor directly calls the Skippy scheduler code for scheduling
functions, with the only difference that it does not call the

8

Kubernetes API for requesting the cluster state and per-
forming node bindings. The simulator is open source and
can be found in our Git repositories [48].

The simulator uses Ether [38] to generate network topolo-
gies, and adds features for synthesizing function parame-
ters, and generating random workload. We simulate the
execution of functions on cluster nodes using the profiling
data we have gathered from our testbed and a basic net-
work simulation. Our network model is more high-level
than packet-level simulators such as ns-3 or OPNET. Sim-
ulating data transfer involves opening a flow through sev-
eral connected network links, i.e., a route. Each link has a
certain amount of bandwidth, and we implement fair allo-
cation of bandwidth across flows. We plan to add features
for degradation functions to simulate the degrading TCP
behavior with many flows [49]. For simulating container
startups, we synthesize profiling data and our network sim-
ulation. A perfect simulation of a Docker pull command
would consider the layers of an image, the availability of
layers on a host, and the time it takes to decompress lay-
ers. This is out of scope for this paper. We make an
assumption based on observations of our images we de-
scribed in Section 3: around 90% of an image’s size comes
from layers that are shared with other images. Meaning
that, if any one of the images has already been pulled be-
fore, only 10% of another image’s unique data has to be
pulled. For our evaluation this means that we are not bias-
ing the simulation towards the estimation that the Skippy
scheduler makes through the LatencyAwareImageLocali-
tyPriority. Our simulator also implements the basic au-
toscaling behavior of OpenFaaS. In particular, it includes
OpenFaaS’ faas-idler component that enacts the scale-to-
zero policiy: when a function is idle for 5 minutes or more,
the respective function replica is stopped and the under-
lying Kubernetes pod removed. A subsequent call to the
function incurs a cold start. Our simulator currently only
supports simulating platforms that deploy function code
via containers, whereas some platforms like OpenWhisk
deploy function code through platform-layer mechanisms.

5. Optimizing Weights of Priority Functions

Some operational goals, such as minimizing overall func-
tion execution time or uplink usage, depend on too many
(and possibly at runtime unknowable) factors that they
could be calculated efficiently in priority functions. Sched-
ulers that employ MCDM, such as the Kubernetes sched-
uler, often allow users to assign weights to each constraint
to tune the scheduler towards certain behavior. This fine-
tuning to meet specific operational goals can be difficult.
Many factors need to be considered, such as the cluster
topology, node heterogeneity, or workload characteristics.
This leaves operators to either rely on their intuition, or
use trial-and-error in production systems, to find weights
that achieve the desired behavior.

We propose an approach to automatically find weights
of priority functions that result in good placements that

meet certain high-level operational goals. We consider a
placement to be good if it: (1) leads to low function ex-
ecution time during runtime, (2) uses edge resource
efficiently, (3) reduces traffic leaving or entering a net-
work, and (4) reduces costs associated with executing
functions in the cloud. To that end, we use multi-objective
optimization techniques, and use the simulator we have de-
veloped to evaluate the goodness of optimization solutions.
We first formalize some key aspects.

5.1. Problem Formulation

Let S be the set of priority functions S ∈ S : P ×N →
R where P is the domain of pods and N is the domain of
nodes (and all metadata attached to them). The function
schedule : P → N maps a pod p to a node n by evaluating
the scoring function score for each node, and selecting the
highest scoring node. The scoring function is essentially a
weighted sum model over all priority functions and feasible
nodes. Formally, this can be expressed as

schedule(p) = arg max
n∈N

score(p, n) :

|S|∑
i=0

wi · Si(p, n). (1)

The default Kubernetes scheduler sets every wi = 1.
Our goal is to find values for w = (w1 w2 · · · w|S|) that
optimize towards the previously defined objectives.

We have explained the technical details of the simulator
in Section 4.5, but formally a simulation run sim(T,W,w)
takes as input (1) the cluster topology T , (2) a workload
profile W , (3) the vector of priority function weights w,
and simulates the function execution based on the pro-
filing data we have gathered. The cluster topology T is
formally a graph T = (V,E), V = N ∪ L, where N is the
set of cluster nodes, L is the set of links that have an as-
sociated bandwidth (e.g., several nodes can be connected
to a common WiFi link), and E are weighted edges that
indicate the latency between nodes and links. A workload
profile W assigns each function (in our case, the ML work-
flow functions), an inter-arrival distribution, from which
we sample at simulation time to generate workload. Our
four goal functions fi(sim(T,W,w)) are calculated from
the simulation traces as follows:

f1 : average function execution time over all functions

f2 : up/downlink usage, i.e., the number of bytes trans-
ferred between edge and cloud networks

f3 : edge resource utilization, i.e., the percentage of
allocated resources on edge compared to cloud nodes

f4 : cloud execution costs, i.e. traffic and function exe-
cution time in the cloud, given a pricing model

We now want to find w s.t. f1, f2, f4 are minimized,
and f3 is maximized.

