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Abstract—The continuous expansion of Edge computing calls
for efficient scheduling techniques for the employed microser-
vices. However, typical container schedulers often fall short
when used in an Edge cluster with heterogeneous devices and
unstable network connections, because they do not account
for any network Quality of Service (QoS) requirements. This
makes it hard for applications to fulfill their Service Level
Objectives (SLOs). In this paper we present Polaris Scheduler, an
SLO-aware scheduler for the Edge that is developed as part of the
Linux Foundation Centaurus project. Polaris Scheduler optimizes
the placement of an application’s microservices to improve the
fulfillment of their SLOs. To this end, it supports modeling of
the Edge topology as a Cluster Topology Graph to capture the
network quality characteristics and allows users to specify the
dependencies among their application’s microservices, as well
as the network QoS requirements (bandwidth, latency, jitter,
and packet drop) for each of them in the form of a Service
Graph. Polaris Scheduler relies on a plugin-based approach to
allow support for multiple SLOs. We implement our scheduler
with plugins for meeting network QoS SLOs as a Kubernetes
scheduler and evaluate it using a realistic traffic analysis and
hazard detection use case.

Index Terms—Edge Computing, Microservices, Scheduling,
Service Level Objectives, Network Quality of Service

I. INTRODUCTION

Edge Computing is experiencing significant growth, with
popular use cases including smart traffic management to
enhance safety and comfort for drivers [1] and smart factories
that optimize the collaboration between robots and humans [2].
Most applications have committed to “maintain a particular
state of the service in a given period” [3], e.g., maintain a
certain response time, which is defined as a Service Level
Objective (SLO) that is objectively measurable.

The microservice paradigm is widely used to divide ap-
plications into smaller cohesive units, each responsible for a
specific task and deployable separately from the others, e.g.,
on a different node. A microservice is commonly deployed in
a container, which provides lightweight isolation and bundles
all software dependencies. Cluster resource management is
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handled by an orchestrator, e.g., Kubernetes1, which is the
most versatile among common production-grade container
orchestrators [4]. The placement of a microservice on a par-
ticular node is done by a component called the scheduler. One
of the biggest challenges in scheduling the microservices of a
large-scale Edge application is selecting nodes that allow the
application to fulfill its network SLOs. The heterogeneity of
network links within an Edge cluster may lead to a node being
unsuitable for hosting a microservice, despite having sufficient
resources, only because its network connection is unstable. To
allow an application to fulfill its SLOs the scheduling process
must not only consider the nodes’ resources, but also the
network when determining an optimal placement.

In this paper we present Polaris Scheduler2, an SLO-aware
scheduler for the Edge. Our main contributions include:

1) an SLO- and topology-aware scheduling framework,
2) a Service Graph and a Cluster Topology Graph to model

application SLO- and Edge network-topologies, and
3) a suite of scheduling plugins that leverage these abstrac-

tions and mechanisms to enforce the network SLOs at
the time of scheduling.

This paper is structured as follows: Section II outlines a re-
alistic Edge Computing use case with strict network Quality of
Service (QoS) requirements to motivate our work, Section III
presents an overview of Polaris Scheduler and its scheduling
pipeline, and Section IV describes the components that make
it SLO-aware. In Section V we evaluate our work using
experiments, based on our motivating use case, Section VI
presents related work, and Section VII concludes the paper.

II. MOTIVATION

Polaris Scheduler is part of the Polaris SLO Cloud3 project,
a SIG of the Linux Foundation Centaurus project4, a novel
open-source platform for building unified and highly scalable
public or private distributed Cloud and Edge systems. Polaris
aims to make SLOs first class entities in Cloud and Edge

1https://kubernetes.io
2https://github.com/polaris-slo-cloud/polaris-scheduler/tree/v0.2.2
3https://polaris-slo-cloud.github.io
4https://www.centauruscloud.io
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Computing [5], [6]. Polaris Scheduler builds upon our vision
of broad-range SLO-awareness in Edge scheduling [7], extend-
ing it with algorithms for enforcing network QoS, as well as
concrete realizations and evaluations of previously presented
concepts.

A. Illustrative Scenario

To better illustrate the need for the Polaris Scheduler, we
present an Edge computing use case for analyzing road traffic
conditions to reveal congestion and for detecting hazards
on the road to alert nearby smart cars to improve traffic
safety. The traffic conditions analysis is inspired by traffic
info crowdsourcing in Google Maps [8], while the hazard
detection is adapted from use case 2 of RAINBOW5 [9],
a European Union Horizon 2020 Fog Computing research
project. Our use case features the five main microservices,
depicted in Fig. 1. The Collector service receives events from
nearby cars about their movements, performs initial filtering,
and detects if there is a hazard, e.g., an accident or an animal
on the road. To ensure low latencies, the Collector is deployed
on 5G base station nodes. The filtered data are forwarded to
the Aggregator service and hazards to the Hazard Broadcaster
service. The Aggregator service, which combines traffic and
hazard data from multiple Collectors and forwards them to the
Region Manager service, requires a more powerful node, e.g.,
a Cloudlet or an Edge gateway. The Hazard Broadcaster ser-
vice receives hazard alerts from a Collector, determines within
which vicinity vehicles need to be alerted and, subsequently,
notifies them via 5G. The Region Manager service aggregates
traffic and hazard data from all Aggregator services in the
region into a unified traffic view – it needs to run in the
Cloud. The unified traffic view is periodically forwarded to
the Traffic Info Provider service instances, which allow cars
to periodically pull updates to this view.

