
EMMA: Distributed QoS-Aware MQTT Middleware
for Edge Computing Applications

Thomas Rausch, Stefan Nastic, Schahram Dustdar

Distributed Systems Group
TU Wien, Vienna, Austria

{rausch, nastic, dustdar}@dsg.tuwien.ac.at

Abstract—Publish–subscribe middleware is a popular tech-
nology for facilitating device-to-device communication in large-
scale distributed Internet of Things (IoT) scenarios. However,
the stringent quality of service (QoS) requirements imposed by
many applications cannot be met by cloud-based solutions alone.
Edge computing is considered a key enabler for such applications.
Client mobility and dynamic resource availability are prominent
challenges in edge computing architectures. In this paper, we
present EMMA, an edge-enabled publish–subscribe middleware
that addresses these challenges. EMMA continuously monitors
network QoS and orchestrates a network of MQTT protocol
brokers. It transparently migrates MQTT clients to brokers in
close proximity to optimize QoS. Experiments in a real-world
testbed show that EMMA can significantly reduce end-to-end
latencies that incur from network link usage, even in the face of
client mobility and unpredictable resource availability.

I. INTRODUCTION

Many modern Internet of Things (IoT) scenarios have
stringent quality of service (QoS) requirements [1]. Typically,
device communication in such environments is facilitated by
cloud-based message-oriented middleware (MOM) based on
the publish–subscribe model [2]. Edge computing is con-
sidered a key enabler for scenarios where such centralized
cloud-based platforms are impractical [3], [4]. Edge computing
aims to leverage the ever increasing amount of computational
resources at the edge of the network and move data processing
closer to where data are generated. To facilitate efficient
device communication, publish–subscribe MOM can adhere
to this principle. Instead of routing all messages to the cloud,
brokers can be deployed on edge resources to reduce end-to-
end latencies between devices in close proximity.

IoT and edge computing come with a set of challenges.
The network topology is highly dynamic and subject to high
churn. Clients as well as edge resources are mobile and
may unexpectedly leave or enter the system. The dispersion
of edge resources adds to the overall complexity of system
management mechanisms [5]. Although the Message Queue
Telemetry Transport (MQTT) protocol has proliferated as a
standard pub/sub platform for IoT applications [6], state-of-
the-art MOM solutions based on MQTT fall short of address-
ing these issues.

In this paper we propose EMMA, a distributed QoS-aware
MQTT middleware for edge computing. The contributions of
our system are (i) a continuous network-monitoring protocol

that allows proximity detection based on network latency, (ii) a
mechanism to orchestrate a network of distributed MQTT
client gateways and brokers, (iii) a network reconfiguration
scheme to optimize QoS during runtime based on node prox-
imity. In an empirical evaluation using a real-world testbed,
we show that EMMA can significantly reduce end-to-end
latencies caused by message routing, even in the face of
changing network topologies and client mobility.

II. MOTIVATION

We briefly summarize two scenarios that motivate the need
for edge computing middleware, one from the military domain
described by Lewis et al. [7], and another from the mobile
health (mHealth) domain described by Nastic et al. [8].

Tactical cloudlets: Mobile handheld devices are increas-
ingly used by soldiers, field personnel and first responders. In
tactical environments, such devices can help with tasks such
as language translation, face recognition, mission planning and
other on-premise decision making processes. In these tactical
environments, edge resources such as cloudlets can be hosted
on vehicles, drones, or other platforms in close proximity, and
may be added on demand [7].

Edge analytics for mHealth: In mass emergencies and
disasters, prompt paramedic attention is crucial to save peo-
ples’ lives. To guide and improve the decision making process
of paramedics, patients are equipped with a wearable sensor
that continuously reports vital parameters of the patient to
mobile devices carried by paramedics. For on-premise decision
making, data have to be processed locally in near real-time. On
metropolitan area level, processed health data are useful for
follow-up treatments in hospitals. For this type of analytics,
data have to be transferred to, e.g., a local cloudlet. Any further
long-term data processing, such as using Big Data techniques
for complex data analytics, will require the data to be stored
in a cloud storage system [8].

These scenarios demonstrate the need for edge computing
communication middleware that can provide low end-to-end
latencies between devices in close proximity, while still being
able to distribute messages to the Cloud or other geograph-
ically dispersed locations. Furthermore, the scenarios high-
light the characteristics and challenges of edge environments:
dynamic network topologies, client mobility and changing
resource availability.