9

5.2. Implementation

We implement the optimization using our simulator
and the Python Platypus [50] framework for multi-objective
optimization. Platypus implements the well-known NSGA-
II genetic algorithm [51], which has been found to be one
of the best performing algorithms in the framework [52].

To find an optimized value of w, we execute the Platy-
pus framework’s NSGA-II implementation with 10 000 gen-
erations. Each generation executes a single simulation run
sim(T,W,w) with a predefined W and T , and the cur-
rent evolution of w. A run creates function deployments
according to W until the cluster is fully utilized, using
our scheduler for placement decisions. We store execu-
tion traces into Pandas data frames, and then calculate
the goal functions fi from the traces. The result is a set of
100 solutions that are at the Pareto frontier of the solution
space. As input for the scheduler, we select from that set
a single solution w that is balanced across all goals.

6. Evaluation

This section presents our experiment setup, results,
and a discussion of limitations. We first present the testbed
we have built that we used to test our prototype imple-
mentation, and generate traces for the simulator. The
scenarios we have defined in Section 3, and the traces gen-
erated from our testbed, are then used as input for our
serverless simulator. We investigate how the scheduling
decisions and parameter optimization impact application
and system performance. We discuss the scheduler’s per-
formance in terms of scheduling throughput and latency,
and, finally, discuss the current limitation of our system.

6.1. Edge Cloud Testbed & Profiling

The testbed we have built comprises several edge com-
puting devices listed in Section 3.2. Figure 5 shows the
current setup. The nodes marked with a Kubernetes logo
are part of the Kubernetes cluster used as runtime for
OpenFaaS. The OpenFaaS gateway and Kubernetes mas-
ter are hosted on a VM in our on-premises cloudlet.

We run the application we have described in Section 3.1
on the testbed using our system prototype. That is, we im-
plement each task as an OpenFaaS function, and execute
each task on each device in both cold and warm state us-
ing different bandwidth and latency configurations. The
functions are implemented in Python and use the Apache
MXNet machine learning framework. We measure vari-
ous system and application metrics, such as the system
resource utilization, task execution time, the bandwidth
requirements, e.g., when the container image that holds
the function has to be downloaded, as well as the traffic
produced by function invocations.

Figure 5: Our edge cloud testbed comprising a Raspberry Pi cluster,
an NVIDIA Jetson TX2 board, and two Intel NUCs, one acting as
edge storage node by hosting a MinIO pod. A VM hosted on our
on-premises cloudlet is also part of the cluster.

6.2. Experiment Setup

We perform the experiments with parameters drawn
from the infrastructure scenarios described in Section 3.3,
and compare three scheduler implementations: the default
Kubernetes scheduler as baseline, Skippy with weights set
to 1, and Skippy with optimized weights. The experiment
process is as follows. We generate random application de-
ployments, in our case ML workflow pipelines that com-
prise three ML functions, inject them into the scheduler
queue, generate random requests given some workload pro-
file, and then run the simulation for a certain number of
invocations. Specifically, we deploy a new pipeline every
few minutes and start generating requests to those func-
tions a few seconds afterwards. After a specified number
of function instances have been deployed, we generate an-
other several thousand requests, until a request limit for
that scenario has been reached. For example, in Scenario
2, each experiment ends after 30 000 invocations. Having
the same amount of deployments and function invocations
allows for a fair comparison of overall network traffic.

For synthesizing pipelines and requests we make the
following assumptions. Each pipeline has three steps, where
each step as an individual container image. However, as
we have discussed in Section 3, we consider the commonal-
ities across images. We synthesize both pipeline instances
(i.e., functions deployed in Kubernetes pods) as well as
container images, and assume a Pareto distribution of im-
ages. That is, not every function has a unique image.
Instead we assume a Pareto-distributed relation of con-
tainer images to pod instances, i.e., 80 percent of pods use
the same 20 percent of images. For the workload profile
W , we assume a typical [53] Poisson arrival process where
inter-arrivals are described by an exponential distribution.
We set distribution parameters s.t. model serving requests
of an individual pipeline are triggered at 40 requests per
second, and data-preprocessing requests happen every few
minutes allowing the faas-idler to occasionally shut down

10

Figure 6: Drill-down into timeseries data from simulated experiment runs. The first row shows the average data rate of traffic going over
up/downlinks. The second row shows the average function execution time (FET) over time (10 min rolling window). The third row shows
the maximum function execution time (FET) over time (10 min rolling window).

a replica. For synthesizing data items (e.g., training data
as input for training functions), we assume that data items
are distributed uniformly across data stores and workflows.

