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Kurzfassung

Das Internet of Things (IoT) gewinnt mit steigender Zahl an verbundenen Geräten
an Bedeutung. Privates und geschäftliches Leben wird durch intelligente Geräte mit
Sensoren und Aktuatoren erleichtert. Vorallem in der Fertigungsindustrie sorgt das IoT
für verbesserte Prozesse.
Die Sensor-Datenströme werden dazu häufig von Data Stream Processing (DSP)-

Topologien in Echtzeit in der Cloud verarbeitet. Da die Sensoren an unterschiedlichsten
Standorten platziert sind, kann beim Daten-Upload eine hohe Latenz auftreten. Um
diese zu beschränken, werden Fog Computing-Ressourcen verwendet, die ihre Rechenleis-
tung in geografischer Nähe zur Verfügung stellen. Fog Computing ist eine virtualisierte,
skalierbare und on-demand zugängliche Rechenplattform, bestehend aus einer großen
Anzahl von heterogenen Ressourcen wie z.B. Router, Switches und diverse Endgeräte. Um
bestmögliche Servicequalität anbieten zu können, ist es vorteilhaft die DSP-Operatoren
auf diversen Fog Resourcen hinsichtlich Latenz, Verfügbarkeit und Kosten zu optimieren.
Das Ziel dieser Arbeit ist die Optimierung von DSP-Operatoren auf Fog Resourcen.

Dafür wurde der ODR Reasoner entwickelt, ein loser gekoppelter Service, der für die
Optimierung von DSP-Operator-Platzierungen in Fog- und Cloud-Umgebungen eingesetzt
wird. Der ODR Reasoner überwacht das Netzwerk- und die DSP-Topologie, um diese In-
formationen in ein lineares Programm zu integrieren, welches wiederholt gelöst wird. Um
zu untersuchen, welche Kriterien bei der Optimierung berücksichtigt werden müssen, un-
tersuchen wir aktuelle Ansätze und analysieren DSP- und Fog-Computing-Eigenschaften.
Der entwickelte dynamische Ansatz wird in einer simulierten Fog-Umgebung basierend
auf virtuellen Maschinen evaluiert.

Der ODR Reasoner wurde mit einem statischen Ansatz verglichen, der nur beim Start
der Topology optimiert. Die Ergebnisse zeigen, dass Latenz und Kosten um 31,5% bzw.
8,8% verringert werden konnten.
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Abstract

The increasing presence of connected devices that interact with their environments, is
a driving force for the Internet of Things (IoT). In the IoT, various devices are equipped
with sensors to support private as well as business life by collecting and providing
insightful information. Especially in the manufacturing domain, IoT devices allow for a
better organization and reduce the need for human control.

To process the collected IoT data, batch jobs are often executed on large databases that
are hosted in the Cloud. Nevertheless, this is not feasible when results are required in
real time. Therefore, Data Stream Processing (DSP) considers to process data based on
a topology of DSP operators. These DSP operators continuously query data to perform
e.g., customized analysis operations. In contrast to batch job processing, DSP operators
consider to process a small amount of data only once or a limited number of times in
order to deliver results in real time.
IoT data is often streaming from multiple sources to Cloud Resources that enact

DSP topologies. This can lead to high latencies when data is uploaded. For that, Fog
Computing is used to provide a highly virtualized computing platform between the
Cloud and the edge of the network. The Fog consists of a high number of heterogeneous
resources to provide scalability and on-demand accessibility. For this, device types such
as routers, switches, or even end-user hardware can be used to host e.g., DSP operators.
Due to the given heterogeneity of resources, the optimization of DSP operator placements
is desirable to achieve a high availability, low latency, and ideally low cost.
The goal of this thesis is to show how the Fog paradigm facilitates DSP systems to

improve the Quality of Service. For this, we introduce the ODR Reasoner, a loosely
coupled service that is used for the optimization of DSP operator placements in Fog
and Cloud environments. The ODR Reasoner continuously monitors the Fog network
and DSP topology enactment to incorporate this information into a periodically solved
Integer Linear Program optimization model. To investigate which criteria have to be
considered in the optimization, we review state-of-the-art approaches and study DSP
and Fog Computing characteristics. To evaluate the developed dynamic approach, we
test operator placement optimization in a Fog-like test bed.

Our results show that response time and cost is reduced by 31.5% and 8.8% respectively.
We compared our ODR approach to a baseline approach that optimizes only when the
DSP topology is initially deployed. Furthermore, we learned that achieving a global
optimum in operator placement problems is a difficult task for growing Fog networks.
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CHAPTER 1
Introduction

1.1 Motivation

The last years have shown that the Internet of Things (IoT) emerged from its theoretical
principles to an important concept for various practical applications. Gubbi et al. [1]
refer to sensor networks that produce an enormous amount of data, which has to be
stored, processed and presented seamlessly. They identified potential IoT applications for
traffic management, infrastructure monitoring, emergency services, healthcare and the
manufacturing industry. Especially the latter one is a prominent research area, known as
Industry 4.0 in Europe. Increasing manufacturing support and optimization with IoT
digitalization concepts are considered as enablers for the next industrial revolution [2].

To cope with upcoming challenges in IoT [3], especially the increase of data that needs
to be processed, it is necessary to extend the currently prominent concepts of Cloud
Computing by leveraging further computational resources. The Cloud Computing
paradigm provides flexible and scalable computational resources, but there is still more
potential computing power at the edge (e.g., smartphones or manufacturing machines)
and in intermediary nodes (e.g., routers or switches) of the network [4]. Considering
this, Bonomi et al. [3] introduce the Fog Computing paradigm as an extension of the
Cloud Computing paradigm. The Fog is described as a virtualized platform for compute,
storage and networking services at the edge of the network.

In order to process and analyze data (e.g., originating from IoT devices) on Fog and
Cloud computing infrastructures, we consider Data Stream Processing (DSP) topologies
which are choreographies of stream processing elements and data sources [5, 6]. In
the literature, processing elements refer to data stream operators, which usually carry
out well-defined operations (e.g., aggregation, filtering, splits) on received data stream
tuples [6]. Furthermore, topologies provide mechanisms to process the data streams
within a network produced by different data sources (e.g., sensing devices, social networks,
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1. Introduction

mobile apps). The resulting analytic outcomes can be used to gain valuable insights [7].
To categorize this approach, Buyya et al. [8] distinguish between Little Data (or Big
Stream) and Big Data, where the former considers data that is captured from smart
IoT devices, while the latter refers to high volume persistent data in cloud storages.
Considering this, DSP topologies are part of the Little Data concept, which we will now
reflect within the context of an IoT manufacturing use case as a motivational scenario.

1.1.1 IoT Manufacturing Scenario

We consider a European manufacturer with two factories in two countries as depicted in
Figure 1.1. The larger factory (Smart Factory 1) has two machines with sensors attached,
while solely one machine is placed in Smart Factory 2. Furthermore, the factories each
host a cloud computing infrastructure (private Cloud for the whole company, Cloudlet
in Smart Factory 1, and a Cloudlet in Smart Factory 2). Herein, Cloudlets can be
considered as resource-rich computers like a cloud in a box, which can be used by nearby
devices [9]. Additionally, a public Cloud is used for avoiding internal resource bottlenecks.
In this scenario, the Cloud infrastructure is used for hosting company-specific services and
especially DSP topologies. These topologies receive data from availability, productivity,
and temperature sensors in order to derive Key Performance Indicators (KPIs) of the
production process that can be shown in visual dashboard services. Furthermore, if any
irregularities are detected, maintenance actions are taken to avoid serious production
problems. However, the company is always aiming for improvements in their deployment
flexibility. The deployment locations of the DSP operators vary according to the current
situation in the computation infrastructure (e.g, latency, costs of resources, availability).
The latency of DSP topologies, for example, can be much higher if the processing data has
to be uploaded to the public Cloud instead of processing it directly on company-owned
devices that avoid long-lasting data transmissions over the Internet. Therefore, the
company has to ensure Quality of Service (QoS) criteria. Especially, avoiding processing
bottlenecks and decreasing the operating cost are major goals. Furthermore, already
existing but not fully utilized devices within the network of the company can act as
deployment locations for hosting operators. This Fog computing oriented resource
provisioning approach can result in an efficient deployment strategy which can pay off
considering e.g., cost savings, application performance, customer satisfaction and business
process efficiency.

1.1.2 Discussion: IoT in Cloud vs Fog

The computing devices within the company network, mentioned in the motivational
scenario, form a Fog environment that extends the used Public Cloud. Bonomi et al. [3]
state that applications exist that are suitable for deployment locations in the Cloud
and the Fog. Both deployment locations provide advantages, especially in the field of
data analytics. While applications deployed in the Fog are suitable for low latency or
real time data analysis, the cloud is more powerful for long-running data analysis batch
processes. Nevertheless, according to Vaquero et al [4] the cloud lacks privacy when

2



1.1. Motivation

Figure 1.1: Example DSP within Smart Factories

it comes to processing of data that may be restricted to certain persons (data owners)
or regions. It has to be ensured that data does not leave a defined network and is
processed on local devices. Cardellini et al. [10] discuss deploying DSP operators on
different computing nodes in the Fog and Cloud. They optimized operator placements
with respect to a heterogeneous infrastructure with different resource capabilities. The
authors state that pushing DSP operators or even whole topologies to the cloud could
cause excessive stress on the network infrastructure that may lead to network delays.
Moving computation to the edge of the network can re-establish the required network
performance and improve application scalability. Hochreiner et al. [11] argue that the
decomposition of DSP topologies into multiple sets of operators, which can be deployed
to a heterogeneous network, is mainly driven by network latency. They point out that
the flexibility of having several deployment locations (e.g., Cloud and Fog devices) at
different geographic regions can reduce the latency and influence the provisioning cost.
For this, the cost can differ significantly between Cloud and Fog Resources [5].

3



1. Introduction

1.2 Problem Statement: Replacement of DSP Topologies

As indicated in Section 1.1.2, a trade-off can exist between latency and cost when it comes
to the deployment of services (especially DSP operators) to the Cloud or Fog respectively.
Therefore, focusing on DSP topologies for processing IoT data in a continuous way,
operator placements need to be optimized to save topology enactment cost and to keep
latency at a minimum. Nevertheless, further criteria can be incorporated to achieve a
better QoS as considered in existing approaches in the literature. Research in the area
of operator placement [10, 12, 13, 14], replication [15] and scaling [16] show that there
are multiple ways to achieve optimal operator placement. Most of these approaches
consider either a static optimization, where operator placements are computed once or a
dynamic distributed optimization, where operator placements are computed continuously
from independent decentralized units. Furthermore, heterogeneous Fog networks build
a novel environment that has to be regarded when placements are computed, as it was
considered by Cardellini et al. [10, 12, 13, 15]. Considering the fog as a flexible network
that faces continuous changes of participating devices [9], dynamic replacement can result
in better QoS metrics. This requires to periodically monitor the network and use the
received metrics to find a new solution for operator placements. Hence, there exist the
need to develop an operator placement algorithm that runs for the whole execution time
of a DSP topology that has to be optimized. Moreover, the algorithm should find an
optimum for the operator placements with respect to the overall changing Fog network.
The resulting software implementation contains a mathematical model that is designed
in this work. The found operator placement solutions need to be propagated to the DSP
topology execution environment to actually update deployments.

1.3 Foundation: VISP and ODP

1.3.1 VISP

Hochreiner et al. [11] proposed the VIenna ecosystem for elastic Stream Processing (VISP).
VISP provides a holistic approach for DSP, especially for IoT scenarios. It consists of
supporting functionalities along the stream processing lifecycle: Design, Deployment and
Execution. Additionally, it also considers the resource and quality elasticity for operator
replication. VISP contains two major components namely the VISP Marketplace and
VISP Runtime, as depicted in Figure 1.2. The former one is a platform for hosting DSP
operator images and designing topologies for DSP scenarios. The latter one is a runtime
environment which instantiates, executes, and monitors the created topologies with the
respective operators in a distributed way. The Runtime is able to pull operator images
from the Marketplace to instantiate new operators. Furthermore, the VISP Runtime has
an elasticity component which contains a usage monitor and a reasoner for analyzing
whether the system should scale in or out or remain unchanged. Additionally, VISP
provides an operator placement framework for a Fog environment.
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Figure 1.2: VISP Ecosystem [11]

1.3.2 ODP

Cardellini et al. [10] provided an optimization approach formulated as Integer Linear Pro-
gram (ILP), named Optimal DSP Placement (ODP). The authors focus on a heterogenic
Fog network and incorporate its characteristics in the designed ILP model. The imple-
mentation of ODP considered Apache Storm1 as a stream processing framework, which
accepts initially computed placements of the proposed model and algorithm respectively.

1.4 Aim of the Work
Beside the main foundation presented in Section 1.3, which we use in this work, we
further consider research in the area of operator placement [10, 12, 13, 14], replication [15]
and scaling [16] from Cardellini et al. as well as elastic data stream processing from
Hochreiner et al. [5].

Based on these foundations, the overall goal of this work is to extend VISP [11] with
an optimizer component. For this, we present the Optimal DSP Replacement (ODR).
The ODP model of Cardellini et al. [10] should be partially considered and extended
with expressions and constraints related to additionally identified QoS metrics. Hence, a
further goal is to find and incorporate these metrics. Instead of applying an optimization
algorithm only at system startup, ODR aims for performing optimized reconfigurations
throughout the runtime to cope with ongoing changes on the resource infrastructure and
latencies within the Fog network. According to these identified goals, development, and
integration issues, the following four Research Questions (RQs) have to be answered:

RQ1 Which criteria are relevant for an operator (re)placement problem?

Since the basic model of the ODP approach [10] takes computation and network latency,
as well as availability into account, the VISP-oriented ODP approach needs re-evaluation
of metrics that can be provided by VISP and its running operators. Existing approaches
in operator placement optimization [10, 12, 13, 14, 17, 18] focus on different metrics
that are considered as parameters in different types of algorithms. Therefore, it requires
to screen this work to find suitable metrics for the ODR approach.

1http://storm.apache.org/
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1. Introduction

RQ2 How can an operator placement problem be defined?

The ODP approach from Cardellini et al. [10] uses an ILP model that defines an objective
function and multiple constraints as a mathematical system of equations. Nevertheless,
the literature has to be screened for different methods of defining an operator placement
problem that can be solved in reasonable time. The gained insights will be used to adapt
the ODR model for achieving better operator placements with respect to identified QoS
criteria.

RQ3 How can our optimization approach be realized as software and be integrated
into established systems?

ODR acts as an extension to a DSP topology execution environment such as the VISP
Runtime. Based on the identified criteria that have to be incorporated in the ILP model,
it is necessary to identify interfaces which can be used to request the relevant metrics.
The communication protocol has to be designed and potential placement updates need
to be pushed to VISP Runtime. The actual optimization component of the software that
has to be developed needs to compute the parameters and incorporate them into the ILP
model. This model has to have a valid representation that can be read by an ILP solver.
Before and after the solution is computed, heuristics need to be used to gain results in a
reasonable time. Furthermore, the software has to be designed in a way that it can be
extended easily with respect to further metrics and additional behavior.

RQ4 How does the optimization compare against baseline approaches?

During the evaluation of the ODR reasoner implementation, the dynamic reconfiguration
approach needs to be compared with a baseline. The baseline will be a version of ODR
that is only applied once at system startup (static optimization). In the evaluation phase,
we will measure the identified QoS metrics and use them for comparison purposes of the
two approaches.

1.5 Methodology
To find answers to the identified research questions in Section 1.4 we conduct a literature
review and use the acquired knowledge to design the ODR optimization model that is
finally implemented in a software prototype. Subsequently, test runs of the software
will be performed to produce data that reflects the optimization performance. After
evaluating these results, we close with a discussion chapter and outline the future research.
The tasks to undertake are presented in the following:

1. Literature review
In order to survey the state of the art of current placement and migration optimiza-
tion approaches, this work provides a literature review following the approach of
Kitchenham et al. [19]. Furthermore, introductory and background topics, such as
stream processing and Fog Computing are discussed in this thesis.

6



1.6. Structure of the Thesis

2. Design
The design phase requires designing an optimization model that adapts the ILP
model of ODP [10]. This model consists of an objective function and constraints.
Additionally, further placement problem modeling knowledge - gained from the
literature - is regarded to aim for improvements considering the placement within
Fog-oriented DSP. Furthermore, the architectural design of the framework has to
be created. The integration in the VISP Ecosystem is planned and an adequate
binding between the ODR Reasoner and VISP Runtime is established.

3. Implementation
The implementation of the framework, which addresses the challenges discussed in
the problem statement, builds on Java as a programming language and the Spring
Framework2. For solving the optimization problem, the IBM CPLEX Optimizer3 is
used. Finally, the software is integrated with VISP. Furthermore, integration tests
are performed in order to ensure correct data exchange between the participating
systems.

4. Evaluation
The evaluation considers a sample topology that is used in multiple different
test beds. The test beds reflect Cloud and Fog computing infrastructures with
their associated characteristics. Operating on these testbeds, the ODR reasoner
propagates computed operator placements to VISP such that deployments can be
carried out. To measure the success of these replacements the topology execution
within the VISP Ecosystem is monitored, the resulting QoS performances are
collected, analyzed and interpreted. The tool tc4 is used for network traffic shaping
(e.g., slow down the Fog network in certain connections). To produce initial data
tuples that get processed by the sample topology, we consider VISP Dataprovider5.
This component ingests tuples into the data source of the DSP topology that is
currently executed. It realizes different generation patterns, which help to simulate
real world data loads.

1.6 Structure of the Thesis
Based on this introduction chapter, the remainder of the thesis includes the Background
(see Chapter 2) that covers concepts and paradigms as IoT, Fog Computing, and DSP.
These topics lay the foundation of the discussed Related Work in Chapter 3. For this, we
present and compare DSP frameworks as well as different optimization approaches in
this field. In Chapter 4 we describe the Requirements Analysis & Design of the ODR
Reasoner optimization approach. It includes the definition of the ILP optimization model
and presents the software architecture that describes how the placement problem is

2https://spring.io/
3https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
4https://linux.die.net/man/8/tc
5https://github.com/visp-streaming/dataProvider
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1. Introduction

solved. Furthermore, it shows identified features and tasks that need to be realized in
the ODR Reasoner. The Implementation chapter (see Chapter 5) provides details of
the optimization and the required integration of monitoring data from VISP. Chapter 6
presents the Evaluation of this work. Identified Cloud and Fog scenarios as well as the
evaluation setup are explained. The corresponding evaluation results are presented and
subsequently discussed. To summarize the thesis, in Chapter 7 the Conclusion highlights
the main results and limitations. Additionally, extension possibilities with respect to
ODR are discussed. Future research paths in the field of operator placement optimization
in the context of Fog Computing are pointed out.

The referenced URLs in all chapters of this thesis have been accessed on 28th May, 2017.
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CHAPTER 2
Background

This chapter describes important concepts that are used in the presented optimization
approach. First, IoT with its enabling technologies and fields of application is discussed.
Next, Cloud and Fog Computing are described to understand how resources are provided
in these paradigms. Finally, we discuss DSP to conceive this way of real-time data
processing, which we want to optimize in this work.

2.1 IoT

2.1.1 Overview

IoT is a concept that considers the presence of connected things or objects that e.g.,
interact with each other for exchanging information and for cooperation purposes [20].
Connected things like sensing or actuating devices, mobile phones, or Radio-Frequency
Identification (RFID) tagged objects aim for reaching a common goal according to a
certain field of application [20].

IoT is a result of the convergence of three visions [21]. First, a Things-oriented vision
considers things with an identifier (e.g., RFID) acting as smart items. Smart items are
wireless things that behave autonomously and proactively. They are context-aware and
are enabled with suitable sensors and actuators to realize this behavior. The European
Commission similarily provides the most recurrent definition [22]:
Things having identities and virtual personalities operating in smart spaces using intelligent
interfaces to connect and communicate within social, environmental, and user contexts.

The second vision emphasizes the Internet and the Internet Protocol (IP) as network
technology for connecting smart items [21].This Internet-oriented vision considers to
connect the already existing devices on the Internet (e.g., personal computers, smart
phones) with the IoT to have one coherent network. Currently, addressing and reaching
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objects with IP is not self-evident for any device within a network as mentioned by
Shang et al. [23]. The authors state that IoT networks contain a large number of resource-
constrained devices which cannot be always on in order to save energy. These devices
mostly require low-energy communication technologies such as IEEE 802.15.4. To enable
integration of those devices within an IP network the Internet-oriented vision aims for
achieving progress in the IP stack by reducing its complexity [24]. Beside protocol aspects,
Buyya et al. [1] consider an architectural perspective for describing the Internet-oriented
IoT. An Internet-oriented architecture involves services in the network that consider
objects solely as data delivering entities, that are not equipped with functionalities as
stated in the Thing-oriented-approach (e.g., context awareness) [1]. According to this, it
can be concluded that IoT is an extension of the existing Internet by data transmitting
objects called Things.

Third, the Semantic-oriented vision comprises semantic technologies and reasoning over
data that is produced by connected things. Margara et al. [25] mention that in the last
few years stream reasoning came up that introduces semantics on streaming data. It
describes data that is e.g., produced by sensors with annotations in order to specify
machine readable details (e.g., measurement precision, data source, spatial and temporal
information). One task of stream reasoning is to gain additional insights into streaming
data by e.g., acquiring contextual background knowledge [26]. Traffic pattern detection,
financial transaction auditing, wind power plant monitoring or monitoring of public-
health risks (e.g., epidemics, H1N1 virus spread) are examples for stream reasoning
applications [27].

Considering these underlying visions, IoT enables various value-added services, e.g.,
Atzori et al. [21] state that the introduction of IoT concepts impacts business as well as
private fields. Therefore, future developments in fields like healthcare, assisted living,
home automation, transportation and logistics, industrial manufacturing etc. will be
enabled by IoT [21]. This variety of IoT fields and its estimated potential of making a
positive impact on economic development led the US National Intelligence Council (NIC)
to declare IoT as a Disruptive Civil Technology [28]. In order to conceive this declaration
and to reflect the potential of IoT, the ideas for current and future applications are
discussed in the remainder of this section.

2.1.2 Fields of Application

Atzori et al. [21] differentiate five application domains and discuss major scenarios. In
the following we describe two domains with multiple examples [21, 29, 30]:

1. Transportation and Logistics

• By equipping vehicles, roads and transported objects with sensors and tags
the whole supply chain can be optimized [21]. Sensors send information to
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companies that may reroute their vehicles and therefore avoid traffic jams. Fur-
thermore, the timely information of the current state of transported goods and
new orders can be used to keep their stock at optimal costs and simultaneously
provide the customer with timely delivered products.

• Assisted driving considers driver and passenger support in vehicles [21].
Appropriate information of sensing devices might be used to avoid collisions.

• Environment monitoring (e.g., temperature, humidity) enables food trans-
portation to be executed in a quality-preserving way. For this, sensors are
attached to the goods in order to measure environmental conditions. This
enables computation of food quality during the whole process within the
supply chain, which can result in wasting less food [29].

2. Smart Environments

• Comfortable homes and offices comprise sensors and actuators that control
various processes in houses (e.g., heating, lighting, entertainment systems,
intrusion detection) [21].

• Industrial plants. Connecting machines and automatizing whole production
processes is very desirable. Customer order data from enterprise systems can
be directly requested from IoT devices attached to manufacturing machines to
speed up production and avoid human intervention [21]. The plant manager
can track the status of the orders and is aware of the production progress and
potential failures within the system. For this, combining IoT devices with
existing systems and equipment is necessary. This can be facilitated by a
Service Oriented Architecture (SOA)-based approach. This approach considers
multiple independent web services that can be orchestrated by a business
process execution engine to enact the defined business processes. Adding new
IoT devices to control production or to monitor certain manufacturing aspects
results in corresponding services that manage access to the device layer. The
integration of these services is then considered in the definition of business
processes. Finally, their execution uses the IoT device data to e.g., have a
global view on factories and production line delays [30].

