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Abstract—The microservice architectural style is changing the
design of modern applications. Orchestration tools, such as
Kubernetes, deploy them on computing nodes assuming that
resources are interconnected through fast communication links.
However, running microservices in the emerging edge computing
environments requires considering the heterogeneity and non-
negligible network delays among edge resources. In this context,
although the problem of scheduling synchronous microservice-
based applications has been widely explored, scheduling asyn-
chronous applications, where microservices interact using a
queue system, has only recently started to be investigated.
In this paper, we present Pogonip, an edge-aware scheduler
for Kubernetes, designed for asynchronous microservices. We
formulate an optimization problem and a heuristic for deter-
mining the placement of microservices, which is tailored for
edge environments. We integrate them in Kubernetes by building
custom scheduler plugins. Using a benchmark application, we
show the advantages of the proposed network-aware solutions
over other state-of-the-art solutions.

Index Terms—Edge, scheduler, placement problem, microser-
vices, asynchronous, Kubernetes

I. INTRODUCTION

Today’s trend for designing efficient and scalable appli-
cations relies on the microservice architectural style [1]. It
decomposes an application into autonomous and decoupled
services, each with specific and independent functionalities.
They are typically deployed separately to one another, espe-
cially resorting on software containers, which enable grouping
a microservice with all its dependencies thus simplifying
its deployment. Two main communication styles between
microservices exist: synchronous and asynchronous. With
synchronous communication, a microservice m1 contacts a
microservice m2 directly and maintains the connection until
it receives a response. This increases coupling and limits the
application’s flexibility to change. So, this is often considered
an anti-pattern [2]. With asynchronous communication, m1

and m2 communicate through an indirection layer, e.g., a
message queue [3]. This allows decoupling the application’s
microservices, improving scalability and flexibility.

In the last years, we are witnessing the diffusion of com-
puting resources located at the edge of the network. Edge
computing extends cloud computing by using computational
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capabilities of devices at the edge of the Internet [4]. This con-
cept suits applications whose data are generated and consumed
at the network periphery [5], but it brings new challenges,
mainly due to the heterogeneity and decentralized distribution
of computing and networking resources. In this context, the
placement (or scheduling) problem is of utmost importance;
it defines the mapping between the application microservices
and the computing nodes. An improper node selection can
negatively impact the application performance and, in a pay-
per-use scenario, can lead to higher execution costs.

To simplify the deployment of microservice-based applica-
tions, we resort to orchestration tools like Kubernetes1. When
a new application should be executed, Kubernetes uses a
component, i.e., the scheduler, to solve the placement problem.
Although Kubernetes is one of the most popular production-
grade orchestrators [6], it has been originally designed for
cluster environments, so it is not well suited to run applications
on the edge. It does not consider that edge nodes may be
connected with different link types (e.g., WiFi, 4G, 5G) that
exhibit varying quality of service characteristics, such as
latency [7]. Edge computing requires new placement strategies
that explicitly take into account the presence of heterogeneous
resources and non-negligible network delays. As surveyed
in [8], [9], different solutions exist in literature. However, to
the best of our knowledge, all of them consider only the place-
ment of synchronous applications. Asynchronous applications
exhibit peculiar features, like increased throughput, that cannot
be neglected [10]. For example, in a smart mobility scenario,
where cars and road-side devices report traffic and safety data
to the analyzer microservices, a message queue significantly
reduces coupling between the participating microservices al-
lowing a non-blocking communication. In such applications,
the queue represents a key component that should be allocated
as close as possible to all microservices, as it is the logically
centralized communication component.

In this paper, we present Pogonip, an edge-aware scheduler
for Kubernetes, designed for asynchronous microservice-based
applications. The main paper contributions are as follows:

1) We formulate the placement problem as an Integer Lin-
ear Programming (ILP) optimization problem. It places

1https://kubernetes.io
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microservices by considering constraints on network
latency towards the queue system on edge nodes. More-
over, if not enough edge resources are available, it can
offload microservices to third-party cloud nodes, while
keeping the additional costs low.

2) We define the Pogonip heuristic to quickly find an
approximate solution for real-world execution scenarios,
because the optimization problem is NP-hard.

3) We implement the heuristic as a scheduler prototype for
Kubernetes and release it as open-source.

Using an asynchronous edge application and a Kubernetes
cluster, we evaluate our solutions against two state of the art
placement policies and the default Kubernetes scheduler.

The remainder of this paper is structured as follows. We
first discuss related works (Section II), our system model, and
the problem to solve (Section III). Then, we formulate the
optimization placement problem (Section IV) and the Pogonip
heuristic (Section V). In Section VI, we describe the heuristic
integration in Kubernetes and, in Section VII, we present the
experimental evaluation. Section VIII concludes the paper.

II. RELATED WORK

In this section, we analyze existing approaches dealing
with the placement of microservices on edge and fog com-
puting resources. Many are applicable to both environments.
Several frameworks for developing microservices have been
originally designed to run on centralized cloud data centers
(e.g., [11], [12]). While these represent interesting solutions,
the differences between cloud and edge resources prevent their
direct adoption in an edge environment. Different Internet
connectivity and bandwidth, as well as resource distribution,
call for strategies that explicitly take into account the presence
of heterogeneous resources and non-negligible network delays.
To organize and summarize the most relevant approaches, we
present the key methodologies and orchestration tools used to
allocate microservices in an edge/fog environment.