Experiment runs that compare different scenarios and
schedulers use the same random seed for distribution sam-
pling to guarantee comparability between scenario runs.

6.3. Experiment Results

This section presents the results of our experiments.
The results show (1) how function placement affects sys-
tem performance, (2) how function placement affects sys-
tem scalability, and (3) which priority functions have the
highest impact on optimization goals.

6.3.1. Runtime Performance of Placements

Figure 6 shows key performance indicators from simu-
lation runs in each scenario for the schedulers: the default
Kubernetes scheduler, the Skippy scheduler, and Skippy
using optimized priority function weights. The first row
shows the average data rate going over up and downlinks.
Ideally, a placement keeps traffic within networks, result-
ing in a low up/downlink usage. As the deployments are
injected in the first phase of the simulation, the data rate
grows, but is overall significantly higher with the Kuber-
netes scheduler. The Cloud Regions scenario (S3) high-
lights the problem when there are many nodes within a
network, and few up/downlinks between them. The sec-
ond and third row show the function execution duration
over time. In the Urban Sensing scenario (S1), the Ku-
bernetes scheduler’s placements run into queuing issues
early on. Function time keeps increasing because the net-
work cannot keep up transferring data necessary by the
function executions. In the Industrial IoT scenario (S2),

while there are no queuing issues, the Kubernetes sched-
uler’s placements lead to overall higher function execu-
tion times. There is no significant difference in the Cloud
Regions scenario, because the devices within the cluster
(cloud VMs) are fairly homogeneous in terms of task ex-
ecution performance. Overall, the second row shows the
interplay between using resources effectively, and trading-
off data movement costs.

Figure 7 shows the aggregated results from several runs
with different random seeds for the other two performance
goals we have defined: edge resource utilization and execu-
tion cost. For calculating the cost we use the pricing model
of AWS Lambda [54]. For S1 we observe the effect of a low
amount of cloud resources: almost no cloud execution cost
and generally high edge resource utilization. Skippy and
the optimization perform slightly better. In S2, where data
is also placed in on-premises managed cloud instances, we
observe that optimized Skippy can make a useful trade-off
between cost and edge utilization by preferring cloud re-
source in favor of moving data. S3 has no edge resources,
but we can see that the Kubernetes scheduler’s decision to
place functions across regions leads to a high cost incurred
by data movement. It also illustrates that most of the
costs in our scenario comes from data movement (specifi-
cally data egress), rather than compute time, corroborat-
ing the results of a study about the unintuitive nature of
serverless pricing models [55].

6.3.2. Impact of Placements on System Scalability

We investigate how function placements affect runtime
scalability properties of the system. In ad-hoc experiments
we found that network bottlenecks were the biggest chal-
lenge for guaranteeing low function execution times and
high throughput. In our scenarios in particular, we were

11

Figure 7: Edge resources utilization and execution cost of placements
in three scenarios. Bars show the average across ten runs, error bars
show one σ.

0.0 0.5 1.0 1.5 2.0
0

50

100

150

Up
/D

ow
nl

in
k

Tr
af

fic
 (G

B) Urban Sensing

0.0 0.5 1.0 1.5 2.0
0

1000

2000

3000
Industrial IoT

0.0 0.5 1.0 1.5 2.0
0

2000

4000

6000

8000
Cloud Regions

0.0 0.5 1.0 1.5 2.0

1

2

3

Da
ta

 th
ro

ug
hp

ut
 (M

B/
s)

0.0 0.5 1.0 1.5 2.0
Deployment/Node Ratio

2

3

4

0.0 0.5 1.0 1.5 2.0
0.4

0.6

0.8

Kubernetes Skippy Skippy+Opt

Figure 8: Scalability analysis of placements with increasing number
of deployments in each scenario. The first row shows the raw inter-
network traffic in GB. The second row shows the data throughput of
functions, i.e., the overall network traffic per compute second.

not able to saturate cluster resources before running into
extreme network congestion (flows receiving less than 0.1
MBit/s link bandwidth). The most important metric of
scalability in our scenarios is therefore network through-
put, and whether the placement can maintain high data
throughput in the face of an increasing amount of active
deployments. To examine this, we run experiments that
inject an increasingly larger number of deployments per
node. As mentioned earlier, a deployment in our scenario
is an instance of one ML pipeline with its three functions.
We start at a ratio of 0.1 deployments per node up to 2
deployments per node. Figure 8 shows the results of ex-
periment runs without the scale-to-zero policy.