• Smart leisure environments. IoT technologies might help to exploit facilities
e.g., in gyms better. Training machines can be aware of individual workout
plans, which lead to automatic configuration of the training weight as soon as
the machine detects the exercising person by reading their RFID tag. The
training progress can be tracked and monitoring of health parameters can be
used to alarm the exercising person if overtraining is detected [21].

Beside the mentioned applications, Atzori et al. [21] also refer to the domains of healthcare,
personal and social, and futuristic applications.
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2.1.3 Enabling Technologies

Transforming the IoT visions and concepts into real applications is possible through the
consideration of enabling technologies. Atzori et al. [21] differentiate between hardware
and software technologies.

Hardware Technologies

Hardware technologies comprise RFID tags and scanners as an identification mechanism
of things as well as Wireless Sensor Networks (WSNs) [21]. RFID readers trigger the
transmission of IDs from the tag that is attached to certain things. These tags are
microchips with an antenna that do not have their own power supply, instead, they
harvest the energy from the readers signal. After transmitting the ID to the reader
the thing and its application-specific state (e.g., current location within the logistic
network) can be monitored. WSNs consist of multiple sensors with their own power
supply. Typically, these networks implement the physical and the MAC layer of the
OSI Model (OSI) [31] and exchange recorded data between each other in a low-power
manner. Due to the missing implementation of the network layer, the WSN needs a device
acting as gateway to the Internet to forward data to high level services or middleware
implementations.

Software Technologies

IoT Middleware An IoT middleware aims for collecting and distributing sensed data
from heterogeneous domains over heterogeneous interfaces [32]. It is a software layer
between the application layer and low-level technology layers. A middleware provides
an abstraction of technical functionalities as well as things and facilitates application
development by taking out the non-application-specific work of developers’ hands [21].
Typically, IoT middleware like HYDRA [33] unifies functional blocks from fields like
security&privacy, device discovery, interoperation within the network, and data volume
management [32].

Advances in IoT-enabling software technologies refer primarily to middleware implementa-
tions for integrating data from things into an application and still providing the possibility
to send commands to underlying actuators [21]. Figure 2.1 depicts an architecture for a
suitable IoT middleware based on SOA principles. It defines a thing abstraction layer
that handles the thing specific communication and provides a standard web interface for
calling exposed methods to read from things as well as to control things. The service
management component provides status monitoring, dynamic thing discovery, service
configuration and QoS management. As shown in Figure 2.1 each service management
instance manages multiple thing abstractions, whereas each thing has a one to one
relationship to its abstraction. However, at the top level of the middleware, the service
composition combines multiple service management instances into processes. Each pro-
cess can be triggered by the application that leads to the invocation of exposed service
methods on the layer below. After execution, the result is returned to the application
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layer. Apart from the vertical invocation of the SOA-based architecture, cross-functional
management aspects are considered such as trust, privacy, and security.

Figure 2.1: SOA-based Architecture for the IoT Middleware [21]

Data Analysis and Presentation Technologies Buyya et al. [1] mention further
technologies and important elements that enable the IoT concept and applications.
An unprecedented amount of data is created which needs to be stored and analyzed.
Therefore, large data centers in the cloud can be used for applying big data technologies
for getting insights into the vast amount of structured and unstructured data. Machine
learning methods [1] (e.g., neural networks, evolutionary algorithms, support vector
machines) are used for achieving automated decision making. Those algorithms scan
received data from IoT devices to learn models for prediction purposes (e.g., arrival
time of delivered goods based on the current traffic on the road [1, 34]). Furthermore,
suitable visualization and interaction mechanisms have been created for touchscreens on
multiple smart devices (e.g., tablet, smartphone) [1]. This enables analysis results to be
depicted appropriately with possibilities of further extracting valuable information (e.g.,
drill-down charts).

Application Layer Protocols IoT data streams are processed by using different
application layer protocols that differ in their communication style and used low-level
protocols [35]. Al-Fuqaha et al. [35] explicitly mention application layer protocols like
Constrained Application Protocol (CoAP) and Message Queue Telemetry Transport
(MQTT) as enabling technologies for resource constrained IoT devices. CoAP is based
on HTTP commands that are exchanged in a request/response manner. Due to the
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resource intensive behavior of the TCP protocol, CoAP uses UDP instead. Therefore,
it is kept more lightweight because not all requests need to be acknowledged as this
would be the case with TCP. In contrast to CoAP, MQTT is based on TCP but prefers
a publish/subscribe communication style that results in less data transmission over the
network, since data does not need to be requested.

2.1.4 The Role of IoT in Industry

As discussed in Section 2.1.2, the industrial applications of IoT are part of smart
environments [21]. The idea of creating such a smart industrial environment made
the German government set up a high-tech strategy for modernization. An industrial
platform consisting of several industry associations was created and named Industry 4.0 [2].
Furthermore, this term comprises all activities in this field. According to Lasi et al. [2]
this term also describes a future project that is characterized by two development
directions. First, application pull characterizes the demand for short development cycles,
individualized products, flexible production, and resource efficiency. These are the corner
stones of Industry 4.0. Second, technology push describes technologies for achieving the
declared goals. One of that technologies refers to IoT as a concept of digitalization and
networking in manufacturing. Especially, machines and produced goods get equipped
with additional hardware (see Section 2.1.3). Furthermore, they get connected with other
machines and services to be able to act intelligently by perceiving information from their
environment. This is achieved by e.g., attaching different sensors and actuators as well
as a network-ready devices, which act as a gateway to a suitable IoT middleware and
further high-level services to use the collected data in defined business processes (see
Section 2.1.3). Considering multiple connected machines in Smart Factories, human
control will be reduced and the introduced IoT concepts facilitate self-organization
within the manufacturing site [36]. Each machine fulfils its tasks by communicating with
different entities in the factory or even in the whole supply chain. Ideally, customers
only order their individual customized product [36]. Depending on the current stock,
machines request the needed resources from their supplier before starting the production
process. Change requests of the customer can be regarded at real-time without any
human intervention [2]. Kopetz et al. [37] state that IoT can play a major role in reducing
maintenance costs of machines. Considering that machines are able to detect anomalies
of its components or within the whole factory, they start an automatic maintenance
process or call for human intervention. Beside spontaneous incidents, machines might
also predict the next maintenance date based on collected data from the past.

2.2 Fog Computing

2.2.1 Overview

According to Bonomi et al. [3], Fog Computing is a paradigm that extends Cloud
Computing with additional resources on the edge of the network. As it is known
from Cloud Computing [38], several scalable computing resources (e.g., server, storage,
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services, applications) are provided for a ubiquitous, convenient, and on-demand access.
Nevertheless, these resources are mostly located in dedicated datacenters. Fog Computing
further takes into account a large number of heterogenous computing nodes as e.g., smart
devices, routers, switches and servers [4]. The following section provides a short recap on
the concept of Cloud Computing to better conceive the derived Fog Computing paradigm.

2.2.2 Cloud Computing

Definition

The National Institute of Standards and Technology (NIST) provides a definition [38] of
Cloud Computing. The authors describe the paradigm by identifying essential character-
istics, service models, and deployment models.

Characteristics The characteristics comprise on-demand self-service, broad network
access, resource pooling, rapid elasticity, and automatic monitoring. Cloud consumers
therefore have the possibility to access required resources on-demand. Broad network
access ensures that connecting to resources can be performed with standard mechanisms
from different devices (e.g, HTTP access). Typically, resource pooling enables to share
the resources for multiple consumers, which implies significant and efficient reuse and cost
savings. The elastic behavior of a Cloud Computing system enables automatic inward or
outward scaling of the resources according to the current demand. Herein, we consider
inward (outward) scaling as an action for decreasing (increasing) provided resources.

Service Models NIST [38] defines three service models that are used for providing the
Cloud to consumers. First, Software as a Service (SaaS) considers software applications
that run on Cloud infrastructure. Those applications can solely be used, whereas the
infrastructure below is not accessible for the consumer. The term Cloud infrastructure
is defined as the hardware and required software which hosts the application. This
infrastructure includes a software abstraction layer that ensures compliance with the
mentioned characteristics of the Cloud. This abstraction layer is essential to SaaS since
users and application developers would not consider technical details of the underlying
infrastructure (e.g., actual storage location of processed SaaS data [39]). The second
service model Platform as a Service (PaaS) allows the consumer to create and deploy
applications. This model enables control over deployed applications but restricts access
to the underlying infrastructure (e.g, network, OS, storage). The PaaS provider may
provide a runtime environment for the deployed applications (e.g., Java Virtual Machine
(JVM), .NET Runtime) and ready-to-run services like databases, libraries and platform-
specific Application Programming Interfaces (APIs) [40]. In the third service model
Infrastructure as a Service (IaaS) processing, network, and storage resources that are used
to run arbitrary software are provided. These resources can be used via the operating
system which the user has control of. Nevertheless, the underlying cloud infrastructure is
managed by the IaaS provider.
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Deployment Models Finally, NIST considers deployment models that describe the
scope of cloud accessibility. Mell et al. [38] distinguish between Public Cloud, Private
Cloud, and Hybrid Cloud. The Public Cloud does not restrict the open use, rather it is
available to the general public. By contrast, the Private Cloud provides resources only to
a certain audience (e.g., employees of a company). The Hybrid Cloud combines Private
and Public Clouds in order to use them both for different use cases.

Advances enabled by Cloud Computing

A lot of challenges of the IT industry can be resolved with Cloud Computing [41]. Be-
fore the emergence of the Cloud paradigm, IT companies had to buy and run in-house
computing equipment, which led to high investment cost and little flexibility. Under-
provisioning and overprovisioning happened throughout the operation of the whole IT
landscape. Armbrust et al. [41] describe underprovisioning as resource saturation, where
all resources are fully utilized. In contrast, overprovisioning is defined as underutilization
of used resources. With the advent of Cloud Computing, resources got scalable and
the pay-per-use pricing concept has been established. Furthermore, the elastic behavior
ensures a practical infinite amount of resources that can be used to solve upcoming
tasks and to manage peak loads [41]. This feature may also be considered in the Fog
Computing paradigm, since Bonomi et al. [3] refer to the Fog as an extension of the
Cloud.

2.2.3 Fog Computing Environment

Buyya et al. [7] define Fog Computing as a paradigm that provides cloud-like services on
the edge of the network. Cloud and edge services are incorporated into an environment
of interacting services and applications, which are hosted on the Cloud or Fog devices
respectively. Figure 2.2 depicts these environments of Fog devices and Cloud Computing
infrastructure. It shows multiple IoT sensors feeding in data into devices (gateways)
close to themselves. These devices and two private Clouds are part of the Fog. Data is
processed and streamed to various devices for further processing, whereas also public
Clouds are used to exploit resources and to store data. The approach takes advantage of
the proximity of sensors to devices which results in low latency [42]. Furthermore, the
cloud can be used as a scalable computing model for on-demand peak loads that cannot
be handled by Fog devices, since computational-intensive tasks need to be executed as
mentioned by Ottenwalder et al. [43].

2.2.4 Fields of Application

Dastjerdi et al. [44] surveyed fields of application of Fog Computing and primarily
identified IoT, healthcare, augmented reality, and HTTP web services. The authors
mention data trimming as a required and important functionality for IoT devices that
continuously receive data from sensors. This can be executed by Fog Resources that

16



2.2. Fog Computing

Figure 2.2: Fog Computing Environment [7]

reduce the streaming data to a minimum size so that it can be processed by distant cloud
datacenters in a reasonable time.

Fog Computing principles are also used in a fall detection application for stroke patients
by Cao et al. [45]. In order to check whether the patient has fallen, the patient’s smart
phone distributes computation task to servers in the close proximity. These Fog Resources
process the tasks in real time and classify the current movements.

Zao et al. [46] proposed an augmented brain computer interface that tracks the brain
states of the user in real time by making use of an EEG headset, smartphones and
computing services. The EEG signals are streamed to the computing services that are in
charge of classifying the state of brain. Considering this information the user is able to
play a game which can be controlled just with brain activity. The offloading of complex
classification tasks to Fog services is necessary to exploit computational power and to
keep the latency low at the same time.

Fog devices can be used to optimize the performance of web browsing as proposed in [47].
These devices have cache functionalities and in case of a network congestion low-resolution
images are delivered to the client without requesting the full version from the web server
or the Content Delivery Network (CDN).
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Dustdar et al. [48] mention that finding a missing child in public areas in cities is a
field of application that is currently not leveraged because uploading camera data to the
cloud is a privacy concern. Therefore, nearby Fog nodes can fulfill this task by analyzing
recorded videos and images.

In the context of the Industry 4.0, Gazis et al. [49] see Fog computing as an enabling
technology for handling data that is generated by operated machines, vehicles or even
whole manufacturing sites. The colossal amount of data that is generated very frequently
can not be uploaded to the cloud in a reasonable time to perform suitable analytics (e.g.,
large refineries may produce 5 TB/day). Therefore, filtering, normalizing and detecting
relevant data should be executed in the Fog to avoid heavy network load.

2.2.5 Characteristics

Bonomi et al. [3] state that Fog Computing enables a number of critical IoT services (e.g,
Smart cities, connected vehicles) to be executed in the Fog. It is seen as a highly virtualized
platform that provides computing resources between Cloud Computing datacenters and
devices on the edge of the network. To conceive the term of Fog Computing, the authors
provide eight defining characteristics:

1. Low latency, location awareness and mobility
Due to execution of tasks on devices that are close to the request issuer, the
latency is kept low [3]. According to Stojmenovic et al. [42] the cloud can hardly
satisfy location awareness due to the missing mobility of cloud datacenters. On
the contrary, in Fog Computing devices can move between locations (e.g., smart
phones) and provide specific location-based services, that cannot be offered by
the cloud [3]. Furthermore, devices in the Fog take advantage of being in the
proximity of potential data sources to improve QoS for network traffic intensive
applications. [42].

2. Wide-spread geographical distribution
The Fog considers devices from potentially various geographical regions [3]. Sa-
haran et al. [50] state that the Fog network increases the geographical density of
provided resources. This enables that IoT data can be stored in certain regions,
which is an important security concern.

3. Very large number of nodes
Multiple resources nodes can participate in the Fog Computing infrastructure [3].
Compared to Cloud Computing the number of server nodes (e.g., Fog devices) can
be very high [50], since the number of devices that may provide services increase
steadily [4].
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4. Predominant role of wireless access
Vaquero et al. [4] state that major improvements in wireless technology (e.g., LTE)
make it possible to connect a multitude of devices to the Internet, whereas Cloud
Resources are bound to the network of centralized datacenters.

5. Strong presence of streaming and real-time applications
Due to the proximity of some devices to data sources, it is possible to process
data in real-time and forward intermediary results to succeeding operators via
streams [3, 42].

6. Heterogeneity
The Fog considers different devices as computing nodes [3]. These devices are
decentralized and may cooperate to solve tasks. In contrast to Cloud computing,
users may not only consume services, they can rather lease part of their devices
to provide compute or storage services. Overall, the involved devices form a
heterogenous network that may provide incentives for participation [4].

7. Interoperability
The overall execution of joint tasks is performed seamlessly by possibly invoking
multiple different resource providers (e.g., stream processing) [3].

8. On-line analytic
IoT Data is received from sources and streamed within the Fog network to provide
real time data analysis services [3]. For analytic applications, global centralization
of data as well as location information is desired. The former one is provided by a
Cloud infrastructure, where all data can be collected in a centralized large storage
to apply e.g., historical data analysis on a batch job basis. Location-specific data
is provided by decentralized Fog devices that may use these primarily for stream
processing purposes [3].

2.2.6 Enabling Technologies and Challenges

Vaquero et al. [4] surveyed existing challenges as well as enabling technologies. The
challenges include privacy issues, discovery and synchronization, compute/storage limits,
missing standardizations, configuration and operation management for a huge number
of devices, accountability, monetisation, and programmability. The accountability and
monetisation aspect is crucial for enabling new business models [4]. It needs a system of
incentives for sharing Fog Resources between users. Regarding management, the authors
state that there will be no full central control over each device in the Fog. Therefore,
decentralized and scalable management mechanisms are required. These mechanisms
consider proper setup and configuration of participating Fog nodes. Buyya et al. [8]
mention that it needs programming models and architectures considering stream and data
processing on Fog devices. They highlight that the Fog is a changing environment that
faces dynamic adding and removing of Fog Resources. Therefore, an overall management
framework is required that needs to consider these characteristics. Considering the security
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and privacy aspect, Buyya et al. [8] discuss the need for designing and implementing
authentication as well as authorization mechanisms in a network of diverse nodes to
establish trust within the Fog. Dustdar et al. [48] refer to naming as a critical challenge
that has to be solved for future Fog network realizations, since there is no standardized
naming system for Fog purposes which results in a multitude of communication and
network protocols that need to be used to integrate heterogeneous Fog devices.

Considering enabling technologies, progress was recorded in the battery lifespan of
smart devices (e.g., potential Fog nodes), publish/subscribe protocols for the IoT (e.g.,
MQTT) [35], the network function virtualization (NFV) [51], software defined networks
(SDN) [52], mobile ad-hoc networks [4], and mobile physical connectivity standards like
LTE [4]. NFV separates network functions (e.g., router, VPN, firewall) from physical
devices and eases dynamic deployment of on-demand network functions to different
locations [51]. SDN separates the control logic from underlying network devices (e.g.,
router) and introduces programmable SDN controllers for the network administration
(i.e., the network traffic is controlled by software) [52]. This softwareisation [4] with SDN
and NFV facilitates the handling of heterogeneous devices in the Fog homogeneously and
ideally fully automated by software. It can be concluded that this programmatic network
functionalities can support the Fog with e.g., demand-oriented run time adaptations of
the network traffic with changes in routing and flexible bandwidth management.

2.3 Data Stream Processing

Data processing is a task that is often executed by storing data in a database and then
process it later [6]. However, according to Gama et al. [53] many sources produce data
continuously that needs to be processed and analyzed in real time. Furthermore, it is
often not possible or acceptable to process a large batch of data from a central storage,
because of low latency requirements. Therefore, a paradigm shift from store and then
process to on-the-fly processing models as DSP has been kicked off [6].

Data streams are ordered sequences of data items which are read once or a limited number
of times. The processing itself uses bounded computing and storage capabilities [53].
Data streams that are ingested to DSP systems by various sources are characterized as
open-ended, changing, and flowing at high-speed. In contrast to traditional Database
Management Systems (DBMSs), where humans initiate (predefined) queries usually a
few times, DSP systems are querying data throughout time. These queries are applied
on streaming data in a certain time window. Typically, a DSP system is expected to
produce results in a continuous and timely fashion [54].

2.3.1 Little Data and Big Data

DSP is associated with the term Little Data [55]. It refers to transient data collected
continuously from humans or physical devices. The more popular term Big Data is
described as counterpart that comprises persistent knowledge bases spanning multiple
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domains to be stored centrally in repositories, Clouds, and large datacenters. Gartner [56]
define Big Data as high-volume, high-velocity and high-variety data. High-volume refers
to a large amount of data while high-velocity refers to data that is streamed continuously
to be processed in real time. The third data property, high-variety, refers to different
types of data (e.g., text, video, sensor data).

2.3.2 CEP

A concept which is related to and sometimes combined with DSP is Complex Event
Processing (CEP) [57]. The concept of CEP was first explained by Luckham et al. in
1998 [58]. The authors describe CEP as a technology for extracting information from
message-based systems. Different granularity of data, regardless of low-level network
processing events or high-level enterprise events, can be processed dynamically in order
to gain information about systems and its operations. CEP comprises multiple concepts
as causal event histories, event patterns, event aggregation and event filtering. Thus,
CEP observes and processes correlations between events. Cugola et al. [57] describe DSP
systems as generic systems that leave the reasoning over streamed data to their clients.
In contrast, CEP systems associate semantics to streamed data items. CEP engines are
responsible for processing events and combine them with contextual information to derive
higher-level events (often referred to as: composite events or situations).

2.3.3 Fields of Application

Processing on-line data streams to perform analytics in real-time is relevant for multiple
domains as identified by Gedik et al. [6]. The authors refer to live stock and options
trading feed in financial services, sensor readings in environmental monitoring and
physical link statistics in telecommunications. Goodhope et. al. [59] state that a major
trend in modern IT systems is the use of event messages and logs. This information is
used in DSP systems for analyzing activities of users and systems that are performed
steadily. Typically, in domains as advertising, security, search, relevance determination,
and recommendation systems DSP is used for gaining timely and valuable insights into
the current behavior of their systems. To mention a concrete example, Goodhope et.
al. [59] introduced a data pipeline in the social network LinkedIn1. The authors consider
the data pipeline as a real-time feed of messages originated from a publish-subscribe
system like Kafka2. The pipeline handles more than 10 billion messages per day in order
to analyze social media aspects.

2.3.4 IoT Data Analytics in the Fog

Low latency and on-line analytics are important points that motivate the use of Fog
Resources for IoT scenarios. Stream processing topologies consider a continuous flow

1https://www.linkedin.com/
2https://kafka.apache.org/
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of data originated from connected Things and devices. Data streaming over multiple
processing and analysis steps provides users with insightful information [3].

Table 2.1: Data Analytics for IoT Applications in the Fog

Visualization & Reporting (HMI)

Reporting to Systems & Processes (M2M)

Collect → Process → Control Collect → Process (e.g., Filter) → Forward (M2M)

Table 2.1 comprises three layers describing a model for analytics [3]. First, the bottom
layer considers different patterns of collecting and processing data from various devices
and things. Some analytics scenarios consider a feedback control loop, where actuators
start reacting according to the decisions made in the process (analysis) step. Other
scenarios take filtering into account before forwarding the data to further devices/machines
and to the reporting layer above. This Machine-to-Machine Interaction (M2M) also
takes place in the middle layer where application-external systems and processes get
informed and updated. Visualization & Reporting is used as a channel of information
for Human-to-Machine Interaction (HMI). Stojmenovic et al. [42] state that different
types of storages (e.g., ephemeral storage, limited size storage) that are used within the
Fog nodes could be a challenge for data analysis purposes such that an integration with
existing Cloud storages might be necessary. However, an opportunity of data analytics in
the Fog is the potential to achieve real-time analytics and decision making by involving
Fog services in the close proximity of data sources [44].

2.3.5 Topologies and Operators

In System S, a large-scale DSP middleware from IBM 3, Gedik et al. [6] describe the term
Data-Flow Graphs, Processing Elements (PEs), and Stream Data Objects (SDOs). A Data-
Flow Graph is a set of multiple PEs, also mentioned as operators. Each operator processes
data streamed from sources and forwarded to destinations, which are in turn operators.
The connection structure between multiple operators and the direction of streamed data
is defined in the Topology of the data-flow graph. Stream data objects are the data
items that are exchanged between the operators. Stream data objects are described
as tuples. Typically, operators provide well-defined functions, which can be applied to
streamed tuples, e.g., aggregate (grouping), join (correlating multiple input streams),
sort, split (routing tuples to different output streams), barrier (synchronization point),
functor (tuple-level manipulations such as filtering, projection, mapping, transformation),
arbitrary user-defined operations.

3https://www.ibm.com/us-en/
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In practice, DSP systems like Apache Storm4 use these fundamental concepts of topologies,
operators and their functions. Furthermore, operator functions can be added or adapted
like it is possible in VISP [11]. Various analytical functions as well as machine learning
tasks can be executed by adding customized or specially developed operators (e.g.,
deployment of operators in Docker Container5).

4http://storm.apache.org/
5https://www.docker.com/
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CHAPTER 3
Related Work

The main contribution of this work is an optimization of operator placements based
on periodic reconfigurations. Therefore, this section provides related work on operator
placement approaches and associated topics. First, related work like DSP frameworks and
Fog Computing provisioning frameworks are presented. Second, optimization approaches
are presented and compared by applying the approach by Kitchenham et al. [19]. Third,
related work in other areas, such as service instance scheduling and cloud deployment,
provide a broader picture on QoS-based optimizations. Finally, state migration and its
relation to placement problems is discussed.