Existing placement policies rely on a wide set of methodolo-
gies, ranging from mathematical programming approaches to
heuristics. The mathematical programming approaches exploit
methods from operational research in order to solve the
application placement problem (e.g., [13], [14]). For example,
to save energy consumption, Huang et al. [13] model the
mapping of IoT services on edge/fog devices as a quadratic
programming problem. Although simplified into a linear for-
mulation, it may require prohibitive resolution time when
the problem size grows. The main drawback of mathematical
programming solutions is scalability; the placement problem
is well-known to be NP-hard, therefore, efficient heuristics
are needed. Different heuristics have been proposed to solve
the placement problem of applications, as surveyed in [8],
[9]. However, in recent years, the most popular approaches
resort to greedy heuristics and genetic algorithms (GAs). For
example, Faticanti et al. [15] propose a throughput-aware
approach that first partitions each application into two chunks,
and then uses a greedy heuristic to allocate them on the
available computing resources. While the first chunk is always

executed in the cloud, the heuristic can allocate the second one
either in the fog or in the cloud. Pallewatta et al. [16] consider
fog nodes organized as a tree. When a fog node receives an
application execution request, it uses a greedy heuristic to allo-
cate microservice starting from the leaf nodes; if no resources
are available, it can forward the request towards the parent
node. This decentralized approach promises to reduce latency
and network usage. To solve the edge/fog placement problem,
different works (e.g., [17]–[20]) rely on GAs. For example,
[20] introduces the concept of edge sites to decentralize the
resolution of the microservices placement problem optimizing
the application response time. Each site uses a GA to decide
which microservices and how many instances of them to place
in the current site as well as those to propagate to the neighbor
sites. Even though GAs considerably reduce the average time
to find a good solution, especially for a large solution space,
they may react slowly to changes of an edge/fog computing
environment. All previously mentioned policies consider the
problem of scheduling synchronous applications. However,
the recent tendency is to design asynchronous applications
as well [21], where a (logically centralized) message queue
supports the microservice communication. Although asyn-
chronous applications are starting to be investigated in the
context of load balancing [22], to the best of our knowledge,
they are so far poorly explored in the context of service
placement. Thus, we propose Pogonip, an approach for solving
the placement problem of asynchronous microservice-based
applications in edge and fog environments. Moreover, Pogonip
can extend edge resources resorting on cloud nodes (e.g.,
as [15], [17] do). However, differently from the existing works,
it allocates application components on cloud nodes aiming to
minimize the incurred cost of using cloud resources.

When multiple application components should be executed,
we usually resort on orchestration tools that automatize con-
tainer provisioning, management, communication, and fault-
tolerance. Although several orchestration tools exist [23],
Kubernetes, Docker Swarm, and Apache Hadoop YARN are
among the most popular solutions. They allow to deploy
containers across computing nodes assuming that resources
are locally distributed (i.e., network latencies are negligible).
To overcome these limitations, some works extend the existing
orchestration tools (e.g., [12], [24]–[27]). Fahs et al. [26] and
Rossi et al. [27] present orchestration frameworks based on
Kubernetes to determine the number and location of replicas
that are necessary to meet the application QoS requirements.
Although these works take into account the peculiarities of an
edge/fog environment in the placement problem, only mono-
lithic applications are considered. To integrate our placement
policies in Kubernetes, we extend it to explicitly work with
asynchronous applications and heterogeneous resources. To
this end, we define novel plugins that participate in the Ku-
bernetes scheduling cycle as well as a new custom scheduler.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In the following, we focus on identifying edge-aware place-
ment solutions for asynchronous microservice-based appli-
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cations. We consider an edge-cloud environment shared by
multiple independent applications. For each application, we
assume that its microservices are highly decoupled and that
they communicate through a message queue. In Table I, we
summarize the used notations.

We consider a geographically distributed edge environment,
where multiple edge clusters provide computing resources
on-demand. The edge resources are organized in different
edge clusters. An edge cluster can be modeled as a graph
G = (N,E), where the set of nodes N represents the dis-
tributed computing resources and the set of links E represents
the logical connectivity between nodes. We characterize each
edge node n ∈ N with the following attributes: Cn, the
available computing resources in n; Mn, the available memory
in n; Pn, the cost (on a time basis) of using n for hosting
application components. We characterize each logical link
(n,m) ∈ E with the network latency dn,m between the nodes
n and m. Such a logical connectivity between computing
resources results from the underlying physical network paths
and routing strategies. These attributes can be known a-priori
or can be monitored and estimated at run-time. Each edge
cluster has a control node (CN), the entry point of the cluster.
When a client submits an application to the CN, the edge
cluster scheduler solves the placement problem. We denote
as A the set of all managed asynchronous applications. An
application A ∈ A consists of multiple microservices and
a queue system q. We define i ∈ A as an application
component, i.e., a microservice instance or the queue system.
We assume that the user correctly sizes the queue system
q, so that it can sustain the application workload without
affecting application integrity and performance. To simplify
the problem formulation, we use A′ = A\{q} when the queue
system should not be considered. Each application component
i is characterized by the required CPU Ci and memory
Mi. Differently from synchronous applications, asynchronous
applications usually do not aim to minimize response time,
because microservices indirectly interact with one another.
In a distributed environment, we are interested in allocating
microservices close to the message queue, so that they can
quickly receive messages from the queue. Therefore, each
application A ∈ A exposes its requirements in terms of
NDA,max, i.e., the maximum network delay between the
queue and each microservice allocated on edge resources.
For allocating the application components, the edge cluster
scheduler can select nodes from the edge or from the cloud.
The key idea is to first grant edge resources and then the
cloud ones, if there are not enough computing resources on
the edge. We denote as A∗ the microservices forwarded to the
cloud. In general, propagating any application component to
the cloud introduces costs and communication delays, which
can be detrimental for the application performance. For our
investigation, we can reasonably assume that the cloud offers
almost infinite computing capacity. We denote as S the set
of cloud nodes. We characterize each cloud node s ∈ S
with its available CPU capacity, Cs, memory capacity, Ms,
and cost, Ps. We consider cloud resources that are managed

TABLE I: Placement Problem Notations.
Entity Notation Definition

Edge Cluster CN Control Node of the edge cluster
A Set of applications to place
N Set of nodes within the edge cluster
Cn CPU capacity of node n ∈ N
Mn Memory capacity of node n ∈ N
Pn Cost of node n ∈ N
dn,m Network latency between nodes n ∈ N and m ∈ N

Cloud A∗ Set of microservices forwarded to the cloud
S Set of cloud nodes
Cs CPU capacity of node s ∈ S
Ms Memory capacity of node s ∈ S
Ps Cost of node s ∈ S

Application A = {q} ∪A′ Set of application components, with A ∈ A
q Message queue system of application A
A′ Set of Application Microservices
Ci CPU demand of the application component i ∈ A
Mi Memory demand of the application component i ∈ A

NDA,max Maximum network latency required by A

by a third party, so we should favor the utilization of edge
resources. This is the case of the queue system that, being
the application’s key communication component, should be up
and running for all the application life time. Conversely, the
application microservices can be managed more easily, as they
can be restarted on a different location without compromising
the application availability (so we can temporarily place them
on cloud resources). For this reason, we assume that queue
systems can be placed only on edge nodes.