Two things in particular are noteworthy. First, in S2,
while the optimized Skippy has a lower data throughput
than Skippy, as we have seen in Figure 7, it does this to
trade off execution cost while maintaining similar function
execution times (see Figure 6). Second, in some situa-
tions, the Kubernetes scheduler produced infeasible place-
ments even with very few deployments. In particular in
S3, the inter-region bandwidth was quickly saturated and
leading to infeasible placements. We consider a placement
infeasible if it, during the course of a simulation, leads to
bottlenecks in the network that degrade the bandwidth al-
located to a flow to less than 0.1 MBit/s. Another finding
was that, if the OpenFaaS scale-to-zero policy was used,
the default scheduler produced no feasible placements in

Figure 9: Optimized priority function weights in each scenario.

the first scenario. Functions would be rescheduled s.t. the
network was quickly congested with inter-network traffic.

6.3.3. Optimized Priority Function Weights

Figure 9 shows the values of w assigned by the opti-
mization as described in Section 5.2, i.e., the optimized
weight of each priority function in the different evaluation
scenarios. In S1, the capability priority is less relevant, as
there is a high percentage of GPU nodes available, which
are not saturated. Locality plays a much bigger role in
avoiding using the scarce cloud resources. In S2, because
there are few GPU nodes, and data is also distributed to
on-premises cloud, the data locality and capability prior-
ities are favored. In S3, the results confirm the intuition
that resource balance, locality, and capabilities do not have
much weight for scheduling in relatively homogeneous en-
vironments.

6.4. Scheduling Latency and Throughput

The main source of latency in greedy online MCDM
schedulers comes from iterating over nodes and comput-
ing priority functions. Because Skippy requires a signifi-
cant number of priority functions compared to the default
Kubernetes scheduler, we think it is worth discussing the
resulting impact on scheduling latency and throughput.
Let N be the set of all nodes in the cluster, N c be the
set of feasible nodes for scheduling container c, and S be
the set of priority functions. Scheduling requires the eval-
uation of every priority function S ∈ S for every feasible
node n ∈ N c. The algorithmic complexity of schedul-
ing one container c therefore depends on the complexity
of the individual priority functions. If we neglect this,
i.e., assume that invoking any S is O(1), the complex-
ity of the scoring step is O(|N c| · |S|), where N c = N
in the worst case. Because |N | can reach several thou-
sands in a production cluster, the Kubernetes scheduler
employs a sampling heuristic to reduce |N c|. The per-
centage of nodes that are sampled, progressively decreases
with the number of nodes in the cluster. Once the clus-
ter reaches |N | ≥ 6500, the scheduler only considers 5% of
available nodes for scoring. This heuristic works under the
assumption that the cluster and the network is relatively
homogeneous, and that aggressive sampling will not sig-
nificantly impair placement quality. However, in the case
of edge infrastructure, where these assumptions may not
hold, this heuristic would introduce extreme variance in

12

0 5000 10000 15000
number of nodes

0

100

200

300

400

fu
nc

tio
ns

/s
ec

on
d

0 5000 10000 15000
number of nodes

0

100

200

300

400 Constraints
1
5
10
15

Figure 10: Scheduler throughput in functions/second with sampling
heuristic (left), and without (right).

the placement quality, which is why we disable it and have
to consider all nodes in the cluster. This leads to a gen-
eral degradation in scheduling throughput. We measured
the throughput given different cluster sizes and number of
priority functions. Our results in Figure 10 roughly match
those of a recent Kubernetes performance evaluation [56].
The default Kubernetes scheduler only uses two priority
functions and the sampling heuristic, which allows it to
process around 170 pods per second in a cluster of 10 000
nodes. Whereas Skippy uses by default five priority func-
tions and scores all nodes, which, at 10 000 nodes, yields
a throughput of around 15 pods per second. While in our
scenarios this is not an issue because scheduling latency is
only a small fraction of the overall round-trip time, it does
negatively affect scheduling throughput. We are investi-
gating alternative disaggregated scheduler architectures,
such ones employed by Omega [57] or Firmament [29].

6.5. Challenges & Limitations

Beyond scheduling performance, our system has several
limitations that need to be discussed. We also identify
several open challenges for serverless edge platforms.

Our system currently makes no particular considera-
tions of the dynamic nature of edge systems. Reconciling
deployment and runtime aspects of serverless edge com-
puting applications is especially challenging. Generally,
we can distinguish function deployment, function scaling,
and function requests to already running functions. Find-
ing good placements for long-living functions is challeng-
ing, especially when they are network bound. For func-
tions such as those serving static content or simple image
classification tasks, the request RTT perceived by clients
will be dominated by link latency between the client and
the node hosting the function. Therefore, to make better
placement decision for such functions, the system would re-
quire knowledge about the location of clients with respect
to nodes in the cluster [27]. In this case, an autoscaling
strategy could, for example, spin up replicas that favor
nodes in close proximity to clients. This falls into the cat-
egory of dynamic service migration problems [58], and is
a challenge that confronts edge computing systems in gen-
eral. The centralized API gateway architecture of Open-
FaaS, Kubernetes, and similar systems, presents a serious
obstacle in solving this issue, as generally all traffic goes

through a type of ingress to allow dynamic request rout-
ing and load balancing. A strategy could be to replicate
API gateways across the network and using a localization
mechanism to resolve an API gateway in proximity. This
may not be fine-grained enough for scenarios such as the
urban sensing infrastructure where the resolution would
have to be on city neighborhood level. A solution or de-
tailed analysis of this issue is out of scope of the paper.

