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Abstract—Computational resources distributed at the edge
of the network are the fundamental infrastructural component
of edge computing. The operational scale of edge computing
introduces new challenges for building and operating suitable
computation platforms. Many application scenarios require edge
computing resources to provide reliable response times while
operating in dynamic and resource-constrained environments.
In this paper, we present a novel architecture for energy-
aware, cluster-based edge computers that are designed to be
portable and usable in fieldwork scenarios. We use compact
general-purpose commodity hardware to build a high-density
cluster prototype, and implement a power-management runtime
to enable real-time energy-awareness. Furthermore, we present
an experimental analysis of the energy and resource-consumption
characteristics of our prototype in the context of a data analytics
application. The results show the feasibility of our prototype
for the presented scenarios, but also reveal the intricacies of
power-management approaches already built into modern CPUs.
We show that different load balancing policies and cluster
configurations have a significant impact on energy consumption
and system responsiveness. Our insights lay the groundwork for
future research on energy-consumption optimization approaches
for cluster-based edge computers.

I. INTRODUCTION

The underlying premise of the edge computing vision is
a distribution of heterogeneous computational resources de-
ployed at the edge of the network [1]. We consider edge
computers as a specialized type of server computer, expressly
designed for the use in edge environments. These edge
computers, supported by novel middleware and deployment
platforms, promise to enable highly-responsive software ser-
vices that tackle the challenges of today’s mobile application
scenarios, ranging from data analytics in Internet of Things
(IoT) [2] to the seamless augmentation of human cognition [3].

A significant number of these application scenarios can
be characterized by the dynamic and resource-constrained
environment in which supporting edge computers have to oper-
ate. For example, mobile applications are used by emergency
response teams for on-premises decision making [4], or by
military field personnel for image or speech recognition [5].
Handheld devices stream data and offload compute-intensive
tasks to nearby edge computers. Designing and operating edge
computing infrastructure for and in these environments is
challenging, as edge computers have to be portable to fit on,
e.g., an emergency vehicle or a drone; deal with unpredictable
client load; provide sufficient performance to host, e.g., data
analytics or machine learning applications; and, at the same

time, be energy-efficient to be powered by secondary power
supplies such as batteries.

In this paper, we present a design, prototype, and evaluation
of a portable energy-aware, cluster-based edge computer that
aims to address these challenges. It is portable because it
is compact in size, and consumes energy at a scale that
could be served by medium sized batteries. It is energy-
aware because it provides a power-management runtime to
access energy consumption data in real-time, and control the
power state of its nodes. Finally, it is cluster-based because
it comprises multiple physical nodes to provide reliable and
scalable computing.

We recognize advanced power-management techniques,
such as energy-aware load balancing [6] and dynamic cluster
adjustment [7] to be of primary concern when serving applica-
tions on portable cluster-based edge computers. Most related
work on energy-aware approaches for compute clusters focus
either on reducing the operational costs or carbon footprint
in Cloud data centers [8], [6], [9], conserving energy of
mobile devices by offloading tasks to nearby mobile edge
computing (MEC) resources [10], or consider a power sup-
ply of infinite capacity [7], [11]. The difference in scale
between the Cloud and portable edge computers require new
considerations when doing optimizations and load balancing
partly because powerful dedicated hardware with unlimited
energy supplies may not be available for such computations.
Furthermore, most existing research on edge computers, e.g.,
cloudlets, evaluate only a single-node system, typically a
commodity desktop PC [3], [5]. However, understanding the
energy consumption and performance capabilities of portable
cluster-based edge computers is important for determining the
efficacy of such edge computers for real-world use cases, as
well as providing groundwork for future research on energy-
aware load balancing, scheduling, and provisioning techniques.
A major goal of this paper is therefore to provide empirical
evidence on the energy consumption characteristics of cluster-
based edge computers with modern hardware. To that end,
we present the results of several experiments running on
top of our energy-aware, cluster-based edge computer, and
report on the following research questions: RQ1. What are
the energy consumption characteristics of cluster-based edge
computers? RQ2. How do different cluster configurations and
load balancing policies affect the responsiveness and energy
consumption of cluster-based edge computers?



In summary, this paper presents a prototype for a portable
cluster-based edge computer, and lays the groundwork for de-
veloping energy-efficiency control mechanisms for operating
applications on such infrastructure. The contributions can be
summarized as follows:

1) We propose a novel infrastructure architecture for
portable energy-aware, cluster-based edge computers. The
core of the architecture are multiple physical nodes and a
power-management framework that monitors energy and
resource consumption of the nodes, controls the power
state of nodes, and does energy-aware load balancing of
application requests.

2) We implement a prototype of an energy-aware, cluster-
based edge computer based on our architecture. We use
compact, general-purpose commodity hardware to build
a high-density compute cluster, and deploy a power-
management framework with power senors and micro-
controllers.

3) We present an experimental analysis of the resource and
energy consumption characteristics of our prototype in the
context of a modern data analytics application, namely
image recognition using deep learning. The experimental
results shed light on how different cluster configurations
affect application responsiveness and overall energy con-
sumption.

The remainder of the paper is structured as follows: Sec-
tion II motivates our work by discussing the current landscape
of cloudlet infrastructure. In Section III we describe our
reference architecture for energy-aware, cluster-based edge
computers. In Section IV we present the developed prototype.
Section V and Section VI present the methodology and results
of our in-depth analysis of energy and resource-consumption
characteristics of our prototype. In Section VII we discuss
the implications of the results on future power-management
mechanisms. Section VIII summarizes related work on energy-
awareness for edge computing. Finally, Section IX concludes
the paper and provides an outlook on future work.