The relationships between the microservices in Fig. 1 are
annotated with network SLOs for the respective communica-
tion links. For example, the link from the Collector to the
Aggregator requires a connection with a minimum bandwidth
of 10 Mbps, to allow streaming the filtered event data. The
maximum latency of this link is 50 ms, because the Aggregator
only provides information for the unified traffic view, whereas
the maximum latency from the Collector to the Hazard Broad-
caster is 10 ms to ensure that detected hazards are broadcast
in time to nearby vehicles. The maximum latency for collision
warnings, as defined by the ETSI TS 101 539-3 standard [10]
is 300 ms. In a similar use case the detection of a pedestrian
using a camera was reported as taking 90-100 ms [11]. If
we assume 100 ms for the detection by a smart car, another
30 ms for transmission to the Collector, 50 ms of processing
by the Collector, and 20 ms by the Hazard Broadcaster, then
the 10 ms SLO we have defined for the connection between
Collector and Hazard Broadcaster is reasonable to allow for
spare time to broadcast the alert to nearby vehicles. While
the unified traffic view also contains information on hazards,

5https://rainbow-h2020.eu
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Fig. 1: Traffic Analysis & Hazard Detection Service Graph (simplified).

these are intended for more distant cars, which means that
the latency requirements are less stringent on this network
path. The network SLOs are important for the user experience
(unified traffic view) and absolutely critical to the safety of
nearby vehicles (Hazard Broadcaster). Thus, a scheduler must
ensure that the microservices’ placement fulfills these SLOs.

B. Research Challenges

RC-1 Capturing dependencies and enforcing SLOs among
application microservices: Most production schedulers, such
as the Kubernetes default scheduler, place each microservice
of an application completely independently of the others,
ignoring their interdependencies. However, Edge applica-
tions need to be treated as a whole; dependencies and net-
work SLOs among microservices must be considered during
scheduling to allow the application to fulfill its purpose.

RC-2 Guaranteeing long-time compliance to network SLOs:
Fulfilling an application’s SLOs immediately after schedul-
ing its microservices is the foundation for its success.
However, frequent SLO violations and the associated scaling
or migration of microservices may introduce unnecessary
costs. Furthermore, if not addressed, this issue may cause
a microservice to repeatedly be migrated back and forth
within a set of nodes, because the QoS of their network
connections keeps oscillating. Thus, it needs to be investi-
gated how current and historical information about network
connections can be used to infer a node’s suitability to fulfill
a microservice’s SLOs.

RC-3 Capturing the Edge cluster’s topology and network
QoS state: Finding solutions to RC-1 and RC-2 requires
information about the current topology and network QoS
state of the cluster. Cloud schedulers typically assume a flat
network structure, where each node is directly connected
to every other node. This is often not the case in an
Edge cluster, because certain nodes may be connected to
a larger network through gateway nodes that may become a
bottleneck. Furthermore, Edge clusters can be highly volatile:
nodes may leave unexpectedly because they lose connectivity
or their battery is drained or a 5G node’s bandwidth may vary
with the number of active devices in its cell. Representing
the cluster’s network state and leveraging it for scheduling
is imperative for fulfilling SLOs.
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III. APPROACH OVERVIEW AND SCHEDULING PIPELINE

Polaris Scheduler aims to augment the resource-based
scheduling approach taken by many Cloud and Edge sched-
ulers today with awareness of application SLOs, especially
those related to network QoS. Specifically, our approach is to
find a suitable placement for microservices in an Edge cluster
that (i) respects the resource requirements of the workload,
e.g., virtual CPU cores (vCPUs), memory, GPS, camera, and
(ii) fulfills the microservices’ network QoS requirements in
terms of bandwidth, latency, latency variance (i.e., jitter), and
packet loss, thus, allowing them to meet their network-related
SLOs. To this end, we consider the interactions between the
microservices of an application, i.e., the application’s topology.
Furthermore, Polaris Scheduler allows adding extensions to
optimize the placement for additional SLOs in the future. The
need to make placement decisions based on multiple require-
ments makes this a multi-criteria decision making (MCDM)
problem. To enable extensibility Polaris Scheduler utilizes a
plugin-based approach, where each criterion in the MCDM
problem is handled by one plugin. Polaris Scheduler leverages
the Edge cluster’s network topology modeled as a Cluster
Topology Graph and the interdependencies and SLOs of the
microservices of an application modeled as a Service Graph
to determine if hosting a microservice on a particular node
would fulfill the network SLOs.

A. Scheduling Pipeline

Each microservice instance is a container, which needs to
traverse the scheduling pipeline to be assigned to a node for
execution. Polaris Scheduler’s scheduling pipeline is based
on the Kubernetes scheduling framework [12], which is also
used by kube-scheduler, the default Kubernetes scheduler.
The scheduling process is divided into two major parts: the
scheduling pipeline and the binding pipeline, which are further
subdivided into stages. Each stage provides an extension point
for registering plugins. The scheduling pipeline consists of a
sequence of filtering and scoring stages. Filter plugins remove
nodes that are incapable of hosting a container, while score
plugins assign a score to the nodes that have survived filtering.
The node with the highest cumulative score is picked to host
the container and admitted to the binding pipeline, which
enacts this decision on the cluster.