Several questions and problems arise when designing such a
middleware. (i) The ad-hoc distribution of brokers to resource
constrained devices requires dynamic and efficient manage-
ment of distributed subscription tables. (ii) Clients should
be unaware of the dynamic broker network and should be
transparently connected to brokers via gateways. (iii) To de-
termine proximity, the network QoS between nodes needs to be
monitored and reported efficiently. (iv) If proximity between
clients and brokers changes, client–broker connections have to
be reconfigured. (v) When brokers provide similar QoS to a set
of clients, load needs to be distributed among these brokers.

III. RELATED WORK

While publish–subscribe (pub/sub) is a well researched
topic [9], cloud computing, the IoT, and edge computing, have
introduced new challenges and opportunities. In particular,
research has shown that current protocols and solutions can not
adequately deal with the scalability and QoS requirements of
modern IoT scenarios [1]. Also, many pub/sub solutions rely
on their own protocols and models [10], [11], [12] that neglect
established standards for IoT applications such as MQTT.

QoS awareness in pub/sub overlay networks has been ad-
dressed in different works spanning the past two decades [13],
[14], [15]. Specifically, these approaches focus on techniques
for managing complex networks of brokers using contextual
QoS information, and efficient message routing within these
networks. Contributions include optimal path selection for
message routing based on QoS criteria and supporting mobility
by providing efficient on-line re-configuration of overlays.

Scalability of pub/sub middleware under fluctuating load
has primarily been addressed using cloud-based solutions.
Centralized systems such as Amazon IoT [2], or Dynamoth
[16] achieve scalability by providing load balancing in a broker
cluster, and elasticity mechanisms for adding and removing
broker nodes on demand. These cloud-based systems do
not consider proximity of clients or latency incurring from
link usage. Load balancing for edge computing is a fairly
unexplored topic, and has only recently gained attention in
the edge computing community [17].

Some open-source pub/sub brokers, such as JoramMQ [18],
Mosquitto1 and HiveMQ2, provide basic mechanisms for en-
abling edge computing applications. For example, Mosquitto
can be configured at deployment time to bridge topics, i.e.,
forward messages of a specific topic, to a centralized broker
[19]. However, these mechanisms are all static in nature and
do not address mobility or changing resource availability.

Few efforts have been made to engineer holistic solutions
for QoS aware pub/sub systems that address the challenges
of IoT and edge computing. An et al. [20] present PubSub-
Coord, a cloud-based coordination system for a distributed
broker network. The overlay layer is strictly structured into
edge brokers and routing brokers, coordinated via a layer of
ZooKeeper nodes. In a non-peer-reviewed work, Abdelwahab
and Hamdaoui present FogMQ [21] which supports migration
of broker clones at runtime to the edge, thereby enabling low-
latency data analytics.

IV. SYSTEM DESIGN

EMMA is built around MQTT, a pub/sub protocol that has
gained newly found attention in the advent of IoT [6], [1].
Due to its lightweight design and minimal network overhead,
MQTT is especially well suited for low-bandwidth and low-
power environments [6]. We designed EMMA to act as a
transparently distributed MQTT broker, enabling existing IoT
software that uses MQTT to be seamlessly used. For this first
prototype, we considered only part of the MQTT protocol.

A. Architecture

EMMA consists of four core components: gateways, bro-
kers, the controller, and the network monitoring protocol.
Figure 1 shows the general architecture of an EMMA deploy-
ment. MQTT clients connect to gateways which act as reverse
proxies for dynamically connecting clients to brokers. Brokers
implement the MQTT server protocol and our dynamic topic
bridging approach. The controller acts as a registry, monitoring
hub and system orchestrator. Next, we describe the role of each
component.

Client
GW

c

GW

c

Broker

Broker

Device

M
on

ito
rin

g
pr

ot
oc

ol

Controller

Bridging
Tables

Gateway

Bridging
Table

Reconfigura-
tion Engine

REST Endpoints

Network
monitor

Buffer out

Buffer in

MQTT
Server

Fig. 1: Overview of the EMMA architecture

a) Gateways: are a key component in enabling mobility
of clients and brokers by allowing reconfiguration of con-
nections. Their purpose is to hide EMMA from the actual
clients by tunneling MQTT traffic and providing a buffering
mechanism during a reconnection process to a different broker.
Gateways can be deployed on different physical locations than
the clients themselves, and can also handle multiple client
connections. They are lightweight, have no code dependencies,
and have very little logic to them. A similar concept was
proposed by Luzuriaga et al. [22], where intermediary buffers
decouple message producers and MQTT publisher clients.

