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Kurzfassung

Mit der steigenden Popularität des Internet of Things sehen wir immer häufiger, dass
versucht wird das traditionelle Cloud-Computing mit Ressourcen am Rande des Netzwerks
(der Edge) zu verbinden. Dadurch wird es ermöglicht die unterschiedlichen Vor- und
Nachteile der beiden Plattformtypen auszunutzen. Allerdings bringt das Zusammenführen
der beiden Arten von Plattformen neue Herausforderungen, sowohl für Entwickler als auch
für das Betriebspersonal, mit sich, da es immer schwieriger wird festzulegen wie Services,
basierend auf ihren nicht funktionalen - und Laufzeitanforderung, verteilt werden sollen,
während die verfügbaren Ressourcen auf der Edge optimal ausgenutzt werden.

Händisch zu entscheiden, wo jedes einzelne der Services laufen soll und diese dann
händisch zu verteilen, wird zu einer nicht bewältigbaren Aufgabe, im Speziellen wenn es
sich um eine große Anzahl an Services handelt, was oft der Fall ist wenn eine Microservice
Architektur zum Einsatz kommt. Weiters ist es notwendig, dass, wenn die Services einmal
verteilt sind, ihr Laufzeit-Verhalten zu überwachen um eine Verschlechterung der Quality
of Service Parameter, sowohl der einzelnen Services, als auch des gesamten Systems,
feststellen zu können. Dadurch wird es möglich entsprechend Handlungen zu setzten
um die Verletzung von Service Level Agreements zu verhindern. Außerdem können die
gesammelten Informationen verwendet werden um eine Optimierung von zukünftigen
Verteilungsprozesse zu ermöglichen.

In dieser Arbeit schlagen wir eine ganzheitliche Herangehensweise vor, die sowohl Ent-
wickler und als auch das Betriebspersonal bei der Entwicklung, dem Verteilen und dem
Betreiben von Applikationen, die einem Miscroservice Muster folgen, unterstützt. Um
dies zu erreichen implementieren wir das Data-Driven Automatic Deployment Frame-
work in einer prototypischen Umsetzung. Dieses erlaubt es Applikationen transparent
auf Cloud- und Edge-Infrastruktur zu verteilen. Weiters stellt es einen einheitlichen
Überwachungsmechanismus für Services zur Verfügung, welcher einen Event-basierten
Mechanismus zur Laufzeit Adaptierung ermöglicht.

ix





Abstract

With the growing popularity of the Internet of Things, we see a trend towards combining
traditional cloud computing with resources available at the edge of the network. This
way it becomes possible to exploit the complementary characteristics of both types
of platforms. However, unifying the two types of platforms poses new challenges to
developers and operational staff alike, as it becomes increasingly harder to determine
where services should run based on their non-functional- and runtime-requirements, while
simultaneously utilizing the resources at hand in an optimal way.

Manually deciding where each individual service should run, and rolling them out
becomes unfeasible, especially with a large number of individual services, which tends to
be the case in a microservice architecture. Furthermore, once the services are deployed
into production, it becomes necessary to monitor their runtime behavior to detect a
deterioration of the individual services’ quality of service parameters as well as those of
the system as a whole. Thereby, it becomes possible to take actions to prevent quality of
service and service level agreement violations. Additionally, the collected information
can be used to optimize future the deployment plans for the services.

In this work we propose a holistic approach towards supporting developers and operational
staff in creating and running applications that employ a microservice architectural
pattern. To realize this approach we prototypically implement a Data-Driven Automatic
Deployment framework which allows the transparent deployment of services onto cloud
and edge hosts alike. Furthermore, it provides a uniform monitoring mechanism for the
services, which enables an event-based mechanism for runtime adaptation.
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CHAPTER 1
Introduction

In the Internet of Things (IoT) there are two distinct types of computing platforms.
First there are edge platforms that reside at the edge of the network. They consist of
low powered devices that have limited resources. In an industry context these devices
reside on a plant operator’s premises and might include some machines that are part of
an assembly line (e.g., welding robots or a milling machine) which offer some of their
computational resources to the edge platform operator. They might also be low powered
PCs that are located in a factory, micro-servers, or dedicated, low-powered IoT devices
(e.g., the Raspberry Pi single board computer1). In the more general context, these
devices do not even have to be stationary and can also include smart phones, tablets, or
other wireless devices that might join or leave particular networks in a hardly predictable
manner [17, 37, 39].

Edge platforms lend themselves very well to achieving narrow time constraints, since
most devices on the edge are generally in spatial proximity to each other, which reduces
the distance and therefore time data needs to travel to be processed. However, the fact
that things like storage and computational resource are limited at the edge, reduces the
set of applications that are feasible to run there [6].

Secondly, in contrast to edge platforms, there are cloud platforms, which provide their
users with virtually unlimited resources which means that a wide variety of application
can run on it, as long as (near-)real-time or privacy guarantees are not things sought
after [39]. The inability to achieve (near-)real-time constraints, stems from the fact that
data that is used by cloud services, needs to be transferred over the internet into the cloud.
Then, the data is used by the services, and lasty the result is transmitted back, again
over the internet. This sending of data incurs an overhead that is unacceptable for low
latency applications [6]. Also, a possible lack of privacy is introduced to cloud services,

1https://www.raspberrypi.org/
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1. Introduction

because the data leaves the users’ premises and cloud providers could theoretically do
what they please with the data they receive. There are several levels of abstraction cloud
platforms might offer. According to Liu et al. [28] there are Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

IaaS abstracts the underlying infrastructure, providing their users access to Virutal
Machines (VMs). Users can rent these VMs that usually come in different sizes (w.r.t.
the resources they offer) and bigger machines cost more. The billing usually happens
based on the time for which a machine was rented. An example for an IaaS cloud would
be Amazon’s Elastic Compute Cloud (EC2)2.

A PaaS cloud offers its users an abstract platform to which she can deploy services
without having to worry about setting up the environment of the application. Billing
usually is based on the consumed resources like storage or bandwidth. An example
for such a PaaS cloud would be a CloudFoundry3 installation, on a multitude of EC2
instances.

Lastly, a SaaS cloud offers the software itself to their users. This means that the users
can utilize the software without having to deploy it or take care of it in any other way.
An example would be a web service, that the cloud provider offers to its users, which is
hosted on a CloudFoundry installation, which in turn is distributed among a multitude
of EC2 instances.

Another difference between cloud and edge platforms are the costs they introduce for
using their resources. When utilizing resources at the edge, the only costs incurred are
for power and possibly cooling of the edge devices. Generally edge devices are already in
place on the users’ premises, so there are no upfront hardware costs to the edge platform.
Cloud platforms however do create costs for the users, based on how much of which
resource is used, since they generally operate on a pay-as-you-go basis. The fact that
resources at the edge are basically free while cloud resources mean additional costs for
the users, imply that it is favorable to use edge resources whenever possible, to minimize
the costs. However, edge platforms are generally less reliable than cloud platform, since
devices may arbitrarily join, and more importantly, leave the network [13].

The abovementioned difference in pricing is only true, if the users employ devices they
actually own. In a general scenario it is possible that users might offer their computational
power at the edge to other interested parties. However, the question how billing could
be realized in this scenario, and how Service Level Agreements (SLAs) and agreed upon
Quality of Service (QoS) parameters could be enforced remains an open one [37]. Another
question that needs to be answered is how to provide incentives for users that offer their
resources in an edge computing context, aside from monetary ones [13].

2https://aws.amazon.com/ec2/
3https://www.cloudfoundry.org/

2



In general it is deemed desirable to exploit the complementary characteristics of cloud
and edge platforms and to use the platform which is best suited for a service’s needs [6].
This can be achieve by having some services run on the edge while other applications
run in the cloud. For example, a service that detects outliers in sensor readings, which
can be done with limited resources and often needs to happen in a timely fashion, should
run on the edge. Contrary to that, big data analysis would not be feasible there because
of the sheer amount of computational power that is needed. Furthermore, such services
generally have liberal time constraints that are in the minutes if not even hours, which
makes the cloud the ideal platform to deploy them to.

The problem developers and operational staff are facing, is that it might not be im-
mediately clear what the best deployment location for an application might be. The
legal, or even optimal, location for deploying a service can depend on several things, like
the resource the service needs to function properly, the software requirements (e.g., a
certain operation system, or the runtime of a programming langauge) that the hosting
device needs to meet. Other things that might limit the legal deployment locations could
be privacy concerns attached to the data that the service produces. Keeping all these
requirements in mind becomes especially difficult when a microservice architecture [15] is
employed, where each application is comprised of a multitude of services, along with a
DevOps methodology [5], where services might be deployed multiple times a day. Manu-
ally deciding where each service should run, which also includes selecting the appropriate
device at the edge, becomes a tedious and error-prone task, which needs to be automated
to free the developers and operational staff of this burden.

It is important to keep in mind, that the optimal deployment location of the individual
services may change over time. This stems from the fact that it does not only depends on
the static configuration of the services’ Non-Functional-Requirements (NFRs), resource
and software requirements, as well the hosts’ resource and software offerings, but also
on the runtime behavior of the services. Unexpected or changing runtime behavior
can have several reasons, like a wrongly assessed resource consumption, or unexpected
behavior of third-party services. This problem also becomes even more apparent when
using microservices and a DevOps methodology, because manually deciding the exact
deployment location would mean that the person in charge would constantly needs to
adapt the deployment configuration.

Lastly, it is desirable to adapt which services are available to others during runtime, by
dynamically activating and deactivating them to dynamically redistribute the workload
across the remaining services. This way, individual edge devices can be kept from
becoming overloaded and failing to respond. This process needs to happen based on the
current state of the system (i.e., the current workload distribution, especially over the
edge hosts) and aims to prohibit the interference of user services with the edge devices’
primary tasks (i.e., the actual task the device was intended to achieve). The second point
becomes especially important when combining cloud and edge computing in an industrial
context. Here the edge devices’ have primary task that are often important for the safety
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1. Introduction

of staff or for the proper functioning of an assembly line. Thus, it is prohibited that the
user-defined services interfere with these tasks in any way. Although it is possible for
user services to also be mission-critical, throughout the work it is assumed that none of
them are and they are not relevant to safety. This means that they can be interrupted or
migrated at any point in time, without having to take precautions to ensure extremely
high availability and possibly (near-)real-time constraints.

One possible solution, for combining the computational power of the cloud, with the
low latency possible at the edge is so called fog computing [6]. Although there is no
clear definition of what the term fog computing actually refers to [37], there is a clear
consensus, that fog computing involves the cloud, as well as the edge [1, 6]. This can
be achieved in different ways. However, we argue that the most fitting definition of fog
computing is given by Vaquero and Rodero-Merino [37] which describe it as a scenario,
in which a large set of devices forms a network that provides users with the possibility to
deploy applications onto them. The heterogeneous nature of the devices is abstracted and
they offer a sandboxed environment for the execution of applications [37]. Furthermore,
they are enabled to communicate with each other, which facilitates the usage of the
services deployed onto them [37].

1.1 Motivating Example
Vaquero and Rodero-Merino also mention that the owners of the devices that participate
in fog computing should be compensated for offering (parts of) their devices [37]. As an
example for such a compensation one could imagine that a certain amount of resources
of a device is rented in exchange for a fee the user, similar to Amazon’s EC2 offerings.
However, another incentive for participating in fog computing can be to save money,
by using less resources in the cloud, as long as the current workload allows execution
on the edge devices, which generally do not have high capacities [17]. Thus, it is easily
imaginable that users who already have a multitude of devices in place, which do not
need their full computational power at all time, might want to use such an approach to
cut their costs for cloud resources. However, the devices in place might occasionally need
(almost) all of their power, which means that relying solely on the edge platform would
either result in applications being stopped to free the resources they use, or in devices
being unable to access the resources they need. Both of these scenarios are generally
undesirable. Therefore, a combination of both cloud and edge computing should be used.

A use case that fulfills the above mentioned criteria and demonstrates the benefits of
bringing together cloud and edge computing can be found in an industrial context. Here,
plant owners already have a multitude of different devices at their disposal (e.g., welding
robots, milling machines, industrial PCs, ...) which might not use all of their resources, all
the time. Furthermore, they have assets (e.g., an electrical drive) whose condition (e.g.,
the voltage they draw, their motor temperature, the vibration they cause) is continuously
monitored by a multitude of sensors. It is then possible to draw inferences from the

4



1.1. Motivating Example

readings of these sensors about the current health of the machine. This can be done by
employing machine learning techniques to facilitate predictive maintenance. When using
them, historical data needs to be collected. Then, this data needs to be classified into
clusters that represent states of an asset (e.g., a high motor temperature in combination
with a low ambient temperature might indicate a problem in the asset’s cooling), which
afterwards need to be labeled. From the data and the labeled clusters, a model is trained
that can be used to classify new data and predict its membership of a certain cluster.
This classification of incoming, new data is also referred to as scoring.

To obtain a model, which can later be scored, the locally collected data is transferred to
the cloud via some connectivity service (we assume that the users have a PaaS cloud at
their disposal). Machine learning techniques are then used to cluster the data. Afterwards
the user has to assign a label to each cluster, which correspond to a state of the machine.
When the clustering and labeling are completed, the actual training of the model takes
place employing specialized machine learning techniques, like a random forests [27]. This
model is then able to classify new data according to the previously obtained classification.

The resulting model is transformed into different formats that are understood by different
machine learning engines, and the resulting files are stored in a model registry. This way,
the trained model is also made available for other interested parties in the model registry.
Normally, the user would now need to decide whether they want to score their data in
the cloud or at the edge. This means, there would either be a service deployed in the
cloud that takes all scoring requests or one scoring service for each edge device, where
users can score locally. The problem stemming from the first option, is that it demands
an unnecessarily large amount of cloud resources, which results in increased costs for
the users. The second option does not take into account that edge devices might not be
dedicated solely to scoring the model, but might have other tasks that have a higher
priority.

We explicitly want to use the available resource at the edge in combination with the cloud.
To achieve this, we define two services. One scoring service that must be deployed onto
an edge device at the users’ premises, and one service that can score models in the cloud
and acts as a “fallback“ for the local scoring service. This needs to be done since most
edge devices only execute user services as secondary tasks, which must not interfere with
their primary tasks. An example for such a primary task would be executing the defined
step in a production process of a welding robot. Since interference with the primary task
is not allowed, the devices could decide to interrupt the execution of the scoring, should
the workload of the primary task call for it. Thus, we would not be able to guarantee
the availability of the scoring service by only using edge-deployment. Since we deploy
one scoring service to the cloud, we get the benefit that it is inherently scalable, which
allows to adapt the usage of cloud resources depending on the workload on edge devices.
Furthermore, users can easily share their trained models with each other, across their
own premises, or with other interested parties (e.g., machine builder).