The stages of the scheduling pipeline are depicted as white
boxes in Fig. 2. The Sort stage establishes the order in which
the incoming containers will proceed through the scheduling
pipeline – this stage supports only a single plugin. The Pre-

Filter stage is executed once per container and is intended
for caching information that needs to be computed once for
the container and not for every candidate node. The Filter

stage is executed for each candidate node and is responsible
for removing nodes that are incapable of hosting the current
container. PostFilter is only executed if no nodes are
left after filtering – this stage allows, e.g., preempting other
containers to then retry filtering. The PreScore and Score

stages are the scoring counterparts to PreFilter and Filter.
The NormalizeScore stage can be used to normalize a
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Fig. 2: Scheduling Pipeline (based on [12]) and Polaris Scheduler Plugins.

plugin’s node scores to an integer between 0 and 100, which
is required by the framework. Afterwards, the scores of all
plugins are accumulated and the node with the highest score
is selected. This selection is relayed to the Reserve stage,
which allows plugins to update third-party data structures.
Permit, the final stage of the scheduling pipeline, allows
approving, denying, or delaying a container’s entrance to the
binding pipeline. Polaris Scheduler’s scheduling pipeline fo-
cuses on providing Edge and SLO awareness. We assume that
other scheduling requirements, such as requested resources,
are addressed by the underlying base framework, e.g., the
Kubernetes scheduling framework’s default plugins [13].

B. Cluster Topology Graph and Service Graph

Unlike in a Cloud environment with a high-speed flat
network structure, an Edge cluster node is often not “directly
connected” to all other nodes, because an Edge cluster’s
network structure does not resemble a complete graph. Some
nodes may be connected directly to each other, while other
nodes might only be reachable through a gateway node.
Furthermore, the types of network connections and their QoS
properties may vary greatly; some connections are fast WiFi or
5G links, while others are slower, such as 3G. To capture the
network topology of a cluster and the QoS properties of the
connections, we use a Cluster Topology Graph, which is an
undirected graph, where every node in the graph represents a
node in the cluster and each link between two nodes represents
the network connection between them. Each link is annotated
with the QoS properties of this connection, i.e., its bandwidth,
latency, bandwidth variance, latency variance (jitter), and the
packet drop percentage. We have created a Custom Resource
Definition (CRD) to store information about each network link
as an object in Kubernetes. We assume that these network
link objects needed to build the Cluster Topology Graph are
available to the scheduler and that they reflect a recent state of
the network. The specifics of how these links can be generated
and updated by monitoring solutions has no direct effect on
Polaris Scheduler and is beyond the scope of this paper.

To model the topology of an application and its network
QoS requirements, Polaris Scheduler relies on a Service
Graph [14], like the one in Fig. 1. This is a directed acyclic
graph (DAG), where each node represents a microservice of
the application (all instances of this microservice are captured
by a single node). A link from node α to β indicates that mi-
croservice α makes requests to microservice β. Each Service
Graph link can be annotated with the minimum network QoS
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requirements for the network connection between the two mi-
croservices. Specifically, the Polaris Scheduler supports min-
Bandwidth, maxBandwidthVariance, maxLatency, max-
LatencyVariance, and maxPacketDropBp. All values are
optional to allow developers to only configure those constraints
that are important to their application. The Service Graph is
implemented as a Kubernetes CRD, consisting of a list of node
names and a list of link objects that use these node names and
provide the previously mentioned network QoS configuration
options. To denote its position in a Service Graph, a container
can reference the Service Graph and the respective node by
their names in its metadata. The scheduling framework and
modeling support of Polaris Scheduler address RC-1 and RC-
3, whereas the scheduler’s plugins focus on RC-1 and RC-2. In
the subsequent sections, we describe how these contributions
are designed, implemented, and evaluated.

IV. POLARIS SCHEDULER PLUGINS

In this section we describe the main plugins of the Polaris
Scheduler in detail. Fig. 2 shows the Polaris Scheduler plugins
as block arrows above the extension points of the stages of the
scheduling pipeline. A block arrow with a green background
indicates that the respective plugin provides optimizations that
are based on highly dynamic data, like the Cluster Topology
Graph, while a yellow background indicates that the plugin’s
optimizations are based on mostly static data, such as the
hourly cost of a node. Finally, a turquoise background in-
dicates that a plugin is of managerial nature and maintains
shared data structures needed by the other plugins.

A. ServiceGraph Plugin

The ServiceGraph plugin is responsible for loading and
maintaining the Service Graph to which a container is asso-
ciated. It, thus, provides the foundation for almost all other
plugins. To this end, it ties into multiple extension points.

Sort Stage. In this stage the plugin ensures that the con-
tainers that belong to the same Service Graph are scheduled
in the order they are invoked upon a user request. This is
necessary, because if network QoS constraints are specified
for a link in the graph, Polaris Scheduler will ensure that a
new container β, which is called by container α, is placed
sufficiently close to container α to meet the QoS requirements.
To this end, the scheduler needs to know where container α
has been placed, hence the need for sorting. When the Sort
stage is first invoked for a new container, for which the Service
Graph has not been loaded yet, the ServiceGraph plugin
fetches the Service Graph object from the cluster and places
it in a shared cache within Polaris Scheduler. This cache uses
reference counting to track how many containers are using a
Service Graph. At this stage no scheduling context object has
been created for the container yet, so each invocation of the
Sort stage must look up the container’s Service Graph in the
local cache. The Kubernetes scheduling framework does not
foresee any lengthy operations in the Sort stage, which may
at some point lead to bad performance when handling a large
number of containers. In our experiments (see Section V) we

Service �Service �

User

Service �

Service �

{minBandwidth: 10Mbit, 

maxLatency: 100ms}

{minBandwidth: 1Mbit, 

maxLatency: 10ms}
{maxPacketDropBp: 1}

Fig. 3: Most Stringent QoS Requirements for Service γ.

did not notice any problems. Nevertheless, we will investigate
the possibility of designing a custom scheduling pipeline as
future work. This plugin stage also triggers the lookup of the
cluster nodes with already running containers of this Service
Graph, because the current container may not have been
created during the initial deployment, but, e.g., as a result of
horizontal scaling. This lookup is performed asynchronously
and, thus, does not affect the performance of the Sort stage.