3.1 Data Stream Processing Frameworks

3.1.1 Apache Storm

Apache Storm is a distributed real-time data stream processing system that is able to
handle large volumes of high-velocity data. The system is a cluster consisting of three
types of nodes. First, Nimbus distributes code to the cluster for being executed. This
code reflects the behavior that is executed on the operators of the stream processing
topology (e.g., filter data tuples). For this, Nimbus considers so-called worker nodes
as operators, which are monitored continuously. Second, the Apache ZooKeeper1 nodes
coordinate the initialized storm cluster by providing services for naming, synchronization,
and sharing information between groups. Third, supervisor nodes start and stop worker
nodes and maintain a communication channel with the ZooKeeper. The Apache Storm
DSP topologies consist of different forms of operators like spouts (data sources) and bolts
(typical processing elements). Those operators run as part of the cluster to be executed
in a scalable, fault-tolerant and reliable way. Scalability is ensured by a parallel execution
of the topology, while automatic restarting of failed nodes accounts for fault-tolerance.

1https://zookeeper.apache.org/
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Furthermore, storm guarantees that each tuple is processed exactly once. In case of
intermediate failures, messages are replayed to re-establish consistency.

Related Approaches

Twitter Heron2 is a realtime, distributed, fault-tolerant stream processing engine, which
is fully compatible with Apache Storm topologies. The additional features refer to
isolation, resource constraints and performance issues. Isolation means that Heron
operators are process-based rather than thread-based in order to provide better profiling
and troubleshooting possibilities. Resource constraints ensure that no worker node
can use more resources than initially allocated, which can happen in Apache Storm
topologies. Furthermore, design choices of Heron focused more on performance issues
such as throughput and latency.

Beside Apache Storm and Twitter Heron, a further stream processing framework is
Apache Flink3 that aims for high-availability. A more general large-scale data processing
tool is Apache Spark4 that considers, apart from stream processing, processing of large
data batches.

3.1.2 SPADE: The System S Declarative Stream Processing Engine

System S [6] is a large-scale distributed DSP middleware that considers topologies
and operators to meet the on-the-fly processing paradigm requirements as discussed in
Section 2.3.5. As depicted in Figure 3.1, the stream processing core comprises a dataflow
graph manager to define the stream connections between the operators. Data transport
is handled by the data fabric component, whereas the resource manager component is
responsible for placing the operators (called Processing Element (PE) in System S) to
hosts that are continuously monitored. During the uptime, the operators are packed
in Processing Element Container (PEC) to be provided with a run time context and a
security barrier. Stream Processing Application Declarative Engine (SPADE) is used by
developers to describe the problem of data processing in a declarative way. System S
makes use of a code generation framework to translate the SPADE problem description
to operator templates, topology specifications, operator binaries and job descriptions.
Those parts are then deployed and executed. Additionally, run time services are deployed
that ensure reliability, placement optimization, security and fault tolerance.

3.1.3 VISP

Hochreiner et al. [11] created the VISP ecosystem, a holistic approach for elastic DSP
in IoT scenarios, as discussed in Section 1.4. After developing operators, designing
topologies, and hosting them on the VISP Marketplace, the topologies can be enacted by
the VISP Runtime (see Section 1.3). Deployed as Docker containers (to ease deployment

2https://twitter.github.io/heron/
3https://flink.apache.org/
4http://spark.apache.org/
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Figure 3.1: Stream Processing Core of System S [60]

for the VISP Runtime), the operators are processing the data streams according to the
defined topology on possible heterogeneous resources in the Cloud or Fog. Considered as
IoT platform in comparison with prominent frameworks (e.g., Groovestreams5, Apache
Quarks/Edgent6, ThingWorx7, Microsoft Stream Analytics8, Amazon Web Services IoT 9,
Google Cloud Dataflow10) only VISP provides runtime, marketplace, topology builder,
and on-premise deployment together, whereas the other frameworks provide a subset of
these functionalities.

5https://grovestreams.com/
6https://edgent.apache.org/
7https://www.thingworx.com/
8https://azure.microsoft.com/en-us/services/stream-analytics/
9https://aws.amazon.com/de/iot/

10https://cloud.google.com/dataflow/
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3.1.4 Comparison of DSP Frameworks

We now provide a comparison between the approaches presented in Sections 3.1.1-3.1.3
in tabular form. Therefore, we consider the following identified characteristics:

• Distributed Runtimes
Indicates if the framework considers multiple distributed runtimes for managing
and hosting deployed operators.

• Topology Design Tool
Indicates if a tool for creating a topology design consisting of operators and data
flows is present.

• Marketplace
Indicates if a marketplace for uploading and pulling new operators for further
instantiations is present.

• Operator replacement
Indicates if operators can be replaced at runtime (e.g., according to defined QoS
criteria)

• Language Support
Languages that are supported for implementing the operator behavior.

Table 3.1: DSP Frameworks

Distributed
Runtimes

Topology
Design
Tool

Marketplace Operator
replacement

Language
Support

Apache Storm X

topologies
are

defined
program-
matically

-

out of the box:
operators are
solely replaced

if worker
nodes fail [10]

out of the box:
Java, Ruby,
Python,

Javascript, Perl

SPADE System S X X - X

SPADE
Intermediate

Language, C++,
Java

VISP X X X X
not restricted

to specific
languages
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3.2 Fog Computing Provisioning Frameworks
The DSP Framework VISP consider an infrastructure which enables the distribution of
operators (packed in a container) to hosts. Multiple VISP Runtimes operate on Cloud
and Fog Resources. However, if new devices pop up in the Fog landscape to provide
their computing power and storage, VISP requires to manually handle the computing
resources in its environment. In general, a Fog Resource management is needed to
execute tasks (e.g., VISP Runtime and deployed operators) on a dynamically changing
environment. Considering many heterogeneous devices, a provisioning concept is proposed
by Skarlat et al. [61]. They present a conceptual framework for Fog Resource provisioning.
The provided architecture comprises decentralized Fog cells. A Fog cell is defined as
software component that runs on an IoT device and executes services. Multiple Fog
cells are connected and build a Fog colony. If some Fog cells need to use additional
resources for successful task completion, they request the Fog colony to process necessary
(sub)tasks. The required management and orchestration overhead, caused by these task
requests, is covered by central Fog orchestration control nodes which in turn are defined
as Fog cells.

Bonomi et al. [62] proposed a conceptual Fog computing provisioning framework consider-
ing multiple decentralized Fog devices as well as a decentralized database for coordination
purposes. Each Fog device hosts a software consisting of two essential components,
named abstraction layer and orchestration layer. The former one accesses the Fog devices’
resources (e.g., network, storage, and OS) to host deployed tasks that should be executed
within a container. Furthermore, current device statistics like CPU, memory and storage
utilization are retrieved from the abstraction layer and sent to the decentralized database.
The orchestration layer retrieves policies from the decentralized database to execute
them. Typically, these policies specify QoS requirements like minimum delay, assigned
CPU power, memory or storage. Additionally, policies for power management are used
to account for reasonable energy consumption in the Fog.

3.3 Operator Placement and Related DSP Optimizations

3.3.1 Optimization Possibilities

Several communities use DSP to process data in real-time. DSP has its origin in
Stream Processing which is a general programming model for efficient and parallel
computing [60]. Signal processing, databases, operating systems and complex event
processing are examples that make use of Stream Processing and related techniques.

Optimization possibilities exist for many stream processing applications, depending on the
topology and characteristics of operators. Hirzel et al. [60] propose multiple approaches
of core optimizing strategies. First, operator reordering considers two or more filter
operators in a sequence, where one of them is more selective in filtering its input stream
and therefore sending fewer tuples to the output stream. The concept of selectivity is
defined as proportion between input tuples and output tuples. Figure 3.2 depicts how
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operators should be moved in case of operator reordering scenarios. In this case, operator
B filters out more incoming data tuples than operator A. This leads to a replacement by
swapping both operators.

Figure 3.2: Operator Reordering [60]

Second, separating operators into two or multiple sub operators leads to smaller compu-
tational steps. Figure 3.3 shows this separation. The two resulting operators can then
be used to apply the operator reordering to decrease the latency. Considering DSP on
multiple devices, where operators are shared among them, then the computational load
can be distributed after the separation was performed.

Figure 3.3: Operator Separation [60]

Third, fission is a concept also known as Data Parallelism and is shown in Figure 3.4.
Seeing operator A as a heavy task that needs a lot of computational power, it makes
sense to split it up to multiple equal operators A that process solely a part of the input
stream (1/n, with n as a number of copies of A). Certainly, data parallelism needs to be
applicable to the problem. Furthermore, the computational effort should outweigh the
newly introduced network load produced by the copies of A. Multiple cores and/or devices
are then involved in solving the overall task A when finally the results are collected in
the succeeding merge operator.

Figure 3.4: Fission (Data Parallelism) [60]

Further concepts of optimizing operators within a topology are described in [60] like
redundancy elimination, load balancing, state sharing between operators, batching of
streamed tuples, and load shedding.
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3.3.2 Operator Placement

The most relevant optimization concept, which is applied in this work, is Placement [60]
(depicted in Figure 3.5). It considers multiple hosts/devices where operators can be
deployed to. Hosts are symbolized as dashed rectangles, spanning multiple operators.

Figure 3.5: Placement: Assign Operators to Hosts [60]

The placement optimization determines the best candidates to host all operators of the
topology. Typically, it aims for minimizing performance metrics e.g., latency, network
load, and provisioning costs.

Placing operators on different hosts with heterogeneous capacities can be a time consuming
and resource intensive task. Especially when considering large topologies and a huge
network of hosts (e.g., Fog network), different solution approaches make use of heuristics
and local solutions instead of solving the problem with respect to a global optimum.
This is necessary to solve the placement problem in reasonable time, since it is NP-hard,
as it was shown by Cardellini et al. [10]. The definition of optimality depends on the
optimization goals of the approach. Reducing the latency (response time), maximizing
the availability, or reducing the costs of stream processing applications are prominent
examples for optimizing QoS attributes in DSP systems. These optimizations further
ensure scalability of the DSP network as indicated by Rizou et al. [17]. The following
sections present and compare various placement approaches, striving for optimal solutions.
Furthermore, approaches that apply reconfiguration of placements at runtime or use
operator replication and migration techniques are presented as well.

3.3.3 Optimal Operator Placement

In [10], the authors provide a formulation of an optimal DSP placement (ODP) by making
use of an Integer Linear Program (ILP) model. The model considers latency, availability,
and network load for optimization. Cardellini et al. further take the heterogeneity of DSP
applications and the underlying infrastructure into account, by modeling the required
and supplied resource capabilities (e.g., CPU). Those parameters as well as the graphs
mirroring the resource infrastructure and the topology are incorporated into an objective
function and a set of constraints. Heuristics are introduced in the linear program by
considering weights for the different QoS criteria (latency, availability, network load) in
the objective function. This is done in order to give the user the possibility to adjust
the outcome according to the user’s preferences. Considering the focus of each part, the
user defines weights for selected criteria (e.g., equal focus on response time (latency),
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availability, and network loads implies equal weights). The authors evaluate multiple
placements by varying the weights to consider also more extreme cases by optimizing
solely one QoS attribute.

The placement is executed at startup of the DSP application. A scheduler, which applies
the optimization result, places the operators of an Apache Storm topology in a distributed
infrastructure. Metrics that need to be considered as parameters are either estimated
by a separate component (e.g., by estimating latencies within the network coordinate
system [63]) or running a DSP application with any defined assignment to probe the
system and harvest the information in such a warm-up phase.

Due to the approach of finding an optimum considering the whole model graphs (DSP
topology and resource infrastructure), Cardellini et al. are facing the NP-hardness of ILP
solving. The resolution time varies with the size and form of the graphs. Nevertheless,
heuristics help to solve it in a feasible amount of time.

3.3.4 Operator Replication and Placement

As an extension to the ODP approach, discussed in the previous section, Optimal DSP
Replication and Placement (ODRP) is presented in a succeeding publication [15]. ODRP
consider two problems for optimization. First, the optimal number of replicas for each
operator is determined. This is different in comparison to ODP since ODP considers
to deploy only one instance per defined operator. Deploying multiple replicas help to
decrease the latency in stream processing applications. Second, the placement is fixed for
all replicas. This optimization is carried out without separating it in a two-step approach,
rather the number of replicas and its placements are determined within a single-step
optimization. Therefore, the ILP model is adapted in comparison to ODP. Herein, a
set of multiple hosts is considered as deployment locations for each operator. Beside
replication, the ILP model also takes the cost of deployment and data transmission as
further optimizable QoS attributes into account. The authors have shown that replication
has the potential to keep response time to a minimum when the number of streamed
tuples increase. Conversely, overall system cost increase with each replica.

3.3.5 Elastic Stateful Stream Processing

Run-time adaptation of DSP applications are considered in Elastic Stateful Stream
Processing in Storm [16]. The authors introduce a loosely coupled optimization software
that executes scaling actions and performs stateful operator migrations in Apache Storm.
Scaling and migration of DSP operators is performed periodically. First, an Elasticity
Manager checks if the CPU utilization of operators is above or below a defined thresholds.
The scale-out action considers a new executor for an operator for each existing operator
in overload, while scale-in halves the number of executors when they are not required
anymore, i.e., the load drops below a threshold.

After the assignment plan is defined by a Scheduler component, a migration notifier
triggers operator movements. Newly introduced operators are placed on hosts where
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a shared data store among operators within a certain area can be accessed. Due to
a limited number of executors that can be placed on worker nodes, relocation is the
consequence. The migration solution uses a pause-and-resume approach. It extracts the
state that is saved in the shared data store of the previous location, and replays it to a
shared data store of the new location when the operator has been migrated. For this,
the authors use buffer mechanisms to store the streamed tuples while the operators are
moved between locations.

3.3.6 Network-Aware Operator Placement

The authors of Network-Aware Operator Placement for Stream-Processing Systems [14]
present a decentralized optimization of placements that is performed in a stream-based
overlay network (SBON ). This layer makes placement decisions based on knowledge of
stream, network, and node conditions. Without a global knowledge base of the current
situation, the network continuously adapts placements according to a multidimensional
metric space, called cost space. This approach consists of two phases, that are performed
decentralized in multiple nodes.

The authors refer to concepts of physics to formulate a model for describing the opti-
mization problem. First, operators are represented as massless bodies connected with
other massless bodies or pinned data sources/sinks by a spring. The spring extension and
constant are the link latency and data rate respectively. Considering spring relaxation,
the massless bodies converge finally to a stable position. This position represents the
coordinates of the operators within the cost space, whereas the distance between two
operators reflects the cost (network load, caused by latency and data rate) of streaming
data over the link. Therefore, the spring relaxation approach leads to a minimum of
network load within the system, i.e., bandwidth ∗ delay2 is minimized. Second, resulting
coordinates from the previous step (virtual placement) are mapped to the physical space,
whereas each operator is assigned to a suitable host. Applying this steps iteratively, the
approach regards changes within the infrastructure and the current network situation.

Pietzuch et al. claim that the SBON layer, presented in their solution, can easily be
integrated into different distributed DSP systems.

3.3.7 Multi-operator Placement Problem

Rizou et al. present an approach for solving the placement problem with dynamic
reconfiguration [17]. Similar, to Pietzuch et al. [14] the authors use a decentralized
two-step approach. First, placements are virtually optimized within a latency space
by minimizing the network usage of data streams. According to the resulting virtual
placement, the virtual node is then mapped to available physical nodes in the second
step. In contrast to [14], where bandwidth ∗ delay2 is minimized, Rizou et al. minimizes
bandwidth ∗ delay.

The presented Multi Operator Placement (MOP) Algorithm is following an event-driven
manner, whereas operators get informed by neighbor operators in case when their

33



3. Related Work

placements or the data rate of connected links have changed. The minimization problem
is solved locally, considering the neighborhood, and the resulting virtual placement within
the latency space is mapped to a suitable physical placement. Subsequently, neighborhood
operators are informed to adapt. By applying the developed MOP algorithm, at each
iteration a local optimum placement is found for operators, whereas in [14] the operators
gradually move to a local optimum. To solve the problem for an initial placement, each
operator is placed with respect to existing pinned operators. Then the event triggering
mechanisms starts to apply a continuous reconfiguration procedure in a decentralized
manner.

Rizou et al. state that every operator independently finds its local optimal position by
applying the MOP algorithm, which eventually leads to a global optimum.

3.3.8 QoS-aware Scheduling DSP Applications

Further extensions of Apache Storm are presented in [12] and [13]. Self-adaptation
capabilities are added to Apache Storm by implementing a new scheduler that dynamically
reorganizes the placements of operators. Instead of solving an optimization problem
centrally by applying ILP models, the authors present a decentralized approach based on
the work of Pietzuch et al. [14]. The approach considers a Fog Computing infrastructure
consisting of a large number of heterogeneous devices. The scheduling strategy aims
at placing the DSP topology as close as possible to the data sources as well as to the
consumer. Multiple nodes keep each other up to date with monitoring data by making use
of a gossip-based information dissemination scheme. The AdaptiveScheduler is located
on each Storm supervisor node that is in charge of monitoring worker nodes. The
AdaptiveScheduler is therefore responsible for optimization across a group of worker
nodes that are capable of executing operators. It executes the distributed scheduling
algorithm with respect to a feedback control pattern. This MAPE control mechanism is
composed of Monitor, Analyze, Plan, and Execute tasks. After the Monitor phase, the
Analyze phase determines if an operator has to be moved to other nodes. During the Plan
phase candidate nodes (hosts) are identified and in the Execute phase the candidates are
communicated to the ZooKeeper which performs the new placement. These phases are
repeated in a fixed iteration cycle to continuously adapt throughout the runtime.

The authors have shown that latency and inter-node traffic can be reduced by 35% and
31% respectively in comparison to the centralized Apache Storm default scheduler, which
does not perform any run-time adaptations. Especially when it comes to changes in
resource utilization, the presented approach dynamically replaces the operators, which
lead to an even higher advantage in terms of latency compared to the default variant.
Nevertheless, during the time of reconfiguration, the DSP topology is in a cool-down
state and is not processing any tuples. This leads to a short phase of instability with
respect to the defined QoS attributes.
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3.3.9 Network-Aware Query Processing

Ahmad et al. present in [18] optimization approaches based on a greedy algorithm. It
comprises multiple centralized as well as decentralized algorithms, whereas more advanced
approaches are based on the basic ones.

The basic placement approach considers iterating over all operators within the DSP
topology in a post-order manner. The candidate set of nodes, where the operators can
be placed, is restricted to (1) one of possibly many children locations, (2) a common
location with all children, or (3) data sinks. Herein, children are the operators that are
successors of a given operator in a given topology. Based on a cost function, the decision
for one of these three options is made. Costs are increasing if operators are placed on a
different node than its parents or children respectively. Otherwise, when the same nodes
are shared, the costs are 0.

The second approach extends the previous one by adding latency considerations to the
cost function. Therefore, network distances between the nodes are considered. Placement
options with large distances are assigned with higher costs.

The third version further considers a restricted set of candidates, where operators can be
placed on. This set is computed so that network distances to the currently used nodes
are reduced to a defined limit. Therefore, the algorithm avoids placing operators too far
away from its children operators, which could cause high latency.

Due to restriction in scalability and effectiveness of centralized optimizations, all discussed
approaches are further provided as decentralized approaches. For this, the node network
is separated into multiple zones with one coordinator each. These coordinators are
responsible for executing the presented algorithms for a sub tree of the overall DSP
topology. Communication between the coordinators is done in order to distribute sub
trees that have to be placed, and to exchange information about executed placements
of adjacent operators. The distributed protocol makes use of Distributed Hash Table
(DHT) primitives to improve scalability, fault tolerance, and look-up efficiency.

3.3.10 Comparison of DSP Optimization Approaches

In the last Sections 3.3.3-3.3.9 we have discussed different optimization approaches for
DSP frameworks. To compare these, key characteristics are extracted as follows:

• Aim of Optimization
Characterizes the approach with respect to its optimization goals (e.g., placement,
replication)

• Algorithm
Indicates, which kind of algorithm is used to solve the problem.

• Degree of Decentralization
Centralized, partially decentralized, decentralized.
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• Parameters
Monitored metrics or initially provided parameters to optimize the respective QoS
attribute (e.g., latency, costs).

• Dynamic Reconfiguration
Indicates if the optimization is executed dynamically throughout the run time of
the DSP System.

• Change Trigger
Trigger that causes reconfiguration, if implemented.

These characteristics are based on [64]. Table 3.2 uses the identified characteristics to
differentiate the discussed optimization approaches.

Table 3.2: DSP Optimization Approaches

Aim of
Optimization Algorithm Degree of

Decentralizat. Parameters Dynamic
Reconf.

Change
Trigger

ODP [10] Placement ILP Opti-
mization Centralized

Latency,
availability,
data rate

- -

ODRP [15]
Placement

&
Replication

ILP Opti-
mization Centralized

Latency,
availability,
data rate,

cost

- -

Elastic Storm [16] Replication
Threshold-
based
scaling

Partially
decentralized

CPU
utilization X Threshold

SBON [14] Placement

Spring
Relax-
ation

(Physics)

Decentralized Latency,
data rate X Periodic

MOP [17] Placement

Network
usage

minimiza-
tion

(Gradient
Descent)

Decentralized Latency,
data rate X

Event-
based

QoS-aware
Scheduling [12]

Placement

Feedback
control
loop

based on
SBON

Partially
decentralized

Intra-
node(utilizat-

ion,
availabil-

ity),
Inter-

node(latency,
data rate)

X Periodic

Network-Aware
Query Process-
ing [18]

Placement Greedy Partially
decentralized Latency X Periodic
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To conceive the comparison, a few comments follow to clarify some classifications of the
approaches. First, Partially decentralized refers to the fact that neither a centralized
approach, with solely one optimizing component, nor a fully decentralized approach, with
one optimization component per operator or working node, is used. In these cases, the
optimization is often executed in intermediate nodes as Coordinators in [18] that are
responsible for defined sub zones of the network. Furthermore, an approach can also
be declared as Partially decentralized if some tasks are executed centrally, while others
are delegated to nodes at the edge of the network, e.g., on Fog nodes. The gradient
descent algorithm, used by Rizou et al. in [17], seeks for a minimum of the network usage
by incrementally moving along the direction where the defined cost function decreases.
Threshold-based change triggers consider a periodic re-evaluation. Nevertheless, actions
that change the placements or replicas are only taken if the threshold is exceeded.

For comparison, it first needs a separation between approaches that mainly perform
placement optimizations and other DSP optimization approaches. Elastic Storm [16]
primarily focuses on the extension of Apache Storm with elasticity capabilities. The
topology execution is monitored and in case of exceeding thresholds, operator replicas are
created. These replicas have to be placed but without specific optimization considerations.
The main goal is to keep the DSP performance high by unloading work from existing
operators, i.e., reducing the amount of data tuples that need to be processed.

In regard to placement optimizations, ODP and ODRP do not perform reconfigurations
of placements throughout the run time of the DSP topology. Their focus is to create
a promising initial statement, whereas ODRP further instantiates multiple replicas
of operators to balance the load. These ILP optimizations consider, beside network-
specific metrics, also the availability of nodes and operating costs (at least ODRP).
The reconfiguration approaches continuously monitor the current network situation and
perform replacements to keep QoS attributes at a certain level.

Due to the NP-hardness of the placement problem [10], heuristics are considered through-
out the listed approaches. Furthermore, the strategy of decentralizing the algorithm
execution was used to avoid bottlenecks in centralized computations. Nevertheless,
the centralized approaches have complete knowledge, gathered from monitored data of
distributed operator executions. Optimizing with respect to this knowledge may then
result in a global optimum. For centralized approaches it becomes a necessity to apply
heuristic techniques if the potential solution possibilities for placements grow.

3.4 Resource Optimization in other Disciplines

3.4.1 Elastic Processes

The execution of business processes in a Business Process Management System (BPMS)
can include multiple resource-intensive tasks as stated by Schulte et al. [65]. Considering
Section 2.3, this is very similar to DSP topologies, since data is processed and exchanged
between services or operators respectively. Instead of optimizing operator resources, in
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BPMS resources need to be provided to execute their instantiated processes on different
services. In the following, approaches are summarized that aim to optimize the amount
of provided resources, i.e., scaling resources.