II. MOTIVATION: A PERSPECTIVE ON EDGE COMPUTING
RESOURCES

Computational resources placed in close proximity to data
producers and consumers at the edge of the network are the
fundamental infrastructural component to enable edge comput-
ing [1]. Many different types of computational infrastructures,
such as cloudlets [3], micro-datacenters [12], or even clusters
of mobile devices [13] have been proposed. We motivate our
work by discussing the characteristics of these infrastructures
in more detail.

A. Cloudlets: Providing Cloud Services at the Edge

The idea of cloudlets has been discussed for several years.
In an early definition by Satyanarayanan et al. [3], a cloudlet
is “a trusted, resource-rich computer or cluster of computers
that is well-connected to the Internet and is available for use
by nearby mobile devices.” Since then, many other definitions
have been put forth [5], [14], [15], but the general consensus

is that cloudlets aim to bring services otherwise hosted in
the Cloud closer to the edge of the network to improve
Quality of Service for end users. Cloudlets have had a large
impact on the idea of mobile edge computing (MEC), where
mobile operators place servers at base stations of cellular net-
works [16]. This allows operators to provide highly-responsive
Cloud services for mobile users based on their proximity to
base stations, or optimize the battery lifetime of mobile devices
by offloading compute tasks to these cloudlets.

B. Cluster-Based Edge Resources

Clustered edge resources of all shapes and sizes have been
discussed and evaluated. These proposals range from Sun’s
Modular Datacenters that come in shipping containers1; over
Canonical’s (discontinued) Orange Box2, a cluster of Intel
NUCs; to a cluster of single-board computers (SBC), such
as Raspberry Pis, federated to form a micro datacenter [12].
However, none of these come with an integrated power-
management runtime, or other mechanisms for native energy-
awareness. Although cloudlets are seen in general as either
single-node or cluster-based systems, most existing evaluations
of cloudlets in research consider only a single node, typically
a commodity desktop PC [3], [5]. We argue that this size
of hardware (i.e., commodity computers) is useful for many
use cases, as it is a compromise between the two previously
presented extremes. However, we also argue that single-node
systems are challenged to provide reliable services in the
face of varying and unpredictable request arrival rates. A
cluster of high-density compute nodes, for example Mini-ITX
motherboards with server CPUs, can provide a great deal of
computational power, while still being compact and portable.

C. General-Purpose Edge Computers

Most definitions consider a cloudlet to be static infras-
tructure, well-connected to the Internet, deployed statically
at a specific location. Recently, researchers have shown that
such cloudlets may be impractical for use cases that require
on-premises decision making for military field personnel in
resource-constrained tactical environments [5]. To bridge this
gap, they propose tactical cloudlets, i.e., portable cloudlets
deployed on, e.g., vehicles that support computation offload in
such resource-constrained environments. We argue that there
are many more use cases to be considered that require portable
cloudlets, or, more generally, general-purpose edge computers.
We consider edge computers a specialized type of server
computer, that is designed for the use in edge environments.
For example, portable compute clusters could be deployed on
emergency vehicles to allow complex decision-making and
task-planning analytics applications in emergency response
scenarios [4]. Other field-based work, such as archaeological
dig sites, field experiments in geology, oceanography, etc.,
could all benefit from edge computing, but require portable

1https://docs.oracle.com/cd/E19115-01/mod.dc.s20/
2http://blog.dustinkirkland.com/2014/05/the-orange-box-cloud-for-free-man.

html (Accessed 2018-09-03)



and reliable edge computers. Companies are even exploring
space-to-cloud analytics for remote regions using satellites3.

D. Energy-Aware Portable Cluster-Based Edge Computers

Infrastructure required for such scenarios faces numer-
ous challenges. In particular, these edge computers work in
energy-constrained environments, and may therefore have to
be partially powered by secondary energy sources such as
batteries. As we have discussed, single-node systems are chal-
lenged to enable scalability and reliability required for dealing
with unpredictable workloads at the Edge. While statically
scaling out the infrastructure would provide better service
reliability, it also significantly increases energy consump-
tion, thereby diminishing portability. However, by integrating
power-management approaches for server clusters, such as
vary-on/vary-off (VOVO) algorithms [7], cluster-based edge
computers could become the ideal architecture to address these
challenges. However, these and other energy-efficiency mech-
anisms have been developed largely in the context of large-
scale data-center infrastructure [6], [17], [8], and typically
depend on a model of energy consumption based on proxy
metrics such as CPU utilization [18]. As we discuss in Sec-
tion V, our data indicates that these models are inaccurate for
edge computers with modern, high-density, general-purpose
hardware. With future developments and the integration of
specialized hardware into these edge computers, such as GPUs
or single board AI modules [19], simple models will become
infeasible for novel energy-efficiency mechanisms that control
these heterogeneous infrastructures. Suppose, for example,
a mechanism that optimizes energy consumption based on
machine learning techniques such as reinforcement learning
(which is also being explored in related cloud-operations
research [18], [20]). A learning algorithm will continuously
attempt different load balancing configurations given different
workload types to minimize energy consumption. To facilitate
such mechanisms in a real-world deployment, given the com-
plexity of energy consumption of novel architectures, edge
computers have to be natively energy-aware, i.e., they need
access to energy consumption data in real-time to accurately
determine the impact of different workloads on the energy
consumption characteristics, learn from past observations, and
continuously adapt to changes in the environment that may
have an impact on energy consumption. Furthermore, control
mechanisms need to be able to control the power state of
nodes, i.e, turn them on and off.

In summary, we identify the following key requirements for
edge computers for supporting the discussed scenarios:

• Performance: an edge computer needs to be able to host
a variety of different services that are otherwise Cloud
based, for example data analytics platforms. It therefore
has to be powerful enough to host such services.