Following a divide et impera approach, we divide the
placement problem formulation in two sub-problems, i.e., edge
and cloud placement problem. This simplifies the placement
problem formulation, speeding up the resolution phase and
allowing to more easily integrate other objective goals. The
edge placement problem takes into account the placement on
the current edge cluster. If the edge nodes do not have enough
resources, some of the application microservices are forwarded
to the cloud for processing. In this case, we should solve a
second problem, i.e., the cloud placement problem. The goal
of this problem is to minimize the cost of the used cloud
resources, which are rented from a third party.

IV. OPTIMIZATION PROBLEM FORMULATION

In this section, we formulate optimization problems to
solve the edge and cloud placement problems of asynchronous
microservice-based applications.

A. Edge Placement
We model the application placement in the edge cluster with

binary variables xAi,n, A ∈ A, i ∈ A, n ∈ N , where xAi,n = 1
if the component i of the application A is placed on the edge
node n, and xAi,n = 0, otherwise. For each A ∈ A, we use the
binary variables zAi , with i ∈ A, to indicate the application
components to execute in the cloud: zAi = 1 if the application
component i is forwarded to the cloud and zAi = 0 otherwise.
We denote the application placement on edge resources with
the vector x = 〈xAi,n〉, with A ∈ A, i ∈ A, and n ∈ N and
the application components forwarded to the cloud with the
vector z = 〈zAi 〉, with A ∈ A, i ∈ A.

Edge Resources Cost. For any application component
placed on edge nodes, we incur a resource cost, F (x):

F (x) =
∑
n∈N

Pn · fn (1)
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where the binary variables fn denote whether n ∈ N hosts at
least one component (i.e., a microservice instance or a message
queue system). Therefore we define fn,∀n ∈ N , as follows:∑

A∈A
∑

i∈A x
A
i,n + ζn

Γ
≤ fn ≤

∑
A∈A

∑
i∈A

xAi,n + ζn (2)

where Γ is a large number and ζn is a constant. ζn = 1 if n
already hosts at least one application component, 0 otherwise.
Note that, if Pn = 1, the edge resources cost counts only the
number of edge nodes used for running the applications.

Cost of Forwarding to Cloud. An edge cluster aims to
run microservices locally, optimizing resource utilization of
edge nodes. However, to correctly deploy the application, the
CN has to enforce the allocation of all of the application
microservices. To extend edge resources, the CN can use the
cloud. This results in a cost of forwarding microservices to
the cloud Z(z), which we assume to be proportional to the
number of forwarded microservices’ instances:

Z(z) =
∑
A∈A

∑
i∈A′

zAi (3)

Application Constraints. Considering application-level re-
quirements, the placement policy explicitly models the net-
work delay between nodes, and allocates the application mi-
croservices only on nodes n and v ∈ N whose network delay
dn,v is below an application-defined critical value NDA,max.
Note that microservices communicate asynchronously through
the message queue. Therefore, for each application A ∈ A,
it is important that each microservice i ∈ A′ is as close as
possible to the queue system q. We define γAi,q as the network
distance between the microservice i and the queue system of
the application A. Formally, ∀A ∈ A and ∀i ∈ A′ we have:

γAi,q =
∑

(n,v)∈N×N

yA(i,q)(n,v) · dn,v (4)

The yA(i,q)(n,v) variables model the logical AND between place-
ment variables xAi,n and xAq,n, ∀A ∈ A, i ∈ A\{q} and
n, v ∈ N : yA(i,q)(n,v) = xAi,n · xAq,v .

Similarly, for each A ∈ A, also the queue system q should
be as close as possible to the CN, being the CN the access
point to the edge cluster. Therefore, we formalize the following
constraint: dCN,n · xAq,n ≤ NDA,max.

Edge Placement Problem Formulation. We formulate
the placement problem as an ILP model that determines
the optimal mapping between the applications’ components
and the edge nodes. Our problem formulation considers an
objective function that minimizes the edge and cloud resources
cost. We define the objective function G(x, z) as the sum of
the QoS metrics to be minimized:

G(x, z) = F (x) + Z(z) (5)

The Edge Placement problem is formulated as follows:

min
x,z

G(x, z)

subject to:∑
n∈N

xAi,n + zAi = 1, ∀A ∈ A, ∀i ∈ A (6)

zAq = 0, ∀A ∈ A (7)∑
A∈A

∑
i∈A

Ci · xAi,n ≤ Cn, ∀n ∈ N (8)∑
A∈A

∑
i∈A

Mi · xAi,n ≤Mn, ∀n ∈ N (9)

dCN,n · xAq,n ≤ NDA,max, ∀A ∈ A, n ∈ N (10)

γA
i,q ≤ NDA,max, ∀A ∈ A, i ∈ A′ (11)∑

v∈N

yA(i,q)(u,v) = xAi,u, ∀A ∈ A, i ∈ A′, u ∈ N (12)∑
u∈N

yA(i,q)(u,v) ≤ xAq,v, ∀A ∈ A, i ∈ A′, v ∈ N (13)

1

Γ

(∑
A∈A

∑
i∈A

xAi,n + ζn

)
≤ fn ∀n ∈ N (14)∑

A∈A

∑
i∈A

xAi,n + ζn ≥ fn ∀n ∈ N (15)

xAi,n ∈ {0, 1} ∀n ∈ N,A ∈ A, i ∈ A (16)

zAi ∈ {0, 1} ∀A ∈ A, i ∈ A (17)
fn ∈ {0, 1} ∀n ∈ N (18)

where (6) ensures that all the application components are
either assigned to edge nodes or forwarded to the cloud, and
guarantees that each of them is placed on one and only one
node. The constraint (7) forces the placement of the queue
systems on edge nodes only. Constraints (8) and (9) limit the
placement of the application components on an edge node
n ∈ N according to its available resources, while (10) and
(11) limit the network delays among edge nodes used to run
the application. Constraints (12) and (13) model the logical
AND between the placement variables. Finally, (14) and (15)
define the fn variables, ∀n ∈ N , indicating whether n is used
to run any of the application components.