Varying workloads for business processes ideally need to be handled in the Cloud to
exploit resource, cost, and quality elasticity [65]. Therefore, the authors presented an
elastic BPMS that is able to execute the processes in an elastic service environment
hosted in the cloud. Scheduling service invocations among the Cloud requires to optimize
the deployments. For this, the Service Instance Placement Problem is formulated by
Hoenisch et al. [66, 67]. Herein, the cost for Virtual Machine (VM) provisioning and
penalties, which accrue for late deployment and not complying to Service Level Agreements
(SLAs), are minimized in an ILP optimization. The result is a cost-optimal placement of
service instances.

In an extended approach, Hoenisch et al. [68] also take Hybrid Clouds into account.
During continuous replacements of the service instances within the Cloud, migrations
from a private Cloud to a public Cloud and vice versa are considered. These migrations
lead to data transfer cost that have to be included in the ILP optimization model. The
evaluation has shown that due to the reduction of more expensive inter-cloud data
transfers and leased public Cloud VM instances, the cost for service placement decrease
significantly.

In [69] the authors consider business processes that need to be executed according to user-
defined non-functional requirements e.g., execution deadlines. A Reasoner component
creates a scheduling plan that determines when a business process and its services are
executed. Therefore, it has to be ensured that resources for execution are allocated in
time. This is done by considering multiple time slots in the future which the service
executions of the business processes are assigned to. Considering this scheduling plan,
the resources in the Cloud are allocated such that cost and time are saved.

Euting et al. [70] present an optimization approach for scaling Cloud Resources based
on fuzzy logic. The approach considers specified Key Performance Indicators (KPIs) as
input values for scaling a BPM systems’ provided VMs that are used for hosting involved
services. These KPIs refer to e.g., the average complexity of started process instances
and the average time for a process completion. The actual scaling decision is made in a
fuzzy controller component that deduces the amount of VMs that need to be instantiated
by applying pre-defined fuzzy logic rules. The fuzzy controllers’ goal is to scale such that
over- and underprovisioning of resources can be avoided and cost can be saved. Hence,
the output of the fuzzy controller specifies the number of VMs to be instantiated at a
given point in time.
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3.5 State Migration
During operator movements, it has to be considered that its state needs to be migrated for
each stateful operator. Current techniques in state migration refer to a pause-and-resume
approach used in [16], whereas the literature also discusses a parallel track approach [71].
The former considers a shutdown or pause of the original operator before the state is
migrated and efficiently restored on the new location. A drawback is the latency, which is
caused by pausing an operator. The latter regards a parallel execution of both operators
as long as they are synchronizing their states. Although it is faster than pause-and-resume,
it requires enhanced mechanisms for state movement.

Ottenwälder et al. [43] focus on planning the migration of operators certain time steps
ahead in order to minimize the network utilization. In some cases it is necessary to consider
these migrations and their corresponding costs, especially when long-term benefits of
a QoS-adequate network utilization can be achieved. So, e.g., when operators consider
migrating if corresponding mobile data sources changed their location, a long-term
reduction of network utilization is likely.

The up-front planning phase enables preparing the replacement by migrating parts of
the operators a priori. To find an optimal solution, the authors use a probabilistic
tree-like data structure that models possible migration possibilities with paths. The
vertices indicate potential locations for the operators and its state, whereas the edges
refer to migration actions between the vertices. The presented algorithm determines
the migration that most likely results in a reduced network utilization by still ensuring
end-to-end latency to be below a defined threshold.

To achieve migration of states, Distributed Data Stores (DDSs) can be used [16]. In DSP,
this store acts as a repository for saving the states decoupled from the corresponding
operators. Figure 3.6 shows an extended part of the architecture of Apache Storm, as
presented by Cardellini et al. [16]. Worker processes, which run DSP operators, share
their states together with other worker processes on a given supervisor node. In case of
operator migration to another supervisor node, the DDS moves the corresponding states
accordingly over the network.

Figure 3.6: Distributed Data Stores [16]
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CHAPTER 4
Requirements Analysis & Design

4.1 Required Functionality
In Section 1.4 we state that the VISP Ecosystem considers the Reasoner component for
optimizing the placements of DSP topologies hosted by the VISP Runtime. For this, we
propose the Optimal DSP Replacement (ODR) Reasoner which makes use of an ILP
optimization model. The model includes parameters that are submitted by the VISP
Runtime. After solving the optimization problem, placement instructions are returned
to the corresponding VISP Runtime, which is in charge of deploying operators to the
assigned hosts. With respect to optimality, we identify relevant QoS attributes that need
to be optimized based on [10, 15].

• Operator and network latency
This attribute influences the processing duration of DSP topologies. Hence, by opti-
mizing placements such that operators are executed on resources with appropriate
computing power, the performance can be maximized. Furthermore, the response
time can be improved by avoiding long network distances that cause delays when
data is streamed between the operators.

• Enactment cost of using the underlying infrastructure
DSP operators can be deployed to decentralized hosts that provide their computing
power at different cost or even with different cost models. Therefore, at given
points in time the cost for enacting the DSP topology has to be re-evaluated and
cost-optimal placements have to be computed.

• Resource availability
Operators can be placed at different regions and hosts with varying availability.
Especially in a heterogeneous environment like a Fog network, the differences
in availability can be significant. Monitoring the online status of the involved
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Cloud and Fog Resources is the basis for making optimal decisions to ensure the
availability of the overall topology. Therefore, this data has to be considered in the
optimization.

• Cost of operator replacement
In order to optimize the criteria above, replacements have to be executed. These
replacements lead to cost for e.g., temporary downtimes and data transfer. This
has to be considered to limit the extra expenditure and save cost overall.

Beside these criteria, we take the heterogeneity of Fog and Cloud Computing resources
into account. For this, we focus on different resource capabilities and varying network
metrics. In contrast to the approach of Cardellini et. al [10], which considers an ILP
Model that is partially reused in this work, we apply a dynamic optimization. In this
context we describe dynamic optimization as iterative solving the placement problem
over time. This enables continuous reconfigurations of operator (re)placements according
to the current parameters measured in the system.

Figure 4.1 shows the optimization as cycle implemented by the ODR Reasoner based on the
principles of the PDCA cycle and Deming wheel respectively [72]. These concepts include
a control cycle with Plan, Do, Check, and Act phases. Mostly known from management
sciences, herein this concept is used for providing an overview of the implemented
optimization approach. By making use of the PDCA cycle we can illustrate the cyclic
optimization behaviour which is responsible for reconfiguring operator placements.

The VISP Runtime is the operating environment for the DSP operators and initializes, i.e.,
plans, the optimization activities and considers the results for performing replacements of
operators. The planning system is depicted in the top swim lane while the bottom swim
lane (see Figure 4.1) refers to the operating system part. The control system is considered
as the core component that is realized by the ODR Reasoner and depicted in the middle
swim lane. For this, an optimization task (1) with a given set of optimization preferences
(1c) is created first. The optimization task consists of the following attributes that are
forwarded from the VISP Runtime to the ODR Reasoner to be used for executing the
optimization:

• DSP topology
This attribute contains the relevant information of DSP operators and their de-
pendencies. For this, it describes the type of involved operators (e.g., source,
sink, custom operator) and defines which deployment locations are allowed (see
Section 4.4.3).

• Resource infrastructure
The resource infrastructure is considered as the collection of all available deployment
locations that can host DSP operators. In this work, we therefore take heterogeneous
Fog and Cloud networks into account.
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Figure 4.1: Plan-Do-Check-Act-based ODR

• Monitoring data
The resource infrastructure comes with different capabilities and utilization. This
information is collected to be used for optimization purposes.

• Update Placeholder
The placeholder part is used for storing the updates of the attributes described above.
It enables to track the changes of the resource infrastructure and corresponding
monitoring data.
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The optimization task is continuously maintained and updated by the ODR Reasoner as
long as the optimization is executed. For that to happen, the ODR Reasoner stores the
optimization task and incorporates monitored QoS attribute data. Additionally, the plan
includes reconfiguration rules (1a) which tell the ODR Reasoner how the optimization has
to be executed e.g., periodicity of placement reconfigurations or optimization goals like
latency minimization. The reconfiguration rules are used to customize the optimization
accordingly and to incorporate the requirements of the user. Third, QoS attributes are
measured (2) in VISP and sent to the Act step (4) in order to incorporate them into the
ILP optimization model. This data is used for computing parameters of the model on an
ongoing basis. The Optimize Operator Placement action solves the placement problem
and propagates the replacement instructions (4a) to the corresponding VISP Runtime
(operating system) for execution (5).

4.2 System Model

To implement the optimization behaviour described in Section 4.1, we adapted the system
and optimization model of Cardellini et al. [10], in the following referred to as ODP.
At first, we extended the system model by aspects like resource limitation, processing
duration of operators, and cost. The extension further incorporates a resource model
that reflects the resource infrastructure information in several variables. Furthermore,
the system model consists of variables that model the DSP topology. For this, we explain
the notation of used variables in Table 4.1. Furthermore, we now highlight the main
differences between ODP and our ODR extension.

4.2.1 Resource Model

The resource model is a graph Gres, containing computing nodes (i.e., hosts of operators)
as vertices Vres and network links as edges Eres. The computing nodes are labelled with
u and v respectively, considering u, v ∈ Vres. Corresponding QoS attributes characterize
the current state of the network and its computing nodes. For this purpose, we consider
the availability of computing nodes Au and network links A(u,v) as main input to be able
to optimize the overall topology availability. Similarly, the delay d(u,v) of a network link is
incorporated as input for response time optimization. In contrast to Cardellini et. al [10],
who focused on modeling response times and availabilities in their basic version, we also
consider enactment cost Cu and migration cost C(i,u,v). To be specific on the resource
node capabilities, we distinguish between different categories like the provided CPU
frequency P(CPU,u), memory capacity P(Mem,u), storage capacity P(HD,u), and number of
cores P(Cores,u). The speedup Su of a concrete node u ∈ Vres is a factor that indicates
the potential of faster processing compared to a given reference processor. In addition,
we model three resource classes with SMALL, MEDIUM , and LARGE which contain
resource nodes with similar capabilities and therefore corresponding speedups spSMALL,
spMEDIUM , and spLARGE . So, if e.g., a computing node u is a medium-sized computing
node and v is small-sized (i.e., u ∈MEDIUM and v ∈ SMALL) then it holds that u
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Table 4.1: Notation Used for the Optimization

Symbol Description
Gdsp Graph representing the DSP topology
Vdsp Operator set (vertices of Gdsp)
Edsp Streams between operators (edges of Gdsp)
Gres Graph representing the resource infrastructure
Vres Resource vertices (computing nodes) of Gres

Eres Logical link set (edges of Gres)
ETi Execution time (sec) per processed data tuple in operator i ∈ Vdsp

Cu Enactment cost of computing node u ∈ Vres per second
C(i,u,v) cost for migrating operator i ∈ Vdsp from u ∈ V i

res to v ∈ V i
res

P(CP U,i) Required CPU power (MHz) per core for operator i ∈ Vdsp

P(Mem,i) Required memory (MB) for operator i ∈ Vdsp

P(HD,i) Required storage (MB) for operator i ∈ Vdsp

P(Cores,i) Required number of cores for operator i i ∈ Vdsp

si Size (MB) of image of operator i ∈ Vdsp

T(actual,i) Actual processing duration per tuple of operator i ∈ Vdsp

T(max,i) Maximum processing duration per tuple of operator i ∈ Vdsp

P(CP U,u) Available CPU power (MHz) in computing node u ∈ Vres

P(Mem,u) Available memory (MB) in computing node u ∈ Vres

P(HD,u) Available storage (MB) in computing node u ∈ Vres

P(Cores,u) Available number of cores in computing node u ∈ Vres

Su Processing speed-up of u ∈ Vres

Si Processing speed-up experienced by operator i ∈ Vdsp in previous optimization period
SMALL Set of computing nodes u ∈ Vres with small resource capabilities
MEDIUM Set of computing nodes u ∈ Vres with medium resource capabilities
LARGE Set of computing nodes u ∈ Vres with large resource capabilities
spsmall Speedup of computing nodes u ∈ SMALL
spmedium Speedup of computing nodes u ∈MEDIUM
splarge Speedup of computing nodes u ∈ LARGE
Au Availability of computing node u ∈ Vres

A(u,v) Availability of (u, v) ∈ Eres

d(u,v) Network delay (sec) on (u, v) ∈ Eres

M VISP Marketplace as separate node with M /∈ Vres

b(M,u) Data rate (MB/s) between VISP Marketplace M and node u ∈ Vres

xi,u Decision variable for placement of i ∈ Vdsp on V i
res

y(i,j)(u,v) Decision variable for placement of (i, j) ∈ Edsp on (u, v) ∈ Eres

xprev
i,u Placement of i ∈ Vdsp on V i

res in the previous optimization period
V i

res ⊆ Vres Subset of nodes where i ∈ Vdsp can be placed

runs faster than v (i.e., Su > Sv). This categorization is made to limit the amount of
provided resource classes, which are used for deployments, e.g., in the VISP Runtime.
For retrieving new operator images from the VISP Marketplace, we model b(M,u) as data
rate between the Marketplace M and node u ∈ Vres. Beside the current placement of an
operator i on a specific node u that is modeled as decision variable xi,u, we additionally
consider the placement variable of the previous optimization period xprevi,u .

45



4. Requirements Analysis & Design

4.2.2 DSP Model

The DSP model reflects the structure of the DSP topology with all its involved operators
and data streams. Therefore, the graph Gdsp models operators as vertices Vdsp and data
streams, connecting the operators, as edges Edsp. Similar to the resource supply, each
operator i ∈ Vdsp demands resources from different categories: CPU frequency P(CPU,i),
memory capacity P(Mem,i), storage capacity P(HD,i) and number of cores P(Cores,i).
Compared to ODP, the operator image size si is considered for migration purposes in
ODR. The execution time that is needed to process k data tuples of operator i ∈ Vdsp on
a reference processor is modeled as ETi. The number k results from the amount of tuples
that is received from all operator predecessors when exactly one data tuple was injected
by the source nodes (e.g., sensors). Therefore, according to the given topology we may
consider more than one tuple (i.e., k tuples) for being processed in one processing step
of an operator. In genereal, the execution time ETi is used to describe the latency that
is caused when operators execute their defined behavior. Additionally, T(actual,i) refers
to the currently experienced tuple processing duration of operator i on the previous
deployment location. To point out the main difference between ETi and T(actual,i), we
describe the former one as related to the present while the latter one is a monitored value
from the past. Furthermore, T(actual,i) includes waiting times of tuples in queues before
they can actually be processed. This is based on the architecture of VISP, which uses
message queueing for tuple forwarding. Additionally, the user is able to limit T(actual,i)
to a defined maximum duration of T(max,i). Finally, Si stands for the speed-up that
operator i has experienced at the deployment location in a previous optimization period.
For this, it is assumed that the optimization is executed iteratively such that monitoring
data of the past is available in current iterations.

4.3 Optimization Model

In literature, various techniques are used for solving the placement problem for DSP
operators as discussed in Section 3.3.10. In this work we decided to make use of an ILP
optimization model that is dynamically solved to remain at a global optimum. With
dynamic solving, we refer to solve the optimization problem not only when the topology
is deployed the first time, moreover we solve the optimization problem in fixed cycles
repeatedly in the future. This enables to re-evaluate network structures and conditions
that may have changed. Similar to the system model, we extend the ODP optimization
model from Cardellini et al. [10]. Therefore, Section 4.3.1 presents the ODP optimization
model with the objective function and its corresponding restrictions. In Section 4.3.2 we
discuss the adaptations and extensions for the ODR model.
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4.3.1 ODP Model

QoS Attributes

Response Time According to Cardellini et al. [10] there is no general definition for
response time of a DSP system. Therefore, the authors express the response time as the
maximum response time over all paths as described in Equation 4.1. For this, a path is
a sequence of edges connecting multiple vertices. The response time of one path Rp is
partitioned into two addends (Equation 4.2), whereas the first reflects the time spent
for processing tuples within all operators along all paths and the second one considers
the delay of data tuples within the network. For this, Ri(x) in Equation 4.3 models the
response time for a single operator i ∈ Vdsp and D(i,j)(y) considers the delay between
operator i and j with i, j ∈ Vdsp.

R = max
p∈πGdsp

Rp(x,y) (4.1)

where

Rp(x,y) =
np∑
k=1

Rik(x) +
np−1∑
k=1

D(ik,ik+1)(y) (4.2)

Ri(x) =
∑

u∈V i
res

ETi
Su

xi,u (4.3)

D(i,j)(y) =
∑

(u,v)∈V i
res×V

j
res

d(u,v)y(i,j),(u,v) (4.4)

Availability The ODP approach models the DSP availability in Equation 4.5 by
assuming independence of computing nodes u ∈ Vres as well as network links (i, j) ∈ Eres.
It is necessary to consider the logarithm of the DSP availability to avoid multiplications
of decision variables xi,u and y(i,j),(u,v). This leads to linearity that is necessary for
solving ILP problems, since quadratic or higher order equations cannot be solved with
ILP solution procedures. Equation 4.8 describes the logarithm applied on Equation 4.5,
with log(Au(x)) = au and log(Au(x,y)) = au,v. Although this application is not correct
in all cases, it holds for the ODP model as shown in [10].
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A(x,y) =
∏

i∈Vdsp

Ai(x) ·
∏

(i,j)∈Edsp

A(i,j)(y) (4.5)

where
Ai(x) =

∑
u∈V i

res

Auxi,u (4.6)

A(i,j)(y) =
∑

(u,v)∈V i
res×V

j
res

A(u,v)y(i,j),(u,v) (4.7)

logA(x,y) =
∑
i∈Vdsp

∑
u∈V i

res

auxi,u+

+
∑

(i,j)∈Edsp

∑
(u,v)∈V i

res×V
j

res

a(u,v)y(i,j),(u,v) (4.8)

Objective Function

The basic ODP model describes the objective function in Equation 4.9. Multiple objectives
are included by making use of Simple Additive Weighting (SAW) [73]. This method
considers objective functions with a sum of weighted terms, where each weight wi with
i ∈ {r, a} is a parameter such that

∑
iwi = 1 holds. Regardless of weighting parameters,

it is necessary to balance the influence of each term to the objective function. Therefore,
normalization of the QoS attributes is performed by dividing with Rmax − Rmin and
logAmax−logAmin respectively. Rmax and Rmin are the maximum and minimum response
times for the whole DSP topology. Analogously, the maximum and minimum availability
is expressed with logAmax and logAmin respectively. The division results in equal scales
([0, 1]) for all QoS attributes.

F (x,y) = wr
Rmax −R(x,y)
Rmax −Rmin

+ wa
logA(x,y)− logAmin
logAmax − logAmin

(4.9)

Optimization Problem Formulation

The basic linear program can be formulated as shown in Equations 4.10 - 4.18. Compared
to the objective function in Equation 4.9, F (x,y) is replaced with F ′(x,y, r) to avoid
nonlinearity as introduced with R = maxp∈πGdsp

Rp in Equation 4.1. The used auxiliary
variable r replaces R(x,y) in the objective function. Additionally, the constraint presented
in Equation 4.11 ensures that r is greater or equal than the response times of all
topology paths. Considering also that in the optimum r has to be minimized, we have
r = maxp∈πGdsp

Rp(x,y) = R(x,y), which is therefore a valid replacement.
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max
x,y,r

F ′(x,y, r)

where

F ′(x,y, r) = wr
Rmax − r

Rmax −Rmin
+ wa

logA(x,y)− logAmin
logAmax − logAmin

(4.10)

subject to:

r ≥
np∑
k=1

∑
u∈V ik

res

ETi
Su

xik,u+

np−1∑
k=1

∑
(u,v)∈V ik

res×V
ik+1

res

d(u,v)y(ik,ik+1),(u,v) ∀p ∈ πG (4.11)

∑
i∈Vdsp

Pixi,u ≤ Pu ∀u ∈ Vres (4.12)

∑
u∈V i

res

xi,u = 1 ∀i ∈ Vdsp (4.13)

∑
i∈Vdsp

xi,u ≤ 1 ∀u ∈ Vres (4.14)

xi,u =
∑

v∈V j
res

y(i,j),(u,v) ∀(i, j) ∈ Edsp, u ∈ V i
res (4.15)

xj,v =
∑

u∈V i
res

y(i,j),(u,v) ∀(i, j) ∈ Edsp, v ∈ V j
res (4.16)

xi,u ∈ {0, 1} ∀i ∈ Vdsp, u ∈ V i
res (4.17)

y(i,j),(u,v) ∈ {0, 1} ∀(i, j) ∈ Edsp, (u, v) ∈ V i
res × V j

res (4.18)

The resource limitation constraint, shown in Equation 4.12, is used in the ODP model
to ensure that the demanded resources of operator i ∈ Vdsp are less than the provided
resources of node u ∈ Vres which the operator is deployed to. In the ODR model we
drop this constraint. Instead, we distinguish between specific resource categories as CPU,
memory and storage as presented later in Section 4.3.2. Equations 4.13 and 4.14 restrict
one operator to be exactly placed at one resource node and one resource node is restricted
to host up to one operator respectively. The logical AND constraint y(i,j),(u,v) = xi,u∧xj,v
is modeled in Equations 4.15 and 4.16. As described in Table 4.1, decision variable
y(i,j),(u,v) indicates if the logical network link between nodes u ∈ V i

res and v ∈ V j
res is

used by operators i, j ∈ Vdsp. Therefore, the logical AND constraint equations ensure
that if y(i,j),(u,v) evaluates to one it has operator i and j to be deployed on nodes u and
v respectively. Finally, Equations 4.17 and 4.18 ensure that decision variables xi,u and
y(i,j),(u,v) are boolean variables which reflect the placement decision after optimization.
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4.3.2 Extensions in the ODR Optimization Model

We now present the changes and extensions made with respect to the ODP optimization
model of Cardellini et al. [10]. The ODR model also considers cost- and migration-related
aspects and makes further assumptions, e.g., new QoS attributes are introduced and
existing equations are updated.

QoS Attributes

Enactment Cost To account for cost that are caused by enacting DSP topologies
on the resource infrastructure, we model Cop(x) as total enactment cost per second as
shown in Equation 4.19.

Cop(x) =
∑
i∈Vdsp

∑
u∈V i

res

Cuxi,u (4.19)

Migration Cost We consider periodic reconfiguration cycles to apply operator re-
placements. For this, we take into account that cost for migrating operators from an
old deployment location to a new one accrue. Technically this is performed by shutting
down existing operators and pull the corresponding operator images from the VISP
Marketplace to instantiate new operators on determined optimal locations. The overall
migration cost, as shown in Equation 4.20, is the sum of all single migration cost C(i,u,v)
that result from a planned migration (i.e., xprevi,u = xi,v = 1). This cost is described in
Equation 4.21 by considering the operator image size si and the data rate b(M,v) for
pulling new operator images. The division of these two variables yields the duration that
is needed to load the image to destination node v ∈ V i

res while operator i is shutting
down. Multiplying this duration with Cu reflects the value which would be invested in
executing operator i on node u for the ongoing migration. We see this value as utility
value which is missing in case of operator replacement and hence it is a good proxy for
migration cost valuation.

Cmig(x) =
∑
i∈Vdsp

∑
u∈V i

res

∑
v∈V i

res\{u}
C(i,u,v)x

prev
i,u xi,v (4.20)

C(i,u,v) = si
b(M,v)

Cu (4.21)
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Response Time In general we stick to the response time of the ODP model from
Equation 4.1 - 4.4, but we further refine the speedup used in Equation 4.3. To account for
specific resource nodes, where the operators are deployed to, the speedup Su is assigned
with one of three predefined speedups according to the resource category of node u ∈ Vres.

Su =


spsmall u ∈ SMALL

spmedium u ∈MEDIUM

splarge u ∈ LARGE
(4.22)

ODR: Objective Function

Making use of the SAW technique, we add two additional weighted cost terms to the
objective function from Equation 4.10 to obtain the ODR objective function as shown in
Equation 4.23.