5
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Figure 1.1: Logical View of the Motivating Example

Figure 1.1 shows the basic components of the motivating example. There is a multitude
of field devices that deliver their data to the Data Acquisition component, which forwards
it to some Data Store and/or to a Data Handler. The Data Handler uses the Scorer to
classify the incoming data and displays the result via some kind of User Interface (UI).
This UI is then used by the plant operator to utilize the obtained scoring results to plan
maintenance accordingly. The Scorer receives the trained models from the Trainer, which
in turn gets the data from the Data Store. A problem that arises, is that the Scorer
might either run in the cloud, locally, or both. Thus we need a mechanism to know
where it runs and which actual service instance should be invoked to optimally fulfill the
system’s NFRs.

This use case aims to demonstrate the capabilities and benefits our proposed solution has.
It shows the need for a mechanism to deploy services onto edge devices. However, the
exact nature of those device is not known upfront, so a generic method for deploying the
services, which does not rely on any device specific aspects is needed. This way, the user
is enabled to utilize the resources at the edge, to minimize the usage of cloud resources.
Apart from that, the use case shows that there is a need for a mechanism that detects
devices that cannot handle the workload incurred upon them and instruct services to not
use services located on those devices anymore.

6



1.2. Contributions

The presented scenario helps us to determine important additional requirements that
need to be fulfilled to properly use resources available at the edge in combination with
cloud resources. First, there is the need for a method to decide where individual services
are allowed to be deployed based on their NFRs which are defined by the user beforehand.
This needs to be done, since some data might not be allowed to leave the users’ premises
because they have some privacy concerns attached or because they would reveal business
information that needs to be protected. It is also imaginable that users have a small
private cloud at their disposal, which would be able to handle these kinds of request, but
using this data in a public cloud would not be allowed. After deciding which platform is
able to host the service, there is the need to determine where exactly on this platform
the service is deployed, should it be an IaaS cloud. This decision has to happen based
on the resources a service needs to properly fulfill its task, along with the software it
demands to function and the NFRs it has to adhere to.

After the services have been deployed, they have to be monitored to detect undesired
behavior like bottlenecks, that might impact their proper functioning of certain devices
or potentially the whole system. The results of the monitoring needs to be aggregated,
preprocessed, and visualized for the users. Thereby enabling them to observe the system
and learn from its behavior. This could, for example, result in an adaption of the services
NFRs or resource needs. Since monitoring a complex system comprised of a multitude of
services in a meaningful way is a tedious task the user should be able to define rules upon
which the system needs to react to anticipated events (e.g., an edge device becoming
overloaded) and handle some kind of adaptation automatically. These rules are evaluated
based on the metrics that are collected by the system. Lastly, the result of these action
need to be propagated throughout the system to allow the devices and services to act
appropriately and adapt to the newly obtained information.

1.2 Contributions
The goal of our work is to provide a holistic framework to the user that allows the detailed
definition of services, hosts, and platforms, along with their capabilities as well as their
runtime- and non-functional-requirements. It aims to facilitate transparent, automated
deployment to edge devices, and to provide a mechanism for runtime monitoring and
adaptation of deployed services. Our main contributions can be summarized as follows:

(1) Defining and implementing a transparent method for cloud-edge deployment.
Thereby allowing users to utilize resources at the edge of the network and combine
them with the power of virtually unlimited resources in the cloud

(2) The implementation of a process to determine the optimal deployment location of
individual services, taking into account their NFRs, as well as resource and software
needs

7



1. Introduction

(3) The implementation of a monitoring process that incurs little overhead and en-
ables (4)

(4) Providing a mechanism for runtime adaptation of IoT applications, which is
achieved by employing monitoring techniques, Complex Event Processing (CEP),
and registry-aware service clients

1.3 Organization
This thesis will be organized as follows

Section 2 covers the basics of fog computing, microservice architectures, and the DevOps
methodology.

Section 3 presents current research in the field of edge computing as well as automatic
deployment, and runtime monitoring and adaptation, since these fields are at the core of
our framework

Section 4 then introduces the Data-Driven Automatic Deployment (DDAD) framework
itself. The section defines the main requirements of the framework we identified and
presents the key design decisions we made during its realization. Furthermore, it gives an
architectural overview and presents the framework’s main components in greater detail.
It also offers an in depth discussion of the framework’s implementation.

Section 5 will display the experimental results of the benefits of the proposed framework
on the basis of the application used as a motivating example. To evaluate the validity
of our approach, the presented use case is implemented and our framework is used to
manage the services’ lifecycle, from deployment planning, over the execution of the
planned deployment strategy, to monitoring the individual service and adapting them
based on the observed runtime behavior.

Section 6 will reflect upon our work. The section discusses shortcomings of the framework
and possible future work to be done based upon it. It will also conclude our work and
summarize our findings.

8



CHAPTER 2
Background

2.1 Fog Computing
The ultimate goal of fog computing, or edge computing is to overcome issues that are
inherent to the traditional cloud computing paradigm [1, 6]. These issues are first and
foremost the latency that is introduced when using cloud services, and privacy concerns
that are associated with data that is utilized by some applications (e.g., patient data
used by health-care applications) [20].

Another important problem that researchers want to solve stems from the fact that mobile
devices (e.g., smartphones or tablets) are very constraint in their resources compared
to what users want to achieve with them. Thus, it is deemed desirable to extend their
capabilities by allowing them to use cloud resources seamlessly and transparently for the
user [23, 33].

A key goal of fog computing is to utilize resources at the edge of the network which
helps to achieve low latency for critical parts of an application, while using the cloud if
possible or necessary. As an example for such an application Bonomi et al. present a
Smart Traffic Light System [6], where each intersection is equipped with a smart traffic
light and there is communication across intersections. In this use case the system has
several responsibilities, which all have different NFRs and demand different (amounts of)
resource. The authors identify key requirements for their use case, that can be extended
to a general fog application. These include a middleware platform that orchestrates the
individual software components, as well as a well-defined and uniform mechanism for
participating devices to communicate with each other.

Additionally to enabling the communication of the individual devices, this middleware
platform has to facilitate the interplay of the edge with the cloud [6]. This need for
interaction stems from the fact that the system collects data which can then be analyzed

9



2. Background

to improve the system itself. Based on the sheer amount of data that is collected and
needs to be analyzed it would not be feasible to do this computation at the edge. Thus,
cloud services, which can achieve these tasks, have to be made available to the services
residing on the edge [6].

Some of the problems that hinder the usage of edge resources to their full potential, stem
from the fact that the edge in general consists of a multitude of heterogenous devices that
need to be abstracted. Furthermore, devices that reside at the edge are often wireless
and mobile, which means that they can unexpectedly leave a network, which is an issue
that has to be dealt with [13].

There are several different reasons and approaches on how to bring cloud and edge
computing together in a meaningful way and thereby combine their complementary
benefits and drawbacks. Recurring use cases for fog computing include time critical
applications. The need for low latency applications varies from application to application,
but can be generally summarized as either stemming from the fact that too high response
times would interfere with the user experience [39], or have a critical impact on the
system state [6].

2.2 Microservice Architectures
As modern software systems are getting more complex and distributed, traditional
and monolithic applications are no longer a viable option of software development.
Thus Fowler [15] presents microservices. They are an architectural pattern realizing
an improved version of the Service Oriented Architecture (SOA) style [18]. Is used by
well known companies like Netflix to cope the growing complexity of their systems [18].
Micoservices typically make use of some core services (e.g., storage, messaging ...) which
are provided by the platform they run on. The web services offered by Amazon, can be
seen as such core services which enable the developers to build upon them to create more
complex software systems [18]. Apart from complexity, scalability and resilience become
major issues when designing, implementing, and operating highly distributed systems
as companies like Amazon and Netflix do. The main idea behind a microservice-based
architecture is that each deployable service is a software component that has exactly one
well-defined task [34]. Other services do not need to know how it works internally as
long as it behaves as expected and does its defined task (i.e., each service acts a black
box to other services) and to be available to other services each service has to have a
well-defined interface through which it can be invoked [16]. Typically these interface are
realized by Representational State Transfer (REST) endpoints [34]. Another important
factor when developing microservices is that each service has its own data storage to
which only instances of the service itsef have direct access. This implies that no service
can access another one’s data directly [34], which in turn leads to better encapsulation.

By giving each service well-defined responsibilities and capabilities, it enables developers
and operational staff to easily test services in isolation, by mocking or simulating the

10



2.3. DevOps Methodology

services they depend on. Furthermore, by exposing only a well-defined interface without
relinquishing anything about its internal workings (e.g., which implementation language
was used, which services are used in the background . . . ) different implementations of
services become easily interchangeable [3]. This does not only decouple the individual
services from each other, but also their build and deployment process [3]. This brings
the added benefit that new versions of an application can be rolled out by gradually
replacing its services one after another. When doing so, it is easy to identify if the new
version of a service exhibits any defects, and remove it from production.

In an optimal case microservices are stateless, which means that they can be easily
migrated between hosts in a IaaS cloud to consolidate multiple services onto a single VM
On the other hand this enables operational staff to easily spawn multiple instances of a
service and put them behind a load balancer that simply exposes the same interface as
the service itself. This way, the application can be scaled out easily without the user ever
noticing that they do not interact with the original service but with a load balancer [34].

However, there are several drawbacks when using micoservices. Savchenko et. al [34]
argue that using this architectural pattern does not remove any complexity from the
applications, it only relocates it to the infrastructure. Furthermore, the communication
between the individual services also introduces additional complexity and accessing the
data of different services is only possible through the exposed interfaces. This also implies
that tasks that would have been trivial in a monolithic application, like joining data, can
become tedious tasks that need to be dealt with. On the subject of data handling, it is
important to note that applications which based on a micorservice architecture seldom
only rely on traditional relational databases, but often also use some kind of noSQL data
storage.

According to the CAP theorem, one has to choose two of the three properties, but cannot
have all of them at the same time. These properties are Consistency, Availability, and
the tolerance for network Partitioning [7]. Thus it is common for appliactions realizing a
microservice architecture to use noSQL datastores that provide BASE (Basically Available,
Soft state, Eventual consistency [31]), instead of ACID (Atomicity, Consistency, Isolation,
Durability) guarantees [15]. The main reason for not using ACID (Atomicity, Consistency,
Isolation, Durability) data-stores, is that availability is often more important than strict
consistency. Keeping data consistent across multiple, distributed stores would induce the
need for prohibitively expensive transaction mechanisms, like the Two-Phase Commit
Protocol.

2.3 DevOps Methodology
When designing an application based on a microservice architecture, deploying and
operating all services properly can be a challanging task, especially when the abidance
by some quality rules is also a goal. These problems introduce the need for a new set of
practices. These practices have to ensure that services adhere to the highest possible
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measure of quality, while still enabling to deliver changes to production in a timely
fashion. This requirements perfectly capture the essence of the DevOps methodology, as
described by Bass et al. [5].

This methodology is a set of practices that aims to bring developers (Dev) and operational
staff (Ops) closer together, to build software of higher quality [5]. These practices include
making developers responsible for handling possible failures of the application, with the
goal of reducing the time until a new version of the failing application can be rolled out,
or the old version can be redeployed. Furthermore, Bass et al. [5] argue that operational
staff needs to play a key role when defining requirements for applications, so they can,
for example, raise their concerns about the usability of log messages.

Another key aspect of DevOps, which comes from its advocacy of Continuous Delivery
(CD) [22] to ensure quick and repeatable deploys of services, is the need for the automation
of the deployment process [5]. CD can be described as an extention of Continuous
Integration (CI) [14]. CI’s goal is to automate the process of obtaining a tested artifact
from changed source code. To do this, it advocates automated testing (whose result
should be visible for everyone involved), dedicated integration servers and commiting
changes to a Source Code Management (SCM) as often as possible. As an extension of
CI, CD aims to keep the time it needs for a change in the code to make it into production
(also called the “cycle time“ [22]) as small as possible. Automating this process makes it
much faster and more reliable than it could be achieved manually. Furthermore, it makes
the process repeatable and removes the possibility of human errors, that can easily occur
during such a cumbersome task [5]. However special care has to be taken of the code
that is used for this automation, as it should be developed with the same rigor as the
actual application code.

By having such an automated build process, together with many small, decoupled,
microservices, it is possible to employ techniques like a Canary Release [5]. A Canary
Release happens when a new service is moved from staging to production, but only made
available for a selected set of users. This way possible software defects can be detected
without affecting the whole user base. Should the service hold up, all user requests are
gradually routed to the new version of the service, and the old one is removed, once it is
no longer needed [5].

Balalaie et al. [3] argue that employing a microservice architecture facilitates using a
DevOps methodology. They present a use case where a monolithic application was
migrated to a microservice architecture. Since the resulting services were small, and
easily manageable by small teams, it was possible to do what Bass et al. [5] describe
as “breaking down silos“. This means that developers, operational staff, and members
of quality assurance, work together in a single team, which generally leads to better
cooperation between them. This way the quality of the software can be improved, by
taking the concern of all involved parties into account [5].
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CHAPTER 3
State of the Art

3.1 Fog Computing
Currently, there is extensive research going on which aims to close the gap between the
edge and the cloud. To achieve this, researchers often describe a Middleware Orchestration
Layer, which is commonly refered to as a Fog Layer [6], because it resides between the
edge and the cloud. In many works, it is explicitly pointed out that the goal is not to
replace cloud computing with edge computing, but rather to complement its shortcomings
and to extend its capabilities to the edge of the network [1, 6, 37]. This way it becomes
possible to provide resources that are in spatial proximity to where they are needed,
which might be of interest for several broad fields of applications.

As an example for such a use case, Bonomi et al. [6] sketch out the scenario of an
autonomous wind farm. In this application of fog computing, embedded devices at
the edge collect real-time data from the turbines and react accordingly, for example
by changing the tilt of the turbine blades. Not reacting to a change in condition in
real-time might damage the turbines, thus fast response times are key. This part of
the application alone, would still be sufficiently well-handled by traditional real-time
systems [6]. However, users want to make use of the data that the sensors collected and
use it for big data analysis. This analysis would not be possible at the edge alone because
of the sheer amount of data that needs to be analyzed. Thus, the data is transferred to
the cloud where it can be processed at a later time. The collected data can then be used
to tweak the algorithms that decide how to react to which conditions.

In their survey Hu et al. [20] describe, what they identified to be, the architectural
foundation of fog computing. Namely, a hierarchical three-layer architecture, where each
individual layer has vastly different characteristics. At the very bottom of the hierarchy
there is the Terminal Layer which consists of end-devices or Smart Objects that are
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comprised of e.g., temperature sensor, card readers, or actuators. As examples for such
end-devices the authors mention mobile-phones and smart-cars [20]. The devices collect
information about the current state of a physical device and forward it to the next layer
in the hierarchy, namely the Fog Layer. The connection between the Terminal and the
Fog Layer is primarily realized via technologies such as 3G, WiFi, or Bluetooth [20].
The devices in the Fog Layer are generally low-powered, but have enough resources
to accomplish simple tasks, such as caching or aggregation and anonymization of data
produced by the devices in the layer beneath [20]. Furthermore, they have a connection
to the layer above them, which is the cloud. This connection is generally realized via
the IP protocol. The ultimate goal is to optimally use the complementary benefits of
the cloud and the fog layer. Hu et al. [20] identify computation offloading as one of the
means to achieve this. They summarize several approaches towards this task.