Another issues of using state-of-the-art serverless plat-
forms for edge infrastructure is the rudimentary way they
model node resources and function requirements [13]. For
example, in Kubernetes, a node has three capacities: CPU,
memory and the maximum number of pods that can be
scheduled onto the node. Modeling capabilities of edge
resources is challenging, as their availability may not be
known at design time, and whether they are shareable at
runtime. This is particularly important for scarce, (poten-
tially) non-shareable and discrete resources such as GPUs,
where containers that use the resource may completely
block other containers from execution, while not requir-
ing them often. We therefore see resource modeling as an
important aspect of future edge computing platforms.

Using container-based systems can have several draw-
backs with respect to isolation and multitenancy. It is
currently unclear how our system would behave in a multi-
tenant scenario, where cluster resources are shared be-
tween multiple runtimes. Further research is necessary to
investigate the effect of, e.g., workload interference.

Our system currently makes the assumption that func-
tion code is distributed in container images. Some FaaS
platforms, such as OpenWhisk, have platform-level facil-
ities for distributing function code, that may not benefit
from the computation movement estimation made by the
LatencyAwareImageLocalityPriority. Although we could
conceive a more higher-level abstraction for a code move-
ment soft-constraint, it would require additional facilities
to allow the scheduler to query the runtime for function
metadata (like its code size), and whether a function’s code
has been deployed at a particular node.

7. Conclusion

Serverless computing helps platform providers to hide
operational complexity from application developers, mak-
ing it particularly attractive for edge computing systems.
Analogously to serverless cloud functions, we believe that
edge functions are a promising approach to manage appli-
cations that run on a distributed edge compute fabric. We
have demonstrated several limitations of existing serverless
platforms when they are used in such scenarios, leading to
poor function placement on heterogeneous geo-distributed
infrastructure that has limited up/downlink connections
between edge networks.

We presented Skippy, a container scheduling system
that enables existing container orchestrators, such as Ku-
bernetes, to support serverless edge functions. Skippy does
this by introducing scheduling constraints that leverage

13

additional knowledge of node capabilities, the application’s
data flow, and the network topology. Overall our experi-
ments show that (1) Skippy enables locality-sensitive func-
tion placement, resulting in higher data throughput and
less traffic going over up/downlinks, (2) in scenarios where
there is a fairly even distribution of cloud and edge re-
sources, the optimization helps significantly in trading off
execution cost and overall application latency, and (3) the
improved placement quality comes at the cost of sched-
uler performance. We have shown that the most critical
aspect of function placement in data-intensive serverless
edge computing is the trade-off between data and com-
putation movement. However, making this trade-off in a
generalized way is challenging due to the wide range of
edge infrastructure scenarios. By introducing higher-level
operational goals, we can fine-tune the underlying sched-
uler parameters to consider infrastructure-specific aspects.

There are several open issues to fully realize the idea
of edge functions on a distributed compute fabric. For ex-
ample, the centralized API gateway architecture employed
by most state-of-the-art serverless platforms may be im-
practical for edge computing, particularly with dispersed
clients that consume network-bound functions. Moreover,
the dynamic nature of edge systems requires the contin-
uous re-evaluation of placement decisions, necessitating
context-aware autoscaling and workload migration strate-
gies. Finally, the automatic characterization of workloads
and mapping to their preferred node capabilities could sig-
nificantly improve function placement.

Acknowledgments

This work was supported by TU Wien research funds,
and the Austrian infrastructure program (HRSM 2016) as
part of the CPS/IoT Ecosystem project.

References

[1] W. Shi, S. Dustdar, The promise of edge computing, Computer
49 (5) (2016) 78–81.

[2] T. Rausch, S. Dustdar, Edge intelligence: The convergence of
humans, things, and ai, in: 2019 IEEE International Conference
on Cloud Engineering, IC2E ’19, 2019.

[3] J. Wang, Z. Feng, S. George, R. Iyengar, P. Pillai, M. Satya-
narayanan, Towards scalable edge-native applications, in: Pro-
ceedings of the 4th ACM/IEEE Symposium on Edge Comput-
ing, SEC ’19, 2019, pp. 152–165.