PreFilter Stage. At this stage the scheduling context object
becomes available for the container, so the plugin caches the
container’s Service Graph in the respective scheduling context.

Reserve Stage. This stage logs the placement of the con-
tainer in the locally cached Service Graph, so that it can be
looked up for containers that are still queued.

PostFiler, Unreserve, & Permit Stages. These stages
decrement the reference count of the Service Graph in the
shared cache and eventually release the graph object.

B. NetworkQoS Plugin

The NetworkQoS plugin filters out all cluster nodes that
do not meet the network QoS requirements defined on the
incoming and outgoing Service Graph links. The plugin sup-
ports throughput (bandwidth), latency, latency variance (jitter),
and packet drop. Enforcing the requirements of the incoming
Service Graph links entails looking up the cluster nodes of
the already scheduled containers that represent the sources
of these links. For each candidate node, the NetworkQoS

plugin needs to calculate the shortest path between the source
container and the candidate node. The plugin ties into four
stages: PreFilter, Filter, Score, and NormalizeScore.

PreFilter Stage. This stage is run once for each container
and consists of the two major steps described in Algorithm 1.
Step 1. Lines 3–9: The overall network QoS requirements
for the container are computed, based on all incoming and
outgoing links of its node in the Service Graph. This entails
iterating through all these links and collecting the most
stringent requirement for every configured network QoS
property, as shown in Fig. 3. This information is needed for
the heuristic executed in step 1 of the Filter stage.

Step 2. Lines 10–19: The incoming Service Graph links are
cached for the container’s Service Graph node. For each such
link, the set of cluster source nodes is computed. It consists of
all cluster nodes that have a container, representing the source
of the Service Graph link, scheduled on them, as shown in
the left part of Fig. 4. For each cluster node in this set, the
shortest paths tree in terms of latency is computed.
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Algorithm 1 NetworkQoS PreFilter Stage

1: Input: GS = (VS , ES): Service Graph;
π ∈ VS : Service Graph node corresponding to current container;

2: Output: Rπ = (maxLatencyπ , ...): Overall network QoS require-
ments for π;
Eχ,π : Incoming Service Graph links for π;
SRC: Cluster nodes that host the source for each link in Eχ,π ;
P : Shortest path trees for each n ∈ SRC;

3: Rπ ← (maxLatencyπ =∞, ...) ▷ Init Rπ to most lenient values
4: for all e ∈ ES involving π do
5: if maxLatencye < maxLatencyπ then
6: maxLatencyπ ← maxLatencye
7: end if
8: Proceed analogously for the other network QoS properties
9: end for

10: Eχ,π ← All service links coming into π
11: SRC ← {}; P ← {}
12: for all (χ, π) ∈ Eχ,π do
13: N ← All cluster nodes that host an instance of χ
14: SRC ← SRC ∪N
15: for all n ∈ N do
16: sp← Compute latency-wise shortest path tree for n
17: P ← P ∪ {sp}
18: end for
19: end for

Filter Stage. This stage is run once for every candidate node
and consists of the two major steps described in Algorithm 2:

Step 1. Lines 4–7 discard the candidate node if its selection is
likely to prevent downstream services from being scheduled:
If none of the node’s network links meets the overall network
QoS requirements computed in PreFilter step 1, discard it.
This heuristic considers the most stringent network require-
ments of all Service Graph links, incoming and outgoing.
Applied to the network links of the candidate node (i.e.,
not to a path) it helps avoid situations like the following:
In a Service Graph α → β → γ, suppose service α has been
scheduled. When scheduling service β, we find a cluster node
that fulfills the requirements for α → β, but the target node’s
network connection is too slow for β → γ. Since γ remains
yet to be scheduled, we cannot check a concrete path, but we
can at least ensure that the network connection of β’s target
node is potent enough, hence the need for this heuristic.

Step 2. Lines 8–17 ensure that a path to the candidate node
meets the requirements for the current service: Iterate through
all incoming Service Graph links that were cached in the
PreFilter stage and for each link, examine the shortest
path, latency-wise, from each cluster source node found in
step 2 of the PreFilter stage to the candidate node. Pick

Service �Service �
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Fig. 4: Incoming Service Links for Service γ (left), Shortest Network Paths
to Candidate Node from Service α (right).

Algorithm 2 NetworkQoS Filter Stage

1: Input: cn: Candidate cluster node;
π: Service Graph node node corresponding to current container;
Rπ : Overall network QoS requirements for π;
Eχ,π : Incoming Service Graph links for π;
SRC: Cluster nodes that host the source for each link in Eχ,π ;
P : Shortest path trees for each n ∈ SRC;

2: Output: canHost: true if cn can host π, otherwise false;
BWvar, Lvar : Max bandwidth & latency variances for shortest paths;

3: canHost← true; BWvar ← {}; Lvar ← {}
4: if cn does not meet Rπ then
5: canHost← false
6: return
7: end if

8: for all e = (χ, π) ∈ Eχ,π do
9: sp← FINDSHORTESTCOMPLIANTPATH(e)

10: if sp ̸= nil then
11: BWvar ← BWvar ∪ { highest bandwidth var in sp}
12: Lvar ← Lvar ∪ { highest latency var in sp}
13: else
14: canHost← false
15: return
16: end if
17: end for

18: function FINDSHORTESTCOMPLIANTPATH(e = (χ, π))
19: shortestPath← nil
20: N ← Look up nodes that host χ in SRC
21: for all n ∈ N do
22: p← Shortest path from n to cn from P
23: if p meets QoS requirements for (χ, π) then
24: if shortestPath = nil OR p < shortestPath then
25: shortestPath← p
26: end if
27: end if
28: end for
29: return shortestPath
30: end function

the shortest path that meets all network QoS requirements. If
none can be found, discard the candidate node. For example,
in Fig. 4 (left side) the service link α → γ is examined.
Service α is scheduled on the cluster nodes A and C. Node
E is the current candidate node. The Cluster Topology Graph
(right side of Fig. 4) shows the shortest path from Node A
to the candidate node (orange) and the shortest path from
Node C to the candidate node (blue). The path from Node A
fulfills the network QoS requirements, so it is picked. Finally,
store the highest bandwidth and latency variance values of
the picked path for the Score stage.