F ′cost = F ′(x,y, r)+

+ wcop

Copmax − Cop(x)
Copmax − Copmin

+ wcmig

Cmigmax − Cmig(x)
Cmigmax − Cmigmin

(4.23)

Constraints

Budget Constraints To limit the amount of enactment cost, parameter Bop is con-
sidered in the introduced constraint shown in Equation 4.24. According to Wood-
side et al. [74], deployment changes (e.g., operator replacements) should be limited to
save cost and keep the performance at a certain level. For this, the authors state that
penalizing these changes is a promising technique. In our approach we achieve this by
taking migration cost into account. Furthermore, by introducing constraints as e.g.,
shown in Equation 4.25, a rule-based approach [74] can limit the number of deployment
changes.

Cop(x) ≤ Bop (4.24)
Cmig(x) ≤ Bmig (4.25)

Processing Duration Constraints Since the optimization should ensure performance
by executing replacements, we introduce another change trigger for new placement
decisions. This is formulated as constraint considering the processing duration of tuples
as shown in Equation 4.26. It enables that operators are deployed to hosts with more
resource capacities (i.e., higher speed-up Su) if the processing duration of the current
optimization run exceeded the expected maximum duration. Especially, when preceding
operators send many tuples to an already overloaded operator, the processing duration
increases even more. In this case, a more powerful resource node of a higher category
(e.g., medium or large) can be considered as new deployment location to decrease the
queued tuples by processing it faster. The left-hand side of Equation 4.26 is the process
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duration that results if operator i is deployed to resource node u with speedup Su. This
term has to be smaller than the user defined limit Tmax,i.

∑
u∈Vres

T(actual,i)
Si
Su
xi,u ≤ T(max,i) ∀ ∈ Vdsp (4.26)

Constraint Extensions to Equation 4.12 As a substitute for the general resource
capability constraint in Equation 4.12, we consider the set of Equations 4.27 - 4.29.
First, 4.27 ensures that the required CPU power of the deployed operator is smaller than
the provided one. In this case, we consider CPU power as the product of the number of
cores and CPU frequency. This enables us e.g., to deploy operators with highly required
CPU frequency also to nodes that have lower CPU frequency but are equipped with
more cores. Likewise, we assume that higher CPU frequency can offset a shortage of
cores. Equation 4.28 deals with memory capacity that has to be guaranteed on resource
nodes to be able to host operators. The storage capacity constraint in Equation 4.29 is
modeled analogously.

∑
i∈Vdsp

P(CPU,i)P(Cores,i)xi,u ≤ P(CPU,u)P(Cores,u) ∀u ∈ Vres (4.27)

∑
i∈Vdsp

P(Mem,i)xi,u ≤ P(Mem,u) ∀u ∈ Vres (4.28)

∑
i∈Vdsp

P(HD,i)xi,u ≤ P(HD,u) ∀u ∈ Vres (4.29)

4.4 Software Design: ODR Reasoner

To implement the ODR optimization, we designed the corresponding VISP ODR Reasoner
that interacts with the VISP Runtime. According to the DSP placement approach criteria
of Lakshmanan et al. [64], ODR can be characterized as a loosely-coupled component
that runs as single service to serve the DSP system with placement instructions. It
collects monitoring metrics of the available Cloud and Fog Resources and the latency
among them. Aiming for a global optimum with respect to the identified QoS criteria,
periodic re-evaluation of the situation in the network and a corresponding reconfiguration
process of DSP placements are required. These placement updates consider to move
existing operators to new locations. Furthermore, scaling of provided operator instances
is performed to avoid potential over- and underprovisioning of DSP resources.

The following sections present the static design of the main system building blocks as
well as the dynamic behaviour of the implemented optimization approach.
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4.4.1 Static View

The main system components are depicted in Figure 4.2. The ODR Reasoner is the
overall service that consists of several sub-components. These components exchange
optimization requests and their parameter with the VISP Runtimes (i.e., one-to-many
VISP Runtime instances). Therefore, the northbound interface realized by the VISP ODR
Reasoner API (in the following referred to as API) is used for receiving optimization
requests from the Runtime. The southbound interface between the Reconfiguration
Manager and VISP is used for returning placement instructions. Considering the second
client, the Simulator acts as a surrogate for VISP in case when the ODR Reasoner has
to be tested.

Figure 4.2: System Components (Block Diagram)

Focusing on the ODR Reasoner, the API is considered as a service endpoint that creates
a customized Metric Provider as well as a Resource Manager for each optimization
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task that is received from the clients. In general, an optimization task is considered as
the major data structure including the attributes described in Section 4.1. The Metric
Provider is responsible for deriving the optimization model parameter, as mentioned in
the DSP model (see Section 4.2.2). The parameters are used to build Vdsp. Therefore, it
considers metrics that are either initially received or requested from the VISP Runtime
with the help of VISP Client. Analogously, the resource model (see Section 4.2.1) is
built with the Resource Manager. It creates an internal representation of the resource
infrastructure as graph Vres. To save the graphs, metrics, optimization settings and
placement recommendations, we consider to encapsulate this data into the corresponding
optimization task and persist it to an in-memory Storage.

The Reconfiguration Persistence Strategy Selector is used for achieving partial persistence
for the optimized placement solutions over time. According to Woodside et al. [74],
deployment persistence refers to a limitation in deployment changes (e.g., operator
replacements) since frequent adaptations are costly (e.g., possible downtime cost) and
may lead to an inefficient utilization of resources. Hence, the Reconfiguration Persis-
tence Strategy Selector is in charge to constrain the amount of solution possibilities to a
certain extent. The actual solution of the placement problem is then computed by an
ILP Model Solver. It makes use of a ILP solver that returns the placement results. The
Reconfiguration Manager then transforms the results to a file that can be uploaded to any
VISP Runtime for applying the computed changes. Reporting is subsequently invoked to
visualize the changes and to observe the development of QoS attributes. Furthermore,
it logs the QoS metrics to the file system. This can be used later for in-depth analysis
and evaluation of the results. The metrics are derived from the measured VISP Runtime
monitoring data. For this, the Metric Provider and Resource Manager are used to request
the data periodically. To support this, the VISP Client component is invoked to access
the updates of the VISP Runtimes.

Finally, we identify the Scheduler as central component that controls the optimization
in a cyclic manner. It invokes the previously mentioned components to execute the
saved optimization tasks. Technically, multiple optimization tasks can be handled by the
Scheduler in parallel. Hence, numerous DSP topologies can be optimized by ODR at the
same time.

4.4.2 Dynamic View of the System Interaction

We now focus on the dynamic behaviour between the VISP Runtimes and the ODR
Reasoner. For this, we first abstract from internal ODR components to investigate the
cross-system interaction. Overall, three interaction use cases can be distinguished. First,
we consider one VISP Runtime to add a new optimization task to the ODR Reasoner.
Second, in order to receive continuing operator replacement instructions for a given DSP
topology, we consider the starting action of a previously added optimization task. For
the sake of completeness, there also exists a deletion possibility for optimization tasks.
We now describe the interactions of the first and second use case by using UML sequence
diagrams as shown in Figures 4.3 and 4.4.
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Add Optimization Task

Figure 4.3 depicts the interaction between one VISP Runtime and the ODR Reasoner.
An optimization task can be added by sending a VISPRuntimeCallback that identifies
the issuing VISP Runtime instance. This information is then used to pull the required
environment information (i.e., topology, resource infrastructure) in subsequent requests.
A task identifier TaskID is generated and assigned to the optimization task. The TaskID
is also returned to the VISP Runtime for being able to perform further transactions on
the task. Additionally, preferences like the optimization cycle period are loaded from
the VISP Runtime to control the optimization behaviour. If finally all data is requested
successfully, parsing is started to map the data to internal data structures. Furthermore,
the parametrization step refers to the process of deriving parameters from requested data
as defined in the system model and described in detail in Section 4.4.4.

Figure 4.3: Sequence Diagram - Add an Optimization Task

Resource Pools The request getResourcePoolInfo() uses the concept of Resource Pools.
Resource Pools are considered in the VISP Runtime to host parts of a DSP topology.
These pools are realized based on e.g., VMs. Each Resource Pool considers at least one
but typically multiple VMs that can host at least one operator in a container. Therefore,
the ODR Reasoner does not directly receive a resource infrastructure as modeled with
Gres in the system model, moreover it has to consider Resource Pools. This requires
further transformations of the Resource Pool information to internal data structures
(i.e., Gres) which is described in Section 4.4.3.
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Start Optimization Tasks

To actually start the added optimization task, the issuing VISP Runtime has to send the
startOptimization(TaskID) request as depicted in Figure 4.4. The ODR Reasoner then
loads the optimization task with the given TaskID from the internal storage and initiates
its execution.

Figure 4.4: Sequence Diagram - Start an Optimization Task

Next, the execution is considered to run in a loop according to the specified optimization
cycle period. Metrics with respect to the operators and the resource infrastructure
get updated before starting the actual optimization, as will be described in detail in
Section 4.4.4. Finally, after the results can be provided, the placement instructions are
sent to one VISP Runtime via updatePlacement(OperatorPlacements). Technically, VISP
Runtimes consider a specific file that contains the topology placement information, as we
will describe in the following section.

4.4.3 VISP Integration

The main use cases that consider the interaction between VISP Runtimes and the
ODR Reasoner use different data structures. The data from all currently running VISP
Runtimes is required to build the internal system model as described in Sections 4.2.1
and 4.2.2. Therefore, we subsequently discuss the data formats and transformations that
are necessary. In general, the data is transferred by making use of Representational State
Transfer (REST) interfaces of the involved systems.

VISP Topology Description Language

Hochreiner et al. [11] designed the VISP Topology Description Language in order to
ease the communication between VISP and other entities that download/upload DSP
topologies from/to a VISP Runtime instance. Listing 4.1 includes a sample topology
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description consisting of a data source, two operators, and a sink. These components define
a simple sequential topology, that processes temperature data within a manufacturing
context.

Listing 4.1: Simple Temperature Data Processing Topology
1 $source = Source ( ) {
2 concre t eLocat ion = 128 .120 . 172 . 182/ cloudPool0 ,
3 type = " TemperatureSensor " ,
4 outputFormat = " temperatureData "
5 }
6
7 $step1 = Operator ( $source ) {
8 a l l owedLocat ions = 128 .120 . 172 . 182/∗ ,
9 concre t eLocat ion = 128 .120 . 172 . 182/ cloudPool0 ,

10 inputFormat = " temperatureData " ,
11 type = " CleanData " ,
12 outputFormat = " cleanedTemperatureData " ,
13 s i z e = "medium"
14 }
15
16 $step2 = Operator ( $step1 ) {
17 a l l owedLocat ions = 128 . 1 20 . 0 . 1 / fogPool1 128 . 1 20 . 0 . 1 / fogPool2 ,
18 concre t eLocat i on = 128 . 1 20 . 0 . 1 / fogPool1 ,
19 inputFormat = " cleanedTemperatureData " ,
20 type = " EnrichWithMachineInfo " ,
21 outputFormat = " TemperatureOfManufacturingMachine " ,
22 s i z e = " l a r g e "
23 }
24
25 $ log = Sink ( $step2 ) {
26 concre t eLocat i on = 128 .120 . 172 . 182/ cloudPool0 ,
27 inputFormat = " TemperatureOfManufacturingMachine " ,
28 type = " logOperator " ,
29 }

The source considers temperature data that is emitted by a sensor. The sensor is
deployed to the location defined by the IPv4 address of the concreteLocation attribute.
It is identified by the attribute type and considers the specified outputFormat, which is
defined as temperatureData. The size attribute with its possible values small, medium,
and large enables to scale operator instances. For this, small requires to start exactly
one instance, whereas two are instantiated for medium and four for large. As defined for
the step1 operator, the attribute allowedLocations defines a set of locations that can be
used for hosting the specified operator. During optimization of the ODR Reasoner, the
placement approach uses these restrictions to avoid invalid placements on the resource
infrastructure.
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Resource Pool Mapping

As discussed earlier, VISP considers Resource Pools that are managed by VISP Run-
times. In order to transform these resource infrastructure format to an internal graph
representation Gres, we map each used Resource Pool to a subset of the corresponding
vertices Vres.

Figure 4.5: Resource Pool Mapping

Figure 4.5 depicts the mapping process of Resource Pools. Initially, we consider three Re-
source Pools of different sizes that are controlled by a VISP Runtime. In this visualization,
the size of a Resource Pool refers to the resource capacities like CPU frequency & cores,
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memory, and storage. After the first mapping step, each pool is partitioned into equal-
sized resource nodes. In ODR we consider a node to be able to host one container which
runs an operator. Every node has the capacity of a specified reference host (e.g., 2400
Mhz, 0.2 cores, 512 MB memory, and 300 MB storage). Due to the fact that we consider
to place operators with different resource demands on these nodes, the provided resource
capacity of one node might not suffice (e.g., when operators have to bear higher loads).
Therefore, nodes with more computational power and storage are required. This can be
achieved by mapping the equally partitioned Resource Pools to partitions depicted in the
third step of Figure 4.5. For this, resource nodes of three different sizes can be used to
place operators. We consider small, medium, large nodes, whereas each category of nodes
uses a fixed portion of the overall capacity. By default, we set this portion to a third. We
consider a medium sized node to have twice the capacity than the reference host which is
considered as small node. Analogously, large nodes have the fourfold capacity of small
nodes. If large or even medium nodes would demand more than the assigned portion, we
add small nodes accordingly, such that the overall capacity of the Resource Pool is used.

First, the mapping process results in the creation of resource vertices Vres, i.e., nodes,
as discussed above. In order to build the corresponding edges Eres to complete the
construction of Gres, we consider a complete graph. For this, it holds that Eres =
{{uj , uk} : 1 ≤ j < k ≤ n} with Vres = {u1, ..., un}. So, each constructed node is
connected to all other nodes.

As it can be seen, there is a connection to the size attribute of VISP Topology Description
Language files. For this, it has to be mentioned that after the placements are optimized,
the results are uploaded to a VISP Runtime. So, if the placement results in deploying a
given operator on e.g., a medium node, the file is created with the size attribute set to
medium. Therefore, the provided resources are doubled by hosting two operators, which
we assume to behave similar to providing only one operator but with doubled power.
This is performed analogously with large operators. Furthermore, the uploaded topology
file contains the placement information that is stored in the concreteLocation attribute.
This information is propagated to the VISP Runtime for executing the updates within
the topology placement.

Multiple VISP Runtimes We further consider the case that more than one VISP
Runtime can manage Resource Pools for a given DSP topology. For this, operators
of the topology are deployed to Resource Pools of different involved Runtimes. Thus,
the distributed organization requires to perform the mapping for all Resource Pools
as described above for single VISP Runtime case. For this, the relevant information
of Resource Pools is collected by requesting the involved VISP Runtimes. The ODR
Reasoner then applies the Resource Pool mapping process for each Runtime sequentially.
Finally, the resulting graphs are connected to have exactly one complete graph to be
considered as Gres.
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4.4.4 Dynamic View of the ODR Core Components

To not only reflect the high-level interactions between VISP Runtimes and the ODR
Reasoner, we now analyze the design of the internal behaviour of involved ODR system
components.

Add Optimization Tasks

We now consider the dynamic view of adding an optimization task to the ODR Reasoner.
For this, we consider three involved ODR components (API, Metric Provider, and Data
Context) as depicted in Figure 4.6.

Figure 4.6: Add one Optimization Task

The first four interactions between a VISP Runtime and the API have already been
shown in Section 4.4.2. Considering the requested DSP topology, Resource Pools and
optimization preferences, the ODR reasoner can create internal representations according
to the graphs Gres and Gdsp of the system model. The Data Context is used for storing
the created graph models, that are subsequently initialized by the Metric Provider
(see Section 4.4.1). This further initialization is necessary, because not all information
can be directly requested from the VISP Runtimes at the beginning. Instead it needs
parameter estimation or additional requests. Therefore, the Metric Provider triggers
a parametrization process that assigns values to the following variables used in the
optimization model:
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• Response time boundaries: Rmax, Rmin
estimated by maximizing/minimizing R(x,y)

• Availability boundaries: Amax, Amin
estimated by maximizing/minimizing A(x,y)

• Enactment cost boundaries: Copmax, Copmin
estimated by maximizing/minimizing Cop(x)

• Migration cost boundaries: Cmigmax, Cmigmin
estimated by maximizing/minimizing Cmig(x)

• Network delay d(u,v) for all (u, v) ∈ Eres
requested from all VISP Runtimes that maintain Resource Pools

• Speedup Su for all u ∈ Vres
assigned value that corresponds to the size of the created node u (small, medium,
large)

• Execution time ETi for all i ∈ Vdsp
either assigned a user-defined default value or estimated by applying a specific
testing process as described in Section 4.4.5

The remaining parameters that are defined in the system model can be directly derived
from the requested data in the createInternalGraphModel() step. The updateMetrics()
step is then executed to store the parametrized model in the Data Context. Finally, the
TaskID is returned.

Starting and Running an Optimization Task

After adding an optimization task, its periodic execution is triggered from the issuing
VISP Runtime as modeled in Figure 4.7. The Scheduler first loads the parametrized graph
models from the Data Context. In order to restrict the number of operator replacements,
the Persistence Strategy component is invoked. For this, operators are either pinned
to a given Resource Pool or refer to the use migration cost which should be minimized.
Considering this minimization, the extent of changing placements is limited inherently
in the optimization problem as it can be seen in Equation 4.23. The graph models
as well as the optimization parameters (i.e., optimization weights from Equations 4.10
and 4.23) are passed to the ILP Model Solver. This component optimizes the operator
placements that can be propagated to the Reconfiguration Manager. To ensure that
the results are returned to the correct VISP Runtime, the corresponding VISP Runtime
Callback is loaded. Finally, a VISP Topology Description Language file is created in
the Reconfiguration Manager and uploaded to the VISP Runtime by using the network
address and port defined in the VISP Runtime Callback.
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Figure 4.7: Starting and Running an Optimization Task

Update Resources and Metrics

In the previous use case we consider the graph model already to be updated and stored
in the Data Context. Now, we describe how the resource model and DSP model in form
of Gres and Gdsp respectively, are updated throughout the life time of an optimization
task. In Figure 4.8, the Scheduler initiates the update cycle for a given optimization
task identified with the TaskID by requesting the assigned Metric Provider. Herein, we
consider that every optimization task has its own Metric Provider and Resource Manager.
This is because different optimization tasks can have divergent settings that apply in the
update phase, e.g., some optimization tasks require to update in short time cycles whereas
others consider longer ones. So, the Metric Provider and Resource Manager together
with the help of the VISP Client build an interface between the origin of the optimization
task that parses the relevant information to an optimization task that can be processed
by the ODR Reasoner. The first call, made by the Metric Provider, is to retrieve the
current metrics update from VISP Runtimes. This comprises the DSP topology and
its monitoring data for the hosted operators. The Metric Provider further invokes the
assigned Resource Manager to update the resource infrastructure information. For this,
it requests the resource infrastructure graph and executes the Resource pool mapping
process as described in Section 4.4.3. Additionally, the Resource Manager checks if new
VISP Runtimes and/or Resource Pools have been added or removed. If so, the Resource
Pool mapping process updates the graph models Gres and Gdsp correspondingly. In the
recomputeParameter(...) step, the parametrization process of Section 4.4.4 is started to
update the remaining variables. The fully updated model is then stored in the Data
Context again to be used for further placement optimizations.

4.4.5 Parametrization Phases of the Optimization Model

In order to know when parameters of the system model (see Section 4.2) are assigned to
values, we provide an overview in Table B.4. Therefore, we distinguish between three
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Figure 4.8: Update Resources and Metrics for Optimization Task

phases, whereas the Creation Phase and Warm-up Phase are part of the Add Optimization
Task use case, described in Section 4.4.4. The Update Phase corresponds to the Update
Resources and Metrics use case.

Creation Phase Parameters that are assigned to values in this phase comprise three
categories. First, parameters that belong to the DSP topology graph Gdsp are determined
by parsing the VISP Topology Description Language file and additionally by requesting
the VISP Runtimes via their REST Interfaces. For this, the vertices Vdsp are created
and their attributes P(CPU,i), P(Mem,i), P(HD,i), P(Cores,i), si are assigned. Analogously,
the edges Edsp of Gdsp are created according to the structure of the DSP topology.

Second, the resource graph Gres is created in this phase by applying the Resource Pool
mapping process from Section 4.4.3. Some attributes of the resource nodes Vres and
edges Eres are directly derived from the VMs of the corresponding Resource Pools
like availability Au and CPU frequency P(CPU,u). However, the rest of the attributes,
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e.g., P(Cores,u) (see Table B.4), need to be computed by considering the relative amount
of used capacities of the Resource Pools. For this, e.g., a Resource Pool that has a VM
with 3 Cores can be separated into 4 small nodes with 0.25 cores, 2 medium nodes with
0.5 cores, and 1 large node with 1 core.

Third, the optimization preferences are loaded from the VISP Runtimes or, if not available,
default-wise from the ODR application properties. Herein, we consider the weights of
the objective function (see Equations 4.10 and 4.23) as wells as the cycle period, which is
used for dynamic replacements.

Warm-up Phase In this phase, the parameter for the operator execution time per
ingested data tuple, i.e., ETi is assigned. This is done by performing tests with the
uploaded DSP topology on the provided Resource Pools as described in Section 4.2.2. The
resulting execution times are measured and assigned to ETi as part of the corresponding
node i ∈ Vdsp. If the user decides to avoid this phase, then customized values can be set
in the ODR application properties.

Update Phase This phase considers all parameters from the previous phases to be
updated repeatedly.

4.5 Identified Features and Derived Tasks

We now consider the design, presented in this chapter, as basis for a list of features and
work items. The detailed version that is used in development is shown in Table B.1,
Table B.2, and Table B.3.

Software Design Setup The design needs to be transformed into an initial code basis.
For this, a web application framework has to be set up. Furthermore, packages, interfaces
and stubs for key classes are created.

Entity Model The entity classes for the DSP graph, the resource graph, and the
optimization preferences as well as the Data Context have to be created. The latter one
holds references to instantiated entities.

API The RESTful interface for the ODR Reasoner considers parsing the data for new
optimization tasks which comprise the DSP topology, the resource graph, optimization
preferences and commands for starting and aborting the dynamic optimization.

Metric Provider and Resource Manager The Metric Provider and the Resource
Manager components have to be created for incorporating metrics from the Simulator as
well as from the VISP Runtime and to create the internal resource infrastructure. They
have to consider the three phases defined in Section 4.4.5.
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Scheduler The optimization of placements has to be triggered repeatedly. Therefore,
the scheduler component invokes the Data Context, ILP Solver, Persistence Strategy,
and Reconfiguration Manager in defined cycles.

Persistence Strategy The number of replacements in each cycle has to be limited.
Therefore, heuristics as e.g., migration cost have to be incorporated into the optimization.

ILP Solver The designed optimization model has to be transformed into a suitable
specification in Java, that incorporates the parameters from the entity model.

Reconfiguration Manager The optimized placements, received from the ILP Solver,
have to be forwarded to a VISP Runtime by uploading this information in a VISP
Topology Description Language file.

VISP Client This component has to handle all requests from the ODR Reasoner to
the VISP Runtimes. For this, corresponding HTTP requests have to be prepared for
retrieving the DSP topology updates, the resource infrastructure, and related metrics
(see Section 4.2).

Reporting This component includes a UI that enables visualization of the resource
graph and its placed DSP operators. Furthermore, the current QoS metrics (i.e., response
time, availability, cost) are shown in a table and exported to a file.

Simulator For testing the placement optimization without involving VISP Runtimes,
the Simulator has to provide optimization task requests to be forwarded to the ODR
Reasoner API. Furthermore, REST endpoints for the metric updates have to be provided.
For this, the delivered metrics are simulated.