b) Brokers: implement the MQTT server protocol [23],
i.e., manage topic subscriptions and disseminate published
messages to subscribers. They also act as topic bridges to
forward messages to other brokers that have subscribers to
those topics. To that end, bridging tables are synchronized
between brokers via the controller. Bridging tables specify
which brokers have at least one subscriber to a specific topic.

c) Controller: The controller is the orchestration com-
ponent of the system where gateways and brokers register
when they enter or leave the network. It maintains the state of
the network as a graph data structure. Formally, the network
N = (B,C,E) is a bipartite graph containing broker nodes B,
client nodes C, and connections between clients and brokers
as edges E (which we call a link). In this context, a client
c represents a gateway. The reconfiguration engine of the
controller detects proximity between gateways and brokers
based on network latency and instructs gateways to reconnect
to different brokers to optimize QoS. Furthermore, it balances
load between brokers that provide similar QoS to clients.

d) Monitoring: The monitoring protocol is a lightweight
binary protocol to allow distributed monitoring of network
QoS. Each EMMA component implements the protocol. The
monitoring protocol is also used to instruct gateways to
reconnect to different brokers.

V. COORDINATION MECHANISMS

A. Quality of Service Monitoring Protocol

To reason about the network at runtime, we implement a
distributed asynchronous network monitoring protocol on top
of UDP. Messages of the protocol are encoded in a lightweight
binary format, summarized in table Table I.

The general process of the protocol is as follows. The
controller sends a QOSREQ packet containing an ID, and the
measurement target (a broker) to a gateway. The gateway then
sends 10 PINGREQ packets to the broker in an interval of 250
ms. Each PINGREQ packet contains an ID, which is returned
by the broker in a PINGRESP packet. The gateway records the
sent and received timestamps for each packet and sends back
the average latency as a QOSRESP packet to the controller.
Calculating and using other metrics such as jitter and packet
loss is part of our future work.

B. MQTT Broker and Gateway Network Orchestration

1) Dynamic Topic Bridging: Because we assume dynamic
availability of brokers and mobility of clients, we cannot rely
on static bridging configurations, e.g., like Mosquitto does
[19]. We therefore extend the standard MQTT protocol with
dynamic topic bridging. When a client publishes a message
into a given topic, brokers first broadcast the message to all
connected subscribers according to the MQTT protocol, and
then forward the message to other brokers that have at least
one subscriber to the respective topic. Brokers inform the
controller about changes of their local subscription tables when

TABLE I: Packets of the monitoring protocol

Name Description Size

QOSREQ Network QoS measurement request 13
QOSRESP Network QoS measurement response 9
PINGREQ Ping request 5
PINGRESP Ping response 5
RECONNREQ Request a gateway to reconnect to a broker 47
RECONNACK Gateway acknowledges the reconnect 47

:brokerA

:controller:gateway:client

CONNACK
CONNACK

lookup

 result(brokerA)

store
packet

CONNECT

CONNECT

:b1::b2::gateway::controller

SUBSCRIBE
...

CONNECT

 DISCONNECT

replay
control
packets

TCP connect

TCP open

update
network

 RECONACK(b2)

RECONREQ(b2)

Fig. 2: Connection (left) and reconnection (right) procedures

necessary (e.g., if a client subscribes to a new topic), and the
controller propagates relevant changes to the other brokers.

2) Orchestrating Client Connections: Instead of connecting
to a broker directly, MQTT client traffic is tunneled through
a local gateway. When a client sends an MQTT CONNECT
packet to a gateway, the gateway initially queries the con-
troller for a broker to connect to. The gateway stores all
MQTT control packets sent by the client related to estab-
lishing a broker connection and subscriptions (CONNECT,
SUBSCRIBE, UNSUBSCRIBE). The controller may decide at
runtime to migrate the connected clients to a different broker.
To that end, the controller sends a RECONNREQ packet to
the gateway via the monitoring protocol containing the host
and port of the target broker. The gateway asynchronously
opens a connection to the new broker, disconnects from the
old broker once the new connection is established, informs
the controller by sending a RECONNACK packet, and then
places the stored control packets into the send buffer dequeue.
To avoid packet loss during reconnection of clients to new
brokers, a gateway maintains, for each client–broker tunnel,
two buffers that buffer incoming messages from the client and
broker respectively. Any messages sent from the client during
a reconnection process are buffered into a dequeue. Once the
connection to a new broker is established, the recorded MQTT
control packets are placed into the head of the dequeue, the
old connection is closed, and the buffer, which includes the
control packets, is flushed. Figure 2 shows sequence diagrams
of the connection and reconnection procedure.