[4] C. E. Catlett, P. H. Beckman, R. Sankaran, K. K. Galvin, Ar-
ray of things: a scientific research instrument in the public way:
platform design and early lessons learned, in: Proceedings of
the 2nd International Workshop on Science of Smart City Op-
erations and Platforms Engineering, 2017, pp. 26–33.

[5] M. Satyanarayanan, W. Gao, B. Lucia, The computing land-
scape of the 21st century, in: Proceedings of the 20th Interna-
tional Workshop on Mobile Computing Systems and Applica-
tions, 2019, pp. 45–50.

[6] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, S. Dust-
dar, Towards a serverless platform for edge AI, in: 2nd USENIX
Workshop on Hot Topics in Edge Computing, HotEdge ’19,
2019.

[7] A. Glikson, S. Nastic, S. Dustdar, Deviceless edge computing:
Extending serverless computing to the edge of the network, in:
Proceedings of the 10th ACM International Systems and Stor-
age Conference, SYSTOR ’17, 2017.

[8] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev,
B. Koteska, M. Kostoska, B. Jakimovski, S. Ristov, R. Prodan,
A serverless real-time data analytics platform for edge comput-
ing, IEEE Internet Computing 21 (4) (2017) 64–71.

[9] L. Baresi, D. F. Mendonça, Towards a serverless platform for
edge computing, in: 2019 IEEE International Conference on
Fog Computing, ICFC ’19, 2019, pp. 1–10.

[10] D. Bermbach, S. Maghsudi, J. Hasenburg, T. Pfandzelter, To-
wards auction-based function placement in serverless fog plat-
forms, arXiv preprint arXiv:1912.06096 (2019).

[11] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, Q. Li, Lavea:
Latency-aware video analytics on edge computing platform, in:
Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, SEC ’17, 2017, pp. 1–13.

[12] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khan-
delwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwad-
kar, et al., Cloud programming simplified: a berkeley view on
serverless computing, arXiv preprint arXiv:1902.03383 (2019).

[13] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, C. Wu, Serverless computing: One
step forward, two steps back, arXiv preprint arXiv:1812.03651
(2018).

[14] M. Satyanarayanan, V. Bahl, R. Caceres, N. Davies, The case
for VM-based cloudlets in mobile computing, IEEE pervasive
Computing (2009).

[15] V. Sreekanti, C. W. X. C. Lin, J. M. Faleiro, J. E. Gonzalez,
J. M. Hellerstein, A. Tumanov, Cloudburst: Stateful functions-
as-a-service, arXiv preprint arXiv:2001.04592 (2020).

[16] V. Ishakian, V. Muthusamy, A. Slominski, Serving deep learning
models in a serverless platform, in: 2018 IEEE International
Conference on Cloud Engineering, IC2E ’18, 2018, pp. 257–262.

[17] A. Rashed, T. Rausch, Execution traces of an mnist workflow on
a serverless edge testbed (2020). doi:10.5281/zenodo.3628454.

[18] AWS IoT Greengrass, https://aws.amazon.com/greengrass/,
AWS. Online. Accessed 2020-06-11.

[19] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, V. Hilt, SAND: Towards high-performance serverless
computing, in: 2018 USENIX Annual Technical Conference,
USENIX ATC ’18, 2018, pp. 923–935.

[20] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-
Dusseau, R. Arpaci-Dusseau, SOCK: Rapid task provisioning
with serverless-optimized containers, in: 2018 USENIX Annual
Technical Conference, USENIX ATC ’18, USENIX Association,
2018, pp. 57–70.

[21] A. Hall, U. Ramachandran, An execution model for server-
less functions at the edge, in: Proceedings of the International
Conference on Internet of Things Design and Implementation,
IoTDI ’19, 2019, pp. 225–236.

[22] D. Bermbach, A.-S. Karakaya, S. Buchholz, Using application
knowledge to reduce cold starts in FaaS services, in: Proceed-
ings of the 35th ACM Symposium on Applied Computing, SAC
’20, ACM, 2020.

[23] Y. Xiong, Y. Sun, L. Xing, Y. Huang, Extend cloud to edge with
kubeedge, in: 2018 IEEE/ACM Symposium on Edge Comput-
ing, SEC ’18, 2018, pp. 373–377.

[24] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, P. Leitner,
Optimized IoT service placement in the fog, Service Oriented
Computing and Applications 11 (4) (2017) 427–443.

[25] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C.
Cankaya, Q. Zhang, W. Xie, J. P. Jue, Qos-aware dynamic fog
service provisioning, arXiv preprint arXiv:1802.00800 (2018).

[26] Y. Sahni, J. Cao, L. Yang, Data-aware task allocation for
achieving low latency in collaborative edge computing, IEEE
Internet of Things Journal 6 (2) (2018) 3512–3524.