• Reliability: an edge computer needs to maintain low re-
sponse times even in the face of unpredictable client loads

3https://spire.com/
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Fig. 1. Architecture for an energy-aware, cluster-based edge computer

and request arrival patterns inherent to IoT scenarios and
Edge environments.

• Portability: an edge computer has to be portable, i.e.,
compact enough to be mounted on, e.g., a vehicle, or be
carried around easily by a person, and not bound by static
power or network infrastructure.

• Energy efficiency: because the edge computer is portable
and needs to operate in resource-constrained environ-
ments, it has to be energy efficient. This is especially
critical when the edge computer is battery powered.

III. PORTABLE ENERGY-AWARE CLUSTER-BASED
EDGE COMPUTERS

We propose an architecture for a general-purpose energy-
aware, cluster-based edge computer. In our reference archi-
tecture, a cluster-based edge computer is a closed system
of n physical general-purpose compute nodes, and a power-
management runtime that enables energy-awareness. We focus
explicitly on enabling energy-awareness as opposed to general
deployment and management of applications, as solutions
already exist for these aspects [5], [3]. Figure 1 shows a
simplified view of our proposed architecture.

Nodes host third-party services that are deployed via, e.g.,
container-based virtualization. The power-management run-
time comprises components to monitor and control the nodes,
and to provide energy-aware optimization mechanisms for task
scheduling or load balancing. These runtime components are
hosted on a separate auxiliary device that is part of the edge
computer, but independent of power-management mechanisms
and much smaller in scale than the compute nodes to minimize
the impact on the overall power consumption (in our prototype
we use two SBC, see Section IV). Between each node’s power
source, a power sensor is placed that allows the power monitor



component to probe the current wattage of each node. A client
device hosts the client side of the runtime: a request router
that forwards requests to an actual physical node hosting the
service, as well as third-party client application.

A. Power-Management Runtime

The power-management runtime comprises the following
core components:

a) Node controller: the node controller decides at run-
time, based on values received from the power monitor and
resource monitor, to modify the power state of nodes, i.e.,
powering them on or off. The node controller relies on an
optimization strategy implementation that aims to minimize
energy consumption while maintaining responsiveness of the
system. When the controller changes the power state of a node,
it informs other runtime components about these changes.

b) Power monitor: the power monitor probes the nodes’
power sensors, and provides an API for other runtime compo-
nents to access node energy consumption data in real-time.

c) Resource monitor: the resource monitor tracks the
resource utilization of nodes, and also provides an API to
access the data in real-time. Specifically, it provides data on
the CPU frequency (which may be dynamically adjusted by
the underlying hardware), CPU utilization, memory usage, or
I/O bandwidth of nodes.

d) Balancing policy: the balancing policy aims to op-
timize energy consumption and resource utilization by dis-
tributing request load across physical hosts. It uses the power
and resource monitoring data to intelligently balance service
requests among physical hosts. Because request dispatching
actually happens on the client, the runtime broadcasts changes
in the balancing policy to the client-side balancer. For example,
when the node controller changes the power state of a node, the
balancing strategy is informed and adapts accordingly (e.g., by
removing a turned off node from the pool), and then forwards
the information to the client.

B. Client

The client hosts the third-party client application and the
client-side components of our power-management runtime. A
client device could be an edge device such as a smartphone
or an SBC.

a) Request router: In traditional cloud-based clusters,
load balancing is typically done in the Cloud via, e.g., L7
switches or reverse proxies hosted on powerful machines that
forward requests to the actual services depending on some
strategy [21]. As discussed in Section II, we cannot rely on
data-center scale routing hardware in a small portable edge
cluster, and dedicating a node of the cluster to serve as reverse
proxy would require this node to be online continuously, and
therefore significantly increase the overall energy consump-
tion. Furthermore, for high-performance applications, a load
balancer that has the same computational resources as the
nodes it manages would quickly create a bottleneck. Instead,
in our architecture, we offload request dispatching to the client.
The request router on the client device is a proxy for an

Fig. 2. Energy-aware cluster-based edge computer prototype

actual service request and is responsible for dispatching a
request from the client app to a node that hosts the service.
The runtime broadcasts changes in the balancing policy to the
client-side request router. This includes the network addresses
or specific service endpoints of currently active nodes. The
requests are routed based on the current active balancing policy
dictated by the edge computer, e.g., the percentage of requests
that should be routed to a specific node or service endpoint.
This way, the energy cost of load balancing is decentralized
among clients. A drawback of this approach is the increased
management complexity of balancing policies.

b) Balancing policy: The request router relies on a bal-
ancing policy defined by the power-management runtime. For
each request, the request router queries the balancing policy for
a node to send the service call to. A balancing strategy could
simply be a round robin or weighted distribution among all
currently powered nodes. Implementing and evaluating more
complex strategies is out of scope of this paper, but part of
our future work.

IV. PROTOTYPE

Based on our architecture, we have developed a prototype
for an energy-aware portable cluster-based edge computer.
The prototype comprises four compute nodes, networking
and power infrastructure, a power and resource monitoring
system, and a small cluster of client devices. Figure 2 shows
our prototype infrastructure. It shows (1) the cluster compute
nodes, (2) the monitoring infrastructure (with the Raspberry
in the bottom left corner in a white case, and the Arduino in
the bottom right), and (3) Raspberry Pis that serve as clients.
Next, we describe each component in more detail.