C. Network Reconfiguration and QoS Optimization

The network is reconfigured by first examining the current
QoS of the network, selecting potential broker candidates for
each client in a way that will optimize QoS for those clients,
and then migrating clients to their designated brokers. The
reconfiguration engine of the controller is scheduled to run
at a fixed interval of 15 seconds. Figure 3 shows the state
of a network before and after a reconfiguration. Values of
links indicate the proximity (latency in milliseconds). Arrows
indicate message flow. Clients c1 and c2 are migrated from
broker b1 to b2. A topic bridge between the two brokers is
created automatically through the subsequent reconnection and
subscription procedures described earlier.

When brokers provide similar QoS to clients, it is im-
portant to (i) avoid migrating clients due to slight vari-
ability of latency, and (ii) balance load between those bro-
kers. To that end, we stratify brokers into latency groups,

b1b2

100

100

pub

sub

sub
105

5
100

c3

c1

c2

b1b2

100

100

pub

sub

sub
105

5
100

c3

c1

c2

Fig. 3: Network before and after reconfiguration

based on the premise that connecting to any of the bro-
kers in a group is acceptable in terms of QoS. We de-
fine the latency groups as millisecond-intervals I , and set I
= {[0, 2), [2, 5), [5, 10), [10, 20), [20, 50), [50, 100), [100, 200),
[200, 500), [500, 1000), [1000,)}. That means, for example, if
a broker b provides a client c a latency of 4, it would fall
into the interval I2 = [2, 5) and therefore into group 2. For
balancing load in a group we implemented a simple strategy
based on the amount of clients connected to a broker.

The basic algorithm for reconfiguring the network is out-
lined in Algorithm 1. The network N = (B,C,E) is a
bipartite graph of brokers B and clients C as described in
Section IV-A. To avoid migrations when no significant load
balancing would occur, we introduce the migration threshold
θ, which defines the minimum percentage of connections that
have to change within a group of candidate brokers in order
to trigger a reconnect. By default, we set θ = 0.1.

Algorithm 1 Network reconfiguration
In: Network N = (B,C,E)
In: Migration threshold θ

1: for all c ∈ C do
2: bc ← currentBroker(c)
3: B′

c ← brokersInLowestLatencyGroup(N , c)
4: b′c ← b ∈ B′

c s.t. connCnt(b) is minimal
5: if bc = b′c then
6: continue
7: end if
8: if bc ∈ B′

c then
9: δ = θ ·

∑
b∈B′

c
connCnt(b)

10: if connCnt(b′c) +δ ≥ connCnt(bc) then
11: continue
12: end if
13: end if

migrate(c, b′c)
14: end for

VI. EVALUATION & IMPLEMENTATION

To show the efficacy of our approach, we implement a
prototype of the EMMA system and evaluate it in a real-
world testbed. We run an experimental scenario that emulates
the scenarios described in Section II to show that the system
can (i) deal with clients and brokers unexpectedly entering and
leaving the network, (ii) dynamically bridge topics only when
required, (iii) reconfigure connections to optimize latency for
clients in close proximity, and (iv) balance load between
brokers that provide similar QoS to clients.

us-east eu-west

eu-central

BrokerGateway BrokerGateway

Controller

... ...

Gateway

Broker

98 ms 27 ms

85 ms

Fig. 4: Evaluation environment in AWS EC2

A. Prototype Implementation

We implement EMMA as a set of modular components
written in the Java programming language. To date, the code-
base comprises 217 classes and 10.3k effective LOC. The code
is open source and published in our code repositories3. For
distributing bridging tables we use Redis4 and its keyspace
notification feature to propagate updates only when necessary.

B. Experiment Setup

We now present the details of our evaluation environment,
the experimental scenario, and deployment details.