[27] T. He, H. Khamfroush, S. Wang, T. La Porta, S. Stein, It’s
hard to share: joint service placement and request scheduling in
edge clouds with sharable and non-sharable resources, in: 2018

14

https://doi.org/10.5281/zenodo.3628454
https://aws.amazon.com/greengrass/

IEEE 38th International Conference on Distributed Computing
Systems, ICDCS ’18, 2018, pp. 365–375.

[28] F. AIT SALAHT, F. Desprez, A. Lebre, An overview of service
placement problem in fog and edge computing, Research Report
RR-9295, Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, LYON,
France (Oct. 2019).

[29] I. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, S. Hand,
Firmament: Fast, centralized cluster scheduling at scale, in:
12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’16, USENIX Association, 2016, pp. 99–
115.

[30] Y. Hu, H. Zhou, C. de Laat, Z. Zhao, Ecsched: Efficient con-
tainer scheduling on heterogeneous clusters, in: European Con-
ference on Parallel Processing, 2018, pp. 365–377.

[31] R. G. Aryal, J. Altmann, Dynamic application deployment in
federations of clouds and edge resources using a multiobjective
optimization AI algorithm, in: 3rd International Conference on
Fog and Mobile Edge Computing, FMEC ’18, 2018.

[32] H. Tan, Z. Han, X.-Y. Li, F. C. Lau, Online job dispatching and
scheduling in edge-clouds, in: IEEE Conference on Computer
Communications, INFOCOM ’17, 2017, pp. 1–9.

[33] Xuan-Qui Pham, Eui-Nam Huh, Towards task scheduling in
a cloud-fog computing system, in: 18th Asia-Pacific Network
Operations and Management Symposium, APNOMS ’16, 2016.

[34] J. MSV, How Kubernetes is transforming into a universal
scheduler, The New Stack. Online. Posted 2018-09-07. Accessed
2019-03-14 (2018).
URL https://thenewstack.io/how-kubernetes-is-

transforming-into-a-universal-scheduler

[35] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha,
K. Elgazzar, P. Pillai, R. Klatzky, et al., An empirical study
of latency in an emerging class of edge computing applications
for wearable cognitive assistance, in: Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, SEC ’17, 2017.

[36] S. Venugopal, M. Gazzetti, Y. Gkoufas, K. Katrinis, Shadow
puppets: Cloud-level accurate AI inference at the speed and
economy of edge, in: USENIX Workshop on Hot Topics in Edge
Computing, HotEdge ’18, 2018.

[37] W. Hummer, V. Muthusamy, T. Rausch, P. Dube,
K. El Maghraoui, Modelops: Cloud-based lifecycle management
for reliable and trusted ai, in: 2019 IEEE International Confer-
ence on Cloud Engineering, IC2E ’19, 2019.

[38] T. Rausch, C. Lachner, P. A. Frangoudis, P. Raith, S. Dustdar,
Synthesizing plausible infrastructure configurations for evaluat-
ing edge computing systems, in: 3rd USENIX Workshop on Hot
Topics in Edge Computing, HotEdge ’20, 2020.

[39] S. J. Vaughan-Nichols, Canonical’s cloud-in-a-box: The ubuntu
orange box, Online. Posted 2014-05-19. Accessed 2020-06-11.
URL https://www.zdnet.com/article/canonicals-cloud-

in-a-box-the-ubuntu-orange-box/

[40] S. J. Johnston, P. J. Basford, C. S. Perkins, H. Herry, F. P. Tso,
D. Pezaros, R. D. Mullins, E. Yoneki, S. J. Cox, J. Singer, Com-
modity single board computer clusters and their applications,
Future Generation Computer Systems 89 (2018) 201–212.

[41] NVIDIA, NVIDIA Jetson - the AI platform for autonomous
machines, Online. Accessed 2020-06-11.
URL https://developer.nvidia.com/embedded/develop/

hardware

[42] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
J. Wilkes, Large-scale cluster management at google with borg,
in: Proceedings of the Tenth European Conference on Computer
Systems, 2015, p. 18.

[43] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, Q. Zhang, Edge
computing in IoT-based manufacturing, IEEE Communications
Magazine 56 (9) (2018) 103–109.

[44] J. Yan, Y. Meng, L. Lu, L. Li, Industrial big data in an indus-
try 4.0 environment: Challenges, schemes, and applications for
predictive maintenance, IEEE Access 5 (2017) 23484–23491.

[45] B. Cutler, Examining cross-region communication speeds in
AWS, Medium. Online. Posted 2018-05-30. Accessed 2020-02-15
(2018).