Hong et al. [19] present a programming model for applications that use fog computing
as a combination of an application model and an Application Programming Interface
(API). As a basis for their model, they assume that data-centric applications are split
up in a hierarchical way. The parts of the application, which the authors call Mobile
Fog Processes, are then distributed across edge devices exposing a defined API. These
devices are called Fog Nodes, which are basically micro-datacenters. Apart from being
deployed to the edge, parts of the application can also be deployed to the cloud. Each of
the Mobile Fog processes then executes its defined task, which could be reading sensor
values and pushing them to the next level of the hierarchy, preprocessing data received
from down the hierarchy and forwarding it up, or doing big data analysis. The defined
API includes for example the querying of a nodes metadata (e.g., available sensors or
actuator, its location ...) or forwarding of a message to a child node. One problem
that we see with this approach is that the structure of the application always has to be
hierarchically and that this structure implicitly defines the deployment locations of the
individual Mobile Fog Processes.

Skarlat et al. [35] provide a more formal approach to optimize resource allocation in the
fog, allowing to distribute applications among Fog Nodes. The goal of the optimization
is to decrease the latency and cost. To achieve this the authors divide the available
infrastructure in an hierarchical way. Although the authors provide a method how one
can optimize the workload distribution on the edge, they do not answer the question how
one could easily and automatically deploy applications to the edge. Furthermore, they
do not propose a solution how the interplay between cloud and edge can be managed.

Another approach to harnessing the power of the cloud on devices with constrained
resources is offloading expensive computations like image processing from edge devices to
the cloud [4, 8, 10]. The MAUI framework [10] lets users annotate methods to indicate
that their execution can be moved to the cloud. This feature however is only implemented
for .NET 1 applications. One hurdle that has to be overcome stems from the fact that

1https://dotnetfoundation.org/
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the edge devices’ CPUs might have a architecture or a different instruction sets than
traditional server machines [10], which prohibits direct execution of the compiled .NET
core on both devices. To cope with this issue, Cuervo et al. [10] use the Common
Intermediate Language (CIL) to enable execution on servers and edge devices alike. The
authors enable migration of annotated methods to a MAUI server that can execute
expensive (w.r.t. resource consumption) tasks in the cloud. The problem still remains,
that users need to manually annotate remoteable methods (i.e., methods whose execution
can be moved to the cloud) and that the solution only works for .NET applications. The
problem with hard coding the set of methods, is that their ability to being executed
remotely might vary over time. Thus, it would be more desirable to have a mechanism
that lets users declare what requirements certain methods have and let an automated
system decide if a method should be remotely executed or not.

To mitigate the problem that users have to explicitly annotate methods manually, Chen et
al. [9] propose a static code analyzer that scans the static control flow graph, to determine
which parts of an application can be offloaded. These are parts that do not use any
device specific features like I/O-operations. The authors limit their work to applications
that run on the Android operating system. To enable the offloading, they additionally
needed to modify the Dalvik VM (the Java VM used on Android smartphones). The
problems we see with both approaches stem from the fact that the employed techniques
are highly specific to the used technology and prohibits the usage of the technology in a
general software environment.

Hung et al. [23] propose a framework that aims to overcome the limited resources of
mobile devices, like computational power, storage, and battery lifespan. They achieve
this by emulating the user’s phone in the cloud and migrating the state of the application
to this virtual phone. Once migrated, the actual computation of the application is done
in the cloud, while user inputs are simply relayed to the cloud version of the application.

Yigitoglu et al. [40] describe a fog computing framework, that not only aims to provide
access to resources at the edge of the network, but also to answer the question how one
can optimally distribute services onto available IoT infrastructure. In the context of
their framework they refere to the IoT devices as Nodes onto which an Orchestration
Client is deployed. This client corresponds to what Bonomi et al. [6] refer to as a
Foglet (i.e., a background service that manages the IoT device) [40]. Furthermore, they
derive a simple description model for the resource needs and NFRs of a service, which
helps by determining valid target devices for services. Additionally, the authors in [40]
put a CI workflow at the core of their framework. Thereby, they aim to automate
as much of the deployment process as possible. To enable the individual services to
communicate with each other an MQTT broker is used [40]. The individual services are
packaged in containers, which enables a high degree of flexibility with regards to the edge
device onto which the service is deployed. Furthermore, they advocate a microservice
architecture pattern for the applications that are realized using their framework [40].
This architectural style, in combination with a way of declaring the resource needs and
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NFRs of the individual services, removes the need to explicitly split the application into
functional blocks or define which parts of the application can be run in the cloud and
which locally, as done in [19] and [10] respectively.

3.2 Automatic Deployment
Apart from the possibilites and issues fog computing brings, there is also the question,
how one can transparentyl deploy services onto available infrastructure. A possible
solution is presented by van der Burg and Dolstra [36]. They present Disnix, which
allows users to declare the existing services, the available infrastructure, and a mapping
how the system should distribute the services onto the infrastructure. To enable the
declaration of these facts they propose a custom Domain Specific Language (DSL) that
allows the integration of common build tools. However, the users have to define the
mapping of services to hosts by hand. In order to make hosts available to the system,
the user needs to run a setup script and start a daemon which is then responsible for
receiving instructions regarding the deployment of new services. The system provides
desirable features like a declarative way of specifying the available infrastructure and
services, as well as transactional rollouts, where either all services are started or none
of them are. However, the user is forced to manually define the mapping of services to
hosts, which is something we explicitly want to automate in our framework.

Another approach is described by Matougui and Leriche [29], where they present a
constraint-based deployment architecture. In their work, they use a custom DSL (similar
to van der Burg and Dolstra [36]), but here the language is only used to declare constraints
and attach them to services and not to declare services, infrastructure, and the deployment
plan. Possible deployment locations are discovered in the network by a dedicated service,
and the administrators of the hosts have to give the deployment system appropriate
access right which allows for deployment of services and the installation of software.
Additionally, the system includes a hierarchically organized agent system that supervises
the deployment process. Should a failure occur, it takes care of propagating this failure
and ensures that the deployment process is rolled back. To decide where each service
should be deployed to, Matougui and Leriche translate the declarations of the users
(which is written in their custom DSL) to a Constraint Satisfaction Problem (CSP),
which is used as the input to a specialized program (a solver) that is optimized to
compute a solution that satisfies all constraints in an efficient way. If the solver cannot
satisfy all constraints, the user is alerted that the model resulting from their declaration
and the discovered infrastructure is unsatisfiable. The problem of this approach lies in
the expressiveness of the DSL, which is used to define the services and their attached
constraints. Furthermore, it lacks the capability to define NFRs for services, that need
to be honored when deploying them. We also see the need, to deduce certain constraints
(e.g., the set of valid deployment platforms for services) based on the information present.
This is not done in [29] since the authors do not consider different deployment platform
with varying characteristics.
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Gabrielli et al. [16] employ techniques similar to [29] by also using a DSL to specify
the requirements of the services and use Zephyrus (a CSP-based planning tool [11]) to
determine the optimal deployment configuration of services. However, the DSL they
propose is more powerful than the one presented by Matougui and Leriche [29] and they
also aim to optimize the resource consumption of the deployment plan. As a basis of
their work they assume a microservice architecture and the deployment to an IaaS cloud
such as Amazon EC2. In their work the authors also bring up the problem of changing
runtime behavior of services which poses the need for a replanning of the deployment,
which happens based on the already available deployment plan that is improved by the
system to meet the changed requirements. Although, the taken approach enables the
users to define a rich set of requirements for their services, Gabrielli et al. [16] do not
take into account the services’ NFRs that might constrain their possible deployment
locations. We try to improve this problem by automatically deriving certain constraints
from the users’ service definition.

Yigitoglu et al. [40] use a data-centric approach to guide the search for a possible
deployment location. The authors start by placing a service onto the node that is closest
to the source of the data that it consumes (e.g., a surveillance camera in the case of
a service that realizes facial recognition). If this node is unable to handle the service,
e.g. because it does not have enough computing power, the next closest is tried. Once
the service has been placed, the next service, which consumes data from the previously
deployed service, is deployed.

3.3 Runtime Monitoring and Adaptation
Once the users’ services are deployed, it is important to monitor their runtime behavior
and take according actions to improve the resource usage of the overall system. To
prevent over- or under-provisioning of cloud resources and to reduce the amount of SLA
violations, several approaches are presented in the literature.

To monitor cloud applications and transform the raw metrics obtained from the appli-
cations and hosts, Emeakaroha et al. [12] use a monitoring agent in place at each host
that collects infrastructure metrics and delivers them to an aggregator. This aggregator
collects the metrics from a variety of hosts and maps them to high level SLAs, according
to predefined mapping rules. The computed values are then used to predict possible
SLA violations and proactively take measures to prevent them. The problem we see
with this approach is that it does not take into account application-specific metrics that
might provide an insight into the applications’ runtime behavior, helping developers and
operational staff to detect possible defects in their applications.

Zabolotnyi et al. [41] present JCloudScale, an event-based framework for scaling Java
applications in an IaaS cloud transparently, by abstracting the underlying (virtualized)
infrastructure. The framework operates on user-defined scaling policies, which are defined
by extending a certain abstract class provided by the framework. To execute the users’
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applications, a special JCloudScale server component has to be in place, which receives
Cloud Objects, which represent a runnable user application. The decision when to apply
a certain scaling strategy is declared by defining CEP rules, which are evaluated and
actions are taken accordingly.

Huber et al. [21] present an approach for dynamic runtime adaptation of software systems
based on QoS aspects of services. They propose a technique that draws a clear line
between the logic of the system itself and the implementation of the runtime adaptation.
This way the adaption mechanism becomes generic and reusable and is no longer bound
to an individual software system. To achieve this goal, the authors devised a meta model
for runtime adaptation which consists of Strategies, Tactics, and Actions [21]. Strategies
are high level description of what needs to be done to achieve certain objectives. An
example for such an objective would be to minimize the costs for a service provider. To
realize this, a strategy is equipped with one or more tactics, in this case one tactic could
be to switch to utilize cheaper resources or to remove unused resources. A tactic can be
realized in multiple ways (e.g., utilizing cheaper resources can either mean switching to
another cloud provider, or using resources with looser SLA guarantees). To define the
concrete realization of a tactic an action is used. An action contains the steps that are
needed to be taken in order to achieve the desired goal. The execution of strategies can
either be triggered by an event (e.g., overall costs exceeding a certain threshold) or by a
scheduled timer, so that they are executed repeatedly. To determine which tactic should
be applied when using a certain strategy the system calculates the tactics are ranked by
their presumed impact. The highest ranking tactic is then applied. To execute it, tactics
are made up from actions, which are the actual steps taken to realize it. For example to
migrate a service, first the new version needs to be started somewhere, its start-up must
be announced, and the old service needs to be shutdown.

Apart from increasing or decreasing the available resources in the cloud, Chen et al. [8]
propose a workflow-based approach towards runtime adaptation. The authors use a
probabilistic approach based on the workflow of composite services (i.e., services that
are made up of a number of sub-services). They aim to proactively reroute requests
to different services, should the system determine that an SLA violation is likely to
occur. This enables the system to use the available resources in an optimized fashion
(w.r.t. the defined SLAs), rather than provisioning new ones. The framework uses
the locally available information about the system state, along with an automatically
constructed model based on the workflow between the individual components. Based
on the available information, it chooses the optimal path of execution to prohibit or
minimize SLA violations and QoS deterioration.

3.4 Summary
Although there are several works about fog and edge computing which identify key require-
ments of an orchestration middleware layer that enables harnessing the computational
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resources at the edge of network and combining them with the power of the cloud [6],
most of them only present a sound theoretical foundation for solving the problem. These
key requirements include an abstraction of the underlying edge devices to allow uniform
access to their resources and potentially offloading resource intensive computation to the
cloud, enabling users to have services that are able to meet narrow time constraints but
can also handle large amounts of data at the same time. Furthermore, there is a lot of
work done in the field of optimizing resource usage, both in cloud and edge environments.
The goals are manifold, and might include the reduction of round-trip-times for requests,
the optimal compliance with SLAs, the minimization of costs for users, or the extension of
an edge device’s battery lifespan. Most of the presented approaches include a monitoring
infrastructure that allows the systems to reason about which actions it should take to
meet the desired goals. An open question in these works however, remains how the
deployment location of the individual services is determined.

To answer these questions, researcher have determined several different approaches in the
field of automatic deployment [2, 29]. The main goal here is to free users of the burden
of manually rolling out their services. This becomes especially important when using
microservices as an architectural pattern, because the number of services that need to be
deployed tends to grow rapidly with the complexity of the application. There are efforts
to automatically determine where the applications should be deployed to by defining
constraints that the target hosts have to fulfill. However, once applications are deployed,
it is desirable to adapt their behavior at runtime, which the presented works do not
consider. Although Gabrielli et al. [16] consider this problem, their proposed solution
still needs manual involvement of operation staff to adapt the services’ requirements and
trigger a redeployment of services.

In the field of runtime adaptation, there are several approaches how one can react to
changing runtime behavior of software systems. Huber et al. [21] argue that the separation
of the adaption mechanism and strategies from the system itself is a key factor for creating
reusable adaptation mechanism, while Chen et al. [8] use a probabilistic, workflow-based
model to make decisions about which service instance to invoke, based on locally available
information.

Because automatic deployment and runtime adaptation are mostly treated as separate
concerns, we see the need to bring together automatic deployment techniques with
runtime adaption mechanism. We identified a fog computing scenario, especially in an
industrial environment, as a viable context for our framework. In our opinion, it is
desirable not only to roll out services in an automated fashion, but to aid the user in
maintaining a healthy system state. This can be achieved by allowing them to define
the NFRs their services have to meet, thereby limiting the possibilities of target hosts.
Furthermore, users should be able to define rules that constitute a trend towards an
undesirable system state and which action the system should take in order to continue to
function properly. This means that the services are in place, they have to be monitored,
and the result of the monitoring has to be analyzed to decide if actions need to be taken.
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CHAPTER 4
The DDAD Framework

In this chapter, we present the main outcome of our work. We discuss the key design
decision that were made when creating the Data-Driven Automatic Deployment (DDAD)
framework. Furthermore, we introduce its main components along with an architectural
overview. Together with the architectural overview we give an insight into how the
individual components communicate with each other and which information they exchange.
We also discuss how the framework can be integrated into a DevOps workflow to enable
continuous delivery when using a microservice pattern and edge computing.

4.1 Requirements
In this section, we discuss the key requirements of our framework. We examine the
use case presented in Section 1.1 to determine what functionality the framework has to
provide to its users.