Score and NormalizeScore Stages. In the Score stage,
the latency and bandwidth variance values of the picked paths
are used to assess the stability of the network connections. A
lower variance indicates a higher probability that network QoS
will remain stable and, thus, results in a higher score (50%
bandwidth variance, 50% latency variance). The Normalize-
Score stage is used to clean up cached data.

C. Other Plugins

1) PodsPerNode Plugin: This plugin is inspired by one of
the plugins of the Pogonip scheduler [15]. It assigns a score
to cluster nodes, based on how many replicas of the container
they would be able to host, depending on its configuration:
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1) More possible replicas ⇒ higher score favors nodes with
low resource utilization to avoid congestion by placing
multiple containers in the same node.

2) More possible replicas ⇒ lower score gives preference
to nodes, which may already contain other components
of the application and prefers using as many resources as
possible on a smaller set of nodes instead of scattering
containers across all nodes. This allows edge nodes,
which are unused to go into a power conserving state.

2) NodeCost Plugin: This plugin assigns higher scores to
cheaper nodes, which is often neglected by existing schedulers.

3) AtomicDeployment Plugin: This Permit plugin ensures
that either all containers belonging to a Service Graph exit
the scheduling pipeline successfully and enter the binding
pipeline or, if at least one container fails to get a cluster node
assigned, all other containers of this Service Graph will fail
as well. This ensures that no resources are wasted on Edge
nodes by containers that belong to an incompletely scheduled
application. This plugin acts only upon the initial deployment
of an application, but not on containers created due to scaling.

V. EVALUATION

We evaluate Polaris Scheduler using the traffic analysis and
hazard detection use case illustrated in Section II. We describe
our experiment setup in Section V-A and present the results
in Section V-B, followed by a discussion in Section V-C.

A. Experiment Setup

For the experiments we specify the Service Graph shown in
Fig. 1, including the indicated network SLOs. Each microser-
vice is represented by a Kubernetes Deployment object that
defines the service’s resource requirements (the used container
images are irrelevant, since we benchmark the placement of
the microservices and not the use case application itself):

• Collector: 1 vCPU, 1 GiB memory, and a 5G base station
• Aggregator: 4 vCPUs, 2 GiB memory
• Hazard Broadcaster: 2 vCPUs, 2 GiB memory
• Region Manager: 4 vCPUs, 8 GiB memory
• Traffic Info Provider: 2 vCPUs, 2 GiB memory
The Edge cluster is simulated using kind6, a tool for run-

ning a Kubernetes cluster inside Docker, and fake-kubelet7

for adding mocked nodes to this cluster. We run a single Ku-
bernetes (v1.22.9) kind control plane node, which hosts core
Kubernetes controllers and the schedulers. The nodes used as
scheduling targets are simulated using fake-kubelet and are
visible as ordinary Kubernetes nodes; their resources and other
details are configurable via templates. A container assigned
to such a node will enter the Running state, but it will not
actually be executed, which is fine, because we benchmark the
placement of the containers, not their execution. We run the
experiments on a VM with 24 virtual CPU cores and 47 GiB
of RAM. The hosting server has an Intel Xeon CPU (Cascade
Lake) with a base clock of 2.1 GHz. Since the Kubernetes

6https://kind.sigs.k8s.io
7https://github.com/wzshiming/fake-kubelet

network proxy on each node reduces the CPU and memory
quantities available for scheduling, even on fake-kubelet

nodes, we rely on the extended resources mechanism of
Kubernetes to set up cpu and memory resources, which are
available for scheduling in their entirety.

We run two experiments: (i) a Network QoS SLOs Compli-
ance experiment for assessing whether the container placement
fulfills the network QoS SLOs of the application and (ii) a
Performance and Scalability experiment for evaluating the
schedulers when placing increasingly larger applications on
growing cluster sizes. For the Network QoS SLOs Compliance
experiment we deploy a small-scale version of the application
consisting of three Collector instances and a single instance
of each of the other services in a test cluster with 12 nodes.
For the Performance and Scalability experiment, we deploy
increasingly larger-scale versions of the application by multi-
plying the instance counts of all microservices, except for the
Region Manager, with a multiplier m = {10, 20, . . . , 70}. We
do the same with the size of the Edge cluster. For example, for
m = 10, we deploy 30 Collectors, a single Region Manager
(which coordinates the other services), and 10 instances of
each of the other microservices on a 120 nodes cluster.

We design the cluster for the Network QoS SLOs Com-
pliance experiment and reuse the same topology to create
m equal subclusters for the Performance and Scalability
experiment. The topology of each subcluster and the nodes’
resources are shown in the left part of Fig. 5. Each subcluster
consists of 11 Edge nodes, three of which have a 5G base
station (indicated by the antenna icon), and a Cloud, which is
modeled as a single large node with 16 CPU cores and 32 GiB
memory. The resources of the Edge nodes resemble Raspberry
Pi 3 Model B+ (4 CPU cores and 1 GiB of RAM) and
Raspberry Pi 4 Model B (4 CPU cores and 4 GiB or 8 GiB of
RAM)8 devices and are named accordingly as raspi-3b-ID,
raspi-4s-ID (“Raspberry Pi 4-small”), and raspi-4m-ID

(“Raspberry Pi 4-medium”). All network links are annotated
with their latencies and bandwidths. The links between base-

0 and raspi-4m-3 and between base-0 and raspi-4s-0

are additionally marked with high bandwidth variance and low
bandwidth variance respectively, indicating that the bandwidth
of the former link is subject to great fluctuations, whereas the
latter link does experience fluctuations, but they are much less.
The bandwidth variances of the remaining links are negligible.
To form the larger-scale test cluster, we replicate the nodes
and links of a single subcluster m times and interconnect the
subclusters through their Cloud nodes.