1) Testbed: Our evaluation environment consists of multi-
ple Amazon EC2 virtual machines that span three different
AWS data centers. Figure 4 illustrates the setup and shows
latencies between regions. Latencies within regions are in the
sub-millisecond range. We use the following EC2 instances
types for the components. The controller runs on a t2.large
(2 vCPUs, 4 GiB RAM) instance. For broker nodes, we use
t2.medium instances (2 vCPUs, 2 GiB RAM). Gateways and
clients share t2.micro instances (1 vCPUs, 1 GiB RAM).

2) Scenario: The experimental scenario emulates the real-
world edge computing scenarios presented in Section II. In
this particular experiment, we spawn client groups across two
regions. Each client group consists of 10 VMs, each hosting a
gateway, 1 subscriber and 7 publishers that exchange messages
in a topic named like the region they are deployed in, namely
eu-west and us-east. To show that the system can dynamically
create topic bridges when necessary, a publisher and subscriber
pair is deployed in each region that communicate in the topic
global. A single subscriber to this topic is also deployed
in eu-east where the initial broker and controller reside. To
demonstrate the orchestration mechanisms, we trigger the
following events manually at runtime:

1) Clients appear that communicate in topic global (one
publisher and subscriber in both us-east and eu-west. One
subscriber in eu-central)

2) Client group appears in the us-east region
3) Broker spawns in eu-west (1)
4) Client group appears in the eu-west region

5) Broker spawns in us-east
6) Broker spawns in eu-west (2)
7) Subscriber to topic global in eu-central disappears
8) Broker shuts down in us-east
3) Clients & Load Generation: For the purpose of generat-

ing load and recording message statistics, we developed a gen-
eral purpose framework for benchmarking publish–subscribe
systems which is also open source5. Messages generated by
the application contain a payload in the JSON format that has
a total of 118 bytes (including JSON overhead). They contain
a UUID, a timestamp the message was sent, and a dummy
payload with 14 bytes as placeholder for a sensor reading. We
configure each publisher to generate messages at a fixed rate
of 10 messages per second.

C. Experiment Results

Figure 5 shows the main results from our experiment.
Figure 5a shows the message throughput of the brokers
during their lifetime. The circles and dotted lines indicate the
events described previously. The x-axis indicates the time (in
minutes) of the experiment, each labeled tick is 60 seconds
apart. Figure 5b and Figure 5c show the average end-to-end
latency of messages in the respective topics, aggregated every
second over all subscribers of that topic.

1) Throughput & load balancing: Figure 5a shows how the
rebalancing mechanism and the dynamic bridging approaches
behave. At event 4, when the client group appears in eu-west,
the output rate shows that it takes two rebalancing iterations
to fully balance connections between the two active brokers.
Because messages are bridged between the two brokers, the
input rate does not change. However, as the output rate makes
apparent, the balancing can significantly reduce the strain of
multicast on a single broker. The input rate of the eu-central
broker after event 7 shows that, once there are no subscriptions
to a topic at a specific broker, the subscription tables are
propagated and messages are no longer bridged to that broker.

At event 8, when the broker in us-east shuts down, clients
previously connected to that broker are immediately migrated
to other available brokers. All three currently running brokers
are in the same latency group for the clients deployed in the
us-east region. As the output throughput graph shows, load is
balanced between the three brokers.

2) Topic latencies: Figure 5b shows how rebalancing and
migrations affect the end-to-end latencies between clients. In
particular, the graphs reveal the cost of migrating clients.
At event 3, when a new broker spawns and migration of
clients begins, the message latencies spike. This is the result
of a combination of the gateway buffering mechanism during
reconnect, and the Java warm-up phase of newly spawned
brokers. However, as the graph shows, the latency stabilizes
a few seconds after the migration is complete, and the load
is shared between the brokers eu-central and eu-west 1. The
second iteration has a less drastic effect.

At event 4, the graph for the eu-west topic shows that clients
in the region immediately connect to the broker closest to
them. Consequently, the load balancing engine moves some

71

2

3 4 5 6 8

(a) Broker message throughput

(b) Aggregated topic latencies

(c) Latencies during intra-region communication

Fig. 5: Experiment results

of the clients connected from us-east back to the eu-central
broker. In this case, it took two balancing iterations to fully
balance the connections.

At event 5, when the broker in us-east is spawned, all
clients in the region migrate to that broker. This includes the
publisher and subscriber in that region communicating via the
global topic, which is why the average latency also drops
dramatically. A major source of latency in this topic is the
round-trip time between the us-east region and the brokers in
eu regions. Once clients within the region communicate via a

Fig. 6: Average latency for global topic subscribers

local broker, only messages that have to be forwarded are sent
over the us–eu link. At event 8, when the broker in us-east
shuts down, latencies spike due to reconnection buffering, and
then stabilize at their previous levels.