4.1.1 Abstraction of Heterogeneous Edge Devices

In the literature, the abstraction of heterogeneous edge devices is a well-discussed
problem [6, 19]. The problem one faces when trying to integrate edge with cloud
computing is that the underlying devices at the edge are in general rather heterogeneous
and differ in nature [17, 20, 38], and that the users should need to know as little as
possible about their specific properties. Generally this is solved by forcing all devices
that are able to run user services to expose a uniform interface, which facilitates the
interaction with these devices. To facilitate this, authors advocate a small service (w.r.t.
resource consumption) residing on each device, which exposes this interface [6, 38]. This
service we will refer to as the Device Manager (Section 4.3.1). However, in the literature
it is also sometimes called a Foglet [6]. The extent of this interface varies from paper to
paper [6, 19, 40], but we identify a small set of capabilities, which the interface has to
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expose at a bare minimum. These capabilities are: deploying and starting user services;
pausing and undeploying user services; as well as being able to receive information about
the system’s state.

We choose a minimal set of capabilities for a number of reasons. First, we wanted to
expose computational resources, which needed to be made available to users somehow.
This can be achieved by allowing them to deploy services onto the edge devices. Once a
service is running on a device, it should be able to contact other services, for which the
Device Manager needs to obtain information about the system’s state (i.e., which services
are available and where). When a service is overloading an edge device, or the framework
found a better deployment location for it, it needs to be either paused or completely
undeployed respectively. Secondly, we wanted to only expose computatoinal resources, in
contrast to Hong et al. [19] and Bonomi et al. [6], where also sensing and manipulating
abilities of edge devices are exposed. This stems from the fact, that the envisioned
context for our framework is within a production site, where sensing and manipulation is
done by purpose-built devices. Another reason, for choosing such a minimal API was
that the edge devices would proactively register themselves and announce their available
resources. Lastly, since we are continuously gathering information about the devices
resource consumption which allows us derive the available resources we are eliminating
the need to making it queryable, which is done in [19].

To keep the interface small and simple, we choose two commands that the Device Manager
can receive from the framework and in response to which it needs to act accordingly,
similar to [38]. These commands are the Deploy Command and the Service Update
Command (see Section 4.3.1 for examples of how they look like). The former contains a
list of services that are expected to run on the device. With this information it is possible
to check which services are already running and determine which need to be started and
which need to be shut down. We choose to disallow multiple service instances of the
same service to run on the same edge device, because this does not bring any benefits in
terms of scalability or resilience. Scalability is not improved since the services are still
limited by the available resources. Neither is resilience, because if the device fails, both
services fail. However, it should be noted that it would be sensible to deploy multiple
instances of a service to a single host, if the service has long blocking operations, which
do not incur significant load onto the CPU. Because multiple instances of a single service
on one edge device do not yield a significant benefit, we deem it desirable to distribute
the instances of the same service across multiple hosts.

The Service Update Command contains information about concrete instances of certain
service types and at which endpoints they are reachable. When the Device Manager
receives this information, it needs to forward it to all services running on the edge device
it manages. This implies that the individual, user-defined services also need to realize a
well-defined interface to receive this information. Once the Device Manager has forwarded
the information about the concrete service instance, the individual services might need
to change the service instance they are currently invoking.
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An important type of information that needs to be obtained from the edge devices is what
capabilities and resources they offer [19]. In a general edge computing scenario, these
capabilities could include sensor or actuators attached to the devices. Hong et al. [19]
propose an extensive API for edge devices which allows obtaining detailed information
about their capabilities and resources. They also decide to organize the edge in a
hierarchical way, which introduces the need for a communication mechanism based on the
present hierarchy. In contrast to that, we obtain the information about which resources
are available at the devices by letting the Device Manager announce them upon its
start-up. We choose this approach, because we assume that the overall resources available
on a device do not change drastically over time. To determine which resources a device
has to offer, we continuously collect runtime data of the device and its services, thereby
enabling the computation of the utilizable resources.

Furthermore, once the Device Manager has received received information about the
services that are expected to run on the device it manages, it needs to be able to obtain
the executables of the services. Together with these executables, it needs to know how
the services are started and what their dependencies to other services are. Additionally,
it is desirable to have a mechanism that gives services the opportunity to shut down
gracefully within a certain period of time. Should they not be able to do so they need to
be shut down forcefully by the managing entity.

To facilitate the runtime adaptation of services that have been deployed to edge devices
(Section 4.1.4), we need to be able to activate and deactivate certain service instances
dynamically at runtime. To achieve this, we first need to supply the Device Manager
with a list of instances that services running on the device they manage can invoke; as
well as a list of services that are expected to run on the respective device.

4.1.2 Finding Deployment Strategies in Cloud-Edge Scenarios

Once the edge devices are made available to the user, the question remains, how to plan
the distribution of a set of services onto these devices. This needs to be done, while
adhering to all specified NFRs, providing the required soft- and hardware, and utilizing
edge resources in an optimized way. Forcing the users to manually decide where each
service should run is not a viable option, since with a growing number of devices and
services this task becomes cumbersome and error-prone [36].

Furthermore, the system should be able to derive certain constraints concerning the
deployment location of services, based on the services’ definitions. This way, the users can
define the services without needing to concern themselves with defining basic constraints
manually. Examples for such constraints would be the platform to which services can
be deployed based on their need for (near-)real-time communication, privacy concerns
associated with the data they produce or use, which can be fulfilled by edge devices [1, 6,
20]. Another example for such constraints would be the need for handling large amounts
of data or providing enormous computational resources, which can only be achieved in
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the cloud [6]. Additionally, when employing new platforms, and replacing or altering the
properties of existing ones, the allowed deployment locations might change.

Without a method to automatically derive feasible platforms for the services’ deployment,
users would have to keep the manually defined constraints up to date, when altering
defined platforms, which again, is an error-prone and cumbersome task.

As we argue later in Section 4.2.5, we integrate the DDAD framework into a DevOps
workflow which is liekly to result in very frequent deployments [5]. This gives the
framework the possibility to determine a new and updated strategy for each of these
deployment events. Therefore, it is even more desirable to automate this process, to
further optimize the service distribution across the available devices. This becomes even
more apparent when we take into account that we apply runtime monitoring (Section 4.1.3)
to observe runtime behavior which might differ from the assumed runtime behavior of
a service, possibly leading to a correction in the hardware requirements of a service.
Such a correction, as well as newly added edge devices, can lead to different and better
deployment scenarios.

4.1.3 Runtime Monitoring of IoT Applications

Since monitoring is a key part of the DDAD framework, users need to be able to gather
different metrics independently of the service and the device it is running on. The need
for monitoring the services in place, stems from the fact that the collected metrics provide
insight into the application’s actual runtime behavior, which may very well differ from
the anticipated one. Furthermore, it enables the prediction of imminent QoS or SLA
violations, as well as the possibility to detect a movement of the system towards an
undesirable state.

There are two distinct kinds of metrics that need to be collected to enable the users
to analyze their system’s runtime behavior, because each of them allows insight into
different aspects of the runtime behavior and can influence different actions.

First, there are device metrics, that are independent of any service running on an edge
device. They give an overview of the device’s state and to how much of its capacity
it is working. This is an important aspect when deciding how much more services can
be deployed to a device or if some of the services running on it need to be paused or
undeployed. These metrics might include the current, total CPU load of the device, the
overall amount of memory used, or the temperature of the device’s CPU. Since these
metrics are not associated with any particular service, they need to be collected by a
process running in the background of every device.

Secondly, there are metrics that are service specific. They give insight into how an
individual service behaves, which can be used for example to decide which service on an
overloaded device should be shut down. Another use of these metrics is the adjustment
of the service’s resource needs which can yield better strategies for future deployments,
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since the data on which the planning is than based more accurately reflects reality.
These service metrics can be put into two distinct categories, generic service metrics
and application-specific service metrics. The first category would be the CPU load of an
individual service or how it long it is running uninterrupted which can be obtained by
the Device Manager. Examples for application-specific service metrics include the length
of queue of work items, the execution time of certain methods, or the average number of
requests during a defined interval. These metrics need to be collected by the services
themselves, since no other service can obtain this kind of information.

To make use of the collected metrics, there is the need to aggregate them. The metrics then
need to be stored for further analysis. To facilitate this analysis, the user needs to have
a possibility to visualize the collected metrics in a meaningful and easily understandable
way.

4.1.4 Runtime Adaptation of IoT Applications

Once all services have been deployed according to the calculated deployment plan and
with the monitoring mechanism in place, the next step is to make use of the collected
metrics by analyzing them and adapting the system accordingly. This needs to be done,
because services might exhibit runtime behavior that differs from the expected one.
Thus, when a movement towards an undesirable system state is detected, it is highly
likely that users wants that some action is taken. This needs to happen automatically,
since users cannot and do not want to observe the runtime behavior of their system
permanently. One of the main concerns is, that the devices become overloaded by the
workload introduced by the user services, which might cause an interference with the
devices’ primary tasks.

The first step in detecting the movement towards such an undesirable state (i.e., a state
where certain user-defined SLAs and/or QoS parameters are violated), is to enable the
users to define which event, or chain of events, indicates this movement. When such a
movement is detected, action has to be taken. Thus, users need to be able to define such
actions which are executed in response to a certain event or chain of events. The executed
actions will generally result in an update of the system state. This way, user-configured
runtime adaptation is facilitated.

Furthermore, it would be desirable to automatically detect immanent SLA violations in an
effort to even further automate and optimize the workflow of the framework. Nevertheless,
we see this automatic detection as out of scope for our work. There exists research that
aims to answer this question [24, 26]. Therein, the authors train a prediction model with
machine learning techniques. This model is then applied to the current runtime data
and can predict immanent SLA violations in composite systems (i.e., systems comprised
of multiple services).
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Figure 4.1: Architecture of the Framework

4.2 Key Design Decisions

4.2.1 Realization of a MAPE-K Cycle

Figure 4.1 shows the basic architecture of our system and how each of the components
fits into the MAPE-K (Monitor-Analyze-Plan-Execute on a shared Knowledge Base)
cycle [25]. This cycle is is a fundamental model of autonomic computing. The idea
behind it is that a system components that realize the four stages and access a shared
knowledge base to do so. Thereby, the system is enabled to manage itself [25].

Since the DDAD framework realizes self-configuration, by only deploying services in a
way that fulfills all NFRs and satisfies all software dependencies and hardware needs
of the services, taking into account the capabilities of the edge devices. Furthermore,
the DDAD framework strives for self-optimization, as the Deployment Planner tries
to optimally use the available resource and an undesirable system state might trigger
a redeployment or an adaptation which might change the set of available services at
individual edge devices. Therefore, the framework is an optimal candidate to realize a
MAPE-K cycle.
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In the DDAD framework, the operational staff and/or the CEP component realize the
Analyze part of the cycle, as they observe the current state of the system and take actions
accordingly. They obtain the needed information from the Monitor component, which is
comprised of the QoS Watcher and some kind of Metric Visualization. The Planning
part of the MAPE-K cycle is realized by the Deployment Planner, which queries the
available knowledge and determines a legal and optimized service distribution among
the available devices. Lastly, the Deployment Service realizes the Execute part, as it
performs the actual deployment of the individual services. The shared Knowledge Base
is realized by the Service Registry and the App Model. The latter is a service that holds
information about the current state of the system and uses a knowledge graph to store
this information (e.g., which platform has which characteristics and which hosts reside
there) and is discussed in greater detail in Section 4.3.2.

4.2.2 Push-Based, Autonomous Monitoring

To realize the need for continuous monitoring of the individual edge devices and the
services running on them we decide that we need a dedicated service running in the
background at each device which collects these metrics. Since we already need such a
service to abstract the underlying edge devices enabling the users to run services on them,
we extend its functionality, to also take care of monitoring the devices and their services.

Another possibility would be to create a new service which takes over the duty of collecting
system information about the edge device, as done in [38]. However, we want to be able
to not only collect device metrics which are independent of any concrete service, but
also service metrics (see Section 4.1.3). These tasks are realized by the Device Manager
(Section 4.3.1). We choose to combine both duties, to remove the need for communication
between the service that handles the services’ lifecycle and the one that is in charge of
monitoring the services.

Thus, the Device Manager is not only in charge of handling the services’ lifecycles on
the edge device, but also of collecting device metrics and generic service metrics. It
collects a predefined set of metrics, buffers them locally, and pushes them to the cloud.
In the concrete case of the prototypical implementation of the DDAD framework this
predefined set consists of the following metrics: the device’s CPU load and memory
consumption, for the category of device metrics. As well as each service’s CPU load for
the category of generic service metrics. We choose such a minimal set for the prototypical
implementation of the framework, because this small set of metrics, in combination
with application-specific service metrics, already enables us to realize a basic adaptation
scenario as shown later in Section 5.

Apart from actively collecting these metrics, the Device Manager also receives application-
specific service metrics from the running services. It also buffers them and sends them
to the cloud. By not sending every measurement individually, we aim to reduce the
overhead that is needed to transfer the data.
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We choose a push based approach for our monitoring mechanism, because this way
the Device Manager does not need to care about which services are providing which
application-specific service metrics and in which interval it needs to poll them. This
reduces the complexity and the range of duties of the Device Manager. Additionally, the
services need to gather application-specific data anyway because the Device Manager has
no possibility to obtain them, other than from the services themselves. The storage of
the data happens in the cloud because this allows us to scale the services that handle the
metrics based on the number of currently running services.

To deliver the metrics, the Device Manager opens a TCP/IP socket to which the services
need to push their collected metrics. This happens via a simple JSON-based protocol,
to incur minimal overhead. We did not use a message-based protocol like STOMP1 or
MQTT2 because this would have induced the need to also run a message broker which
would introduce too much overhead for simply streaming messages to an aggregator.
Having the metric storage and handling located in the cloud removes the need for
determining which metric needs to be forwarded to which edge device to handle it.
Furthermore, it removes the need for storing the data in a distributed fashion, since it is
unlikely that there is an edge device that can hold the metrics of all running devices.

A drawback that comes from using a push-based approach, is that it is not possible to
determine if an edge device, or its Device Manager, has stopped to function properly or
if there are simply no metrics to deliver. However, this problem could be easily solved by
sending heartbeat messages in a predefined interval, to indicate that the Device Manager
is still up.

4.2.3 Modeling the Deployment Planning as a Constraint Satisfaction
Problem

Since we aim to provide the users with a method to automatically deploy their services in
an optimized fashion, there is a need to determine how to distribute a set of services onto
a set of devices. This needs to be done while adhering to all specified NFRs, providing
the required soft- and hardware, and properly using the resources available at the edge.
Manually deciding for all services where they should be deployed to is a cumbersome and
error-prone task, that becomes infeasible as the number of services, devices, and NFRs
grows [16, 29].