URL https://medium.com/slalom-technology/examining-

cross-region-communication-speeds-in-aws-9a0bee31984f

[46] K. Community, Kubernetes scheduler, Kubernetes Documen-
tation. Accessed 2019-01-04 (2019).
URL https://kubernetes.io/docs/concepts/scheduling/

kube-scheduler/

[47] N. Matloff, Introduction to discrete-event simulation and the
simpy language, Davis, CA. Dept of Computer Science. Univer-
sity of California at Davis. 2 (2009) 1–33.

[48] faas-sim: simulating serverless function execution on clus-
ters, https://github.com/edgerun/faas-sim, Online. Accessed
2020-06-11.

[49] R. Morris, TCP behavior with many flows, in: Proceedings 1997
International Conference on Network Protocols, 1997, pp. 205–
211.

[50] D. Hadka, Platypus: A free and open source python library
for multiobjective optimization, Online. Accessed 2020-06-11
(2017).
URL https://github.com/Project-Platypus/Platypus

[51] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE transactions
on evolutionary computation 6 (2) (2002) 182–197.

[52] D. Brockhoff, T. Tušar, Benchmarking algorithms from the
platypus framework on the biobjective bbob-biobj testbed, in:
Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, 2019, pp. 1905–1911.

[53] A. Feldmann, Characteristics of TCP connection arrivals, Self-
Similar Network Traffic and Performance Evaluation (2000)
367–399.

[54] Amazon, AWS lambda pricing, AWS. Online. Accessed 2020-
02-19 (2020).
URL https://aws.amazon.com/lambda/pricing/

[55] A. Eivy, Be wary of the economics of serverless cloud computing,
IEEE Cloud Computing 4 (2) (2017) 6–12.

[56] H. Deng, Improving Kubernetes scheduler performance,
CoreOS Blog. Online. Posted 2016-02-22. Accessed 2019-03-14
(2016).
URL https://coreos.com/blog/improving-kubernetes-

scheduler-performance.html

[57] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, J. Wilkes,
Omega: flexible, scalable schedulers for large compute clusters,
in: SIGOPS European Conference on Computer Systems, Eu-
roSys ’13, 2013, pp. 351–364.

[58] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, K. K. Leung,
Dynamic service migration and workload scheduling in edge-
clouds, Performance Evaluation 91 (2015) 205–228.

15

https://thenewstack.io/how-kubernetes-is-transforming-into-a-universal-scheduler
https://thenewstack.io/how-kubernetes-is-transforming-into-a-universal-scheduler
https://thenewstack.io/how-kubernetes-is-transforming-into-a-universal-scheduler
https://thenewstack.io/how-kubernetes-is-transforming-into-a-universal-scheduler
https://www.zdnet.com/article/canonicals-cloud-in-a-box-the-ubuntu-orange-box/
https://www.zdnet.com/article/canonicals-cloud-in-a-box-the-ubuntu-orange-box/
https://www.zdnet.com/article/canonicals-cloud-in-a-box-the-ubuntu-orange-box/
https://www.zdnet.com/article/canonicals-cloud-in-a-box-the-ubuntu-orange-box/
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware
https://medium.com/slalom-technology/examining-cross-region-communication-speeds-in-aws-9a0bee31984f
https://medium.com/slalom-technology/examining-cross-region-communication-speeds-in-aws-9a0bee31984f
https://medium.com/slalom-technology/examining-cross-region-communication-speeds-in-aws-9a0bee31984f
https://medium.com/slalom-technology/examining-cross-region-communication-speeds-in-aws-9a0bee31984f
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
https://github.com/edgerun/faas-sim
https://github.com/Project-Platypus/Platypus
https://github.com/Project-Platypus/Platypus
https://github.com/Project-Platypus/Platypus
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://coreos.com/blog/improving-kubernetes-scheduler-performance.html
https://coreos.com/blog/improving-kubernetes-scheduler-performance.html
https://coreos.com/blog/improving-kubernetes-scheduler-performance.html

	Introduction
	Related Work
	Background & Application Scenarios
	Data-Intensive Serverless Edge Computing
	Edge Cloud Compute Continuum
	Cluster Infrastructure Scenarios
	Technical Background: Kubernetes & OpenFaaS
	Kubernetes & Container Scheduling
	OpenFaaS

	Skippy – Design and Prototype Implementation
	System Overview
	Node and Function Metadata Collection
	Node Metadata: Skippy Daemon
	Function Metadata: Annotation Parsing

	Skippy Scheduler
	Edge-Friendly Priority Functions

	Integration with OpenFaaS
	Serverless Simulator

	Optimizing Weights of Priority Functions
	Problem Formulation
	Implementation

	Evaluation
	Edge Cloud Testbed & Profiling
	Experiment Setup
	Experiment Results
	Runtime Performance of Placements
	Impact of Placements on System Scalability
	Optimized Priority Function Weights

	Scheduling Latency and Throughput
	Challenges & Limitations

	Conclusion