B. Experiment Results

We benchmark Polaris Scheduler against the default Ku-
bernetes scheduler (kube-scheduler) and two theoretic ap-
proaches, Greedy First-fit and Round-robin. For each exper-
iment configuration and scheduler we perform five iterations
of deploying the application, recording the placement and the
time required to place each container, and then undeploying

8https://www.raspberrypi.org
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Fig. 5: Edge Cluster Topologies: Network QoS SLOs Compliance Experiment (left); Performance and Scalability Experiment with 10 Subclusters (right).

the application again. The Greedy First-fit and Round-robin
schedulers are implemented using the Kubernetes scheduling
framework, by reusing all default Filter plugins to obtain the
set of eligible nodes and then relying on a single Score plugin
to assign the highest score to node chosen by the respective
placement strategy. All scripts and configuration files needed
to reproduce the experiments are available in our repository.
All schedulers found placements for all microservices in
both experiments. The default resource-related plugins of the
Kubernetes scheduling framework ensured that only nodes that
had the required resources were selected.

1) Network QoS SLOs Compliance: In this experiment,
executed on the small-scale cluster in the left part of Fig. 5,
the main goal is to assess whether the placements computed
by the schedulers fulfill the network QoS SLOs of the use case
application. The link from the Collector to the Hazard Broad-
caster is the most critical link, since the latter microservice
broadcasts the existence of a hazard to nearby cars. Meeting
the network SLOs of this service link (max latency of 10 ms
and min bandwidth of 1 Mbps) is crucial for driver safety; we
will place special emphasis on whether this has been achieved
by each placement. Fig. 6 summarizes the average latencies
between the microservices that were achieved by placements
computed by the four schedulers across all iterations of this
experiment. We use this average, because different iterations
may yield different placements (not only for Round-robin)
due to the reuse of many Kubernetes scheduling framework
scoring plugins, which influence the placement. If multiple
nodes have the same aggregated top score, a random one is
picked from this set. The red line in the graph indicates the
max latency SLOs, i.e., the upper bounds, for each service
link. Fig. 7 summarizes the average bandwidths between the
microservices from the same experiment, with the red line
indicating the min bandwidth SLOs, i.e., the lower bounds. For
the links between the three Collectors and the single Hazard
Broadcaster, as well as the single Aggregator, we compute
the mean average across the three network paths to obtain the
value for a single experiment iteration. If two interconnected

microservices are placed on the same node, we consider them
to have zero latency and a bandwidth of 100 Gbps.

The Greedy First-fit scheduler selects the first node
that matches a container’s resource requirements. The node
iteration order is determined by the alphabetical sorting of the
node names, such that it is the same across all runs. Thus, the
Greedy First-fit scheduler computed the same placement on
every iteration: one Collector was placed on each of the base

nodes, while all other microservices were placed on the cloud
node. This results in a total latency of 75 ms from the Collector
to the Hazard Broadcaster, which is 7.5 times the upper SLO
limit. The placement also violates the less stringent 50 ms max
latency SLOs between the Collectors and the Aggregator – the
lowest latency path of this link also violates the 10 Mbps min
bandwidth requirement for one Collector instance, but this can
be solved when taking an alternative network path (with even
higher latency). The network QoS SLOs between the other
microservices are met, since they all reside on the same node.

Round-robin operates on a circular list of nodes, based on
the same iteration order as Greedy First-fit, and picks the first
matching node encountered from the starting position. If a
scheduling cycle ends at position n in the list, the next one
will start from position n + 1. Round-robin used the same
nodes on each of the five iterations: one Collector was placed
on each of the base nodes, the Aggregator on the cloud

node, the Hazard Broadcaster on raspi-4m-0, the Region
Manager on the cloud node, and the Traffic Info Provider on
raspi-4m-1. The reason for this is that the Collectors can
only be assigned to the base nodes. Thus, after the Collectors
have been scheduled, the next iteration will always point to
the cloud node. The latency between the two safety critical
microservices, Collectors and Hazard Broadcaster, is 95 ms,
which is 9.5 times the SLO limit, thus, even worse than the one
achieved by Greedy First-fit. Akin to Greedy First-fit, the max
latency and the min bandwidth SLOs (on the lowest latency
path) between the Collectors and Aggregator, as well as the
min bandwidth SLO between the Region Manager and the
Traffic Info Provider, are also not met.

7



Fig. 6: Average Max Latencies Achieved by Schedulers and SLO Bounds.

The Kubernetes default scheduler, like Greedy First-
fit, placed the Collectors on the base nodes and all other
microservices on the cloud node. Thus, it also violates the
safety critical max latency SLO between the Collectors and the
Hazard Broadcaster (7.5 times the limit), as well as the max
latency and min bandwidth SLOs between the Collectors and
the Aggregator, albeit the min bandwidth SLO can be met by
taking an alternative network path (with even higher latency).