The problem of properly distributing the services onto devices while not exceeding the
devices’ resources is a variant of the Multidimensional Knapsack Problem, which is known
to be NP-hard [32], which means for a general case there is no efficient (w.r.t. time),
deterministic algorithm to solve it. Thus, using a naive algorithm to determine the
mapping is not an option. Since we also want to be able to impose additional constraints
upon or deployment plan, like the need for devices to provide the appropriate software in

1https://stomp.github.io/
2http://mqtt.org/
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a compatible version for the services, we formulate the problem as a CSP. We then use a
specialized program (a solver) to obtain its solution, similar to the approach taken in
[16, 29].

We see the need to have a parameterizable problem that captures constraints that need to
be met for the deployment plan to be regarded as valid. Then, every time a deployment
is planned, the needed parameters are created and the solver can be used to solve the
concrete instance of the problem. This facilitates updating the problem dynamically,
without the need to change the service that invokes the solver and does the translation
to and from a representation the solver can understand.

4.2.4 Microservice Architecture Pattern

We decide that all services, except for the Device Manager, should run on a PaaS cloud,
based on the assumption that they need more resource than edge devices could provide.
Bonomi et al. [6] argue that the goal of utilizing edge resources it not to replace cloud
computing, but rather to complement its capabilities. Thus, the appropriate platform
for each service has to be chosen, which generally results in services that handle large
amounts of data and require extensive computational resources to remain in the cloud.
Furthermore, deploying the parts of the framework to the cloud also enables us to easily
scale them in and out, based on their resource demand. Furthermore, deploying the
services to a PaaS cloud relieves us from the burden of manually providing commodity
services like databases and storage, as well as from having to care about the underlying
infrastructure and setting up the runtimes environments for the individual services.

Additionally, when running services on the edge they can be interrupted and deactivated
if the current workload of the edge device does not allow the execution. This stems
from the assumption we made in Section 1, that edge devices only run user services as a
secondary task which must not interfere with their primary task, thereby making the
edge an inappropriate platform to run our framework on [37]. Also, it is undesirable
to have a service that aims to solve a CSP within a reasonable time-frame to run on a
low-powered device.

Since different services of our framework might exhibit vastly different resource needs, we
determined that the best way to cope with this, is to use a microservice architecture [5].
This way, we can scale all services independently [5]. It also enables us to use the tool
best-suited for each task, and decouples the individual components from each other [5].
This facilitates to update services without affecting other ones, as long as an agreed upon
interface is preserved [5].

Another reason why we choose a microservice architecture for the DDAD framework,
is that the applications that are being deployed by it, should also employ such an
architecture. This way, the runtime adaptation mechanism we envision is facilitated, by
splitting the services’ functionality up, enabling a relatively fine-grained (re)distribution
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of services across the devices. Since, the microservice pattern was shown to be suitable
for large-scale distributed applications [3], employing it removes the need for partitioning
applications based on their capabilities explicitly, as done in [4, 10].

4.2.5 Integration into a DevOps Workflow
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Figure 4.2: Integration of the DDAD Framework into a DevOps Workflow

As we argued in Section 4.2.4, the intended scenario for our framework is the deployment
of applications, whose architecture is based on the microservice pattern. Since Bass et
al. [5] and Balalaie et al. [3] argue that developing and operating applications that follow
this pattern is an exemplary use case for DevOps, we aimed, that our framework is easily
integrated into a DevOps workflow. Figure 4.2 shows how this integration can be achieved.
When using this methodology, there are eight steps that are continuously repeated [5],

30



4.3. Main Components

which are: Planning, Coding, Building, Testing, Releasing, Deploying, Operating, and
Monitoring.

First, there is the Planning Step, during which DevOps engineers plan their next steps,
and how to implement the services or how to incorporate desired changes. Then, during
the Coding Step developers write the production code. They then commit their changes
into some SCM like Git3, which is modeled by (1) in Figure 4.2. This action triggers the
next step in the DevOps cycle, namely the Building Step.

In general the commit triggers a CI server like Jenkins4 (2) which checks out the newly
committed code (3) and starts a new build. This build is followed by a Testing Step,
which might include unit-, integration-, and UI-tests. Should the new code pass all tests,
the resulting artifacts are transferred to an Artifact Repository (4), thereby realizing the
Releasing Step. Up until now, the system followed a generic DevOps workflow [5], but
now our framework comes into the pictures. After the artifacts have been transferred
to some repository the CI server calls the Deployment Service (5). Thereafter, the
planning of the deployment proceeds as described in Section 4.5.2 starts. When a
deployment plan is determined, the system sends the appropriate messages to all affected
devices (6). All Device Managers the receive a message then fetch the artifacts from the
Artifact Repository (7), which corresponds to the Deploying Step. Next, they start the
corresponding services (this realizes the Operating Step step), execute the Monitoring Step
(i.e., begins monitoring the services), and continuously pushe metrics to the Monitoring
component (8). The information gathered from monitoring the system is then used in
the Planning Step, to decide what needs to be done, thereby closing the circle.

4.3 Main Components

4.3.1 Device Manager

Based on the need of abstracting heterogeneous edge devices and the need for distributed
monitoring of IoT applications, we propose a service that corresponds to what Bonomi et
al. [6] call a Foglet and to which we refer as the Device Manager (see Section 4.1.1). Its
key requirements are having a small resource footprint (w.r.t. memory consumption and
CPU load), being able to run on a wide variety of devices, and enabling communication
through a uniform interface.

Although, different authors describe different APIs which an edge device should expose
via its manager [6, 19, 38], we determine that at a minimum the interface must provide
the possibility to deploy and undeploy services, as well as to inform the device about
changes in the system state (see Section 4.1.1). How these changes in system state are
handled, is then left to the services themselves. The Device Manager only has the duty
of delivering the information to the services.

3https://git-scm.com/
4https://jenkins.io/
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We provide two different ways for external services to contact the Device Manager (i.e.,
services that want to send any of the commands defined in Section 4.1.1). One way of
contacting the Device Manager is by invoking REST endpoints that correspond to the
specific commands and which can be used if the Device Manager is directly reachable for
a service that needs to communicate with it. This approach is chosen because libraries
and frameworks that help exposing an HTTP based interface are available for basically
every programming language, and using a generic communication interface hides the
actual implementation of the Device Manager from the components communicating with
it, making it easily interchangeable [5].

The other way of communication is via a message queue, which can be used if inbound
traffic to the Device Manager is not possible. This scenario might for example happen,
when the edge device is located within a production plant, where incoming traffic might
be blocked by a firewall due to security considerations. Using a message queue however,
implies that the queue has to be reachable for all services that want to communicate over
it, thus outbound traffic for the Device Manager must be allowed, otherwise it cannot
check for the arrival of new messages. Both the REST endpoints and the messaging
protocol use the same message structure so that commands can be handled without
considering the way they arrived.

Listing 4.1: Structure of a Deploy Command Message
{
"instances": [
{

"id": "string",
"serviceName": "string",
"artifactUrl": "string"

}
]

}

Listing 4.2: Structure of a Service Update Command Message
{
"serviceName" : "string",
"available" : [
{

"id": "string",
"protocol" : "HTTP|MQ",
"endpoint" : "string"

}
]

}
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Listing 4.1 and 4.2 show the structure of a message containing a Deploy Command
or a Service Update Command, respectively. In the context of these commands the
serviceName parameter specifies the type of service (e.g., scoring-service) and id specifies
the concrete implementation of a service should more than one implementation of a
service exist. However, all implementations have to adhere to the same interface, which
needs to be guaranteed so the registry-aware service client can transparently invoke any
of the implementations. The artifactUrl property specifies where the Device Manager
can find the artifact for a certain service which the manager needs to download, unpack,
and execute in order to start a service instance. The protocol and endpoint property
specify how one service can reach a concrete instance of another service which is already
running (e.g., HTTP, message queues, websockets, . . . ).

To actually start a service, the Device Manager needs to know how it can obtain the
service’s executable. This is done by providing an Unique Resource Locator (URL) to an
artifact repository, which contains an archived version of the executable. How to start a
service can depend on multiple factors, like the programming language it was written in.
Furthermore, the Device Manager needs to know which other services the started service
depends on, so it can propagate changes in the system state to the right services. To
transfer this information, each service needs to be packaged with a metadata file. This
file closely resembles the manifest file used to deploy services to CloudFoundry5. An
example of such a file can be seen in 4.3

Listing 4.3: Example For a Metadata File
service:

id: service-id
endpoint: http://some-endpoint.com/
protocol: [HTTP|SQS]
services:
- other-service-name-1
- other-serivce-name-2

Because there is a need to announce the capabilities of an edge device, the Device Manager
analyses the available resources of the system it runs on, once it was started. When this
analysis is done, it pushes the obtained information to the cloud, where it is stored by
the appropriate service. This also means, that when a new device is added to the set of
available devices, its information is automatically published. Thus, there is no need for
device discovery at the edge.

Figure 4.3 shows the components that we use to realize the desired functionality of
the Device Manager. The Command Handler receives instructions from the cloud to
deploy and undeploy services, as well as updates of the available services. It forwards
this information to the Lifecycle Manager which is in charge of starting and stopping

5https://www.cloudfoundry.org/
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Figure 4.3: Component Diagram of the Device Manager

services, as well as forwarding updates of available services to the individual user services.
Furthermore, it stores metadata about all running services in an in memory database.
This database contains information about the type of service, which other services they
use, and at which endpoint they are reachable locally. As discussed above, the Device
Manager needs to obtain the executable of the service, which is achieved by the Artifact
Fetcher. This component contacts a cloud storage and downloads the respective artifact.

Once the service is started, it needs to register itself at the Device Manager. The
Registration Handler receives information about the services’ startup and instructs the
Monitor to start gathering metrics about the services. The Monitor does this by opening
a TCP/IP socket on a random port which is unique to each service. The services then
start start pushing their application-specific service metrics over this socket. Furthermore,
the Monitor starts monitoring the resource consumption of the services’ processes. It
buffers this data and pushes it to the cloud, where it is used for further analysis of the
runtime behavior of the individual services.

4.3.2 App Model & Service Registry

In order to properly capture the different types of services and their requirements, we use
a data model that lets users define components, which in turn can either be self-contained,
part of other components, or have other components as their components. An example
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would be a software library, which can be comprised of a multitude of other libraries and
can be used by a service to realize a certain functionality. In the model, we differentiate
between a static and a dynamic view. The static view is based on the definition of
services, platforms, and hosts. These definitions not only include their basic properties
like name and endpoint for hosts, or the name and the library dependencies for services.
The static view also includes the declaration of the NFRs the services need, and the ones
that the platforms provide.

Listing 4.4: Static Definition of a Service in the App Model
{

"id": "9fbd8721-4372-473e-a799-6373074dae49",
"instanceOf": "SampleService",
"serviceName": "ExampleService",
"artifactUrl": "http://somestorage.io/example-service.zip",
"resources": {

"CPU": 600,
"RAM": 600,
"BANDWIDTH": 20

},
"usageParameters": [

"ElasticScalability"
],
"services": [],
"software": [

{
"software": {
"name": "Python",
"version": 3.5,
"type": "Language"

},
"relation": "AT_LEAST"

},
{

"software": {
"name": "cherrypy",
"version": 3.8,
"type": "Framework"

},
"relation": "EXACTLY"

}
]

}

Listing 4.4 shows the static definition of an exemplary service. The instanceOf property
defines the type of the service, which enables multiple implementations of service co-
existing and being transparently invoked, based on the current needs of the calling
services. To uniquely identify the service the id or the more human-readable serviceName
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property can be used. To declare where the Device Manager can obtain the artifact
which contains the service’s executables the artifactUrl property needs to be defined by
the user. The resources and usageParameters are used to decide onto which host on
which platform the service can be deployed. To declare dependencies to other services the
services list can be used, for which the user supplies the type of the service on which the
services that is being defined depends. Lastly, the user needs to define which software the
service needs to function. This is achieved by establishing a relation between an existing
instance of a software with a certain version (e.g., the Python programming language in
version 3.5) and the type of relation (i.e., is it the minimum, maximum, or exact version
of the software that the service needs).

Listing 4.5: Example Definition of an Edge Device
{

"id": "7d67fe63-3ef0-4142-b384-0c5b115ed0b7",
"hostname": "edge-device"
"queueId": "79e9e34bc9cdf6deab9437b441341e26",
"endpoint": null,
"resources": {

"CPU": 2400.0,
"RAM": 1073332224,
"BANDWIDTH": 100

},
"software": [

{
"name": "cherrypy",
"version": 3.8,
"type": "Framework"

},
{

"name": "psutil",
"version": 5.2,
"type": "Library"

},
{

"name": "python",
"version": 3.5,
"type": "Language"

},
],
"platform": {

"name": "Edge",
}

}

Listing 4.5 shows the static definition of an edge device. When defining a host the user
also needs to supply a unique name for the host, and the system will assign a unique id
to it. To enable communication with the host either the queueId, the endpoint, or both
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properties have to be defined. The next property, namely the resources property, does
not have to be supplied by the user, since the device manager will obtain information
about the resources available at the edge device upon startup and inform the App Model
about it. However, the automatic detection of installed software and software packages
is not part of the Device Manager’s functionality, since the process of reliably detecting
installed software and also installed libraries for available programming language runtimes
is considered out of scope for this work. Thus, the user has to manually insert relations
between hosts and software packages, similar to the definition of services. However, since
the notion of having a maximum or minimum version installed is not very sensible in
this context all relations specify the exact version of the software package.

Listing 4.6: Example Definition of an Edge Device
{

"id": "964d3399-1ed5-4839-8f23-0a70d65c4338",
"serviceId": "9fbd8721-4372-473e-a799-6373074dae49",
"runsAt": "7d67fe63-3ef0-4142-b384-0c5b115ed0b7",
"endpoint": null,
"queueId" : "4265408116eb95a16bb6afd864dddf7e",
"start": 702835610,
"end" : null

}

In contrast, the dynamic view establishes relationships between the hosts and the services
and contains information that is only valid for a certain service instance running on a
certain host. Listing 4.6 shows this dynamic view of a concrete deployment of the service
defined in Listing 4.4 to the host defined in Listing 4.5. The additional information
provided in the dynamic view also includes the endpoint or queueId which both expose
the service’s functionality. Lastly the start and end of this particular deployment as a
Unix timestamp, which are created by the system, are stored.

Because hosts, services, requirements, and properties, along with their relationships, form
the basic building blocks of our system, we employ a graph-based model to capture all
these facts. More concretely, these relationships describe onto which host a service is
deployed at a certain point in time. As well as of which (if any) sub-services a service is
comprised of. Additionally, the model allows to defined how services and host relate to
certain resources or requirements which describes what they offer or need respectively.
By using a graph-based model, we are able to naturally and efficiently query the system
state and extract the needed information (e.g., which service can be deployed to which
platform).

An added benefit of this representation, is that users can declare NFRs which their
services need to achieve, and based on these definitions the system automatically detects
which platforms are suited for deploying the individual services to. However, interacting
with the graph-based model directly might be cumbersome for most users. Thus the
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App Model offers a JSON-based interface that translates the users’ definitions to suit
our model which can be seen in the Listings above.