A. Compute Nodes

The overall design goal of our prototype is to enable high-
density computing, i.e., to have good compromise between
compactness that enables portability, and performance to host



typical Cloud-based services. We use Mini-ITX form-factor
hardware, with server capabilities in mind, to build a high-
density cluster. Each node is a mid-priced but powerful server
computer made up of the following components:

• Motherboard: ASUS P10S-I Mini-ITX4

• CPU: Intel Xeon E3-1230 (4 cores, 8 threads)5

• RAM: 2x16GB Kingston HyperX Fury DDR4
• SSD: Intel SSD 600p 128GB M.2.6

• Power supplies: picoPSU-90 12V
Overall, each node takes up roughly 17x17x10cm of space.
To host applications, the compute nodes run a common

server operating system, namely CentOS 77, with a standard
configuration. Furthermore, the nodes run Docker CE8 as
application deployment platform. We later present energy
consumption data to show that this hardware configuration
could be powered by commodity battery packs.

B. Power-Management Runtime

There are many ways to implement the power-management
runtime described in Section III. Specifically, there are a
variety of ways to monitor energy consumption. Although we
do not require real-time access to the energy consumption data
for the evaluation of this prototype, we wanted a portable and
cost-efficient solution to show the feasibility of our design,
in particular because the power-management runtime is an
integral part of the system and should therefore be portable
and small scale. We deploy the power-management runtime
on a Raspberry Pi Model 3 B running Raspbian 9. To
monitor energy consumption, we developed a compact and
cost-efficient monitoring infrastructure using an Arduino Uno,
and four ACS7129 Hall-effect-based linear current senors. It
is important to note that we measure between the picoPSU
power supply and the AC adapter because we intentionally
do not want to include the power dissipation of the adapter
(which we found in experiments to vary greatly between 10-
25%). This is also the reason why we do not use consumer-
grade power meters that typically sit between the power socket
and the AC adapter. Reading the sensors is done via the
analog inputs and a simple Arduino program. The Raspberry
provides the Power Monitor, Resource Monitor, and Node
Controller component. The Power Monitor accesses the power
readings via the Arduino at a specified sample interval, and
calculates from the raw readings the effective power in Watts
(the data necessary for this calculation can be found on the
ACS712 data sheet). The Resource Monitor uses standard
Linux facilities to read resource utilization data from the nodes
such as /proc/stat or /proc/cpuinfo which gives

4https://www.asus.com/Commercial-Servers-Workstations/P10S-I/
5https://ark.intel.com/products/52271/Intel-Xeon-Processor-E3-1230-8M-

Cache-3 20-GHz
6https://www.intel.com/content/www/us/en/products/memory-storage/

solid-state-drives/consumer-ssds/600p-series/600p-128gb-m-2-80mm-3d1.
html

7https://www.centos.org/
8https://www.docker.com/
9https://www.allegromicro.com/en/Products/Current-Sensor-ICs/

Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspxx

details about the current frequency and idle state of CPU cores.
The nodes are only required to provide SSH access to the
monitor; no other software needs to be installed.

C. Clients

For the evaluation of our system we need to generate client
load. We cannot run clients on the compute nodes in parallel,
because this would skew our energy and resource consumption
results. Instead, we set up a small Raspberry Pi cluster where
each node hosts a client application and a tool for generating
load. We describe this in more detail in Section V. The client
cluster is connected via a separate switch to the LAN of
the cluster, and is powered by a separate power source. The
Rapsberry Pis are Model 3 B Rev 1.2 and run Raspbain 9.

V. EXPERIMENTAL EVALUATION

As stated in Section I, a major goal of this work is to gain
insights on the performance and energy consumption charac-
teristics of cluster-based edge computers, that can drive the de-
sign decisions for building energy-aware control mechanisms.
To that end, we run several experiments to gather data on
the general energy consumption characteristics of the cluster,
as well as concrete performance data when running a data
analytics application in different cluster configurations. We
use the power-management runtime prototype to collect data
on the current energy consumption and resource utilization
of each node, and to test different balancing policies during
real-world application workloads.

A. Application Scenario

Data analytics applications are considered a prime example
that can benefit from edge computing [22], [23]. For our ap-
plication we use the Apache MXNet deep learning library [24]
with pre-trained models to perform image recognition tasks.
Although specialized hardware exists for such applications,
for example the Nvidia Jetson [19] platform optimized for
deep learning, a general-purpose edge computer should be
flexible enough to host a large variety of applications, and
we therefore consider applications that make use of machine
learning models a useful benchmark. Furthermore, we recog-
nize that container-based deployments are common in modern
application scenarios and DevOps workflows. We therefore
use Docker to deploy instances of an MXnet Model Server10,
which exposes an MXnet classifier as a web service via an
NGINX11 web server. We then use a simple Python HTTP
client application that we developed to send images to the
exposed endpoint and await classification results. The clients
receive from the power-management runtime the network
addresses of endpoints and a weighted load balancing policy as
indicated in Figure 3. We use the pre-trained SqueezeNet [25]
model, a small-footprint model that has been used in other
evaluations of image recognition applications [26].

10https://github.com/awslabs/mxnet-model-server
11https://www.nginx.com/



B. Idle and Offline Energy Consumption

The power characteristics of a system include offline and
idle energy consumption that can be considered waste or
overhead. An assumption sometimes made in simulations for
energy-aware approaches is that powered-down nodes require
no energy [27], [8]. Although this may be a reasonable
assumption for the initial development of algorithms, as we
will show, this is however not the case for real-world edge
computers. Furthermore, dynamic frequency scaling tech-
niques of modern CPUs have a significant impact on energy
consumption. Especially during periods of low CPU usage,
such as in idle phases, CPU throttling can significantly reduce
energy consumption and heat dissipation. We investigate these
aspects by measuring the energy consumption of nodes in
both powered-down and idle states and report the aggregated
measurement values.