B. Cloud Placement

If any microservice instance should be forwarded to the
cloud, we have to solve the cloud placement problem. For each
microservice i ∈ A∗, we model the microservice i placement
on a cloud node s ∈ S with new binary variables ti,s : where
ti,s = 1 if microservice i is placed on the cloud node s and
ti,s = 0 otherwise. We denote the cloud placement vector as
t = 〈ti,s〉, with i ∈ A∗ and s ∈ S.

Cloud Resources Cost. The cloud resources cost P (t) ac-
counts for the active cloud nodes for running the applications’
microservices:

P (t) =
∑
s∈S

δs · Ps (19)

where the binary variables δs denote whether s ∈ S is
active and hosts at least one microservice. We formally define
δs,∀s ∈ S as follows:∑

i∈A∗ ti,s + ψs

Γ
≤ δs ≤

∑
i∈A∗

ti,s + ψs (20)

where Γ is a large number and ψs is a constant such that
ψs = 1 if s hosts at least a microservice (as result of previous
optimization rounds), 0 otherwise.
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Cloud Placement Problem Formulation. We formulate the
cloud placement problem as an ILP problem which defines a
mapping of the applications’ microservices on the cloud nodes
with the aim of minimizing the cost of used cloud resources.
The Cloud Placement problem is formulated as follows:

min
t
P (t) (21)∑

s∈S

ti,s = 1 ∀i ∈ A∗ (22)∑
i∈A∗

Ci · ti,s ≤ Cs ∀s ∈ S (23)∑
i∈A∗

Mi · ti,s ≤Ms ∀s ∈ S (24)∑
i∈A∗ ti,s + ψs

Γ
≤ δs ∀s ∈ S (25)∑

i∈A∗
ti,s + ψs ≥ δs ∀s ∈ S (26)

ti,s ∈ {0, 1} ∀s ∈ S,∀i ∈ A∗ (27)

where (22) ensures that all the forwarded microservices are
placed on cloud nodes. The constraints (23) and (24) limit the
placement of microservices on a cloud node s ∈ S according
to its available resources. Finally, (25)–(27) are used to define
the δs variables, ∀s ∈ S.

V. THE POGONIP HEURISTIC

Allocating asynchronous applications on (edge or cloud)
computing resources is an NP-hard problem; so, the ILP
formulations might not scale well as the problem instance
increases in size. To overcome this issue, we propose the
Pogonip greedy heuristics. First, we present the greedy edge
placement heuristic, a network-aware policy to determine the
placement of asynchronous applications in the edge cluster.
Then, we describe the greedy cloud placement heuristic that
allows to reduce the number of cloud nodes used to host the
forwarded application microservices.

A. Greedy Edge Placement Heuristic

The proposed greedy edge placement heuristic solves a
variant of the bin-packing problem, while taking into ac-
count the available computing resources and the network
delays between edge nodes (see Algorithm 1). First, it sorts
the unplaced applications by their NDA,max requirement in
ascending order, i.e., the first applications of the list have
more stringent NDA,max values (line 4). Then, it places one
application at a time (line 6–8). For each application A,
the heuristic identifies Nq , the set of edge nodes that can
host the queue system q and that have a network delay to
the CN below NDA,max (lines 11–12). If Nq is empty, the
application is discarded. Otherwise, the heuristic computes
βn for each n ∈ Nq . The βn factor estimates the node
n capacity of hosting q, approximating the number of q
instances that can be executed on n, considering the most
critical resource (line 17). The edge node having maximum
value of βn is selected for the allocation of q. This allows to
spread queue systems across nodes, avoiding node congestion.

Algorithm 1 Placement Heuristic on Edge Nodes
1: Input: A: Applications to deploy; N : Set of edge nodes;
2: Output: A∗: Microservices forwarded to cloud;
3: Output: X: Application placement;
4: A = Sort A ∈ A by NDA,max (in ascending order)
5: X = {}
6: for all A ∈ A do
7: applicationPlacement(A, N , X , A∗)
8: end for

9: function APPLICATIONPLACEMENT(A, N , X , A∗)
10: q ← Queue system of application A
11: Nq ← Filter n ∈ N on q resource requirements
12: Nq ← Filter n ∈ Nq on dCN,n ≤ NDA,max

13: if Nq is empty then
14: discard application A
15: return
16: end if
17: Compute βn = min(bCn−Cq

Cq
c, bMn−Mq

Mq
c), ∀n ∈ Nq

18: xAq,nq
← Allocate q on nq having maximum value of βn

. spread applications across nodes
19: X ← X ∪ xAq,nq

20: for all microservice i ∈ A\{q} do
21: N i ← Filter n ∈ N on i resource requirements
22: N i ← Filter n ∈ N i on dnq,n ≤ NDA,max

23: if N i is empty then
24: A∗ ← A∗ ∪ i
25: continue;
26: end if
27: Compute βn = min(bCn−Ci

Ci
c, bMn−Mi

Mi
c), ∀n ∈ N i

28: xAi,ni
← Allocate i on ni having minimum value of βn

. maximize resource utilization
29: X ← X ∪ xAi,ni

30: end for
31: end function

Similarly, for each microservice i, the heuristic identifies the
edge nodes N i (lines 21–22). If N i is empty, i is forwarded to
the cloud. Otherwise, the heuristic greedily chooses the first
candidate node that minimizes βn (line 27). Note that this
avoids spreading microservices across the computing nodes,
while preferring to minimize the number of active nodes.

B. Greedy Cloud Placement Heuristic

The cloud placement heuristic uses a greedy approach to
place the microservices received from edge control nodes (see
Algorithm 2). For each microservice i ∈ A∗ and cloud node
s ∈ S, the heuristic filters cloud resources according to the
resource requirements of i, expressed in terms of CPU Ci

and memory Mi demand. First, the heuristic computes βs,
which estimates the node s capacity of hosting i (line 5). The
cloud node with minimum βs value is selected to host i. This
allows to reduce the number of used cloud nodes and, as a
consequence, cloud usage cost. At the end, the application
placement T is accordingly updated.