4.3.3 Deployment Planner

As we have argued in Section 4.2.3, we employ a CSP solver, to obtain a valid and
optimized mapping of services to hosts, which constitutes a deployment plan. The
metadata of the services, for example how much of which resources they need and which
software versions they are compatible with, is retrieved from the App Model. Additionally,
the Deployment Planner fetches the list of valid deployment locations of the individual
services that need to be deployed. Furthermore, it obtains the current mapping of services
to hosts, which is also taken into account when determining a deployment plan.

Once the Deployment Planner has obtained the above-mentioned information, it translates
the data into a format that the MiniZinc [30] solver can handle, and invokes the solver.
When it has finished, the Deployment Planner either returns the resulting plan to the
Deployment Service, or it informs the user that there exists no plan that satisfies all
given constraints.

Because the basic problem formulation for the CSP never changes, we want the problem to
be parameterizable, as described in Section 4.2.3. Thus, we use the MiniZinc language [30],
which allows the definition of problems that contain variables whose value is not known
beforehand, and supply the actual values in a data file. Since MiniZinc is not a solver
itself, but only a frontend, that allows a high-level specification of the CSPs, the models
need to be translated from MiniZinc’s high-level modeling language into a low-level
language that the solver backend understands.

The need to compile the model before it can be used by the solver (which can be more
time-consuming than the actual solving process, as we determine later in Section 5.2.1)
and the desire to derive certain constraints from the NFRs given by the user, lead to
the decision to use the App Model to precompute certain constraints. More specifically,
we use the App Model to determine the legal deployment platforms for the individual
services. This way, the number of possible solutions to the problem (i.e., the number
of valid deployment plans) is reduced. Furthermore, this information can be concisely
represented, removing the need for supplying the NFRs as parameters to the CSP, which
in turn reduces its compile time.

Due to the inherent mismatch of data representation between a CSP model in MiniZinc and
our App Model, there is the need to translate data from the App Model’s representation
into a set of integers, (possibly nested) arrays, and sets. This data can be supplied
to the solver, which returns an array of integers, that has to be parsed back and the
corresponding host to service mapping has to be recreated from it, see Section 4.5 for an
example of how the input data for the CSP solver might look like.
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4.3.4 QoS Watcher and CEP Engine

To properly utilize the metrics collected by the Device Manager, we provide a component
that receives and analyses them, and executes actions in accordance to certain user-
defined rules. This component is made up of two distinct services, namely the QoS
Watcher and the CEP Engine. The QoS Watcher’s duties are receiving metrics from the
Device Managers, storing them in a timeseries database, and forwarding them to the
CEP Engine.

Our decision to have the QoS Watcher run in the cloud is based on the fact that having
it run at the edge would mean that the data needs to be distributed across multiple
devices (because no single device has enough storage to persist all metrics collected in the
system). Furthermore, the process of obtaining stored metrics becomes more complicated
and would call for a specialized data retrieval service. By storing the data in the cloud,
we get the added benefit that we can replicate it easily to anticipate the failure of a
database. This can be done easily, since cloud providers generally offer the possibility to
replicate data.

We also decide to deploying the CEP Engine in the cloud, rather than at the edge. This
decision is made, because a deployment on the edge would have introduced the need
for properly sharding the metrics’ database, since it is unlikely that a single device can
handle all metrics produced by all devices. By having all metrics go through a single
node, we gain the ability to easily analyze the stream of incoming data to detect certain
events we might be interested in. Furthermore, by running the service in the cloud we
have the additional benefit of it being easily scalable based on the current amount of
services running at the edge. However, this way the service becomes a single point of
failure, as far as the processing of metrics is concerned. But, although the collection
of metrics is an important part of the DDAD framework, it is not a mission-critical
component, that has to always be available. In general, if it fails, it is sufficient to start
the service again without the system’s core functionality being severely impacted.

To enable users to define what constitutes a movement towards an undesirable system
state, we allow them to define rules based on the CEP Engine’s DSL to detect certain
events or chains of events. These rules need to be associated with certain actions that
need to be taken. Since the intended context of our system is using it embedded into a
system that follows a microservice architecture, we decided that these actions can be
represented as service invocations. This way, users are enabled to either use services
already in place, or to call one of the framework’s services. This definition of actions
also eases the introduction of new, specialized services that are able to adapt the system,
based on the supplied information. Exemplary callbacks would result in sending an
E-Mail or a push notification to the person in charge, the (de-)activation of services on
a certain edge device, or the triggering of a new deployment. We also provide a set
of blueprints for rules that capture scenarios, which we deem of interest for a broader
audience of users. These include the workload of a device rising steadily and breaching a
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user-defined threshold for a user-defined period of time. Another example would be the
round-trip time for a request exceeding a certain threshold for a predefined time interval.

The execution of a callback associated with an event or a chain of events, generally
results in an update of the system’s state. The information about the change in state
needs to be propagated to all devices and cloud services that might be interested in it.
In case of edge devices, the information is pushed to the Device Manager, which then
forwards the new information to the services that run on the device it manages. How
the services handle this information is up to them and needs to be implemented by the
user. The preferred way of doing this, is by using a registry-aware service client. This
means, that the client library that is used to access a service, knows that there exists
a service registry that holds information about how to reach the individual instances.
Having such a client implies that it is possible to choose the optimal service instance to
forward the request to, based on the information it has locally available. An example for
such a decision would be to choose the service that has the lowest latency, or using a
round-robin mechanism to evenly distribute the load across available service instances.

Listing 4.7: Example for Rule Definition With Callback to the App Model
{

"statement": "<CEP-Query>",
"callbackUrl":

"http://appmodel.ddad.io/hosts/{host-id}/services/disable",
"callbackMethod": "PUT",
"message": "CPU load exceeded acceptable level",
"arguments": {

"isCritical": "true",
"origin": "QoS Watcher"

}
}

Listing 4.8: Example For an Actual Rule That Triggers a Callback
SELECT window.maximum FROM

DefaultWindow(
process_name=’system’,
device=’device-id’,
metric_name=’cpu_load’

) AS window
WHERE window.average >= 0.75
OR
(window.average > 0.7 AND window.maximum > 0.90)

Listing 4.7 shows the definition of a callback to be executed when a rule is triggered by
the incoming metrics. The definition contains the CEP query which is evaluated by the
CEP Engine against the incoming data and which can be see in Listing 4.8. Furthermore,
it contains the callback URL which in this case points to the App Model and instructs
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Figure 4.4: Component Diagram of the QoS Watcher

it to deactivate a the services running on this host. In addition to defining the URL
which should be invoked, the method which should be used is also defined, since this is
an HTTP callback. The user can also specify a message, which is more interesting for
the case where the callback triggers for example a push notification to an operator. The
same holds true for the arguments, which are also transmitted with the event message
and can contain additional information about the event. Listing 4.8 shows an example
query which emits an event when the average CPU load of the device with id device-id
rises above 75% during the default time window, or when its maximum is above 90%
and the average above 70%. This is one of the rules we used in Section 5.2.2 during the
evaluation of the runtime adaptation mechanism.

Figure 4.4 shows the main components of the QoS Watcher. It also displays the CEP
Engine, which is a simple service, exposing a custom interface to abstract the underlying
CEP system used for analyzing the metrics as they arrive. The QoS Watcher itself is
comprised of the Metric Handler which receives metrics from the Device Manager. It
then forwards the metrics to a persistent storage where they are kept for future analysis
by developers or operational staff. Furthermore, it forwards them to the CEP Engine,
which evaluates user defined rules on the received data. The rules are defined via the
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Rule Handler which receives input from the user. The user needs to define a specific
rule that should be evaluated on the stream of incoming metrics. Along with this rule a
callback (in the form of an endpoint) is specified. Once the CEP Engine detects that a
rule matches against the incoming data, the QoS Watcher, more specifically the Callback
Executor receives information about which rule matched against the incoming data, along
with metadata about the events that triggered the rules, and the events themselves. It
then fetches the corresponding callback from the Rule Store and executes it. Since the
users are not only able to specify the endpoint which corresponds to a callback but also
the protocol (in the case of HTTP also the method that should be used) the user can
choose from a variety of communication mechanisms to distribute the information about
an event.

4.3.5 Timeseries Store And Metric Visualization

Although the Timerseries Store and the Metric Visualization are important parts of the
proposed framework, because it enables users to manually monitor their applications in
real-time, we decided to use off-the-shelf products for realizing these components. We
use these components, because these are commodity services that serve a general purpose
that does not need to be specifically tailored for the use in our framework. For the Metric
Visualization we used Grafana6, which is written in Go7 and can be compiled to native
Linux code. For the Timeseries Store we used KairosDB8, which is written in Java 9.

4.4 Static System View
Figure 4.5 shows the individual components of the DDAD framework and summarizes
the components in the previous section. It also showcases how the components interact
with each other and how users can interact with the system. They can use the exposed
interface of the App Model to define their services. Furthermore, they are able to define
rules at the QoS Watcher, which are forwarded to the CEP Engine. The CEP Engine
then evaluates those rules on all incoming metrics. Should a rule apply to the received
data, a user-defined callback, that is defined along with the rules and also stored at the
QoS Watcher, is executed. To achieve this, the QoS Watcher receives information about
which rule matches and executes the associated callback.

4.5 Dynamic System View
Figure 4.6 shows the information flow for the process of planning and executing the
deployment, as well as monitoring and adapting a service. The DDAD framework’s
tasks, can be described as Deployment Planning, Deployment Execution, Monitoring, and

6https://www.grafana.com/
7https://www.golang.org/
8https://kairosdb.github.io/
9https://www.oracle.com/java/
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Adaptation. The following sections will cover each of these individual steps in greater
detail.

Deployment Planning

Figure 4.7 shows the process of planning a new deployment in detail. It starts when the
Deployment Service receives a request to deploy services. The request contains a list
of services that should be deployed, along with the number of instances that should be
created. The initiation of a new deployment can either happen manually by the user,
automatically by some service (like the QoS Watcher that executes a callback in response
to an alert raised by the CEP Engine), or semi-automatically (e.g., as the deploy step
in the DevOps cycle). The Deployment Service processes the request and contacts the
Deployment Planner, which constructs an optimized placement of services onto hosts.
To achieve this, it first needs to gather the needed information, which is obtained from
the App Model. This information includes the allowed deployment locations for each
service, as well as its resource and software needs. Furthermore, information about the
available hosts in the system is returned.

The App Model receives a list of services as input and computes to which platforms
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each of them can be deployed to. The computation is done based on the user-defined
NFRs of the services as well as the ones of the platforms the users have at their disposal.
The information about legal deployment location, together with the current state of the
system is returned to the Deployment Planner. The state of the system is comprised
of the hosts available to the user, together with their resource and software offerings,
as well as the information which services are currently deployed to which hosts. The
Deployment Planner uses the obtained information to create the input data for the CSP,
calls the solver with the created data, and finally awaits the result. Exemplary input
data for the CSP can be see in Listing 4.9. The listing shows an infrastructure of four
hosts, three platforms, and two services. Section 4.5.2 goes into more detail explaining
how the problem of finding optimized deployment locations for all services is modeled.

Listing 4.9: Example Input of the CSP
hosts = 4;
resources = 3;
services = 2;
currently_running_at = [0,2];
locations = 3;
PlatformHosts = {4};

software_count = 3;

has_resources =
[|2700000,3750000, 450000
|2700000,3750000, 450000,
|1600000,1200000, 1000000,
| 0, 0, 0|];

needs_resources =
[|600000, 600000,20000,
|600000,1200000,20000|];

host_location = [1,1,2,3];
allowed_locations = [{2},{1}];

has_software =
[|{10200},{3500},{180},
|{10200},{3500},{180},
|{10200},{3500},{180},
|{10200},{3500},{180}|];

needs_software =
[|{10200},{3500},{180},
|{10200},{3500},{180}|];

Should there exist a mapping from hosts to services that does not violate any of the

46



4.5. Dynamic System View

constraints (which the diagram in Figure 4.7 assumes), then the Deployment Planner then
parses the result and constructs the corresponding mapping. This mapping is returned
to the Deployment Service which then acts accordingly (i.e., distributes the necessary
messages across the edge devices).

Should the problem be unsatisfiable (i.e., there is no possiblity to distribute all user
services across the available hosts in a way that does not violate any of the constraints)
the user is informed and has to reconsider the definition of NFRs, or of the services’
resource needs. Another option would be to install additional software onto some of the
edge devices, thereby potentially extending the set of services that can run on them.
A different approach to overcome this problem would be to force the user to make all
services standalone executables or packaging all dependencies together with the services’
executables [36]. We choose not to enforce this, since it would mean that if multiple
services on the same device have a dependency to the same library, it would need to
be packaged into all services. For example, each service that realizes some sort of data
analytics at the edge and is implemented in Python would need to be shipped with its
own instance of an analytic library. This would increase the filesize and thereby the
resource demand of the services unnecessarily. Therefore, we aim to use libraries already
present on the edge devices.

Another possibility to reduce the risk of not being able to find a service-to-host mapping
that satisfies all constraints would be to obtain the missing software (and possibly install
it onto the device), as done in [38]. However, this would add additional complexity to
the deployment process, because there are several things that would have to be taken
into account. These include the fact that different versions of different libraries could not
be allowed to be installed onto the same system, or that the installation of a new library
might change the available persistent storage of a device, thereby making it impossible
to deploy all planned services to the devices. However, supporting an automatic upgrade
of libraries and the additional installation of software dependencies would be a desirable
functionality, but is out of the scope of this work.

Deployment Execution

After the Deployment Service received the planning result, it analyses the mapping
and sends appropriate messages to all Device Managers that are affected by the new
deployment (i.e., those who reside on hosts that either have new services deployed to
them or those which need to shutdown services). This process is illustrated in Figure 4.8.
On each affected device the following steps happen. First, the Device Manager receives a
message that contains a list of services that should be running on the device it manages.
Then, it compares this list with the services that are actually running. Thereafter, it
determines which services need to be shutdown and which need to be started.

To start a service, the Device Manager first downloads the artifact of the service (as
specified in the artifact URL also contained in the received message) and then unpacks
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it. Besides the executables of the service, the artifact also contains a metadata file. This
file contains a list of services which the service depends on, and the command which
allows to start it. The Device Manager starts the service by executing the command and
stores the metadata in an in-memory database to access it later when updates arrive or
when the service needs to be shut down. Along with the metadata, it stores the process
id of the service, which is needed to stop it, should it fail to shutdown gracefully. After
the service was started, the Device Manager announces the startup and the App Model
is updated accordingly. Furthermore, each service must register itself with the Device
Manager. Upon registration, the Device Manager assigns a port number to each service
and opens a TCP/IP socket so the service can start streaming metrics to it.