C. Boot-Cycle

Modifying the power state of nodes at runtime comes at
the cost of additional management complexity and overhead.
While powering off a node may subsequently save energy
necessary to otherwise maintain the node’s idle state, the
additional costs of the boot-cycle (power-off/power-on) have
to be considered. Not only does booting or shutting down a
node take time, which may have a significant impact on the
system’s responsiveness, it also consumes additional energy.
There is an inherent tradeoff between keeping a node in idle
mode and shutting it off. Quantifying this tradeoff is important
for, e.g., VOVO [7] techniques, where the system determines at
runtime to power nodes on and off. We run several experiments
to examine this behavior in our prototype using our power-
management runtime to boot and shutdown nodes. Specifically,
we run experiments to a) quantify the duration of a boot-
cycle, and b) quantify the energy consumption of a boot-
cycle. A boot-cycle experiment is structured as follows: we
start measuring the energy consumption, send a wake-on-
lan packet to boot the node, and record the timestamp when
the boot was initiated. We then wait for the node to appear
by waiting until the TCP port of the Docker host becomes
available and record the timestamp (which we consider the
time at which workload requests can be sent to the node).
The node then runs for 60 seconds in idle mode, after which
we initiate a shutdown, and record for another 30 seconds.
Because we cannot determine the concrete timestamp when
the node is truly shut down, we estimate the timestamp from
the offline energy consumption data. We perform each boot-
cycle experiment ten times for each node and report aggregated
results to include the measurement variations between nodes.
We control for heat dissipation by waiting several minutes
between experiments.

D. Energy Consumption during Workloads

We examine the system’s energy consumption and respon-
siveness under varying client load and different load balancing
policies. The main goal is to examine whether the overall
system’s energy consumption can be improved with specific
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load balancing policies given otherwise identical experiment
parameters. Furthermore, we are interested in the trade-off
between energy consumption and system responsiveness. To
that end, we stress nodes by sending image classification
requests from our Raspberry Pi clients. A client is a simple
Python application that spawns several worker processes that
send a randomly selected image (pre-loaded into memory) to a
node and wait for a response. To make sure the work required
for each request is the same, we pre-load five similar images,
each with dimensions around 300x220- pixels, and a file size
of around 150kB. In exploratory experiments we found that
with these parameters, four Raspberry Pis each running eight
worker processes to send requests can easily saturate a node’s
request capacity without slowing down the clients. For each
request, we measure the round-trip time (RTT) in milliseconds
with which we quantify the responsiveness of the system. To
control the request rate we use a load generator that generates
a pyramid arrival pattern, starting from 1 request per second
(r/sec), to a peak of 300 r/sec, and down to 1 again. The load
is adjusted every 20 seconds, and the experiment runs for 20
minutes. Figure 3 illustrates the process.

In total, we run eight experiments with which we exam-
ine the system’s performance and energy consumption under
different weighted random load balancing policies. The first
experiment sends all requests to n1. The second experiment
balances load between two nodes n1, n2 in a ratio of n1

n2
= .9

.1 ,
the third n1

n2
= .8

.2 , and so forth, until .5
.5 (round robin

scheduling). In the last two experiments we perform round
robin scheduling with three and four nodes respectively. Ta-
ble I summarizes this. The columns indicate the percentage of
requests that are routed to the respective node, or whether the
node is kept offline.

We calculate for each experiment the total energy required
for each node, and report the CPU utilization, CPU frequency
(dynamically adjusted by the CPU), and statistics on the RTT.

VI. RESULTS

We now present the results of the described experiments.

A. Idle and Offline Energy Consumption

We measure the energy consumption of each node during
idle and offline state for several hours and report on the



TABLE I
LOAD BALANCING POLICIES FOR EXPERIMENTS

Experiment n1 n2 n3 n4

1 100% - - -
2 90% 10% - -
3 80% 20% - -
4 70% 30% - -
5 60% 40% - -
6 50% 50% - -
7 33% 33% 33% -
8 25% 25% 25% 25%

aggregated results. Values for these states, and in particular
their margin to energy consumption during peak loads, have a
large impact on established energy consumption models [17],
[28]. Figure 4 shows a summary of the power readings (read
at 2 Hz from the sensors) in Watts over all nodes across our
measurement periods.

The figures show the distribution of readings over the
measurement duration. A node requires on average 2.3 W even
when it is offline. The power supply draws a small amount of
power when attached to the AC adapter. Furthermore, parts of
the hardware are kept in a low-power sleep mode, to enable,
e.g., wake-on-lan functionality. In idle mode, i.e., when a node
was booted into the operating system and has a running Docker
container with MXnet deployed but serves no requests, a node
draws on average 9.7 W, with outliers up to 24 W. These high
power readings can most likely be attributed to regular tasks
performed by the operating system (such as flushing IO buffers
for log files to disk).

B. Boot-Cycle Operations

Two metrics that will impact dynamic energy-aware control
mechanisms are the duration and energy consumption of a
node’s boot-cycle, i.e., the time and energy it takes to power
on and shut down a node. The two phases can be observed
in Figure 5, which is a sample reading from one of our boot-
cycle experiments. A detailed understanding of the boot-cycle
is particularly important for dynamic cluster adjustment and
VOVO techniques.

(a) Offline (b) Idle

Fig. 4. Power consumption readings of nodes in offline and idle states

Fig. 5. Energy usage of a node during boot-cycle and idle period

The boot phase of the boot-cycle is marked yellow, and
covers the period of time in which a node is powering up
and the operating system is booted. The green area marks an
idle period during which a node is ready to accept workload
requests. Lastly, the red area marks the shutdown phase, where
the operating system and device is shut down.

We estimate the overall energy consumption of the boot
operation by solving Equation (1):

Eboot = Tsample ×
B−1∑
n=b

P (n) (1)

where Tsample represents the interval between measure-
ments in seconds (e.g., 0.25 for 4Hz), B represents the total
number of measurements in the boot period (calculated from
the time between the boot initiation and the time the Docker
host became available), b is the measurement at which the
boot process was triggered, and the function P (n) returns
the energy consumption of the node in Watt at a given
measurement n.