VI. PROTOTYPE

In this section, we present the prototype implementation of
our heuristic, realized as a Kubernetes scheduler.
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Algorithm 2 Placement Heuristic on Cloud Resources
1: Input: A∗: Microservices to deploy; S: Set of cloud nodes;
2: Output: T : Application placement;
3: for all microservice i ∈ A∗ do
4: Si ← Filter s ∈ S on i resource requirements
5: Compute βs = min(bCs−Ci

Ci
c, bMs−Mi

Mi
c), ∀s ∈ Si

6: ti,si ← Allocate i on si having minimum value of βs
7: T ← T ∪ ti,si
8: end for

A. Kubernetes Scheduler

A pod is the smallest deployment unit in Kubernetes. It
consists of one or more tightly coupled containers that are
co-located and scaled as an atomic entity. Each applica-
tion component (i.e., a microservice or the queue system)
is deployed using a pod. Kubernetes ensures that a given
number of pods are up and running using a Replica Set.
To manage the deployment of applications, the Deployment
object is built upon the Replica Set concept, exposing a
higher level abstraction, simplifying the pods’ update and
providing additional functionality (e.g., rolling updates). To
manage stateful applications, whose pods must be deployed in
a particular order, have persistent IDs, and/or always be con-
nected to the same storage volumes (e.g., RabbitMQ, which
is used in Section VII), Kubernetes introduces the Stateful
Set concept. Differently from Deployments, a Stateful Set
maintains a sticky identity for each managed pod, allowing its
state recovery. When a new pod is created, Kubernetes triggers
the scheduler to identify a suitable hosting node. The default
Kubernetes scheduler is kube-scheduler, which is implemented
using the scheduling framework [28], an extensible architec-
ture for Kubernetes schedulers. It decomposes the scheduling
process into two cycles: scheduling and binding. From a high-
level perspective, the scheduling cycle is a sequence of filtering
and scoring stages. First, it identifies the nodes that can run the
pod by applying a set of filters. Then, it assigns a score to all
eligible nodes according to different criteria. Finally, it selects
the node with the highest score to host the pod. If multiple
nodes achieve the same score, one of them is randomly
selected. The mapping between the pod and the chosen node
is committed to the cluster by the binding cycle [28]. The
kube-scheduler includes a placement policy that spreads pods
on computing resources located in the cluster. As such, it
is not well-suited for placing pods in an edge computing
environment and dealing with its heterogeneity. However, the
modularity of Kubernetes allows us to easily integrate custom
placement policies. There are two main ways to customize
the placement process: (1) by changing the configuration
of the default scheduler; or (2) by implementing a custom
scheduler that runs instead of the default one [27]. Changing
the configuration of the default scheduler is limited by the
capabilities of kube-scheduler, requiring a custom scheduler
for more advanced customizations. A custom scheduler is any
application that observes the list of pods and assigns pods
to nodes. However, relying on the modular architecture of
the scheduling framework simplifies the development of new
placement policies, splitting their logic into multiple and de-
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Fig. 1: Scheduling cycle (adapted from [28]) and Pogonip plugins.

coupled stages. Additionally, the scheduling framework allows
reusing some or all the plugins from kube-scheduler [29],
such as, e.g., NodeResourcesFit, which filters out nodes
that do not satisfy a pod’s resource requirements. Kubernetes
schedules an application’s pods independently: a failure to
schedule/place one pod has no effect on the scheduling status
of the other pods. The scheduler will retry to place a failed
pod later. When the scheduling framework’s sequence of
stages cannot be applied (e.g., as in the optimal placement
formulation), an independent custom scheduler is required.

B. Prototype Architecture and Implementation

The Pogonip scheduler implements the greedy heuristics
presented in Section V leveraging the scheduling framework
of Kubernetes v1.20.1 and most of its default plugins. The pro-
totype is published as open-source under the name rainbow-
scheduler in the RAINBOW2 project’s orchestration package3.

Pogonip needs to be able to identify the pods that contain
a queue system and be aware of the application’s maximum
tolerable network delay. For this prototype, we use Kubernetes
labels to attach this information to each pod. As part of
future work within RAINBOW, a service graph abstraction
will be developed that will contain this and other relevant
information about an application. Pogonip augments the de-
fault kube-scheduler functionality by adding the plugins to the
scheduling cycle shown in Fig. 1. The green boxes show the
scheduling cycle stages that are executed for every pod. Each
stage provides an extension point, for which plugins can be
registered. The Sort stage determines the order in which the
incoming pods will be handled (only one plugin can be active
in this stage). PreFilter and Filter are responsible for
filtering out nodes that cannot host the newly added pod, e.g.,
because they have too few resources. The PreFilter stage is
executed per pod to prepare information needed in the Filter
stage, which, conversely, is executed for every node. If the
set of remaining nodes is empty, the PostFilter plugins
are executed. PreScore and Score plugins assign a score to
each eligible node. Similarly to the filter-related stages, the
PreScore stage is executed once per pod, while the Score

stage is executed once per node. A NormalizeScore exten-
sion may be registered for each Score plugin to normalize
its scores as an integer between 0 and 100, as is required by
the scheduling framework. After this stage, the node with the
highest score is selected to host the pod. Reserve plugins are

2https://rainbow-h2020.eu
3https://gitlab.com/rainbow-project1/rainbow-orchestration
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notified with the outcome, allowing to update third-party data
structures. Permit plugins are executed in the last stage of the
scheduling cycle, to approve, deny, or delay a pod from being
admitted to the binding cycle. In the default configuration,
kube-scheduler registers multiple plugins in the scheduling
cycle, such as NodeResourcesBalancedAllocation and
NodeResourcesLeastAllocated. While the first plugin fa-
vors nodes that would obtain a more balanced resource usage,
the latter prefers nodes that have few allocated resources.
Consequently, the default scheduling strategy spreads pods:
it prioritizes nodes with the least number of pods, without
considering their heterogeneity or geographic distribution [29].