Figure 5c shows the time window between event 5 and 8,
where both client groups have a broker in their respective
region. As the graphs show, the latencies average at around
3-5 ms. The variance in the eu-west topic shows how load bal-
ancing affects latencies for devices in close proximity. These
results also indicate that messages are bridged efficiently,
meaning that the system can provide low end-to-end latencies
for clients in close proximity, and forward messages to other
brokers that provide similar QoS with minimal overhead.

3) Global message dissemination: In each region, one
subscriber to the global topic is deployed. Figure 6 shows
the average end-to-end latency for each subscriber in the
respective region during the experiment. As the us-east graph
shows, messages sent from the us-east region have, at first,
the highest round trip time, causing the high fluctuation in
that region. At the later stages after event 5, where a broker is
present in each region, message latencies average at roughly
the average link latencies between clients and their local
brokers. Looking at the subscriber in eu-central, we also
observe that, even when topics are bridged from other regions,
the latencies do not significantly change. This shows that the
overhead of bridging messages to geographically dispersed
locations is minimal even under broker load.

4) Message loss: The gateway buffering approach avoids
message loss for publishers during a reconnection procedure.
However, messages published while subscribers are migrated
may not be delivered to these subscribers. Figure 7 shows the
total amount of undelivered messages in both client groups
at given points in time during the experiment. The boxes
show the distribution of undelivered messages across the 10
subscribers of the respective group. Boxes are drawn in points
in time where the amount of undelivered messages changed.
Each client group consists of 70 publishers that publish at
a frequency of 10 msg/s, totaling at 700 msg/s. In the us-
east topic, a total of 177,269 messages were published. As
the last box for the topic shows, subscribers experienced a
total message loss of about 765 messages, i.e., 0.43% per
subscriber. For the global topic, message loss was minimal.

Fig. 7: Message loss for clients in the respective regions

D. QoS Monitoring Network Usage

QoS monitoring comes at the cost of using the network’s
bandwidth. We present a sample calculation that shows that the
use grows linearly with the amount of brokers and clients in
the network. Measuring the QoS between two nodes involves
sending a total of 22 UDP packets. A UDP packet in IPv4
Ethernet has 48 bytes of overhead. Hence the UDP overhead
for each measurement totals at 1058 bytes. The request/re-
sponse packets sent between gateway and controller are 13
byte and 9 byte respectively. Then, 10 ping messages are sent
to the broker, and, ideally, 10 response messages are returned,
totaling 100 bytes. Including the UDP overhead, this means a
total of 1180 bytes per measurement.

Our prototype implements a fixed rate approach, where
QoS is measured every 15 seconds. In a network of 100
brokers, this would mean roughly 7.9 kB/s network usage for
a gateway. There is a lot of potential to optimizes these values,
e.g., by adapting the update measurement frequency based
on proximity. More inquiry on the requirements of network
balancing algorithms on monitoring protocols is needed.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented EMMA, a QoS aware MQTT
middleware for edge computing. EMMA is a step towards
a holistic message-oriented middleware for edge computing
applications that aim to satisfy the stringent QoS requirements
imposed by modern IoT scenarios. We have shown that
EMMA can provide low-latency communication for devices
in close proximity, while allowing message dissemination
to geographically dispersed locations at minimal overhead
costs. Our network reconfiguration mechanism enables client
mobility, dynamic broker provisioning, and broker load bal-
ancing. Gateways allow existing MQTT client infrastructure
to transparently connect to the system.

Future work includes a complete implementation of the
MQTT protocol, including its message reliability guarantees
(at least once, and exactly once), as well as automatic resource
discovery and elasticity control mechanisms for autonomous
broker deployment to the edge.

ACKNOWLEDGMENT

This work is partially supported by the Austrian Federal
Ministry of Science within the CPS/IoT Ecosystem project
and by TU Wien research funds.

REFERENCES

[1] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meet-
ing iot platform requirements with open pub/sub solutions,” Annals of
Telecommunications, vol. 72, no. 1-2, pp. 41–52, feb 2017.

[2] J. Barr, “Aws iot – cloud services for connected devices,” AWS
Blog, 2015. [Online]. Available: https://aws.amazon.com/blogs/aws/
aws-iot-cloud-services-for-connected-devices/

[3] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 5, pp. 37–42, Sep. 2015.