Monitoring

Figure 4.9 shows the interaction between the individual components involved in the
monitoring process. When the service has registered itself and received a port number, it
connects to the socket and starts streaming application-specific service metrics. These
metrics might include the time outgoing requests need until the respective response
arrives or the size of a queue with working items. These metrics are collected, along
with generic service metrics like the relative CPU time the service uses. In addition to
metrics that are associated with an individual service, the Device Manager also collects
device metrics about the host, like the total CPU usage or the total memory usage. See
Section 4.1.3 for a discussion on the different types of metrics and why they are important
to collect.

All these metrics are buffered by the Device Manager and pushed to the cloud in a
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predefined interval. In the cloud the QoS Watcher receives these metrics and forwards
them to a CEP Engine and persists them for later analysis, an example for such a rule can
be seen in Listing 4.8, in Section 4.3.4. The CEP Engine is equipped with user-defined
rules to raise alerts when certain conditions are met. For example, a user might want to
trigger a push notification to operational staff if the round-trip-time for a request starts
to grow and breaches a threshold. Another possible rule would be that an edge host is
deactivated when its CPU load exceeds a predefined threshold. The CEP Engine calls
the QoS Watcher and supplies it with the information which rule triggered the alert. The
QoS Watcher then looks up the callback associated with this rule and executes it. There
are two scenarios in which the system is influenced directly; first, the callback can be to
the Deployment Service which is instructed to plan and execute a new deployment based
on the current state of the system. Should this happen, the system starts the planning,
deployment, execution and adaption cycle again. Secondly, the callback could instruct
the App Model to deactivate a certain edge device, see Listing 4.7, in Section 4.3.4 for
an example of such a callback definition.

Adaptation

The intended result of a user-defined callback after the CEP Engine detected a match
for a rule is an update of the system state. In general, this update will either cause the
pausing or resuming of a certain service on an edge device or the (de)activation of an
edge device. Both actions trigger the runtime adaptation process as shown in Figure 4.10.
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The callback (directly or indirectly) updates the system state. This information is handled
by the App Model, which determines all devices affected by the change and sends a
message to the respective Device Managers. The affected devices are those, where at
least one running service uses a service on the edge device that was (de)activated, for the
case where an edge device was (de)activated. For the case where only a certain service
on a device was stopped, all services that use this service are informed. The message
contains a list of alternative service instances that are still available, which are described
by the service type they are realizing, the endpoint at which they are reachable, and the
protocol that is used to invoke the service.

The Device Manager then looks up which of its running services are interested in which
of the received services. It uses the exposed interface of the services to deliver the
information. The service receives the information and is now able to adapt to the newly
obtained information. For example, the registry-aware service client now knows that it
should no longer route requests to a certain service instance.

4.5.1 Deployment Overview

Figure 4.11 shows how the individual components of the DDAD Framework are distributed
onto the available infrastructure. As described in Section 4.2.4 we deployed all components
except the Device Manager into the cloud. More specifically we used CloudFoundry

51



4. The DDAD Framework

which abstracts the underlying infrastructure. In this case, all services deployed to the
cloud are packaged in containers that provide the needed runtime environment.

In almost all cases this is the Java Runtime Environment, except for the metric visualiza-
tion, for which we used Grafana10, which is written in Go11 and compiled to native Linux
code. Since not all needed commodity services were provided by the platform, we had to
package some of them ourselves and deploy them in a dedicated container to make them
available to the other components. These include the Neo4J12 graph database as well as
the KairosDB13 timeseries database.

4.5.2 Deployment Planning

Representing the System State

An important factor when using a combination of cloud and edge is that the users do not
have to concern themselves with the question where their services run. Since we wanted
to be agnostic with regards to the languages are used to implement the services or the
operating system needed to run a service we used a graph-based data model that allows
the user to declare which dependencies each service has. These can either be languages,
whose runtime needs to be available at the host, operating systems or other software that
need to be installed, or language libraries the software depends on, if those dependencies
are not already packaged with the executable. The dependencies can also include services
that need to be running somewhere else in the system. These services are automatically
detected and also deployed if needed.

In Section 4.3.2, we describe the data model that is used to represent defined services,
hosts, and platforms.

CSP Model

At its core, the cloud-edge deployment has a planning and an execution phase. In the
planning phase, we create the data for a CSP that needs to be solved, in order to fulfill
all NFRs and other constraints imposed upon the services. The creation of the data is
triggered when the Deployment Planner receives a request for a new deployment plan.
This request consists of a list of services along with an instance count, indicating how
many instances of each services should be running in total after the deployment process
has finished.

The next step for the Deployment Planner is to query the Application Model to obtain a
list of legal deployment platforms for each of the services. Furthermore, it obtains a list
of currently running services, available hosts, and the specifications of the services to

10https://www.grafana.com/
11https://www.golang.org/
12https://www.neo4j.com/
13https://www.kairosdb.github.io/
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Table 4.1: Variables Used in the CSP Formulation With Their Intended Meaning

Variable Intended Meaning
S Set of service instances
H Set of hosts
CH Set of hosts that reside on the cloud
p A special PaaS-host
P Set of platforms
R Set of resource types
T Set of service types
SW Set of software
Vsw Set of versions of software sw ∈ SW
ts Type of service s
µs Host to which service s is deployed
lh Platform on which host h resides
αs Set of allowed deployment locations of service instance s
δh Set of services which are deployed to host h
ρrh Amount of resource r available at host h
%rs Amount of resource r needed by service s
κrh Costs per unit of resource r at host h
σswh Set of versions of software sw available at host h
ςsws Set of versions of software sw compatible with service s
ϕs Current location of service s

deploy. Similar to [29] we then translate the given information, and use a CSP solver to
obtain a deployment plan.

There are four basic constraints that need to be fulfilled in order to make a deployment
plan valid. These constraints would suffice to obtain a mapping of services to hosts that
yields a valid deployment strategy. Informally, they can be formulated as follows

(1) Each service instance needs to be associated with exactly one host.

(2) Each service instance associated with a host must be allowed to be deployed to the
location where the host resides.

(3) The resource demand of the service instances deployed to a single host must not
exceed the host’s available resources.

(4) The host to which an instance of a service is deployed must offer the software it
needs to run.
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(1) is modeled implicitly by restricting the domain of µs to range from 1 to |H|. This
way, each service is associated with a valid host (to which it will be deployed), and since
one service cannot be mapped to multiple hosts, the constraint is automatically fulfilled.
µ can be seen as function that maps services to hosts.

To model (2) we restricted µs to certain hosts such that

∀s ∈ S : lµs ∈ αs

where αs is the set of platforms where the service can be deployed to, which is computed
beforehand by the App Model.

(3) is modeled using the set of services which are deployed to a host (δ), the resources a
host offers (ρ), and the resources the individual services need (%). δh is the set of services
deployed to host h, ρrh indicates the resource offering of resource r at host h, % indicates
the resource need of resource r for service s. We used the following constraint for all
hosts h ∈ H \ {p} that are non-PaaS hosts and the services that were deployed to them
δh:

∀r ∈ R : (
∑
s∈δh

%rs) ≤ ρrh

Lastly, we model (4) by defining the variables σ, and ς. σswh indicates the version of
software sw available at host h, ςsws indicates the versions of software sw with which
service s is compatible. We enforce the constraint that if a service is compatible with at
least one version of a software then the host to which it is deployed needs to provide at
least one of these versions. This can be formalized as follows, for all services s which are
deployed to a non-PaaS host h ∈ H \ {p}

∀sw ∈ SW : |ςsws | > 0→ |σswh ∩ ςsws | > 0

Apart from these four basic constraints, because we want to deploy the services in an
optimized way, we also specify an objective function, which is partly comprised of the
monetary costs the deployment yields. To calculate these costs, we multiplied the defined
costs of each resource with the amount that was used. We decide to model cloud and
edge platforms differently with regards to costs, such that resources in the cloud incur
costs for the user while resource on the edge are for free, since they are on the user’s
premise. We choose to disregard possible costs for cooling or additional power consumed
by the edge devices.
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Another aspect of the deployment we want to optimize is the number of migrations. We
choose this because migrating a running service is an expensive and non-trivial task
which we want to avoid.

Lastly, it would theoretically be possible to simply deploy all services that might run
on both the edge and the cloud to the cloud, which would also yield a valid deployment
plan. However, we want to maximize the resource usage at the edge, to take advantage
of the available resource. Thus, we define a third part of the objective function, which
aims to minimize the amount of unused resources at the edge. To let the user decide how
important each factor of the objective function is, we provide the possibility to assign
weights to the individual parts of the function.

The three parts of the object function are formalized in the following ways. To calculate
the costs we use κrh which corresponds to the costs of resource r at host h and compute

∑
h∈CH

∑
r∈R

∑
s∈S

ςrs · κrh

Since we retrieve the full system state when computing a new deployment plan, we also
know which services are currently running where. Thus, for each service s, ϕs denotes
its previous location, where ϕs ≥ 1 means that the service was previously deployed to
a host, and ϕs = 0 means that it was not. Therefore, we can introduce a penalty for
all services whose previous location was not zero, and whose current location does not
match their previous location. This gives us the following function

∑
s∈S′

1 where S′ = {s′ : s′ ∈ S ∧ ϕs′ 6= 0 ∧ ϕs′ 6= δs′}

The last part of the objective function aims to minimize the total amount of unused
resources at the edge by simply subtracting the amount of used resources from the amount
of available resources. This leaves us with the amount of resources we failed to utilize

∑
h∈H

(
∑
r∈R

(ρrh −
∑
s∈δh

%rs))

After the translation and model creation is done, the CSP solver is invoked. Should
it determine for the model to be unsatisfiable with the provided data (i.e., there is no
mapping from services to hosts that would satisfy all constraints) the user gets informed
about that fact and needs to reconsider the NFRs, resource or software needs of the
services, or add new edge devices. However, as mentioned in Section 4.5 there are other
possibilities how one could deal with an unsatisfiable problem instance.
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If the model was satisfiable (i.e., there is a mapping that satisfies all constraints), the result
is parsed by the Deployment Planner and the mapping is transferred to the Deployment
Service. This in turn takes the mapping and informs each host that is affected by the
deployment plan (i.e., there are services to be deployed to it or undeployed from it). To
achieve this task, the Deployment Service sends a message, directly or via the messaging
infrastructure in place, to each Device Manager. This message contains the list of services
that are expected to run on each device. For each service the Device Manager determines
if this service is already running. If so it is discarded, since as we argued in Section 4.5.2,
we disallow multiple instances of the same service on the same device. If however, the
service is not already running, the Device Manager downloads the archive file specified by
the service from some sort of Artifact Registry. The Device Manager then unpacks the
files into a specified directory and parses the metadata-file, which contains information
how the service is started, and which other services it depends on.

The Device Manager then obtains a list of service instances from the Service Registry
that are instances of the services the new service depends on. Afterwards, the new service
is started according to the command specified in the metadata-file. All services (that
depend on some other services) need to expose a REST endpoint on the local machine,
to which the Device Manager pushes updates. This way, each service is aware that there
are multiple services and can potentially determine the optimal service to which it should
route a request autonomously. Another purpose of the exposed interface is to provide a
possibility to shut a service down gracefully by calling the appropriate endpoint.

After the services have been started, they call the Device Manager to obtain a port
number to which they will stream application-specific service metrics. Simultaneously,
the Device Manager announces the startup of the services at the Service Registry.

Since the Device Manager receives a full list of services that should be running on the
device it is responsible for, it also computes the difference of the set of services that are
already running and the ones that should be running. This results in the services that
need to be shutdown. Upon startup of each service, the Device Manager obtains the
process-id for each service it starts and saves it in an in-memory database. Thus it can
easily look up the services and simply kill the process with the corresponding id should
it fail to stop after receiving the respective instruction from the Device Manager.

4.6 Summary
After identifying the main requirements of a framework that realizes Data Driven
Automatic Deployment in an edge computing scenario, we provided an insight into
the rationale behind the key design decisions of the framework. To realize the abstraction
of heterogeneous edge devices, we use a custom software agent that runs on each individual
edge device, similar as described by previous research [6, 20, 38, 40]. We defined the
responsibilities of this agent, which are the announcement of the start-up of a service
instance, as well as publishing metrics of the services to the cloud. Furthermore, it
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receives commands that allow to deploy and undeploy services, as well as to forward
information about a change in the system’s state to the services it supervises. The push
based collection and pre-processing of metrics realizes another key requirement of the
framework, namely providing a mechanism for runtime monitoring of IoT applications.

Apart from that, we enable finding optimized deployment strategies for cloud-edge
applications based on a knowledge graph. This knowledge graph holds information about
which services are located where, what resources services that are about to be deployed
need, and what resources and software the edge devices can offer. On the basis of this
knowledge, we can determine valid deployment platforms for the services and thereafter
we can use a CSP solver to optimally distribute the services across these platforms,
similar to [29]. We went into great detail to present how we formalized this problem in a
way that the CSP solver can understand it.

Additionally, we presented our key design decisions and described how they influenced
the architecture of the system. These were the realization of a MAPE-K cycle, which
we choose because there is nearly a one-to-one correspondence of the steps in such a
cycle and the processes in our framework. Next, a push-based monitoring solution with
a cloud storage was chosen to minimize the amount orchestration and organization that
the framework has to take care of, regarding the monitoring processes. This was achieved
by shifting the responsibility of delivering metrics to the user-defined services and the
Device Manager. We also argued why we chose a microservice architecture, since it gives
us much more flexibility than a monolithic system design [5].

Lastly, we gave a high level overview of the system architecture, as well as detailed insight
into the individual component that make up the DDAD framework. To optimally utilize
the resources at hand we decided to deploy part of the framework to the edge and part
of it to the cloud. Furthermore, a dynamic system view was presented. Therein we
explained in great detail how the individual components interact with each other and
which information they need to exchange. We presented the four main processes in the
system, which are the Deployment Planning, Deployment Execution, Monitoring, and
Adaptation, and gave a conceptual overview of how they are executed.
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CHAPTER 5
Evaluation

In this section, we present the findings of the performance study we conducted in order
to verify the validity of our approach. We do this by performing runtime experiments
with a well-defined application, which realizes the machine learning use case described in
Section 1.1. This section aims to answer the following questions

1. How well does the Deployment Planner’s problem definition for finding a valid
deployment plan perform under a growing number of services?

2. How does the runtime behavior of the application differ when using cloud-only
or edge-only computation as compared to employing the DDAD framework for
runtime adaptation?

3. How much of the computation in the cloud can be moved to the edge without
drastically affecting the adherence to previously defined QoS parameters?

4. How intrusive is the Device Manager with regards to resource consumption?

To answer Question 1, we define a fictitious, yet realistic, deployment scenario with a
fixed number of hosts and growing number of services. By measuring the time the CSP
solver needs to compile the problem and find a solution, we get a metric on the basis of
which we can evaluate how well the problem was modeled. Section 5.2.1 describes the
exact setup in greater detail.