Pogonip extends kube-scheduler with custom plugins, as
shown in Fig. 1. Building on top of the default kube-scheduler
PrioritySort plugin, PriorityMqSort prioritizes the pods
belonging to applications with more stringent NDA,max re-
quirements and ensures that the queue system pods are placed
before the others. ServiceGraph is a PreFilter plugin that
retrieves the graph for the application that the pod is part of.
The Latency plugin is a Filter plugin that removes all
nodes that do not meet the application’s NDA,max require-
ment. If the pod hosts a queue system, the network latency
between the current node and the edge CN is considered.
Otherwise, the plugin filters nodes limiting the network latency
to the node hosting the application queue system. For cloud
nodes, the Latency plugin is disabled. The PodsPerNode

plugin ties into the PreScore and Score extension points.
First, in the PreScore stage, the plugin retrieves the pod’s
required resources. Then, in the Score stage, for each edge/-
cloud node n, it computes the βn factor (see Section V). For
all application pods (but the queue system), we want to select
the node n with the minimum βn value. Once all βn have
been computed, they are normalized in the [0, 100] range.
Furthermore, to implement the preference for edge nodes, the
PodsPerNode returns a score of zero for all cloud nodes, if
at least one eligible edge node has been found. NodeCost
is a Score plugin that assigns higher scores to cheaper
nodes. To avoid compromising the optimizations by the Pogo-
nip Score plugins, we disable the scheduling framework
plugins NodeResourcesBalancedAllocation and Node-

ResourcesLeastAllocated. Finally, Reserve runs in the
Reserve stage and updates the application placement.

To solve the optimal ILP placement formulation within
Kubernetes, we develop a custom scheduler and a Placement
Resolver. The custom scheduler is deployed as a pod and
invoked by Kubernetes as soon as pods need to be allocated
on the nodes. To solve the placement problem, the custom
scheduler interacts with the Placement Resolver. It is an exter-
nal service that exposes the ILP placement problem resolution
as a service, through RESTful APIs. As soon as the custom
scheduler obtains the pods placement, it defines the pod-to-
node mapping using the Kubernetes abstractions.

C. Benchmark Placement Policies

In this section, we present the existing placement policies
against which we evaluate our edge-aware solutions. Together

with the default kube-scheduler policy, we include two well-
known placement policies, that are often adopted in computing
frameworks, namely Greedy First-fit and Round-robin.

We implement these placement policies using the Kuber-
netes scheduling framework. They both leverage the default
PreFilter and Filter plugins to determine which nodes
are capable of hosting a pod. However, we replace all default
PreScore and Score plugins with a single Score plugin,
which implements the corresponding placement policies.

The Greedy First-fit Heuristic. The Greedy First-fit heuris-
tic is one of the most popular solutions used to solve the
bin packing problem. It considers the application’s pods as
elements to be (greedily) allocated in bins, representing com-
puting nodes. Specifically, for each pod, the Greedy First-fit
policy defines the placement on the first node that fulfills the
pod’s resource requirements. Our GreedyFirstFit plugin
greedily selects the first fitting node from the iteration order
provided by the scheduling framework.

Round-robin Heuristic. The Round-robin heuristic orga-
nizes the nodes in a circular list, registering the latest node
used for placement. A new pod to be allocated is assigned
to the first node with enough resources, starting from the
current position on the circular list. Akin to our Greedy First-
fit implementation, we implement the Round-robin selection
with a single RoundRobin plugin for the Score stage.

VII. EXPERIMENTAL RESULTS

We define two sets of experiments aimed to show the bene-
fits of our placement policies when the managed application is
deployed in an edge computing environment using Kubernetes.
First, in Section VII-B, we analyze the advantages of using
edge-aware policies in a heterogeneous environment. Then,
in Section VII-C, we generalize the achieved results and show
the benefits of combining edge and cloud computing resources
when multiple applications should be executed. We compare
the edge-aware policies, presented in Section IV and V, against
the benchmark placement policies, presented in Section VI-C.

A. Experiment Setup

As reference application, we use a modified version of an
Internet of Things (IoT) taxi application4 written for the Fogify
fog emulator [30], [31]. It uses real-world taxi and limou-
sine data5 to generate its workload. We have modified this
application’s microservices to communicate asynchronously
through a RabbitMQ6 queue system. A single application
deployment consists of one RabbitMQ instance and four taxi
app microservices: an IoT load generator that sends location
data from the dataset once per second to two edge aggregator
instances; the latter buffer the received data for one minute
and then send them to a data storage microservice, which
permanently stores the data. The resource requirements are the
defaults used by the RabbitMQ Kubernetes Operator [32] and
reasonable values for the microservices, given their purposes:

4https://github.com/UCY-LINC-LAB/fogify-demo
5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
6https://www.rabbitmq.com
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Fig. 2: Cluster topologies in experiments: Scenario 1 (left), Scenario 2 (right).

• RabbitMQ: 2 CPU cores, 2 GiB memory
• IoT load generator: 0.25 CPU cores, 0.25 GiB memory
• Edge aggregator (2x): 0.5 CPU cores, 0.5 GiB memory
• Data storage microservice: 1 CPU core, 1 GiB memory

The application requires NDA,max to be equal to 50 ms.
We set up a cluster using the kind7 tool, which allows

running a Kubernetes cluster (v1.20.1) inside Docker, with
each node being a container. Since nodes would report the
CPU and memory capacity of the host VM as their available
resources, we created two extended resources, fake-cpu and
fake-memory, which we can explicitly configure for each
node. The cluster runs on a VM with 22 virtual CPU cores and
62.9 GiB of RAM. The hosting server has an Intel Xeon CPU
(Cascade Lake) with a base clock of 2.1 GHz. The cluster
topology differs between the two experimental scenarios, as
shown in Fig. 2. The vertices represent edge nodes, while
links denote the network connections between nodes; on each
link, we report the network latency expressed in milliseconds
(ms) [33]. Both scenarios consider a single edge cluster.

As placement policies, we consider the optimal ILP formu-
lation (referred to as OPT), the Pogonip heuristic, the Greedy
First-fit heuristic, the Round-robin heuristic, and the default
kube-scheduler. To solve the optimal ILP formulation, we use
CPLEX 12.8. To minimize the number of used edge nodes,
in the OPT we set Pn = 1 for each node of the edge cluster
(see Eq. 1). For each scenario we execute 5 runs with every
placement policy. All source code, including the experimental
scripts, is available in our public repository.

B. Application Deployment and Network Latencies

In this experiment, we consider a single taxi application
instance and only edge nodes. To model the edge environ-
ment, we have configured the fake-cpu and fake-memory

resources to match those of the Raspberry Pi 3 Model B+
(4 CPU cores and 1 GiB of RAM) and the Raspberry Pi 4
Model B (4 CPU cores and 2 GiB of RAM)8.