Polaris Scheduler computed three different sets of place-
ments. The Collectors were always assigned to the base

nodes, the Region Manager to the cloud node, and the Traffic
Info Provider to raspi-4m-0. The remaining two microser-
vices were placed (i) once the Aggregator to raspi-4m-2 and
the Hazard Broadcaster to raspi-4s-1, (ii) once the Aggre-
gator to raspi-4m-2 and the Hazard Broadcaster raspi-

4s-0, and (iii) three times the Aggregator to raspi-4s-0

and the Hazard Broadcaster to raspi-4s-1. All placements
fulfilled the network SLOs. In many cases the total latencies
between the Collectors and the Hazard Broadcaster, as well
as between the Collectors and the Aggregator, remained sig-
nificantly below the SLO limits. Since the specified network
SLOs are treated as hard constraints, any violation would cause
the scheduling of the particular container to fail, e.g., if no
node can provide a sufficiently high bandwidth. When the
Hazard Broadcaster was placed on raspi-4s-0, two of the
Collectors had a total latency of only 5 ms (the SLO limit
is 10 ms). The total latency between the Collectors and the
Aggregator was either 25 ms (Aggregator on raspi-4m-2) or
10 ms (Aggregator on raspi-4s-0), much below the limit
of 50 ms. We note that when the Aggregator was placed
on raspi-4m-2, the path with the lowest latency (25 ms)
from base-2 to raspi-4m-2 did not fulfill the bandwidth
SLO of 10 Mbps from Collector to Aggregator. However, an
alternative path with a latency of 30 ms, which was also within
the max latency SLO limit of 50 ms, did meet the bandwidth
requirement. Polaris Scheduler was the only scheduler, whose
placements met all network SLOs. In some cases the other
schedulers achieved better latencies and bandwidths, because
they placed the respective services on the cloud node, which
lead to violations of other SLOs, including the safety-critical
max latency SLO between the Collectors and the Hazard
Broadcaster, whereas Polaris Scheduler chose tradeoffs that
fulfilled all SLOs.

2) Performance and Scalability: Since a scheduler must
be performant to ensure scalability, we now focus on the

Fig. 7: Average Min Bandwidth Achieved by Schedulers and SLO Bounds.

execution time required to place the entire application. We
deploy our application in increasingly larger scales on clusters
of increasing sizes, such as the one in the in the right part
of Fig. 5. We measure the execution times of the scheduling
pipeline from the PreFilter stage until the Permit stage,
for every container and compute the sum for all containers
in an iteration. Waiting times, as introduced by the Atomic-

Deployment plugin are not included, because the aim is to
reflect the computation time required for scheduling, not queu-
ing time. We compare Polaris Scheduler to kube-scheduler. To
have equal scoring conditions both schedulers are configured
to score all nodes that passed filtering.

Fig. 8 shows the scheduling times of both schedulers across
application and cluster sizes. For scheduling 61 containers
on 120 nodes Polaris Scheduler takes 346 ms, while kube-
scheduler requires only 114 ms. For m = 20, i.e., 121 con-
tainers on 240 nodes, Polaris Scheduler requires 1, 574 ms,
kube-scheduler needs 347 ms. This time difference can largely
be attributed to the computation of the shortest path trees in the
Cluster Topology Graph using Dijkstra’s algorithm. Fetching
the Service Graph for the first container of an application
also consumes some time, but this becomes negligible as the
application size grows. Despite the increased scheduling time
due to the graph computations, Fig. 8 shows that the scalability
of Polaris Scheduler is comparable to that of kube-scheduler.
Computing a placement with a focus on network SLOs comes
at a cost, which is, however, acceptable for most long lived
Edge applications, as we will discuss in the next Section.

C. Discussion

Schedulers must consider tradeoffs between multiple re-
quirements. For Polaris Scheduler the most significant tradeoff
is consciously accepting an increased scheduling time to allow
finding a placement that fulfills the network SLOs. While very
short lived applications (in the order of a few seconds) may not
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tolerate an increase in scheduling time with respect to kube-
scheduler, Edge applications typically have a longer lifespan,
e.g., the microservices of our use case run permanently. For an
application that runs multiple hours or days, it is irrelevant if
scheduling takes 100 ms or multiple seconds, if the placement
fulfills the network SLOs. Such applications also normally do
not arrive in large quantities, such that the scheduler would
become a serious bottleneck. The second significant tradeoff
in Polaris Scheduler concerns the Cluster Topology Graph. In
very large clusters with thousands of nodes on a flat network
structure, the graph could grow too big to store in memory
or shortest path tree computations could take too long to be
practicable. However, Edge clusters typically consist of many
small subclusters that have a flat network structure within, but
the subclusters themselves are sparsely interconnected, which
makes using a Cluster Topology Graph feasible, considering
the benefits that it yields. Nevertheless, we want to explore
the use of a hypergraph as the Cluster Topology Graph in
the future to drastically reduce the number of graph links
to support large clusters with flat network structures. In such
cases many nodes would pass the Filter stage, so scoring
would need to be configured to operate only on a subset of
these nodes, like in the default kube-scheduler configuration.
Furthermore, we want to develop algorithms for distributed
scheduling, to disperse the computational load required to
schedule microservices on such large clusters.

In our Network QoS SLOs Compliance experiment only
Polaris Scheduler fulfilled all SLOs. It is the only scheduler
that considers the entire application and its SLOs, whereas
the other schedulers ignored this information and placed
each container independently of the others. While the other
schedulers outperformed Polaris Scheduler on the latency
between the Aggregator and the Region Manager, by placing
both on the cloud node, they did so by violating the max
latency SLO between the Collectors and the Aggregator. The
minimum bandwidth SLOs were mostly met by the schedulers,
even though a higher latency path was sometimes required.
However, in an Edge environment, the link speeds may not
be stable over time. The NetworkQoS plugin addresses the
network dynamics found in an Edge cluster. By leveraging
the Cluster Topology Graph, which needs to be maintained
by an external monitoring service, it makes decisions not only
based on the most recent measurements of latency, bandwidth,
and packet drop, but also based on the variances computed
from the recent bandwidth and latency history. These variances
allow assessing how stable the node’s connection has been
over time, allowing Polaris Scheduler to compute a placement
that not only fulfills the network SLOs at the moment, but that
is likely fulfill them for a long time, thus, reducing the need
for migrating a microservice to another node.