Integration To integrate the VISP Runtime with the ODR Reasoner, the exchanged
Data Transfer Objects (DTOs) have to be parsed to objects that are stored in the Data
Context. The communication protocol has to ensure that the correct REST endpoints
are called in the correct phases as described in Section 4.4.5 and in the corresponding
order as depicted in Figures 4.3 and 4.4.
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CHAPTER 5
Implementation

This chapter considers the identified requirements as well as the presented design of
Chapter 4 and discusses different implementation aspects. First, used technologies and the
development environment of the ODR Reasoner are discussed. Due to the binding to VISP,
we describe the deployment of major components and their relationships. Furthermore,
we will focus on the integration of data that is requested from VISP Runtimes. This
data needs to be timely incorporated in the system model to solve the optimization
problem. After this, we present key parts of the implementation such as the creation,
parametrization, and solvation to the ILP model. Finally, we describe a reporting tool
that we created for observing the execution of the placement optimization.

5.1 Technologies

The ODR Reasoner is developed as a standalone service with Java 8 1 as programming
language. In order to make use of REST communication, Spring Boot2 is used as a
software framework. Spring Boot further facilitates dependency injection which we use to
provide the necessary resources for implemented Java objects. The build lifecycle of the
ODR Reasoner is managed with Apache Maven3. For this, software library dependencies
are loaded from a central repository and integrated into the build of the ODR Reasoner.
The Docker-Maven-Plug-in4 further supports the deployment process where the ODR
Reasoner service is packed into a Docker Container5 and deployed to Docker Hub. Docker
Hub is a registry for Docker Images that can be downloaded and instantiated as containers
to provide the ODR optimization services.

1http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
2https://projects.spring.io/spring-boot/
3https://maven.apache.org/
4https://github.com/spotify/docker-maven-plugin
5https://www.docker.com/

67

http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
https://projects.spring.io/spring-boot/
https://maven.apache.org/
https://github.com/spotify/docker-maven-plugin
https://www.docker.com/


5. Implementation

5.2 Development Resource Infrastructure

To develop and test the ODR Reasoner, we make use of the VISP resource infrastructure
as depicted in Figure 5.1. Before invoking the VISP Runtime, tests for different use cases
are executed with the Simulator. Both applications are deployed on a local workstation.
An OpenStack6-based private Cloud is used to deploy multiple VMs with VISP resources.

First, we consider the VISP Infrastructure Host VM as deployment location for the
VISP Runtime, RabbitMQ7, MySQL8, and Redis9. All of these resources are executed in
containers that are obtained from Docker Hub. VISP Runtimes use RabbitMQ as the
message infrastructure that exchanges data tuples between different operators in a DSP
topology. MySQL and Redis are hosted for storing VISP Runtime data. The second
type of VMs that are considered in the Cloud are the VMs of used VISP Resource Pools.
For scaling purposes, the amount of Resource Pools VMs can be changed within the
OpenStack web interface. Third, a VM hosts the VISP Data Provider that is used to
ingest test data tuples into enacted DSP topologies. Considering the data links, visualized
as arcs in Figure 5.1, the communication between the local workstation and the Cloud is
performed in HTTP. The corresponding endpoints, provided by the VISP Runtime, are
discussed in the next section.

5.3 Provided Endpoints and Data

Adding an optimization task for finding placements can be initiated by any VISP Runtime.
After that, the ODR Reasoner requests the necessary information like topology, Resource
Pools and updated metrics. For this, the VISP Runtime provides various REST endpoints
to collect the data for the ongoing optimization process.

Get and Upload Topology Initially the VISP Topology Description Language file
of Section 4.4.3 is requested from the VISP Runtime that triggered the optimization.
Conversely, after the optimization has finished the updated file (i.e., concreteLocation
and size attributes) is returned. This is realized with a HTTP GET and HTTP POST
request respectively. To get information about the operators that are part of the topology,
a GET request yields a JavaScript Object Notation (JSON) object as exemplarily given
in Listing 5.1. The content which is necessary for building and updating the DSP model
starts in line 3 after the name attribute, which identifies the operator. The frequency
in line 3 refers to P(CPU,i) of operator i ∈ Vdsp. The expectedDuration in line 4 and
actualDuration in line 5 are incorporated into the system model as T(max,i) and T(actual,i)
respectively. Considering the example values in Listing 5.1, T(actual,i) is not exceeding
T(max,i). Therefore, this will not influence any replacement decision of the ODR reasoner.

6https://www.openstack.org/
7https://www.rabbitmq.com/
8https://www.mysql.com/
9https://redis.io/
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Figure 5.1: Development Environment

Listing 5.1: Operator Configuration
1 {
2 "name " : " s tep1 " ,
3 " f requency " : 2400 ,
4 " expectedDurat ion " : 15 ,
5 " actua lDurat ion " : 2 ,
6 " plannedResources " : {
7 " co r e s " : 0 . 5 ,
8 "memory " : 500 ,
9 " s to rage " : 300

10 } ,
11 " ac tua lResource s " : {
12 " co r e s " : 0 . 09 ,
13 "memory " : 1500 ,
14 " s to rage " : 300
15 }
16 }

After that, the JSON object distinguishes between plannedResources in line 6 and
actualResources in line 11. Both contain metrics for P(Cores,i), P(Mem,i), and P(HD,i),
whereas the plannedResources in line 6 are used for initializing the DSP model. The
iterative updates of the model are then executed with the values defined in actualResources.
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In Listing 5.1 we assume that the demand for memory P(Mem,i) increased significantly
in contrast to the initial requirements. This increase can lead to a situation where
the memory capacity constraint of Equation 4.28 is not satisfied. The ODR Reasoner
will therefore try to find an operator placement to provide more memory resources
(e.g., deploying the operator on medium or large sized nodes). Observing the cores in line
7 and 12, it can be concluded that in the given example a smaller part of the provided
resources is used. So, neglecting the need for more memory, the demand for cores would
not lead to place this operator on a larger host. Conversely, a placement at a small-sized
node could be the consequence.

Get Resource Pools In order to parse the available Resource Pools that can be
used for operator placements, we first need to retrieve all available VISP Runtimes.
Therefore, the VISP Topology Description Language file is scanned for the VISP Runtime
addresses. The Resource Pool information is then requested from each VISP Runtime. A
corresponding example result is presented in Listing 5.2. It contains an enumeration of
pool names, which act as identifiers for retrieving further details in subsequent requests.

Listing 5.2: Available Resource Pools for a VISP Runtime
1 {
2 " largeCloudPool " : " pool " ,
3 "mediumCloudPool " : " pool " ,
4 " externalManufactur ingFogPool " : " pool "
5 }

For this, an exemplary response is shown in Listing 5.3. The cost attribute in line
3 refers to Cu, while cpuFrequency in line 4 and availability in line 5 are assigned to
P(CPU,u) and Au respectively. The response contains multiple objects that describe the
provided resources. For ODR purposes, we use overallResources stated in line 6 and
its cores (line 7), memory (line 8), and storage (line 9) attributes to assign them to
P(Cores,u), P(Mem,u), and P(HD,u) respectively. These resources are then partitioned into
multiple nodes of different sizes (i.e., small, medium, large) according to the Resource
Pool mapping process described in Section 4.4.3.

Listing 5.3: Resource Pool Information
1 {
2 "name " : " largeCloudPool " ,
3 " co s t " : 20 . 5 ,
4 " cpuFrequency " : 2400 ,
5 " a v a i l a b i l i t y " : 0 . 995 ,
6 " ove r a l lRe sou r c e s " : {
7 " co r e s " : 8 ,
8 "memory " : 15360 ,
9 " s to rage " : 40960

10 }
11 . . .
12 }
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Get Data Link Attributes Considering multiple decentralized VISP Runtimes, the
network infrastructure shows different conditions. Especially in a Fog environment, the
data link attributes vary. In order to retrieve this information, VISP Runtimes, which
provide their services for hosting DSP operators, are queried. To describe the received
responses, we consider an example in Listing 5.4.

Listing 5.4: Data Links between VISP Runtimes
1 [
2 {
3 " s t a r t " : " 1 2 8 . 1 2 0 . 1 7 2 . 1 8 2 " ,
4 " end " : " 1 2 8 . 1 2 0 . 1 7 2 . 1 8 2 " ,
5 " de lay " : 0 . 005 ,
6 " dataRate " : 3193 ,
7 " a v a i l a b i l i t y " : 0 .995
8 } ,
9 {

10 " s t a r t " : " 1 2 8 . 1 2 0 . 1 7 2 . 1 8 2 " ,
11 " end " : " 1 2 8 . 1 2 0 . 0 . 1 " ,
12 " de lay " : 0 . 077 ,
13 " dataRate " : 3193 ,
14 " a v a i l a b i l i t y " : 0 .9875
15 }
16 ]

The first entry describes a self-link of the requested VISP Runtime. This link connects
a VISP Runtime with itself, since its start and end addresses are equal. However, the
second entry refers to a link between two different VISP Runtimes, that manage different
Resource Pools. The information in the properties delay (line 12) and availability (line 14)
are assigned to d(u,v) and A(u,v) respectively. So, if node u ∈ Vres is managed by VISP
Runtime RA and node v ∈ Vres by RB, then the edge (u, v) is assigned with values
defined in the JSON entry where the addresses of RA and RB are used for start and end
respectively. In order to compute b(M,u), the average of all scanned dataRate attributes
in line 13 is considered.

5.4 Optimization

After the parameters have been incorporated into the resource and DSP model, the
optimization can be started to solve the placement problem. For this, the Java API of the
IBM CPLEX Optimizer10 is used. It enables to create the ILP optimization model with
its objective function and several constraints. Herein, we update parts of the CPLEX
specific Java code from Cardellini et al. [10].

Listing 5.5 presents an example of adding a constraint that refers to Equation 4.28.
IloCplex is the main object that collects all modeled expressions. For the creation of
these, the IloModeler is used. It constructs IloLinearNumExpr objects like memCapacity

10https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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(line 3), which consists of a sum of terms. A term refers to a product of a numeric value
and an IloNumVar as returned by X.get(i,u) in line 9. The specially created PlacementX
X object is considered as a collection of decision variables (e.g., IloNumVar), referring to
xi,u in the system model.

Listing 5.5: CPLEX Constraints in JAVA
1 void addMemoryConstraint(PlacementX X, IloCplex cplex, IloModeler modeler) {
2 for (ResourceVertex uRes : this.resGraph.getVertices().values()) {
3 IloLinearNumExpr memCapacity = modeler.linearNumExpr();
4 for (DspVertex iDsp : this.dspGraph.getVertices().values()) {
5 int i = iDsp.getIndex();
6 int u = uRes.getIndex();
7 if (iDsp.deployableOn(u)){
8 memCapacity.addTerm(iDsp.getRequiredMem(),
9 X.get(i, u));

10 }
11 }
12 cplex.addLe(memCapacity, uRes.getAvailableMem(),
13 "cap_mem_res_" + uRes.getIndex());
14 }
15 }

In line 12 the call cplex.addLe(...) appends the constraint to the existing model by
considering ’≤’ as inequality operator. As it can be seen in Listing 5.5, the entities
like ResourceGraph, ResourceVertex, DspGraph and DspVertex are used for storing the
parameters of the system model (see Section 4.2). To add the corresponding parameters
to CPLEX, we iterate over this data structure to create terms for the memory capacity
constraint. Similarly, this also holds for constructing other constraints as well as the
objective function in CPLEX. If finally the model is completely created, the IloCplex
object is used to compile and solve the ILP placement problem.

We consider the solution of the operator placement problem with CPLEX in Listing 5.6.
The method solve() uses the created optimization model (see Section 4.3) with the
relevant objective function and constraints in the global cplex object and applies a
simplex algorithm to solve the linear program.

First, we consider two configuration possibilities that can ease the solution procedure. In
line 4 of Listing 5.6, a time limit for the optimization duration is set. If the optimization
would last longer than the defined time limit, CPLEX stops the optimization and returns
the best solution computed so far. Similarly, we consider an allowed optimality gap in
line 7. CPLEX considers the optimality gap as a scalar distance from the best value of
the objective function that can be obtained. So, if CPLEX computes a solution that
has an objective function value which deviates less than the defined optimality gap,
then CPLEX stops. The time- and optimality gap-based stopping criteria can be used,
especially when the problem space, e.g., resource graph, increases in size.

The actual solution procedure is started in line 10. In line 14 we instantiate the object
that contains the results like operator placements and QoS attributes, that are extracted
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and added to the solution object in lines 15-19. For this, with cplex.getValue(...) we can
retrieve the values of the terms that have been defined similarly to the memCapacity
object of class IloLinearNumExpr as shown in Listing 5.5. Herein, the terms response
time R, logarithmic availability logA, enactment cost enactC, and migration cost migC are
the QoS attributes for the optimized operator placements (see Equations 4.10 and 4.23).
Finally, we extract every placement of a DSP operator with index i on the assigned
resource node with index u. For this, we use the call cplex.getValue(X.get(i,u)) to retrieve
the corresponding placement status of decision variable xi,u from CPLEX in line 28. The
solution object is then used in subsequently invoked components for reporting the result
and uploading the placement information to a VISP Runtime.

Listing 5.6: Solve ILP Problems with CPLEX in JAVA
1 OptimalCplexSolution solve() {
2 /∗ limit the solution time if required ∗/
3 if (defaultParams.usesTimeLimit()){
4 cplex.setParam(IloCplex.IntParam.TimeLimit, defaultParams.getTimeLimit());
5 }
6 if (defaultParams.isOptimalityGapDefined()){
7 cplex.setParam(IloCplex.DoubleParam.EpGap, defaultParams.getGap());
8 }
9

10 /∗ apply ILP solving by making use of the simplex algorithm ∗/
11 cplex.solve();
12
13 /∗ extract resulting QoS attributes and store it in the solution object ∗/
14 OptimalSolution solution = new OptimalCplexSolution(dspGraph.getVertices().size());
15 solution.setOptObjValue(cplex.getObjValue());
16 solution.setOptR(cplex.getValue(R));
17 solution.setOptLogA(cplex.getValue(logA));
18 solution.setOptEnactmentCost(cplex.getValue(enactmentC));
19 solution.setOptMigCost(cplex.getValue(migC));
20
21 /∗ extract placements ∗/
22 for (DspVertex dspOperator : dspGraph.getVertices().values()) {
23 for (ResourceVertex resNode : resGraph.getVertices().values()) {
24 int i = dspOperator.getIndex();
25 int u = resNode.getIndex();
26 double xval = 0;
27 if (dspOperator.deployableOn(u))
28 xval = cplex.getValue(X.get(i, u));
29 if (xval > 0)
30 solution.setPlacement(i, u);
31 }
32 }
33 return solution;
34 }
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5.5 Reporting
In order to observe the placement optimization, the ODR Reasoner contains a Reporting
component as presented in the static view of the software design in Section 4.4.1. Through-
out optimization, the topology operators are visualized together with the resource graph,
where they are deployed on. Figure 5.2 depicts these graphs, whereas the blue-marked
nodes are resource nodes with placed operators. Labels are used to visualize the current
resource utilization with respect to memory, storage, and the product of CPU frequency
and cores. The table lists the current values of QoS attributes. This data is part of a
spreadsheet, which is exported in each optimization cycle. We consider this to evaluate
the impact of ODR Reasoner against baseline approaches as presented in the following
Chapter 6.

Figure 5.2: Placement Optimization Monitoring
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CHAPTER 6
Evaluation

To show how the implemented ODR Reasoner performs, we present different evaluation
scenarios. Therefore, the following chapter describes general prerequisites like used
test beds, optimization parameters, DSP topologies and ingested data that is processed
by the operators. Then, we present each scenario with its specific setup, evaluation
hypothesis, and the resulting QoS metrics that are measured or computed throughout the
optimization. For each scenario, we discuss their execution and results and observations.
Finally, a summary of the overall outcome concludes this chapter.

6.1 Prerequisites

6.1.1 Test Beds

Before the evaluation can be started, the resource infrastructure has to be configured.
Like in the development phase, we make use of a private OpenStack Cloud, located
at TU Wien. According to a given scenario, as described below, VMs are used to
serve as VISP Infrastructure Hosts and to form multiple corresponding Resource Pools
(see Figure 5.1). Due to multiple scenarios, we create multiple test beds which are suitable
for a pure Cloud-based scenario as well as a simulated Fog-based scenario. For the Fog
Computing scenarios, we manipulate the network delay between selected VMs with the
tool tc1 that allows network traffic shaping (e.g., slow down certain connections). In the
evaluation phase, the ODR Reasoner is deployed to a local workstation, which allows the
observation of the optimization process by making use of the created reporting tool as
presented in 5.5.

1https://linux.die.net/man/8/tc
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6.1.2 Topologies

All presented scenarios consider one base topology whose attributes are adapted for the
given resource infrastructure used in the respective scenario. Figure 6.1 depicts this
topology consisting of four operators and a source as well as a sink. Depending on the
resource infrastructure for a given scenario, the VISP Topology Description Language
attribute allowedLocations is set accordingly. For this, we define which Resource Pools are
considered as deployment locations. Regardless of the scenario, each operator starts with
a size attribute small, since scaling to medium or large is performed during optimization.
The processing operation for each operator is defined by waiting for a fixed time interval
and then forwarding the tuple to the next operator.

Figure 6.1: Topology for Evaluation Scenarios

6.2 Mapping of IoT Manufacturing Scenario
In Section 1.1.1 we introduced a topology of the motivational scenario (IoT manufacturing)
as shown in Figure 1.1. To show that the results of the evaluation hold true for the
motivational scenario, we provide a mapping between the two topologies and resource
infrastructures.

Topology Mapping The motivational topology contains Availability, Productivity,
and Temperature sensors that we generalize to one sensor given as Source in the evaluation
topology (see Section 6.1.2). The operators 01 Distribute Data, O2 Filter Availability,
and O6 Monitor Temperature receive data from their input sensors and apply the re-
spective processing steps. We abstract these operators and map them to Operator 1 of
the evaluation topology. O7 Calculate Overall Equipment Effectiveness and O8 Main-
tenance Call Service are mapped to the successors, i.e., Operator 2 and Operator 3
respectively, of Operator 1 in the evaluation topology. Finally, O9 Dashboard Service
consumes the data from its predecessors and execute the last step in the motivational
topology. Therefore, we map this Operator to the Sink in the evaluation topology.
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Resource Infrastructure Mapping As it is the case in the Fog Computing evaluation
scenario (see Section 6.3), the motivational scenario contains two Resource Pools in the
Cloud. Therefore, we map the Public Cloud and Private Cloud from the motivational
scenario to the respective Cloud Resource Pools. The resources that are available on the
manufacturing site, i.e., Cloudlet (Smart Factory 1) and Cloudlet (Smart Factory 2) in
the motivational scenario corresponds to Fog Node 1 and Fog Node 2 in the evaluation
scenario. The discussed Cloudlets consider a high latency to the Public Cloud and
Private Cloud, which behave as in the evaluation scenario, whereas 400 ms are assigned
as latency between Cloud and the Fog nodes.

6.2.1 Data Ingestion & Forwarding

The VISP Data Provider is configured to ingest data into the evaluated topology. For this,
it generates on average one message per second. Nevertheless, the message generation
frequency is not constant. For evaluation purposes, we select a generation pattern in the
form of a sinus function to simulate different load scenarios. In the topology presented in
Section 6.1.2, the operators consider processing times as shown in Table 6.1. Therefore,
each operator waits before the tuples are forwarded to the succeeding operator.

Table 6.1: Processing Times of Operators

Operator Processing Time
1 100 ms
2 250 ms
3 500 ms
4 1000 ms

6.2.2 Optimization Preferences

In contrast to ODP [10], the presented ODR approach considers dynamic replacements of
operators. Therefore, we consider an optimization cycle period of 4 minutes after which
the ODR Reasoner evaluates the system and potentially suggests operator replacements.
The overall evaluation for a scenario lasts for 50 minutes. Furthermore, the scenario is
executed three times, whereas the resulted QoS metrics are averaged to provide more
robust results. This is necessary since we want to avoid results that are biased by potential
monitoring errors or delays in replacement activities caused by the test environment.
As mentioned in the design, we consider every small node, which is created during the
Resource Pool Mapping (see Section 4.4.3), to have a capacity of 2400 Mhz, 0.2 cores,
512 MB memory, and 300 MB storage, based on the available VMs in the Resource Pool.
The execution time per data tuple ETi is set to a fixed value for each operator i ∈ Vdsp,
due to the fixed processing time in the operators.
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6.2.3 Baseline Approach

The baseline for every scenario, which is used for comparing with ODR, is a static
optimization approach. This refers to only optimizing placements at system startup and
avoiding any replacement at run time. For comparison reasons, the resulting QoS metrics
are recorded for the whole evaluation by requesting the relevant input metrics from the
VISP Runtimes. So, although the optimization is only applied once in the static baseline
approach, metric updates are still performed in a cyclic manner (see Section 4.4.4). The
rest of the optimization preferences remain the same between the dynamic and static
approach.

6.2.4 Evaluation Tools

To set up the testbeds and to execute the evaluation scenarios, we developed an Eval-
uation Suite. It is a Java program that controls the preparation and execution of all
scenarios. It invokes Selenium2 and a Java API, named sshj3 for sending Secure Shell
(SSH) commands. The former one allows to automatically control web browsers to test
web applications. We used Selenium for respective VISP Runtime web interfaces for
automating the resource pool creation, uploading of topology descriptions, triggering
optimization tasks, and performing a clean-up after the evaluation has finished. The SSH
commands are used to reboot all involved services and applications by restarting the
corresponding container installed on the VISP Infrastructure Hosts. This is done before
each new evaluation scenario run to have a clean environment. As discussed above, SSH
is also used for executing tc network traffic shaping commands.

6.2.5 Resource Pool VMs

To fill the Resource Pools with deployed operators, the OpenStack VMs have to be
provided. For this, we consider three OpenStack VM sizes, named flavors, in the evaluation
scenarios as described in Table 6.2. The VMs are created by the Evaluation Suite before
uploading the topology and starting the optimization task. Besides hosting Resource
Pools, we also run the VISP Infrastructure, i.e., Redis, MySQL, and RabbitMQ, on VMs.
By default, the flavor for this is m1.medium.

Table 6.2: OpenStack Pool VM Flavours

Flavor Memory (GB) VCPUs Storage (GB)
m1.medium 3 2 40
m2.medium 5 3 40
m1.xlarge 15 8 40

2http://www.seleniumhq.org/
3https://github.com/hierynomus/sshj
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6.3 Fog Computing Scenarios

In the evaluation of the ODR Reasoner we distinguish between two categories of scenarios.
The first category considers a simulated Fog infrastructure that is described in this
section. The second category focuses on a Cloud infrastructure as discussed in 6.4.

6.3.1 Test Bed Details

Resource Infrastructure The resource infrastructure that is used in the Fog Com-
puting scenarios is depicted in Figure 6.2. We set up three VISP Runtimes, whereas the
Cloud Runtime manages two resource pools. To simulate an extra Fog environment, we
created dedicated VISP Runtimes for Fog Node 1 and Fog Node 2. The Fog scenarios
start with two VISP Runtimes (Cloud and Fog Node 1 ), since Fog Node 2 is not available
at the beginning of the optimization.

To motivate this, we assume a department of an enterprise that uses Resource Pool VMs
with different cost components described in the Resource Pool Cost Model in Table 6.3.
We distinguish between depreciation, maintenance and leasing cost components that
add up to the total cost per second. Depreciation is the process of allocating cost of an
asset (e.g., hardware) over its expected life time [75]. To illustrate this, we assume e.g.,
hardware acquisition cost of 1000 Currency Units (CUs) for a life time of 5 years. For
this, the depreciation per year results in 1000/5 = 200 CU. Maintenance cost refers to
hardware and software maintenance of the given infrastructure. Leasing cost includes a
fee that has to be paid to the owner of the used resources.