The goal of this experiment is to evaluate the latency
between the microservices and the queue system that can be

7https://kind.sigs.k8s.io
8https://www.raspberrypi.org
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Fig. 3: Latency between microservices and the queue system, when a single
application is deployed using different placement policies.

achieved by the various schedulers. Fig. 3 summarizes the re-
sults. The different schedulers obtain very different placements
for the application, including solutions where microservices
are allocated far away from the message queue. In such a case,
the application performance can be significantly reduced.

The Greedy First-fit policy does not meet the NDA,max

requirement for more than half of the microservices, with a
median latency of 57.5 ms and a mean average of 56.25 ms.
For each pod, it chooses the first node that fulfills the resource
requirements in the list (control-node, worker1, ...,

worker6). Thus, the placement is the same on every run.
Four nodes are used: the queue system is placed on the
control-node and the four application microservices as
follows: one on worker1, two on worker2, and one on
worker3. Both, worker1 and worker3 have low network
latency towards the control-node, which explains Greedy
First-fit’s minimum values of 15 ms. However, since worker2
has a latency of 95 ms to the control-node, the NDA,max

requirement was clearly violated. The Round-robin policy and
kube-scheduler policy spread the application pods on 5 edge
nodes, which is the highest number of nodes with respect to
the other configurations. The Round-robin policy organizes
the edge nodes into a circular list. The queue system is placed
on the control-node and the application microservices in
the nodes worker1 through worker4 in the first run. This
violates the NDA,max requirement, because of the use of
worker2. Subsequent runs performed even worse, because the
next node in the circular list at the start of these runs was either
worker5 or worker4. Both are too small to host the queue
system, resulting in it being placed on worker6, which has the
second highest latency to all other nodes, thus, explaining the
poor performance of the Round-robin policy. Kube-scheduler
registers a mean average latency of 56 ms and a median latency
of 35 ms. Conversely to Greedy First-fit and Round-robin,
kube-scheduler uses all worker nodes across the runs (five
in every run), but avoids the control-node. This may be
related to the fact that this node hosts the Kubernetes master.
Unlike the benchmark heuristics, OPT and Pogonip consider
network delays while computing the application placement.
OPT always computes the best placement, obtaining a mean
average network latency of 17.5 ms and a median of 20 ms
by using the control-node, worker3, and worker4. With
Pogonip, we register a maximum latency of 35 ms, an average
of 21.5 ms, and a median of 22.5 ms. Across all runs, Pogonip
uses all nodes, except for worker2 and worker6, registering
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Fig. 4: Successfully deployed application instances (out of 8 submitted) when
different placement policies are used. Each experiment is run 5 times.

a slight increase in the network latencies compared to the
OPT solution. Anyway, Pogonip always meets NDA,max,
outperforming all previous benchmark policies.

C. Allocating Applications on Edge and Cloud Nodes

In this experiment, we consider an edge cluster that receives
application deployment requests and uses its control node to
allocate them for execution. We submit 8 instances of the
taxi application to the edge cluster. The benchmark policies
(i.e., Greedy First-fit, Round-robin, and kube-scheduler) are
not designed to distinguish between edge and cloud nodes.
Therefore, they cannot complement the edge with resources
rented from the cloud. Conversely, our policies can benefit
from the cloud. We consider the computing infrastructure
depicted in Fig. 2. All edge nodes have the resources of a
Raspberry Pi 4 Model B with a hardware configuration of
4 CPU cores and 4 GiB of RAM. We use three types of cloud
nodes, with 10 instances each, characterized as follows:
• small: 4 CPU cores, 4 GiB of RAM, cost of $2/hour;
• medium: 8 CPU cores, 8 GiB of RAM, cost of $4/hour;
• large: 16 CPU cores, 16 GiB of RAM, cost of $8/hour.
Although these cloud node costs are fictional, their ratios

match those of real-world cloud providers (e.g., [34]).
As soon as the pod placement is computed, Kubernetes en-

acts it. If not enough resources are available, some pods cannot
be successfully placed, meaning that they remain in a pending
state until resources are freed. Fig. 4 shows the number of
successfully deployed applications and Fig. 5 the distribution
of network latencies between the microservices and the queue
system for the successfully deployed applications.

The Greedy First-fit policy successfully executes 5 appli-
cation instances out of the 8 submitted, in each run of the
experiment. Greedy First-fit results in network latencies to the
queue system comparable to those of the previous experiment.
However, in this case, the minimum latency was 0 ms; due
to the more powerful nodes, some microservices are co-
located with their queue system. In spite of that, 58% of
the application microservices exceed the NDA,max constraint.
The Round-robin policy successfully executes between 4 and
6 application instances, with 5 being the median number.
With a median latency of 80 ms, the NDA,max constraint
was violated by 56% of the microservices. As expected, the
Round-robin placement is pseudo random, as it depends on
the number and order of edge nodes as well as the number
of pods already allocated. Since Kubernetes does not treat
the application as a whole, we observe a high variation in
the number of successfully executed applications across the
runs. For example, in the third run, Round-robin successfully
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Fig. 5: Latency between microservices and the queue system, when multiple
applications are deployed using different placement policies.

executes 6 applications (even though 3 queue system pods are
placed on nodes interconnected with high latency). Instead, in
the last run, only 4 applications are successfully executed. This
is due to Kubernetes, which executes one message queue pod
more than in the other runs and, because of the limited avail-
able resources, this prevents other microservices from running.
This reveals a non-deterministic behavior of Kubernetes in
prioritizing pods for execution. First, when priorities are not
explicitly assigned, pods are sorted by their creation time
(see PrioritySort [29]). Second, the different Kubernetes
controllers, e.g., Deployment and StatefulSet, work in parallel,
so they concurrently manage the creation and execution of
different application pods. In our case, each queue system is
a StatefulSet, whereas the other microservices are controlled
by a Deployment. Kube-scheduler successfully executes 5
application instances in all runs. The latency distribution
between the queue system and each microservice is slightly
better than the one obtained using Round-robin. With a median
latency of 35 ms, 60% of the pods fulfilled the NDA,max

constraint.