Similarly, we calculate the energy consumption of the shut-
down operation by Equation (2), where S and s are analogous
to B and b for the shutdown period

Eshutdown = Tsample ×
S−1∑
n=s

P (n) (2)

We find the end time of the shutdown period by looking
for the first measurement value that is similar to the average
offline energy consumption.

With these computations we can now find the overall
duration and energy consumption of a node’s boot-cycle. The
results are presented in Figure 6 and Figure 7.

From our experiments we found that booting a node of our
prototype takes on average 46.5 seconds and requires 688 Ws
of energy. A node shutdown takes on average 5.3 seconds and
38 Ws of energy, making a complete boot-cycle require on
average 726 Ws.

a) Boot-Cycle Energy Consumption Equality: With the
energy consumption data gathered on node idle states, and
the power and duration data for a boot-cycle known, we can
now calculate the break-even point at which the total energy
consumption for a boot-cycle is equal to that of a node in
idle for a time t. Specifically, we are interested in finding
how much time a node can remain in an idle state before it



(a) Energy Consumption (b) Duration

Fig. 6. Characteristics of boot operation

(a) Energy Consumption (b) Duration

Fig. 7. Characteristics of shutdown operation

becomes more energy-efficient to perform a boot-cycle of that
node. These values are necessary for a VOVO controller to
make accurate decisions at runtime about when to turn a node
on or off. We use Equation 3 for the calculation:

Eboot + Eshutdown = Eidle(t) (3)

Where Eidle(t) is the energy consumption of a node when
it remains in an idle state for t seconds, which we compute
using Equation 4, and where Eboot+Eshutdown represents the
total energy consumption of a boot-cycle.

Eidle(t) = P̄idle × t (4)

where P̄idle represents the average energy consumption of
a node in idle state (determined from our data), and t is the
unknown duration in seconds that we want to calculate. To
find t we divide the boot-cycle energy consumption (i.e., the
left term of Equation 3) by P̄idle.

We compute for each boot-cycle measurement the break-
even point (i.e., idle time t), and the results are presented in
Figure 8. The break-even point averages around 109 seconds of
idle time, without considering penalties on the responsiveness
on the system.

C. Energy Consumption during Workloads

Table II shows the results of the load balancing experiments.
We performed the workload experiments six times with similar

results. Instead of aggregating the results, which would hide
nuances of the experiment runs, we report a representative
sample. Column 1 shows the index of the experiment. Col-
umn 2 shows the energy consumed in Wh over the entire
course of the experiment for each node and in total. To get
a more representative result, we list for offline nodes a value
that corresponds to the average offline energy consumption
over that period of time across all nodes. Column 3 shows
the CPU utilization of each online node over time during
the experiment. Column 4 shows the corresponding CPU
frequency, where the value is the sum over all cores in MHz (8
cores with hyper-threading, where each core has a maximum
frequency of 3700 MHz). Column 5 shows the request RTT in
milliseconds (mean, 90th percentile, and 99th percentile) over
time during the experiment. Note the y-axis scale changes from
experiment 5. Column 6 shows details about the total requests
processed during the experiment, and RTT statistics.

a) Energy consumption: Although experiment 1 shows
the lowest energy consumption, it should be noted that a single
node was not able to handle the peak load of 300 r/sec, but
instead was capped at 250 r/sec, which should be taken into
consideration when interpreting the results. Looking at the the
sustained peak of CPU utilization and RTT after minute 8
shows that the node was busy working a congested request
queue, and was able to pick up with the reduced request rate
at minute 13. Experiment 2 exhibits similar but less extreme
characteristics. In terms of energy consumption, overall we can
see that there are only slight variations between the different
load balancing policies in experiments 2 through 6. We also
observe that adding a new node in experiment 7 does not
increase the energy consumption significantly. Looking at the
data, we can see that the CPU load is balanced across nodes,
which has a cumulative effect on the energy consumption
reduction of individual nodes, and this reduction is higher
than the cost of adding an additional node. However, there
are diminishing returns: at some point the energy cost of
powering on additional nodes will be larger than the benefits
of balancing load further, as made evident by experiment 8 (4
nodes round-robin scheduling), where the energy consumption
is significantly increased compared to the other experiments.

b) Responsiveness: Overall we can see that, unsurpris-
ingly, the RTT and system responsiveness is generally im-
proved when balancing load between nodes. However, our
results reveal interesting insights on the effect of dynamic fre-
quency adjustment on the overall system responsiveness. For
example, the first minutes of experiment 6-8 show that, when

Fig. 8. Different break-even points of idle and boot-cycle energy consumption
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Fig. 9. Relation between CPU utilization and energy consumption

load is balanced in a way that nodes become underutilized, the
reduced CPU frequency will lead to a worse responsiveness,
despite more nodes being used than in experiment 6.

c) Power Consumption vs CPU Utilization: Assumptions
often made when building simulation models for energy-
efficiency algorithms in cloud computing are: a) that CPU
utilization maps directly to energy consumption [18], [29], b)
that there is a linear relationship between CPU utilization and
energy consumption [17], [6], [28], and c) a low peak-to-idle
energy consumption ratio [7], [18], [29]. These assumptions
may be valid for data-center scale servers [17], but our results
indicate that these assumptions will lead to inaccurate results
when applied to edge computers. Figure 9 shows a scatter plot
of the CPU utilization and energy consumption measurements
of experiment 3 and node 1.