[4] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, May 2016.

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. June, pp. 30–39, Jan 2017.

[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[7] G. Lewis, S. Echeverria, S. Simanta, B. Bradshaw, and J. Root, “Tactical
cloudlets: Moving cloud computing to the edge,” in 2014 IEEE Military
Communications Conference. IEEE, oct 2014, pp. 1440–1446.

[8] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A serverless
real-time data analytics platform for edge computing,” IEEE Internet
Computing, vol. 21, no. 4, pp. 64–71, 2017.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, jun 2003.

[10] G. Siegemund, V. Turau, and K. Maâmra, “A self-stabilizing publish/sub-
scribe middleware for wireless sensor networks,” in 2015 International
Conference and Workshops on Networked Systems (NetSys), Mar 2015,
pp. 1–8.

[11] P. Bellavista, A. Corradi, and A. Reale, “Quality of service in wide scale
publish–subscribe systems,” IEEE Communications Surveys Tutorials,
vol. 16, no. 3, pp. 1591–1616, 2014.

[12] V. Turau and G. Siegemund, “Scalable routing for topic-based publish/-
subscribe systems under fluctuations,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), June 2017, pp.
1608–1617.

[13] N. Carvalho, F. Araujo, and L. Rodrigues, “Scalable qos-based event
routing in publish-subscribe systems,” in Fourth IEEE International
Symposium on Network Computing and Applications, jul 2005, pp. 101–
108.

[14] Y. Chen and K. Schwan, “Opportunistic overlays: Efficient con-
tent delivery in mobile ad hoc networks,” in Middleware 2005:

ACM/IFIP/USENIX 6th International Middleware Conference, Greno-
ble, France, November 28 - December 2, 2005. Proceedings. Springer
Berlin Heidelberg, 2005, pp. 354–374.

[15] M. Kim, K. Karenos, F. Ye, J. Reason, H. Lei, and K. Shagin, “Efficacy
of techniques for responsiveness in a wide-area publish/subscribe sys-
tem,” in Proceedings of the 11th International Middleware Conference
Industrial Track, ser. Middleware Industrial Track ’10. ACM, 2010,
pp. 40–45.

[16] J. Gascon-Samson, F. P. Garcia, B. Kemme, and J. Kienzle, “Dynamoth:
A scalable pub/sub middleware for latency-constrained applications in
the cloud,” in 2015 IEEE 35th International Conference on Distributed
Computing Systems, jun 2015, pp. 486–496.

[17] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An approach to qos-
based task distribution in edge computing networks for iot applications,”
in 2017 IEEE International Conference on Edge Computing (EDGE),
June 2017, pp. 32–39.

[18] ScalAgent, “Jorammq, a distributed mqtt broker for the internet of
things,” 2014.

[19] M. Garcia, “How to bridge mosquitto mqtt broker to
aws iot,” The Internet of Things on AWS – Official
Blog, 2016. [Online]. Available: https://aws.amazon.com/blogs/iot/
how-to-bridge-mosquitto-mqtt-broker-to-aws-iot/

[20] K. An, S. Khare, A. Gokhale, and A. Hakiri, “An autonomous and
dynamic coordination and discovery service for wide-area peer-to-peer
publish/subscribe: Experience paper,” in Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems, ser.
DEBS ’17. New York, NY, USA: ACM, 2017, pp. 239–248. [Online].
Available: http://doi.acm.org/10.1145/3093742.3093910

[21] S. Abdelwahab and B. Hamdaoui, “Fogmq: A message broker
system for enabling distributed, internet-scale iot applications over
heterogeneous cloud platforms,” CoRR, vol. abs/1610.0, 2016. [Online].
Available: http://arxiv.org/abs/1610.00620

[22] J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni, M. Perez, and
P. Boronat, “Handling mobility in iot applications using the mqtt
protocol,” in 2015 Internet Technologies and Applications (ITA), Sep
2015, pp. 245–250.

[23] A. Banks and R. Gupta, “Mqtt version 3.1. 1,” OASIS standard, vol. 29,
2014.

NOTES

1https://mosquitto.org
2http://www.hivemq.com
3https://git.dsg.tuwien.ac.at/emma/emma
4https://redis.io
5https://git.dsg.tuwien.ac.at/emma/pubsub-benchmark