The Cloud VMs in the Fog Computing scenario have to be leased with cost of 15.5 CU/s
for m1.medium and 20.5 CU/s for m2.medium as shown in Table 6.3. Since there is no
hardware acquisition, we do not consider depreciation and maintenance cost. Fog Node 1
provides computing resources at a high price (30.5 CU/s), since the maintenance for
this on-premises infrastructure is expensive (29.5 CU/s). The high maintenance cost is
on the one hand due to the difficult hardware maintainability of Fog Node 1 which is
located at the manufacturing site of the enterprise. On the other hand, the resource is
not shared with any other department. So, the cost centre of the department has to
bear all the cost of Fog Node 1. Nevertheless, this resource has to be used because it
hosts the Operator 1 of the topology to pre-process the data received from the source
sensor. Fog Node 2 is located on the manufacturing site too but its computing resources
are shared between multiple departments and its installed hardware and software can be
maintained easily. Therefore, we consider very low maintenance cost of 1.5 CU/s which
adds up together with the depreciation of 1 CU/s to 2.5 CU/s in total. To explain why
Fog Node 2 is not available at the beginning of the optimization, we consider it to be
occupied for the first 20 minutes of the DSP evaluation period by other departments.
After that, it serves as a potential host for DSP operators. Besides the Resource Pools,
we consider an Optimization Server located in the department office. This server is in
charge of executing the placement optimization at a total cost of 3 CU/s.
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Table 6.3: Resource Pool Cost Model

Resource Pool Depreciation
(CU/s)

Maintenance
(CU/s)

Leasing
(CU/s)

Total
(CU/s)

Cloud (m1.medium) 0 0 15.5 15.5
Cloud (m2.medium) 0 0 20.5 20.5

Fog Node 1 1 29.5 0 30.5
Fog Node 2 1.5 1 0 2.5

The behavior of a Fog device that is not available at a certain spot in the network (e.g.,
near the manufacturing site) and then suddenly appears to provide its resources, is a
central characteristic of Fog Computing. This is referred to as Mobility [3]. Although in
our case the Fog Node 2 is not moved, but rather used by other parties, it can be seen as
a matter of limited localized resources [76]. Unlike in the Cloud, where the amount of
resources are practically infinite, Fog Resources in specified regional areas can be scarce.
So, these resources have to be shared with other parties in an alternating way. This leads
to situations, where Fog users have to wait until the requested resource is available for
executing their services. In our case, as soon as Fog Node 2 is available, it is registered as
Resource Pool to be managed by the VISP Runtime Fog Node 2. For evaluation purposes,
the registration is performed by the Evaluation Suite.

Figure 6.2: Fog Simulation Resource Infrastructure

Topology Specification The topology used in the Fog scenario is defined with the
VISP Topology Description Language as shown in Listing A.1. Three allowed locations
(i.e., VISP Runtimes) are defined as e.g., in line 20, whereas the Cloud Runtime has the
address 128.130.172.182 assigned and Fog Node 1 and Fog Node 2 refer to 128.130.172.183
and 128.130.172.217 respectively. The defined concrete locations are chosen to be equally
distributed over the used resources. Operator 1 is fixed on the Resource Pool fogPool1 of
Fog Node 1.

Network Traffic Shaping To simulate a Fog environment, we manipulate the network
delay by making use of tc. In this scenario category, we consider no network delay for the
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resources hosted on the Resource Pools of the Cloud Runtime. In contrast, the Resource
Pool of Fog Node 1 faces a delay of 400 ms, due to its remote location. When Fog Node 2
is available after 20 minutes, we simulate that this node is very close to Fog Node 1. For
this, we set the network delay between Fog Node 1 and Fog Node 2 to 10 ms. The latency
between Fog Node 2 and the Cloud is 400 ms. This leads to the situation that the latency
between the Cloud and the two Fog nodes on the manufacturing site is relatively high.

6.3.2 Full Model

In the Fog Computing scenario category, we start to evaluate the Full Model approach
of the ODR Reasoner. Full Model refers to the ILP optimization model that considers
all QoS attributes in the objective function (see Section 4.3.2) with equal importance,
i.e., wr = wa = wcop = wcmig = 0.25.

Evaluation Hypothesis The first hypothesis addresses the performance with respect
to the QoS attributes, while the second hypothesis focuses on the cost:

H1: In a Fog environment, the dynamic ODR approach is better than the
static approach with respect to (a) response time and (b) availability.

H2: In a Fog environment, the sum of all cost of the dynamic ODR approach
is less than the cost of the static approach.

In general, we aim to analyze the impact of ongoing optimization. Considering H1, we
know that there can be a trade-off between the identified QoS attributes. Nevertheless,
the ODR reasoner can incorporate dynamic changes in the environment to improve the
results for both attributes. So, if new Fog Resources are detected, there is a chance to
increase response time and availability. Considering H2, the introduced migration cost
has to be compensated by decreasing the enactment cost.

Evaluation Results To show the results of this evaluation run, we distinguish between
response time, availability, and cost metrics. Furthermore, we discuss the total score of
the dynamic optimization and compare it with the corresponding static optimization
result. The total score is considered as the maximized value of the objective function
(see Equation 4.10 and Equation 4.23). CPLEX returns this value after the solution has
been found.

Starting with Figure 6.3, the response time is plotted on a chart with the time progress
of the evaluation displayed on the x-axis and the actual response time of the deployed
DSP topology on the y-axis. For the optimization duration of 50 minutes, the recordings
of the dynamic approach are visualized with the solid line, whereas the dashed line
belongs to the static approach. The red line, which is vertically drawn at the 20 minutes
mark, represents the time point when Fog Node 2 is ready for providing resources to
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host operators. For this, Fog Node 2 is registered as m1.xlarge Resource Pool on the
corresponding VISP Runtime Fog Node 2.
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Figure 6.3: Response Time in the Full Model Fog Scenario

The response time of the dynamic approach is permanently lower than the response
time of the static approach. Interestingly, at the beginning of the optimization, the
dynamic line starts below. One reason can be that minor deviations in the monitoring
data are present at given points in time. This can lead to changes in the boundary
parameters like Rmax, Rmin (see Section 4.4.4), which in turn changes the objective
function (see Section 4.3.2). Hence, the static ODR approach achieves a higher total
score by focusing on other terms of the objective function (e.g., cost, availability). After
that, the resulting placements can be e.g., more cost efficient but cause longer response
times. However, after Fog Node 2 is available, the dynamic line temporary approaches
the static line until the ODR Reasoner performs replacements that significantly decrease
the response time to 1.3 seconds. Compared to 1.9 seconds of the static approach,
the improvement achieved by the dynamic ODR optimization amounts to 31.5%. The
ODR Reasoner exploits the advantages of a lower network delay (i.e. 10 ms) between
Fog Node 1, where the Operator 1 is deployed, and Fog Node 2. For this, the high latency
(400 ms) between the two Fog nodes and the Cloud is mostly avoided by moving the
operators to the Fog (i.e., Fog Node 1 and Fog Node 2 ).

In Figure 6.4 the availability of the overall topology, as defined in Equation 4.5, is
visualized. Again, the dynamic and static approaches are compared over time which is
displayed on the x-axis. The availability is plotted on the y-axis. It should be noted
that due to a missing availability monitoring component, the received availability metrics
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Figure 6.4: Availability in the Full Model Fog Scenario

Au and A(u,v), are generated randomly every time when they are requested from the
VISP Runtime. The metrics follow a uniform distribution with 0.8 and 1 as boundaries,
i.e., Au ∼ U(0.8, 1) and A(u,v) ∼ U(0.8, 1). Therefore, the availability scale contains a
broad range of values. Nevertheless, to reduce the impact of randomization, we consider
multiple evaluation runs, whereas its results are averaged as stated in 6.2.2.

Focusing on the results, we see that multiple peaks are reached by the dynamic approach.
In general the availability fluctuates more than it is the case for the static approach. This
is due to the additional amount of placement possibilities that can be exploited by the
dynamic approach, while the static approach cannot react to the resources offered by
Fog Node 2 after 20 minutes. In contrast to the response time perspective, as presented
in Figure 6.3, the dynamic approach provides a better availability in only 9 out of
11 optimization cycles, whereas in 2 points the static approach is marginally better.
One reason for that is the structure of the objective function (see Equation 4.10 and
Equation 4.23), which considers multiple QoS attributes that are equally weighted in the
current scenario. Hence, the placement decision at a given point in time cannot be made
just to optimize one specific QoS attribute as e.g., availability. Overall, the availability
of DSP topologies, hosted in a Fog environment, can be improved if dynamic placement
optimization is applied.

Figure 6.5 depicts the cost of the enactment over time. Herein, we consider three lines
that are plotted. First, the dashed line refers to the total cost of the static approach,
which basically consists of the enactment cost (see Equation 4.19) and initial optimization
cost. Second, the dot-dash line refers to the enactment cost of the dynamic approach.
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Figure 6.5: Cost in the Full Model Fog Scenario

Third, the total cost of the dynamic approach as a sum of the enactment, migration cost,
and the optimization cost, i.e., cost for the Optimization Server, is plotted as a solid line.
The cost on the y-axis is measured as CU/s. Therefore, we can keep the enactment cost
unmodified, but have to compute the migration cost per second, as they are measured
per optimization period (i.e., 4 minutes). After that, we finally add up the enactment,
optimization, and migration cost.

The first observation is that the enactment cost of the dynamic approach only differs
slightly from the respective total cost. This is because the migration cost is very low
compared to the enactment cost. So, the main difference between the two lines is caused by
the fixed optimization cost, that has to be paid continuously. In contrast, the optimization
cost in the static approach only accrues at the first optimization cycle. Afterwards the
optimization cost decreases to 0, since the respective resource is released. Comparing the
total cost of both approaches, we see that the dynamic approach has the disadvantage
of the optimization cost that needs to be compensated with cost-efficient placement
decisions. We see that the solid line of the dynamic approach decreases significantly when
Fog Node 2 is available. Nevertheless, right before the 20 minutes mark, the dynamic
approach found a placement that costs less than the initially optimized placement. Hence,
we conclude that not only structural changes, introduced with Fog Node 2, but also
changes in e.g., monitoring data lead to replacements of operators that improve the
performance of QoS attributes. Overall, the total cost savings that are achieved by the
dynamic approach amount to 3.09 CU/s, i.e., 8.8%, with respect to the static total cost
as shown in Table 6.4.
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Figure 6.6: Total Score in the Full Model Fog Scenario

Figure 6.6 depicts the total score, i.e., maximized value of the objective function. After a
fluctuating start until the 30 minutes mark, the advantages originated from Fog Node 2
can be observed. The total score of the dynamic line shows better results until the end
of the evaluation period.

To show how ODR optimizes operator replacements, Figure 6.7 depicts an example
replacement activity that is executed in one of the three evaluation runs in this scenario
right after Fog Node 2 is available. Before the replacement, Operators 2-4 are placed at
cloudPool1, whereas Operator 1 is fixed at fogPool1 where the Source is located. The Sink
is placed at cloudPool2 as specified in the topology (see Section 6.3.1). The replacement
action migrates the Operators 2-4 to Fog Node 2 to exploit the advantages in response
time and cost. This leads to improvements in both criteria as presented in Figure 6.3
and Figure 6.5 respectively.

To summarize the results of this scenario, we consider Table 6.4 that shows the means
and standard deviations of the used QoS attributes and reported key figures with respect
to three evaluation runs. We can see, that on average the dynamic approach is better
than the static baseline with respect to response time, availability, enactment cost, total
cost, and the total score.

To verify the hypothesis H1 and H2 we sum up the results. Part (a) of hypothesis H1
can be shown with respect to the response time, since the dynamic optimization approach
of the ODR Reasoner always provides shorter response times than the corresponding
static approach. The availability of the dynamic line in Figure 6.4 is fluctuating, but in
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Figure 6.7: Example Replacement Activity

Table 6.4: Result Metrics for the Full Model Fog Scenario

Static Dynamic
Average Response Time (sec) 1.98 (σ = 0.12) 1.62 (σ = 0.01)
Average Availability 0.35 (σ = 0.07) 0.40 (σ = 0.06)
Enactment Cost (CU/s) 34.91 (σ = 2.09) 29.05 (σ = 0.65)
Migration Cost (CU/s) - 14.47 (σ = 1.17)
Optimization Cost (CU/s) 0.27 (σ = 0) 3 (σ = 0)
Total Cost (CU/s) 35.19 (σ = 2.09) 32.10 (σ = 0.65)
Cost Savings (CU/s) - 3.09 (σ = 2.65)
Average Total Score 0.62 (σ = 0.05) 0.78 (σ = 0.04)

the majority of the measurements it is higher than the availability of the static approach.
Nevertheless, this is not enough to satisfy part (b) of H1.

H2 can be considered as valid by regarding the comparison of total cost between the
dynamic and the static approach in Figure 6.5. We can observe that although migrations
are performed and their cost has to be considered, the placements in the dynamic
approach cost less than the ones of the static approach for the overall evaluation period.
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6.3.3 Response Time Model

The Response Time Model differs from the Full Model with respect to its weights.
Instead of choosing equal importance for all QoS attributes in the objective function
(see Equation 4.23) by assigning equal weights, we only focus on the response time, i.e.,
wr = 1 and wa = wcop = wcmig = 0. Therefore, we neglect the availability, enactment
cost, and migration cost components of the objective function. However, the constraints
of the optimization problem remain unchanged.

Evaluation Hypothesis In this scenario, the Response Time Model is used to evaluate
the third hypothesis that is formulated as follows:

H3: In a Fog environment, the dynamic ODR approach that optimizes solely
the response time is better than the corresponding static approach.

In contrast to the Full Time Model scenario, whereas the ODR Reasoner has to consider
the trade-off between the involved cost-, response time- and availability-oriented QoS
attributes, the total score in the Response Time Model directly reflects the response time
performance.

Evaluation Results The results of this scenario are depicted in Figure 6.8. The
response time on the y-axis is recorded over time i.e., 50 minutes which can be seen
on the x-axis. The solid line of the dynamic approach is constantly on the same level
(i.e., 1.9 sec) as the dashed line of the static approach for the first 5 optimization cycles.
Herein, one cycle lasts approximately 4 minutes in general but due to additional time for
solving the placement problem it sums up to 4.5 minutes approximately. However, after
the 20 minutes mark, Fog Node 2 is available and the dynamic line decreases over 3 cycles
in a row until it reaches a response time of 1.26 seconds. This yields an improvement
of 0.64 seconds, i.e., 33.5%, at the end of the evaluation period. We conclude, that
the convergence to a placement with minimum response time may not be achieved
immediately. That is, because the ODR Reasoner needs to settle and re-evaluate the
situation in the network before further replacement actions are executed. Nevertheless,
the optimization is always executed with the goal of achieving a global optimum but as
Figure 6.8 depicted, new optimization possibilities exist after receiving feedback via the
VISP Runtime monitoring activities. For this, multiple change triggers are re-evaluated
as e.g., the actual process duration of an operator T(actual,i) described in Equation 4.26 or
network delay d(u,v). In Table 6.5, we compare the mean and standard deviation of the
average response time. For this, the dynamic approach dominates clearly. Nevertheless,
the average response time statistics only show an improvement of 0.25 sec, i.e., 13%. We
conclude that the overall optimization duration needs to be long enough to exploit even
more changes in the network and to further reduce the response time.

To verify hypothesis H3, we point out that there is no situation where optimized place-
ments of the dynamic ODR approach perform worse than the placements fixed initially
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Table 6.5: Result Metrics for the Response Time Model Fog Scenario

Static Dynamic
Average Response Time 1.98 (σ = 0.15) 1.73 (σ = 0.01)

by the static approach. The advantage becomes clear when the structure of the network
changes after 20 minutes, which enables replacements of operators. Hence, H3 is assumed
to be valid.
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Figure 6.8: Response Time in the Response Time Model Fog Scenario

6.4 Cloud Computing Scenario
To show how the ODR Reasoner performs on a Cloud Computing environment, we now
present the evaluation on a Cloud test bed. The changed characteristics are highlighted
and the minor changes in the topology are explained in the following.

6.4.1 Test Bed Details

Resource Infrastructure Unlike the Fog Computing scenario in Section 6.3, where a
Fog network considers devices to switch their online or availability status (e.g., Fog Node 2 ),
we now consider three leased VMs throughout the evaluation period. The corresponding
Cloud resource infrastructure with the fixed amount of VMs is depicted in Figure 6.9.
Herein, we consider the VISP Runtime Cloud as single Runtime that manages the VMs
with the flavours m1.medium, m2.medium, and m1.xlarge. The cost of the VMs increase
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with the amount of provided capacities, whereas m1.medium cost 10.5 CU/s. The more
powerful instances m2.medium and m1.xlarge cost 15.5 CU/s and 20.5 CU/s respectively.
Structural changes of the test bed are not considered throughout the 50 minutes evaluation
period. This enables to focus on the placement changes that are caused by changing
monitoring data as e.g., network delay, availability of resources, and processing durations
of the operators.

Figure 6.9: Cloud Resource Infrastructure

Topology Specification Listing A.2 specifies the topology that is used in this scenario.
The general topology structure remains unchanged but the allowed locations of operators
are adapted to the VISP Runtime Cloud. For this, we consider 128.130.172.182/* as value
of the allowedLocations attribute for all operators to specify that there are no placement
restrictions in the given resource infrastructure. The concreteLocation attribute is chosen
to distribute the operators equally at the start of the evaluation period.

6.4.2 Full Model

In this scenario we consider the Full Model to optimize all involved QoS attributes with
equal importance.

Evaluation Hypothesis Similarly to the Fog Computing scenario, we analyze the
performance of QoS attributes. For this, we distinguish between a response time- and
availability-oriented hypothesis, as well as a cost-oriented hypothesis:

H4: In an environment with fixed computing resources, the dynamic ODR
approach is better than the static approach with respect to (a) response time
and (b) availability.
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H5: In an environment with fixed computing resources, the sum of all cost of
the dynamic ODR approach is less than the cost of the static approach.

These hypotheses are adapted from H1 and H2, whereas H4 and H5 neglect Fog
characteristics and only consider fixed computational resources.

Evaluation Results To start with the response time evaluation, we consider Fig-
ure 6.10 with a solid and a dashed line for the respective dynamic and static ODR
approaches. The dynamic approach starts with a response time that is up to 13% faster
than the one of the static approach (5.5% on average). With fluctuations still below the
static line, the dynamic line finally approaches and marginally surpasses the baseline.
This behavior can be explained by referring to the equal weights which are used in the
objective function (see Equation 4.10 and Equation 4.23). Hence, the dynamic approach
achieved to maximize the objective function by focusing on response time improvements
at the beginning. In contrast, the static approach initially achieved the highest total
score by focusing on the cost terms of the objective function, as we will discuss in this
section.
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Figure 6.10: Response Time in the Full Model Cloud Scenario

The availability evaluation is presented in Figure 6.11. Here, we can observe that the
dynamic line faces a very fluctuating history in the observed 50 minutes. In contrast,
the static approach does not face any availability changes over the run time and remains
stable at the 0.59 mark. In only 3 out of 11 data points the dynamic approach is above
the baseline. Especially, after 20 minutes no placement can be computed that provides
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an availability above the static line. This can be due to placement decisions that are
made to satisfy any other used QoS criteria.
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Figure 6.11: Availability in the Full Model Cloud Scenario

In Figure 6.12 the cost of the compared approaches is depicted. The static approach
optimizes placements with enactment cost constantly at a level of 12.8 CU/s after the
optimization cost is set to 0 when the placements have been optimized initially. In
contrast, the dynamic total cost changes between 18.5 CU/s and 21 CU/s. It should be
noted that the dynamic total cost appears to differ only by the optimization cost. This
is due to very small migration cost. However, the additional relative cost for optimizing
placements throughout the run time amounts to 6.47 CU/s, i.e., 49%, as shown in
Table 6.6. For this, we can see that only the response time is improved, which leads to
deficiencies in the remaining QoS attributes.

Table 6.6: Result Metrics for the Full Model Cloud Scenario

Static Dynamic
Average Response Time (sec) 1.29 (σ = 0.18) 1.22 (σ = 0.1)
Average Availability 0.58 (σ = 0.16) 0.52 (σ = 0.03)
Enactment Cost (CU/s) 12.82 (σ = 2.23) 16.54 (σ = 1.22)
Migration Cost (CU/s) - 7.03 (σ = 3.15)
Optimization Cost (CU/s) 0.27 (σ = 0) 3 (σ = 0)
Total Cost (CU/s) 13.09 (σ = 2.23) 19.57 (σ = 1.21)
Cost Savings (CU/s) - -6.47 (σ = 2.91)
Average Total Score 0.85 (σ = 0.03) 0.77 (σ = 0.06)
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Figure 6.12: Cost in the Full Model Cloud Scenario

To verify the hypothesis of this scenario, we start with H4. Considering the response
time results, we can observe that the dynamic ODR approach performs better at the
beginning and nearly equally at the end of the evaluation period. This satisfies condition
(a) of the H4. Nevertheless, the availability results have been partially better but most
data points have shown that the static approach does better with respect to that specific
QoS criteria. For this, we consider the improvements of the response time as the trade-off
that has been made at the cost of availability. Therefore, condition (b) is not satisfied.
Overall, this leads to a rejection of the given hypothesis H4. For hypothesis H5, we have
compared the total cost. Herein, it can clearly be observed that there is no cost advantage
of the dynamic approach. Additional cost of 49% has to be considered. Therefore, we
also reject H5 for the current scenario of fixed VMs in the Cloud. This implies that for
a beneficial dynamic optimization, it needs a changing environment. In this case, it is
possible that the improvements in respective QoS attributes outweigh the additional
optimization cost.

6.5 Comparison of Fog and Cloud Scenarios

To analyze the difference between the Fog and the Cloud scenarios, we compare the
respective Full Model scenarios as presented in Section 6.3.2 and Section 6.4. In the Fog
scenario we have observed significant improvements in response time that amount to
18% (260 ms) on average. In contrast, the response time in the Cloud has been improved
by 5.5% (70 ms) on average. For this, we conclude that the detection of structural
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changes, introduced with Fog Node 2 in the Fog scenario, makes a significant difference.
This is because any change in the network that is detected, creates an opportunity for
improvements to be exploited by the dynamic ODR Reasoner. So, the Cloud scenario
provides an environment that is too stable to achieve major improvements. This is also
a reason for the poor performance of ODR in the Cloud scenario with respect to the
cost criteria. Herein, the additional optimization cost (3 CU/s) can not be compensated
by finding cheaper placements and leads to an increase in total cost by 6.47 CU/s, i.e.,
49%, which is invested in response time improvements. Nevertheless, we assume that
there is still potential for dynamic optimization approaches in Cloud scenarios, when the
resource cost changes over time. This creates opportunities that need to be dynamically
re-evaluated as performed in the ODR Reasoner.

6.6 Discussion of Data Ingestion Pattern

In Section 6.2.1 we refer to data tuples that are ingested into the DSP topology. For this
we consider a varying load in the form of a sinus function. Interestingly, we have not
observed any response time pattern that is similar to this. To explain this behaviour we
refer to the definition of the response time in the optimization model (see Equations 4.1-
4.4). We now analyze the parameters that influence the response time and its components,
i.e., operator response time (see Equation 4.3) and network delay (see Equation 4.4).

The first parameter is the execution time per data tuple ETi as used in the operator
response time component. It is set to a fixed value at the beginning of the evaluation
period as described in Section 6.2.2. Since ETi does not depend on current placements,
it is not updated by the ODR after the Warm-up Phase (see Section 4.4.5). Hence, ETi
does not change the response time during the evaluation progress and therefore does not
capture the sinusoidal data load.

The second parameter is the delay d(u,v) that is considered in Equation 4.4. In the
evaluation, d(u,v) is set to the measured network delay between the corresponding resource
nodes u, v. For this, the network delay can be seen as an estimator for d(u,v) without
considering the time when tuples are queued before processing (see Section 5.2). Therefore,
d(u,v) does not capture the sinusoidal data load.

The last parameter to be considered refers to Su in Equation 4.3. For this, we can see that
if operator i is migrated to resource node u with a different speedup Su, then the operator
response time changes. A replacement like this, can be triggered by e.g., the constraint
that limits the tuple processing duration T(actual,i) as presented in Equation 4.26. If
T(actual,i) on the left-hand side is greater than the maximum expected processing duration
T(max,i) on the right-hand side, then the speedup Su in the denominator has to be
increased. The consequence is a replacement that is based on a varying load of ingested
tuples reflected by T(actual,i).