First, we observe that the relationship is more complicated.
Until a CPU utilization of 12%, the energy consumption
only rises very slightly. The relation then exhibits logarith-
mic growth. Second, we observe that for some regions of
utilization, the energy consumption variance is very high. For
example, around a utilization of 16%, the energy consumption
varies between 9W and 30W, and at 90% it only varies
between 63W and 70W. Third, we observe that the peak-to-
idle energy consumption ratio (at around 70W

10W = 7) is much
higher in our prototype compared to what is assumed for data-
center scale hardware (e.g., 1.36 or 1.45 [29]).

VII. DISCUSSION

A. Research Questions

In Section I we introduced two research questions to inves-
tigate our cluster-based edge computer prototype in terms of
energy consumption and responsiveness when employed for a
data analytics application. We now discuss each question w.r.t.
our results:

a) RQ1. What are the energy consumption characteristics
of cluster-based edge computers?: An active node in our
cluster draws power at a rate between 10-80W, depending
on the resource utilization. Even when shut down, a node
draws power at a rate of 0.5-2W. This large margin in energy
consumption between idle and fully utilized nodes is due

to the power management mechanisms of modern CPUs, in
particular voltage and dynamic frequency adjustment. What
this means for, e.g., simulation environments, is that using
CPU utilization as a proxy for energy consumption will lead
to inaccurate results. It is crucial to account for adjusted CPU
frequencies based on the current utilization. Even then, esti-
mates of energy consumption based on performance indicators
alone may not be accurate. Because energy consumption is a
complex process dependent on many different factors that are
difficult to accurately measure in their entirety, different type
of workloads may yield very different energy consumption
patterns [30], which makes it necessary for power-management
mechanisms to have real-time access to energy consumption
data. Further investigation is needed to understand these fac-
tors, and how for example, integrating specialized hardware
affects the overall energy consumption behavior.

Furthermore, we have seen that the boot-cycle of a node
consumes on average as much energy as leaving it in idle
for roughly 109 seconds. Although these results are highly
dependent on the specific hardware and operating systems
used, the provided insights in to the scale of the system,
and can also be used as real-world parameters for simulation
environments.

Overall, our results show that our prototype requires energy
at a scale that can be managed with commodity portable
energy supplies. For example, to get a rough idea, a typical 20
Ah lead-acid battery at 12V corresponds to 240 Wh. In our
20 minute experiment the cluster processed around 190 000
requests, and consumed roughly 20 Wh, with a power draw
of about 80W if we consider the additional infrastructure
energy consumption (switch and router, which averages at
4.1W). Even if we account for Peukert’s law and the resulting
diminished effective capacity, a single battery of this type
could power system under the experiment conditions for over
an hour. This indicates that the general scale of the cluster is
feasible for the application scenarios we presented.

b) RQ2. How do different cluster configurations and load
balancing policies affect the responsiveness and energy con-
sumption of cluster-based edge computers?: Cloud operations
research has traditionally assumed high peak-to-idle energy
consumption ratios of compute nodes [7], [18], [29] Our initial
intuition was therefore that the idle energy consumption of
nodes would be so high, that the optimal configuration would
be to fully utilize each node until the application responsive-
ness drops below a specific threshold (e.g., a maximum RTT
value). Our data show the opposite, which we largely attribute
to the power-management mechanisms of high-density com-
pute hardware, i.e., dynamic frequency adjustment, and the
relationship between CPU frequency and energy consumption.
When load is balanced among cores, the CPU utilization is
low, and therefore the frequency is scaled down. There is a
delicate trade-off between CPU frequency, energy consump-
tion, and responsiveness, which greatly increases complexity
for energy-aware load balancing or scheduling techniques,
and is likely to have different characteristics for different
types of applications and workloads. An approach to handle



TABLE II
RESULTS OVERVIEW OF LOAD EXPERIMENTS IN DIFFERENT CLUSTER CONFIGURATIONS

# Energy (Wh) CPU Utilization (%) CPU Frequency
∑

MHz RTT (ms) RTT (ms) Stat.

1

n1 15.063
n2 0.644
n3 0.644
n4 0.644∑

16.995

requests 184k
x̄ 79.5
Q.9 183
Q.99 313
max 677

2

n1 14.071
n2 4.039
n3 0.644
n4 0.644∑

19.398

requests 190k
x̄ 64.5
Q.9 143
Q.99 287
max 654

3

n1 12.775
n2 5.084
n3 0.644
n4 0.644∑

19.147

requests 191k
x̄ 42.7
Q.9 52
Q.99 161
max 415

4

n1 11.491
n2 6.534
n3 0.644
n4 0.644∑

19.313

requests 191k
x̄ 36.6
Q.9 48
Q.99 62
max 237

5

n1 10.165
n2 7.922
n3 0.644
n4 0.644∑

19.375

requests 191k
x̄ 35.4
Q.9 46
Q.99 59
max 161

6

n1 8.797
n2 9.326
n3 0.644
n4 0.644∑

19.411

requests 191k
x̄ 34.9
Q.9 46
Q.99 60
max 115

7

n1 6.477
n2 6.924
n3 5.345
n4 0.644∑

19.391

requests 191k
x̄ 37.1
Q.9 52
Q.99 68
max 115

8

n1 5.423
n2 5.856
n3 4.454
n4 5.794∑

21.527

requests 191k
x̄ 38.8
Q.9 54
Q.99 76
max 134



this complexity would be to turn off any internal power-
management mechanisms, but we argue that, instead, a multi-
layer view on power-management is needed to fully address
the challenges. Energy-efficiency systems for clusters need
to understand the behavior of the underlying CPUs’ power-
management algorithms, and cooperate with these lower-level
mechanisms to provide optimal balancing of workloads. These
are particularly important observations for future work on
building clusters of hardware that already makes use of energy
efficiency techniques (such as dynamic frequency scaling),
but further investigation is needed to fully understand this
relationship with respect to different workload types and node
configurations.