Pogonip executes between 6 and 7 instances in this exper-
iment, because, unlike the previous policies, it can place the
application microservices in the cloud as well (only the queue
system is required to be on an edge node). With 18 to 20 pods
on the edge, Pogonip places fewer pods there than the bench-
mark policies. This is due to the prioritization of the queue
system pods, which have the highest resource requirements
of all pods. Since bigger pods are placed on the edge, fewer
resources are left there for the other microservices, which are
instead placed in the cloud. All application microservices are
placed on three small cloud nodes, resulting in a total cloud
cost of $6/hour. This is the lowest possible value; e.g., in the
first run, all pods placed in the cloud require a total of 12 GiB
of memory, which could also be met by two medium nodes
or one large node, both would result in the higher price of
$8/hour. Despite placing about half of the pods on cloud nodes,
Pogonip achieves much better latencies than the benchmark
policies by avoiding the two high-latency edge nodes. With
a median latency of 40 ms, Pogonip fulfilled the NDA,max

constraint for about 62% of the pods. The other pods violated
the constraint by an average of 10.3 ms, i.e., less than a sixth
of the next best benchmark policy, Round-robin.

Why does Pogonip not place all instances, despite priori-
tizing the queue system and using the cloud? Their creation
timestamps showed that some queue system pods are created
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TABLE II: Scheduler Resolution Times
Scheduler Time per Instance

(8 Total)
Time per Instance

(10 Total) Increase

Greedy First-fit 21.6 ms 30.2 ms 40%
Round-robin 26.0 ms 32.8 ms 26%
kube-scheduler 38.4 ms 43.9 ms 14%
Pogonip 131.0 ms 152.7 ms 17%
OPT 334.8 ms 576.0 ms 72%

after some other microservice pods. We also noticed that
Kubernetes starts scheduling before all pods have been created
by the StatefulSet and Deployment controllers. Since pods
are the schedulable units, Kubernetes considers a pod ready
for scheduling as soon as it has been created. Pogonip’s
prioritization algorithm also has to adhere to this limitation.
OPT executes all 8 application instances, placing 20 pods on
the edge and 20 pods in the cloud. It also results in the lowest
latency distribution of all other policies, with a median of
50 ms. Differently from the other scheduling policies, OPT
waits for all 40 pods to be created before computing the
optimal placement solution for all the applications. This results
in all applications being successfully executed on both edge
and cloud nodes. OPT uses 4 small cloud nodes for running
20 application microservices, resulting in a cost of $8/hour.
It requires one more cloud node than Pogonip, because OPT
executes one more queue system on the edge where there are
fewer resources available for other microservices. The 20 pods
selected for scheduling in the cloud require a total of 13.5 GiB
of memory, which could be met by four small nodes, two
medium nodes, or one large node – all for the same price of
$8/hour, making the selected solution the cheapest.

These two experiments showed the importance of consid-
ering application and computing features while determining
the placement. By considering network latency, Pogonip and
OPT reduce the communication delay between the application
queue and its microservices (resulting also in limited latency
variance). This can be critical to the proper functioning of
an edge application. The ability of combining edge and cloud
computing allows allocating a greater number of applications
with respect to the other benchmark placement policies. We
conclude the section with some consideration on the resolution
time of each placement policy. We measure the resolution
time as the time needed to compute the application placement.
Technically, we measure it as the time a pod needs to move
from the PreFilter stage until the Reserve stage and then
sum the times for all pods in the run. For OPT, we measure it
as the time needed to compute the placement for the edge and
for the cloud. We conducted an additional experiment, with
10 application instances deployed at once, which constitutes
a 25% increase in the number of pods that need to be placed.
Table II shows execution times for a single instance and the
increases in execution time between 8 and 10 instances.

Greedy First-fit and Round-robin have similar resolution
times; their implementation is rather simple and they differ
only in one Score plugin. Kube-scheduler results in a slightly
longer resolution time, because it contains more Score plu-
gins. Pogonip takes 131 ms on average for 8 instances and
152.7 ms for 10 instances. This is about 3.5 times as long

as kube-scheduler, which is likely caused by the Latency

plugin, which has to evaluate paths through the cluster graph.
The execution time increases by about 17% between 8 and 10
instances, which is below the increment in number of pods.
OPT aims to find the optimal solution of the ILP formulation;
it registers the longest resolution time, with 335 ms to place
8 instances and 576 ms to place 10 instances. In this case, the
resolution time increases by about 72%, which is almost three
times the increment in the number of pods. We observe that
even though the number of applications is rather limited, OPT
requires more than half a second to find a placement solution.
Of course, we expect this time to exponentially increase as
the number of applications increases as well, thus resulting
in an impractical approach when it comes to working in a
dynamic edge environment. This limitation of OPT justifies the
adoption of edge-aware placement heuristics that can compute
the placement of asynchronous components more quickly.

VIII. CONCLUSION

Microservices are an architectural style for developing an
application as a suite of autonomous and decoupled services,
that communicate using synchronous or asynchronous tech-
niques. Although the placement problem is widely explored
in the context of synchronous applications, so far, to the best
of our knowledge, the problem of allocating asynchronous
applications has not been investigated. Therefore, in this paper,
we presented an approach for solving the placement problem
for asynchronous microservice-based applications in an edge
environment. First, we formulate the problem as an ILP model.
Since the problem is NP-hard, it may suffer from scalability
issues when the number of managed microservices increases.
Thus, we propose Pogonip, a novel edge-aware heuristic. It can
quickly allocate asynchronous microservices by explicitly tak-
ing into account the peculiarities of edge nodes. Moreover, if
microservices require more capacity than available in the edge,
it can complement the computing environment by exploiting
cloud computing. Integrating these policies in Kubernetes, we
conducted an extensive evaluation using an edge application
that processes taxi location data. The experimental results
showed the benefits of combining edge and cloud resources as
well as the importance of explicitly considering the edge envi-
ronment’s peculiarities while allocating applications, resulting
in better adherence to their requirements.

As future work, we plan to extend the proposed policies
to efficiently model other performance metrics that can be of
interest for asynchronous applications in an edge environment
(e.g., network usage, energy consumption, availability). More-
over, we want to investigate the impact of mobile nodes (e.g.,
smart cars) and service migrations in terms of performance
penalty, to develop efficient placement adaptation heuristics.
As a long term plan, we want to extend the proposed approach
so as to control the elasticity of asynchronous applications.
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