We arrive now at a point where we have found a parameter, i.e., Su, that considers the
varying tuple load in the system. So, it could influence the response time throughout the
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evaluation period. Nevertheless, this is not the case due to the following two reasons.
First, Su is limited to three discrete values, i.e., 1 (spsmall), 2 (spmedium), and 4 (splarge).
Therefore, corresponding changes in the response time can be rather coarse-grained,
which do not reflect a sinus pattern. Second, the constraint in Equation 4.26 considers
parameters, that have not forced the ODR Reasoner adequately to change the response
time to a sinusoidal form. We conclude that the pattern of the data ingestion load needs
to be considered in a dedicated QoS criteria in order to be reflected (e.g., network load
as used in [10]). Alternatively, the response time can be remodelled with parameters that
reflect the changing data load more precisely.

6.7 Summary
In this chapter we presented the evaluation setup as well as the execution of a chosen
DSP topology in different scenarios. The Fog computing scenarios included a varying
amount of resources with different latencies in the network. Starting with the Full Model,
promising results with an improvement of 31.5% for the response times have been observed.
This was achieved by optimizing operator placements dynamically instead of computing
static placements at the beginning of a 50 minutes period. For availability concerns,
improvements with respect to the baseline were observable but not enough to state
that the dynamic approach is better in all cases. However, cost savings of 8.8% have
been observed when dynamic replacements were considered. The special case with the
Response Time Model, clearly has shown advantages of pure response time optimization.
At the end of the evaluation period, the dynamic ODR Reasoner approach decreased
the response time by 33.5%. Considering the Cloud scenario, we have seen aspects
(i.e., response time) which could have been improved by the dynamic ODR Reasoner,
since it yielded better results than the corresponding static approach. Nevertheless, the
stable environment of fixed resources (i.e., three VMs) does not have the potential to
improve all QoS attributes as this is the case for a changing network structure or at
least a network with varying conditions (e.g., latencies). In the next chapter, we further
draw conclusions considering the evaluation results and hypothesis, besides answering
the identified research questions.
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CHAPTER 7
Discussion & Conclusion

The optimization of operator placements is an important method to improve the QoS
of DSP topologies. In the literature research we identified various fields for processing
on-line data streams to gain valuable insights (see Section 2.3). For this, we have
focused on the IoT and provided a motivational scenario of the manufacturing domain in
Chapter 1. The proposed ODR approach is based on an ILP optimization approach from
Cardellini et al. [10] which has been identified as the most appropriate one. Considering
this, ODR is a centralized ILP optimization approach that is dynamically applied. It aims
for finding a global optimum with respect to multiple QoS criteria. The main difference to
existing approaches is the combination of ILP optimization for the Fog environment and
the dynamic reconfiguration of operator placements. ODR reacts to structural changes
as well as to load changes in the Fog network. To investigate the impact of operator
placement for the QoS of DSP topologies, we have evaluated our proposed ODR approach
in a Cloud and simulated Fog Computing environment. We have demonstrated that our
approach exploits these changes to provide QoS improvements. Although the degree of
these improvements varies and strongly depends on the resource infrastructure, we think
that ODR can be used beneficially in heterogeneous networks. The following chapter
answers the identified research questions from Section 1.4 and discusses the limitations of
our approach. To conclude this work, we outline future research possibilities with respect
to DSP operator placement problems.
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7.1 Discussion of Research Questions
RQ1 Which criteria are relevant for an operator (re)placement problem?

In Chapter 4 we have identified different QoS attributes that are incorporated into the
ODR optimization model based on the literature review of Chapter 3. For this, we
consider operator and network latency, enactment cost, resource availability, and operator
replacement cost (i.e., migration cost).

The most prominent criterion used in literature is network latency. The network latency
is generally considered to be minimized in centralized as well as decentralized algorithms.
In addition to the network latency, Cardellini et al. [10, 15] also incorporated operator
latency to the respective system models. To consider the overall latency of the DSP
topology, the operator and network latencies are added up along all DSP paths. The
maximum latency of all DSP topology paths is then assigned to the overall latency.

The resource availability is used in some approaches, that consider Fog Computing
infrastructures. For these heterogeneous resources, operators could be located in highly
diverse environments with different software and hardware conditions. To account for
this, the availabilities of hosts as well as the availabilities of network links are vital. The
overall availability of a DSP topology is then considered as the product of these resource
availabilities [10].

The enactment cost is a criterion that is relevant in environments with differently
priced resources. For this, Cloud Resources are typically considered. As indicated by
Vaquero et al. [4], it can be assumed that business models for Fog resources will cover
monetisation aspects of Fog resources. We conclude that similar to the Cloud, Fog
Resources could be leased accordingly. To decrease the overall cost of DSP topologies, the
cost for enacting their operators constitutes the major part and have to be minimized.

Another cost component is the operator placement cost. For this, migration cost has to
be taken into account when it comes to replacements as it is the case in our dynamic
ODR approach. Although we consider the operator replacement cost from a monetary
point of view, other methods (e.g., threshold-based workload limitation) are used also in
literature for minimizing the deployment changes as discussed in [74].

To go beyond the criteria that have been considered in this work, we refer to the network
load. The network load is based on network delay and used bandwidth. Therefore, this
criterion can be seen as an extension to the latency criterion.

RQ2 How can an operator placement problem be defined?

In Section 3.3.2 we discussed different optimization possibilities with respect to DSP. As
it has been presented, placement optimization is a prominent method to improve the
performance of a DSP topology. For this, Hirzel et al. [60] defined the operator placement
problem as the problem of assigning DSP operators to hosts in a network. Placement
restrictions and identified QoS criteria can complicate the optimization to be a time
consuming and resource intensive task.
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In Chapter 4 we provided design for the ODR optimization approach. Based on our
system model in Section 4.2, we have introduced a formulation of the operator placement
problem by considering an objective function and several constraints (see Section 4.3.2).
We incorporated the identified QoS criteria latency (i.e., response time), availability,
enactment cost, and migration cost into the objective function. After normalizing
them, they are weighted and added up according to the SAW [73] approach. Defining
the objective function in that way, enables to solve the operator placement problem
with respect to multiple heterogeneous criteria. The weights represent the importance
of the respective criteria. The second part of operator placement problem definition
includes constraints that limit the operators to be placed on hosts with enough resources
capacities. Furthermore, other constraints ensure the correct formal behavior of the
placement process, e.g., an operator can be deployed to only one host instead of splitting
it up.

We have further added another aspect for defining operator placement problems, which is
the dynamic consideration of changes. Since dynamic environments such as Fog Networks
change continuously regarding their structures and network conditions, operator placement
problems are not limited to a fixed point in time. Moreover, operator replacements
have to be considered throughout the enactment of DSP topologies. Therefore, changing
situations are an integral part of operator placement problems. In literature, this aspect is
known, but not always incorporated into respective optimization approaches. Nevertheless,
we found that especially decentralized algorithms consider dynamic replacements and
therefore take continuous updates of the environment into account.

RQ3 How can our optimization approach be realized as software and be integrated
into established systems?

In Chapter 4 and Chapter 5 we have focused on the design and implementation of ODR
respectively. To answers research question RQ3, we discuss the main results of these
chapters. We describe how the ODR optimization approach is realized and integrated
into the VISP ecosystem.

Based on the created ILP optimization model (see Section 4.3.2), we have designed the
ODR Reasoner software (see Section 4.4). It consists of an API to receive optimization
tasks from VISP Runtimes and a VISP Client to retrieve metric updates of the resource
infrastructure, i.e., Cloud or Fog network. The obtained metrics are used to derive the
parameters that are required in the optimization model. After a request is received,
a Scheduler component periodically invokes the CPLEX-based ILP Model Solver that
solves the placement problem. The resulting operator placements are propagated to
the VISP Runtimes for executing the changes. Besides an ILP Model Solver, other key
components are the Metric Provider and the Resource Manager to facilitate the periodic
updates of parameters. The former one parses operator and network condition metrics,
while the latter one detects resource changes like e.g., a Fog node that switched its
availability status.
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The ODR implementation is a Java-based service that is loosely coupled to VISP Runtimes.
The communication protocol is HTTP, which is supported by software frameworks, e.g.,
Spring Boot. Data exchange between the involved systems is applied in two ways. Data
that is received from VISP is transported in JSON objects as defined in the description
of involved VISP runtime endpoints (see Section 5.3). Conversely, the data sent to VISP
is transported as a VISP Topology Description Language file containing the placement
updates and possible scaling instructions.

RQ4 How does the optimization compare against baseline approaches?

In Chapter 6 we have evaluated the (dynamic) ODR approach to investigate if improve-
ments can be achieved compared to the baseline. For this, we considered the static
optimization approach. In contrast to the dynamic ODR Reasoner, the baseline solves the
operator placement problem only at system startup. Three scenarios have been evaluated,
whereas each is based on the topology defined in Section 6.1.2). In two scenarios the
resource infrastructure is a Fog-like environment, while in the third scenario a Cloud
environment is considered. To provide a benchmark between ODR and the baseline, we
summarized the outcome of all three scenarios in Table 7.1. The columns Response Time,
Availability and Cost compare the two approaches by showing if the ODR approach is
better throughout the evaluation period. This is indicated with ’X’, while ’-’ indicates
that there are situations in which the static approach performs better. This corresponds
to the hypotheses that have been used during evaluation, whereas ’X’ stands for the
acceptance of the respective hypothesis or at least for satisfying the respective condition,
i.e., (a) and (b) in H1 and H4 (see Section 6.3). The columns Response Time Decrease
and Cost Savings provide information about the relative improvement in the respective
QoS criterion.

In the first scenario, i.e., Full Model Fog Scenario (see Section 6.3) we found that the
response time of ODR has significantly decreased by up to 29.5% when new Fog resources
are added. Hence, ODR exploits the option to change the placement structure for
achieving a better QoS. In contrast, due to the inflexibility, the baseline approach misses
this chance. Considering the availability, we have observed a good performance of the
ODR approach in the majority of measured time points. The cost savings of 8.8% have
been achieved by the ODR approach over the whole evaluation period. In this scenario, we
have demonstrated that the overall result is satisfying, although the availability condition
(b) within hypothesis H1 could not have been accepted. So, we still see potential for
improvements in this field.

The second, more specialized scenario considers solely the optimization of the response
time. For this, the ODR approach has decreased the response time by up to 31.5%
compared to the static approach. Herein, we conclude that neglecting other QoS criteria
can lead to even better results for QoS criteria that have received higher weights. Hence,
it can be considered as a feature of the ODR Reasoner to define the importance of
provided QoS criteria by adapting their weights.
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The third scenario refers to a Cloud environment with used resources that are not varying,
since the amount of Resource Pools and assigned VMs is fixed. The response time has
been decreased clearly by the dynamic ODR approach, although the maximum of 13% is
much lower than the corresponding results in the Fog scenarios. Nevertheless, this result
is caused only by changing conditions in the resources and not by adding or removing
resources. In contrast, additional cost of 49% and poor availability have to be considered
for decreasing the response time in exchange. For this, we conclude, that not all QoS
criteria could have been improved in the Cloud scenario. Therefore, we found that in
rather stable environments, improvements can be made with respect to selected QoS
criteria, but dynamic optimization can come with deficiencies for other QoS criteria and
cost in particular.

Table 7.1: Comparison of the Dynamic ODR with the Static Baseline

Response Time Response Time
Decrease Availability Cost Cost Savings

Full Model
Fog

X 31.5% - X 8.8%

Response Time
Model Fog

X 33.5% n.a. n.a. n.a.

Full Model
Cloud

X 13% - - -49%

7.2 Limitations

The presented ODR approach comes with limitations that can be identified in different
areas. First, the placement problem is NP-hard. Therefore, an increasing problem size,
i.e., larger Fog Networks and complex topologies, can make it difficult to solve it in
reasonable time. For this, it has to be considered that ODR is a centralized approach,
which solves the problem by incorporating all parameters from VISP Runtimes. Besides
the resource nodes Vres, we see the implemented full mesh representation of the resource
graph Gres as a complexity driver that increases the number of edges Eres. So if, multiple
decentralized VISP Runtimes enact a DSP topology on a large number of Resource Pools
and forward their metrics continuously to the ODR reasoner, it may not find a solution.
This situation is even more complicated in periodic optimization, since optimization tasks
may not finish in the given period, which can lead to results based on outdated parameter
and a delay in the next period. Furthermore, the resources of the ODR Reasoner might
not suffice to serve multiple optimization tasks in parallel.

Another limitation is the completeness, accuracy, and update cycle of the metrics that are
sent to the ODR Reasoner. So, if the metrics are not updated on a regular basis, or are
rather coarse grained, the used parameters have to be estimated. If this estimation does
not reflect the current situation in the resource infrastructure, the operator placements
that are suggested to the VISP Runtimes might not be optimal.
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The weights of the objective function (see Equations 4.10 and 4.23) directly influence the
quality of the results. So, the issuer of an optimization task has to perform a fine tuning
in testing runs before the best weights configuration is found and the actual optimization
can be started on a live system.

7.3 Future Work
This work has focussed on DSP operator placements with dynamic reconfiguration. The
aspect of dynamicity in connection with the aspect of finding a global optimum with ILP
models contains many challenges. Furthermore, the consideration of Fog Networks for
hosting DSP operators can be very promising to e.g., reduce latency and save cost.

In this work we made use of a persistence strategy according to Woodside et al. [74]. We
have considered migration cost to limit the amount of operator replacements in each turn.
This can help in large Fog networks to keep the reorganization effort to a minimum. If
further persistence strategies can be integrated, it could decrease the complexity of the
optimization problem as well. Hence, a dynamic ILP approach that aims for achieving
a global optimum might then be able to perform well for large Fog networks. Beside
persistence strategies, other heuristics, which reduce the solution time for finding a global
optimum, need to be evaluated.

In literature we found only purely centralized algorithms that use ILP models for operator
placement optimization (see Section 3.3.10). For this, it can be beneficial to consider
a composition of multiple ILP models that are solved in a decentralized way for an
assigned region in the Fog network. A centralized optimizer could then consider the
results from each region and make final adaptations that are rolled out to the entire
infrastructure. This hybrid approach can make a compromise to reduce the time of
solving the optimization model and at the same time it can achieve optimal results that
can be very close to a potential global optimum.

To facilitate this hybrid optimization, we could use the resources provided in the Fog. So,
we do not only consider a fixed decentralized network of solving units that optimize the
placement problem for their assigned region. Moreover, it can be beneficial to exploit also
the resources of temporarily available Fog nodes. For this, a future research possibility is
to investigate how Fog resource provisioning frameworks can be used for distributing and
coordinating optimization tasks.

As discussed in the literature review (see Section 3.3.6), the network load is a QoS
criterion that can be incorporated into the optimization of operator placements. An
extended version of the ODP approach [10] has considered this criterion in an ILP model,
but just focussed on static optimization. For this, new possibilities and improvement
potentials have to be evaluated with respect to dynamic consideration of the network
load in an ILP model.
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APPENDIX A
Evaluation Topologies

A.1 Fog Topology

Listing A.1: Fog Topology
1 $source = Source ( ) {
2 concre t eLocat ion = 128 .130 . 172 . 183/ fogPool1 ,
3 type = source ,
4 outputFormat = " temperature data from machine s enso r " ,
5 expectedDurat ion = 15 ,
6 s i z e = smal l
7 }
8
9 $step1 = Operator ( $source ) {

10 a l l owedLocat ions = 128 .130 . 172 . 183/∗ ,
11 concre t eLocat i on = 128 .130 . 172 . 183/ fogPool1 ,
12 inputFormat = step1 ,
13 type = step1 ,
14 outputFormat = step2 ,
15 s i z e = smal l
16 }
17
18 $step2 = Operator ( $step1 ) {
19 a l l owedLocat ions
20 = 128 .130 .172 .182/∗ 128 .130 .172 .183/∗ 128 . 130 . 172 . 217/∗ ,
21 concre t eLocat i on = 128 .130 . 172 . 182/ cloudPool2 ,
22 inputFormat = step1 ,
23 type = " step2 " ,
24 outputFormat = " step3 " ,
25 s i z e = small ,
26 expectedDurat ion = 15
27 }
28
29 $step3 = Operator ( $step1 ) {
30 a l l owedLocat ions
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31 = 128 .130 .172 .182/∗ 128 .130 .172 .183/∗ 128 . 130 . 172 . 217/∗ ,
32 concre t eLocat i on = 128 .130 . 172 . 182/ cloudPool1 ,
33 inputFormat = step1 ,
34 type = " step3 " ,
35 outputFormat = " step3 " ,
36 s i z e = small ,
37 expectedDurat ion = 15
38 }
39
40 $step4 = Operator ( $step1 ) {
41 a l l owedLocat ions
42 = 128 .130 .172 .182/∗ 128 .130 .172 .183/∗ 128 . 130 . 172 . 217/∗ ,
43 concre t eLocat i on = 128 .130 . 172 . 182/ cloudPool2 ,
44 inputFormat = step1 ,
45 type = " step4 " ,
46 outputFormat = " step3 " ,
47 s i z e = small ,
48 expectedDurat ion = 15
49 }
50
51 $ log = Sink ( $step2 , $step3 , $step4 ) {
52 concre t eLocat i on = 128 .130 . 172 . 182/ cloudPool2 ,
53 inputFormat = " transformed data " ,
54 type = " log−type operator "
55 }

A.2 Cloud Topology

Listing A.2: Cloud Topology
1 $source = Source ( ) {
2 concre t eLocat ion = 128 .130 . 172 . 182/ cloudPool0 ,
3 type = source ,
4 outputFormat = " temperature data from machine s enso r " ,
5 expectedDurat ion = 15 ,
6 s i z e = smal l
7 }
8
9 $step1 = Operator ( $source ) {

10 a l l owedLocat ions = 128 .130 . 172 . 182/∗ ,
11 concre t eLocat i on = 128 .130 . 172 . 182/ cloudPool0 ,
12 inputFormat = step1 ,
13 type = step1 ,
14 outputFormat = step2 ,
15 s i z e = smal l
16 }
17
18 $step2 = Operator ( $step1 ) {
19 a l l owedLocat ions = 128 .130 . 172 . 182/∗ ,
20 concre t eLocat i on = 128 .130 . 172 . 182/ cloudPool1 ,
21 inputFormat = step1 ,
22 type = " step2 " ,
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23 outputFormat = " step3 " ,
24 s i z e = small ,
25 expectedDurat ion = 15
26 }
27
28 $step3 = Operator ( $step1 ) {
29 a l l owedLocat ions = 128 .130 . 172 . 182/∗ ,
30 concre t eLocat i on = 128 .130 . 172 . 182/ cloudPool1 ,
31 inputFormat = step1 ,
32 type = " step3 " ,
33 outputFormat = " step3 " ,
34 s i z e = small ,
35 expectedDurat ion = 15
36 }
37
38 $step4 = Operator ( $step1 ) {
39 a l l owedLocat ions = 128 .130 . 172 . 182/∗ ,
40 concre t eLocat i on = 128 .130 . 172 . 182/ cloudPool2 ,
41 inputFormat = step1 ,
42 type = " step4 " ,
43 outputFormat = " step3 " ,
44 s i z e = small ,
45 expectedDurat ion = 15
46 }
47
48 $ log = Sink ( $step2 , $step3 , $step4 ) {
49 concre t eLocat i on = 128 .130 . 172 . 182/ cloudPool0 ,
50 inputFormat = " transformed data " ,
51 type = " log−type operator "
52 }
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APPENDIX B
Identified Requirements and

Parametrization Phases

Table B.1: Features and Corresponding Technical Tasks. Part 1.

Id Feature or
Work Item Description Task

1 SW Design
Setup

Transformation of software design to
a first code basis

• Setup Web Application Framework
• Create packages, interfaces and

stubs for key classes

2 Entity Model Creation of entity classes

• DSP graph
• Resource graph
• Other parameter and DTOs

3 API RESTful Interface for the ODR
Reasoner

• parse request for adding new opti-
mization tasks

• parse initial DSP topology, resource
infrastructure and all optimization
relevant parameter to store it in
the data context. Then trigger
parametrization.

• receive the command for starting or
aborting an optimization task
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B. Identified Requirements and Parametrization Phases

Table B.2: Features and Corresponding Technical Tasks. Part 2.

Id Feature or
Work Item Description Task

4 Metric
Provider

Creation of Metric Providers for
receiving monitoring data

• Simulation Metric Provider (param-
eters assumed)

• VISP Metric Provider

– initial parameter estimation

– parse received metric updates

– recompute parameter based
on new metrics and existing
parametrized model

5 Resource
Manager

Creation of a resource manager that
is in charge of initializing and
updating the DSP and resource

model

• parse received resource change up-
dates and adapt the resource graph
model

• recompute parameters for the
adapted model

6 Scheduling Periodical optimization and
reconfiguration scheduling

• retrieve current parametrized model
from Data Context

• invoke the ILP Solver
• invoke the suitable persistence strat-

egy [74]
• invoke reconfiguration
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Table B.3: Features and Corresponding Technical Tasks. Part 3.

Id Feature or
Work Item Description Task

7 Persistence
Strategy

Limiting the degree of replacement
actions to reduce complexity for the

optimization problem

• use heuristics to reduce the part of
the resource and/or DSP graph that
has to be adapted

8 ILP Solving Solving the model with IBM CPLEX
Optimizer1

• transform the designed optimization
model to JAVA (compile)

• solve the compiled model and ex-
tract the solution [74]

9 Reconfiguration
Perform the reconfiguration of the

placement dynamically
(replacement)

• Consider the new placement and in-
voke the VISP Runtime Callback to
upload the changed VISP Topology
Description Language File.

10 Reporting Reporting of new placements and
current QoS attributes

• Periodic refreshing of reported val-
ues

• Show placement (assignment of DSP
operators on a graph of resources)

• Show current QoS attribute values
• Export QoS attribute values as

spreadsheet

11 Simulation

Simulate the VISP Runtime as
component that uses the ODR

Reasoner for starting optimization
tasks and receiving replacement

instructions

• Define simulation scenarios
• Invoke the ODR Reasoner API to

start the optimization with DSP and
resource graphs as defined in the sce-
nario

• Send metric updates periodically as
defined in the simulation scenario

• Send resource changes at defined
time points

12 Integration Integrate VISP with the ODR
Reasoner

• Identify and integrate exchanged
DTOs

• Call HTTP interface of VISP for re-
trieving data

• Parse VISP specific input data (e.g.,
VISP Topolgy Description File)

• Prepare topology file upload for up-
dating placement decisions
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B. Identified Requirements and Parametrization Phases

Table B.4: Determination of Parameters in Different Phases

Phase Parameters Description

Creation Phase

DSP toplogy graph
(Gdsp)

• Nodes (Vdsp)

– required CPU frequency per core (P(CP U,i))

– required cores (P(Cores,i))

– required memory (P(Mem,i))

– required storage (P(HD,i))

– image size (si)

• Edges (Edsp)

Resource graph (Gres)

• Nodes (Vres)

– availability (Au)

– enactment cost per second (Cu)

– available CPU power per core (P(CP U,u))

– available cores (P(Cores,u))

– available memory (P(Mem,u))

– available storage (P(HD,u))

– speedup of host compared to the reference
processor (Su). This parameter is derived
using defined resource classes small, medium,
large.

– data rate to the VISP Marketplace (b(M,u))

• Edges (Eres)

– data rate (bandwidth) (bu,v)

– availability (Au,v)

– delay (d(u,v))

QoS attribute weights
weights for importance of QoS attributes in the objective

function with respect to availability wa, latency wr,
enactment cost wcop , and migration cost wcmig

Warm-up Phase
Execution time per data
tuple for each operator

(ETi)

Each operator is hosted on a system with reference
processors, where ETi is measured during a test run.

Nevertheless, the user can skip this test run and assign
default values too.

Update Phase
All parameters from the
starting phase and the

warm-up phase.

These parameters are pulled periodically from VISP
Runtimes. If the returned parameters deviate from their
previous or default values, an updated is performed.

-
Considering the delay d(u,v) between nodes u, v ∈ Vres, it

could be the case that no information from VISP
Runtimes can be retrieved for all (u, v) ∈ Eres. Therefore

it needs to be approximated with
∑

(i,j)∈Eres
d(i,j)

|Eres| .
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