B. Limitations

There are some limitations in our experiment setup that
should be considered when interpreting the data. First, the
ACS712 sensors have a total output error of 1.5%, and
readings are subject to inherent noise. For this first evaluation,
we have only taken simple measures to control for the sensor
inherent noise. We sample at a rate of 2Hz-4Hz, which
is a relatively high rate compared to the length of each
experiment. For future work, we plan to experiment with
other measurement devices and signal processing techniques
to better control sensor errors and noise. Second, although all
nodes have the exact same hardware specifications, BIOS and
operating system setup, we observed some variations in the
dynamic frequency adjustment between nodes. Specifically,
nodes showed significantly different CPU frequencies when in
idle mode (in a range of 1000-1500 MHz), which may skew
results that include idle energy consumption. We were unable
to determine the definitive reason, but we suspect it has to do
with slight variations in 12V system voltage attributed to the
power supplies, as well as manufacturing differences in CPU
and circuit boards.

VIII. RELATED WORK

As mentioned in the introduction of this paper, power man-
agement techniques are critical for portable cluster-based edge
computers. Existing literature has focused in the last years on
reducing the operational costs of data centers. Beloglazov et
al. [8] propose an energy-efficient load balancing algorithm to
dynamically migrate virtual machines (VMs) between hosts
in a Cloud data center. The authors evaluate a novel heuristic
algorithm that adapts its behavior based on an analysis of
historical data from VMs resource management. A similar
approach is suggested in [31] where a dynamic VM selection
algorithm to migrate VMs from overloaded or underloaded
hosts to minimize the energy consumption and maximize the
Quality of Service (QoS). Multiple other solutions have been
proposed based on machine learning [32], [27] and metaheuris-
tic algorithms [33]. Despite proposing different variation of
energy-efficient optimization algorithms, in all scenarios the
devices are connected to an infinite energy source, and the
power models are built on assumptions that are suboptimal
when dealing with hardware presented in this paper.

One of the first energy-efficiency techniques for cluster-
based systems is presented in [34]. The authors propose a
load balancing and unbalancing decision making algorithm
taking into consideration the workload on the cluster and the
energy consumption costs of turning on and off nodes. Only
the energy consumption in idle and maximum utilization of
a node are taken into consideration when taking decisions
regarding the state of a node (i.e., turn the node on or off).
However, as demonstrated in this paper, in order to save more
energy consumption and take better decision the boot-cycle of
a node should be considered.

Researchers have proposed multiple surveys on energy-
awareness focusing on understanding how to minimize the
energy consumption of each individual component in a Cloud
data center. The most relevant survey is presented in [35] and
identifies causes and problems of high energy consumption in
Cloud data centers. Based on this, they propose a taxonomy
of energy-efficient design of computing systems that will help
developing energy-aware systems.

Compared to related work, our work provides a deeper
understanding of how to minimize energy consumption in
an portable cluster-based edge computer, and lays the foun-
dation for developing energy-efficiency mechanisms which
builds upon existing algorithms, but consider limited energy
supply such as batteries. Energy-awareness and load-balancing
techniques [6] from cloud computing may have limited ap-
plicability in this context, as the operational scale is vastly
different. Portable edge computers do not have available the
same dedicated hardware to operate optimizations and request
routing as cloud data centers.

IX. CONCLUSION AND FUTURE WORK

By bringing Cloud services and data analytics closer to
the edge of the network, edge computers can greatly improve
many application areas. In this paper, we made the case for
portable energy-aware, cluster-based edge computers usable
for data analytics in forward-deployed scenarios. These types
of edge computers must be portable, i.e., compact enough to
be carried by a person or mounted on vehicle, energy-aware
because the computers may be battery powered, and cluster-
based to provide the necessary reliability to deal with varying
workloads at the Edge. Efficiently operating such edge com-
puters requires advanced power-management strategies, such
as energy-aware load balancing or task scheduling. However,
developing such strategies is challenging because we currently
lack a deep enough understanding of how different cluster
configurations, balancing policies, workload types and other
factors affect the overall energy consumption of real-world
systems at this scale. To address this, we presented a design,
prototype and first experimental evaluation of a portable
energy-aware, cluster-based edge computer. We showed the
general feasibility of our prototype, and reported the results
of multiple experiments on the energy and resource con-
sumption characteristics of the cluster in the context of an
image recognition application. The results show that energy-
efficiency in these small clusters involves a delicate trade-off



between system responsiveness and energy consumption, and
reveal some of the intricacies of modern, high-density compute
hardware. Also, our results indicate that previous models used
for simulating energy consumption of data-center scale servers
may not be applicable to edge computers. Further research
is therefore needed to assert whether energy-efficiency tech-
niques developed for cloud computing are applicable to edge
computing. Overall, the data we gathered are valuable for re-
searchers working on the design and simulation of algorithms
for energy-aware edge computers. As a general conclusion,
according to the results of our study we have observed that
by knowing the boot-cycle and shutdown costs (i.e., the
energy consumption needed to perform this actions and the
duration), the idle energy consumption and the responsiveness
of the system a energy-aware scheduling of tasks on the edge
computer will extend the running time of the device.

For future work, we plan to use the results we have
obtained to develop an energy-aware task scheduler and cluster
controller to run on the proposed infrastructure. The goal is
to optimize the overall energy efficiency of the cluster by
dynamically scaling nodes at runtime (e.g., using VOVO[7]
techniques) and balancing load between nodes in a way that
minimizes energy consumption. We also plan to extend the
cluster with specialized hardware such as GPUs and evaluate
more complex application scenarios with different and hetero-
geneous types of workloads.
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