VI. RELATED WORK

Container schedulers commonly used in production envi-
ronments, such as the default schedulers of Kubernetes [13]
and Docker SwarmKit [16], often rely on greedy multi-criteria
decision making algorithms. Their default configurations tend

to spread containers over the cluster, which works well in
a Cloud environment, but has drawbacks in heterogeneous
Edge clusters, where network QoS is not uniform. Nomad is
also used in production environments and specifically supports
Edge clusters; its default scheduler [17] is also multi-criteria
decision making-based, but it has no support for network QoS
SLOs. Two-level schedulers, such as Apache Mesos [18] or
YARN [19] are also commonly used in production. They
do not coordinate containers directly, but other schedulers
or execution frameworks. The first level assigns cluster re-
sources to the execution frameworks at the second level –
each of these frameworks has its own scheduler. Mesos uses
an offer-based technique, where the first level uses a fair
sharing or a strict priorities approach to offer resources to
the second level scheduler, e.g., an Apache Spark scheduler,
which then operates within the assigned resources. YARN is
a request based two level-scheduler; its first level scheduler
receives job scheduling requests and passes them on to a
second level scheduler, which then requests resources from
the first level. While Mesos and YARN are not aware of Edge
cluster properties, we will investigate their two-level approach
in our future work for developing a distributed scheduling
framework. YARN supports plugging in different schedulers at
the first level. The Capacity Scheduler [20] is aimed at multi-
tenant systems and ensures that each tenant gets a minimum
resource capacity. The Fair Scheduler [21] seeks to achieve a
fair distribution of resources across the application frameworks
managed by the second level schedulers. It supports three
policies: (i) FIFO prioritizes based on the submit time of an ap-
plication, (ii) Fair aims for a fair distribution of memory across
the application frameworks, and (iii) Dominant Resource First
is based on [22] and first determines the dominant resource
for each application framework (the most used resource with
respect to its available capacity) and its usage share, then it
aims to equalize these dominant resource usage shares across
all application frameworks. With respect to fairness, Polaris
Scheduler relies on a FIFO approach, which is acceptable,
because we focus on network SLOs within a single application.

Many researchers build upon the previously mentioned
Cloud-proven schedulers and extend them for the Edge and
a limited degree of SLO-awareness. For example, Rossi et
al. [23] use a custom Kubernetes scheduler that considers
the latency between nodes when computing a placement for
microservice-based applications in a geo-distributed environ-
ment. Eidenbenz et al. [24] propose a latency-aware Fog layer
architecture for industrial applications. Pusztai et al. [15] focus
on latency for asynchronous microservice-based applications
that communicate through a message queue. They formulate
an Integer Linear Programming optimization problem and im-
plement a heuristic approximation as a Kubernetes scheduler.
Santos et al. [25] consider network bandwidth in addition
to latency (specifically, round trip time) in their Kubernetes
scheduler extension. While these approaches focus on Edge
computing and introduce a notion of network SLO, they fail
to cover all aspects of network QoS, e.g., bandwidth variance,
latency variance, and packet drop are missing. However,
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especially variances contain important information about the
stability of a network connection and should be considered
during scheduling. Cérin et al. [26] propose a scheduling
strategy for Docker Swarm that allows users to select one of
three economically oriented Service Level Agreement (SLA)
levels for their workloads to define priorities for the sched-
uler. While this strategy may yield economic benefits, it is
not specifically designed for the Edge. Menouer et al. [27]
present MCDM strategies that improve on the original Docker
SwarmKit strategy, but also remain focused on the Cloud.
Aral et al. [28], like Polaris Scheduler, rely on a graph of
the network to compute scores for the latency and bandwidth
between user groups and the deployed services. However, they
do not consider a microservice-based application as a whole,
because they focus on the connection between the users and
the service accessed by them. Faticanti et al. [29] model an
application as a DAG, partition it between the Cloud and Fog,
and compute a placement considering the throughput required
between the nodes of of the application graph, other important
network QoS parameters are largely neglected.

VII. CONCLUSION & FUTURE WORK

In this paper we presented Polaris Scheduler, a network
SLO-aware scheduler for Edge clusters. We described the
overall approach of our extensible plugin-based scheduler,
its scheduling pipeline, and the two graphs used to capture
the topology of the cluster and the dependencies and SLOs
among the microservices of an application. We described
the scheduler’s plugins and how they tie into the stages of
the scheduling pipeline. We showed that our NetworkQoS

plugin covers bandwidth, bandwidth variance, latency, latency
variance, and packet drop and that the consideration of band-
width and latency variances allows selecting nodes that are
likely to have stable network connections in the future. By
deploying our use case application on multiple Edge clusters,
we evaluated Polaris Scheduler against kube-scheduler and
two theoretical schedulers. We showed that the consideration
of network SLOs during scheduling lays the groundwork
for an application’s fulfillment of its SLOs in heterogeneous
Edge clusters. As future work we plan to investigate the use
of hypergraphs for the Cluster Topology Graph to improve
performance on large clusters and add plugins to support more
SLOs and affinity/anti-affinity constraints. Additionally, we
aim to develop a testbed for supporting large-scale evalua-
tions of schedulers and design a framework for distributed
scheduling, to allow computationally intensive algorithms on
large clusters.
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