As a basis for answering Questions 2, 3, and 4, we implement and deploy the sample
application, which realizes the motivating example which is presented in Section 1.1.
The setup of the application is described in Section 5.1. Since all three questions are
concerned with one or more runtime metrics, we use the DDAD framework’s mechanism
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to collect these metrics to evaluate them. We ran the experiment a total of three times
to achieve more meaningful results.

In addition to collecting and analyzing metrics, we also need to define QoS parameters
to which the application must adhere to properly answer Question 3. These parameters
along with the reasoning behind why we choose them, is presented in Section 5.1.

5.1 Setup and Context
The condition monitoring scenario which is described in Section 1.1 is chosen as an
exemplary use case for our framework. The scenario is an analytics use case, where device
owners want to evaluate the current state of an asset, based on a previously trained
model. Although this scoring is not a vital or mission-critical task, we aim to keep the
round-trip-time of scoring requests under one second. We choose this threshold because
data is read in one second intervals and we want to avoid that requests are starting to
impound. Since executing user services is generally not the primary task of edge devices,
we need to make sure that the user services do not consume too much of the devices’
resource. Therefore, we want to keep the overall resource consumption at a reasonable
level, which still keeps some buffer to cope with unexpected workload bursts. To achieve
this we define a total 75% as the CPU load threshold for the device, meaning that we
aim to keep the 15 second average of the overall CPU load of the device below this value.
We choose the 15 second average, so we do not react prematurely to singular spikes
in the workload. Furthermore, we assume that the device owner wants to harness the
available resources at the edge to reduce the workload in the cloud, which means finding
a trade-off between offloading computation to the cloud and to adhering to the defined
QoS parameters [39].

To simulate an edge, device we use a t2.micro instance on Amazon EC21 which has a single
3.3 GHz CPU core and 1 GB of RAM. This properly emulates a dedicated IoT Device
that collects data from multiple sources since it lies roughly in the middle between the
most powerful and the most constraint Raspberry Pi2, a popular single-board-computer,
which is often cited as an example for a typical edge device [38, 40]. Onto this device we
install our Device Manager and a data acquisition software. Besides these two services
there is also a Connectivity Service in place, that forwards the data which was obtained
by the data acquisition service to the cloud. With this data, a model is trained in the
cloud with appropriate methods and uploaded to a registry from which the local scoring
service can fetch it. The DDAD framework runs on a CloudFoundry installation on top
of the SAP Cloud Platform3.

Figure 5.1 shows the desired setup when using a dynamically adaptable service client to
choose which concrete service instance should be invoked. It shows a multitude of field

1https://aws.amazon.com/ec2/
2https://www.raspberrypi.org/
3https://cloudplatform.sap.com/
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Figure 5.1: Logical View of the Motivating Example

devices (e.g., sensors that measure different properties of an electric drive) that collect
data. The data is obtained by a Data Acquisition Service, which in turn forwards it to
some Data Store Service, as well as to a Data Handler Service. This handler wants to
score the incoming data and calls the Registry-Aware Service Client, which dynamically
decides which concrete instance of the Scoring Service (either locally or in the cloud)
should be invoked. The decision is based on the information the Registry-Aware Service
Client has available locally, which could be as simple as a list of available services, or
detailed information about them, like their average response time.

Upon startup the Data Handler Service subscribes itself to the Data Acquisition Service
which then publishes sensor readings in a one second interval. The Data Handler comes
with a Registry-Aware Service Client to which it delegates the scoring requests. The
handler itself depends on a service which can score data (i.e., an abstract Scoring Service,
which is potentially realized by multiple concrete implementations). However, since the
scoring process should be transparent for the user, it does not depend on any particular
instance.

There are two different instances of the Scoring Service in place. One of them is the Local
Scoring Service, which is implement in C# and utilizes bindings for the R programming
language4. Appropriate R libraries are used for the actual scoring of the model. The

4https://rdotnet.codeplex.com/
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other one is the Cloud Scoring Service, which uses OpenScoring5 to evaluate the incoming
data. By default the local instance of the Scoring Service is used to utilize resources at
the edge. This continues until the CEP Engine (which applies user-defined alerting rules)
instructs the system to deactivate the local instance of the scoring service and forces the
Registry-Aware Service Client to forward the data to the cloud for evaluation.

5.2 Performance Measurements

5.2.1 Deployment Planning
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Figure 5.2: Compile and Solving Time for the CSP

As a first step, we examine how fast our CSP model can compute an initial deployment
plan. Since the defined test application only consists of a small number of services
whose requirements are easily determined, we decide to randomly generate a multitude
of fictional services and hosts to test the model based on this data. Thus, we define four
types of edge hosts, each with different software and resource offerings. Additionally,
we define five services with different software and resource needs. These come in three
flavors, (i) those that must only run at the edge, (ii) those that must only run in the
cloud, (iii) and those for which the NFRs do not restrict the deployment platform. Since
it is likely that resource-intensive applications are deployed to the cloud, and those at
the edge have generally lower resource needs [6], we model these assumptions by defining
cloud-only services with high resource needs, edge-only services with low resource needs,
and those where the target platform is unrestricted with moderate resource needs.

Figure 5.2 displays the result of the performance measurement when using 60 hosts
and increasing the number of services to deploy. All of the hosts reside at the edge.

5https://openscoring.io/
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Additionally there is a pseudo-host, without resource and software constraints, that
models a PaaS cloud. We start with 5 services and increased the number to 300 in steps
of 5. For each iteration, a quarter of the services is only allowed to be deployed to the
edge, a quarter is only allowed to be deployed to the cloud, and the remaining half can
be deployed to the cloud and the edge as well.

The limiting factor of the solving process is the need to compile the model with the given
data, as Figure 5.2 shows. This takes up to roughly 45 seconds for 300 services, while the
time the solving process itself needs also grows steadily but much more slowly than the
time needed to compile. Although the model (especially the compiling) does not hold up
under a large amount of hosts and/or services, it works reasonably well for the intended
context, namely users deploying services to devices they have available in their plant.

5.2.2 Runtime Adaption

We realize that a major key performance indicator which needs to be measured when
evaluating the feasibility of our approach, is how the runtime adaptation mechanism of
the DDAD framework can influence the adherence to defined QoS parameters and the
amount of computation that can be moved from the cloud the edge (which generally
results in a reduction of costs). To examine this, we use the setup described in Section 5.1.
The performance measurements are gathered by using the Device Manager, which is part
of the DDAD framework, to collect the metrics and push them to the cloud.

We distinguish three scenarios which need to be compared:

1. Doing all computational work at the edge, thereby saving the most costs and
keeping the round-trip-time of requests extremely low but risking the overloading
of an edge device.

2. Moving all computation away from the edge and evaluating the collected data in
the cloud, in which case the CPU load of the edge devices is drastically reduced.
However, this will incur longer round-trip-times as well as additional costs, since
the usage of cloud resources generally incurs monetary of costs.

3. Applying runtime adaptation based on predefined rules, with the aim of finding
a proper trade-off between the CPU load of the edge device, the duration of
evaluating the gathered data, and the costs which have to be paid when utilizing
cloud resources.

For the performance measurements, we classify the state of 45 assets per second, since
we determine this to be a reasonable number of assets that are handled by one edge
device. Since we do not want to exceed the available bandwidth or incur too much load
onto the device for simply transferring metrics to the cloud, we choose to compute the
average of all requests, returning during one second. This way we do not create (and
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more importantly do not have to transmit) 45 datapoints per second from a low-powered
device, but can reduce this number to one.

As mentioned above, we want to achieve a trade-off between the three driving factors in
this scenario, the CPU load of the edge device, the time it takes for scoring requests to be
handled, and the costs induced by using cloud resources. Since we do not want to react to
singular spikes in measurements, the rules also take an sliding average into consideration
when determining to switch from/to local scoring. Thus we derive the following rules for
the QoS Watcher to match the incoming data against and the corresponding actions to
execute in response to these rules:

1. Deactivate the computation on the edge device when the 15 second average of the
CPU load is above 70% and the maximum during this period is above 90%.

2. Reactivate the computation on the edge device when one of the following occurs

a) The 15 second average of the time it takes to handle a scoring request exceeds
600 ms.

b) The average handling of a scoring request takes longer than 550 ms and the
maximum during the 15 second sliding window is greater than 900 ms.

To establish a baseline of our performance measurements we let the system handle all
computation locally. Later we move the whole computation to the cloud. After the
baseline is established, we put the above mentioned rules for runtime adaptation in place
and start the services while continuously monitoring them. As a callback, we define a
call to the App Model which either activates or deactivates the scoring service on the
edge device as a result. Listing 4.7 in Section 4.3.4 shows how the definition of this rule
looks like. The (de)activation is propagated to the Device Manager, which then has to
forward this information, to enable the Registry-Aware Service Client to act accordingly.

Since it is highly unlikely that our service(s) will be the only one running on an edge
device we also execute a script that continuously uses 35% of the device’s CPU. This
can be seen as the device’s primary task, which cannot be stopped and with which the
scoring service must not interfere.

System CPU Load

Figure 5.3 displays the system’s CPU load over the course of ten minutes of scoring 45
request per seconds when only using the simulated edge device. Since only the local
service is used to score the model the load mostly stays between 60 and 80%. However,
there are a lot of times, when the CPU Load exceeds the threshold of 75%.

In Figure 5.4, the edge device’s overall CPU load when scoring all data in the cloud can
be seen. As expected, the total load is substantially lower because the scoring itself is
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Figure 5.3: CPU Load of the Edge Device When All Computation Is Done on the Edge
Device
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Figure 5.4: CPU Load of the Edge Device When Completely Moving the Computation
to the Cloud
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offloaded, and the service only has to wrap the data, transfer it to the cloud, and receive
the result. The results also show that the CPU load fluctuates much more heavily than
when only scoring locally.
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Figure 5.5: CPU Load of the Edge Device When Using Runtime Adaptation to Switch
Between Local and Cloud Scoring

Figure 5.5 showcases the CPU load of the edge device when using the implemented
runtime adaption by applying the rules described above. The goal being that the devices
does not become overloaded while still not leaving too much computational resources
at the edge unused. Also, Figure 5.5 shows that the average load oscillates between 55
and 75% and that once the device is deactivated the load drops rapidly. However, it also
rises quickly after the device is activated again.

User Service CPU Load

Since the scoring service is the only service running on the edge device it comes as no
surprise that the CPU load for the scoring service in Figure 5.6 looks very similar to
the overall CPU load in Figure 5.3 only offset by roughly 45 percentage points. We can
see that the load fluctuates between a maximum of 40% and a minimum of 0%. The
minimum of 0% can be explained by the fact that the measurements were taken in a one
second interval, so the process had no CPU time for this particular second.

Figure 5.7 shows the CPU load of the Scoring Service when using only cloud scoring.
The load distribution over time is very similar to the one in Figure 5.4, again only offset
by roughly 45 percent points. Again, the load does not fluctuate as much as compared
to scoring locally, as showcased in Figure 5.6.

In Figure 5.8, the CPU load of the Scoring Service when using runtime adaptation is
displayed. Again, the collected data looks very similar to the overall CPU load of the
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Figure 5.6: CPU Load Induced by the User Services When Using Only Local Scoring
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Figure 5.7: CPU Load Induced By the User Services When Completely Moving the
Computation to the Cloud
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Figure 5.8: CPU Load Induced by the User Services When Using Runtime Adaptation
to Switch Between Local and Cloud Scoring

device which can bee seen in Figure 5.5.

Round-Trip-Time of Scoring Requests
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Figure 5.9: Round-Trip-Time for Scoring Requests When Using Local Scoring

Figure 5.9 shows the round-trip-time for scoring requests when only using local scoring.
We measure the time that it takes to receive a result from the scoring service, once the
received data was parsed. This includes transforming it into a common representation,
sending it to the service, receiving the result and parsing it back. Figure 5.9 shows that
for local scoring this takes around 120 ms at most, which more than over-performs with
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regard to our defined goal of keeping the response time under one second. This low
round-trip-time however, comes at the costs of a high CPU load for the edge device as
Figure 5.3 and Figure 5.6 show.
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Figure 5.10: Round-Trip-Time for Scoring Requests When Using Cloud Scoring

Figure 5.10 displays the resulting round-trip-times for scoring requests when moving
the entire computation to the cloud. As expected, the measurements show that it takes
substantially longer to receive results when scoring in the cloud. This comes as no
surprise, since the data has to be transferred to the cloud, handled there, and sent back
again. Especially the sending and receiving of the requests introduce the main part of
the latency. However, as Figure 5.4 and Figure 5.7 show, this increase in round-trip-time
brings a drastic reduction in CPU Load.

Figure 5.11 shows the response time when using the runtime adaptation approach
described above. We can see that the round-trip-time oscillates, very similar to the CPU
load in Figure 5.8. Also similar is the fact that measured values change rapidly after
switching from local to cloud execution and vice-versa. However, in contrast to the CPU
load, the round-trip-time goes up when offloading the computation to the cloud to reduce
the CPU load and is reduced when shifting back to local computation.

SLA Violations & Cloud Resource Usage

As mentioned at the beginning of Section 5.1, our goal is to keep the 15 second average
of the edge devices’ CPU load under 75%. Furthermore, we want to keep the response
time for scoring requests under one second. These two goals can be seen as the SLAs of
our application to which we want to adhere as best as possible. In addition to fulfilling
these SLAs we also want to minimize the cloud resource usage, which in turn helps to
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Figure 5.11: Round-Trip-Time for Scoring Requests When Using Runtime Adaptation to
Switch Between Local and Cloud Scoring

Table 5.1: SLA Violations for Different Scenarios

Metric Method Minimum Maximum Average σ

Latency Local 0% 0% 0% 0%
Cloud 0.33% 0.5% 0.39% 0.10%
Adaptation 0.5% 1.33% 0.89% 0.42%

CPU Load Local 21.17% 55.33% 34.28% 18.42%
Cloud 0% 0% 0% 0%
Adaptation 1.67% 2.17% 1.94% 0.21%

reduce the overall costs for the end user, since cloud services generally operate on a
pay-as-you-go basis.

Thus we analyzed how often the CPU load threshold and the latency threshold are
exceeded, when using each of the different methods and how much of the computation is
done in the cloud.

Table 5.1 shows the number of QoS violations for the different scenarios. As one can
see, the adaptation has a much lower count of instances where the CPU load exceeds
75% when compared to the edge-only scenario. More precisely, when using the runtime
adaptation mechanism the average number of CPU-related SLA violations can be reduced
by roughly 94%, from 34.28% to 1.94%. However, when using the runtime adaptation
mechanism, more CPU load violations occur than when using the cloud-only scenario.
Furthermore, it becomes clear that the adaptation scenario performs worse than both
the edge- and cloud-only scenario when it comes to latency. The fact that the adaptation
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Table 5.2: Percentage of the Computation by Platform for the Adaptation Scenario

Cloud Edge
Minimum 53.97% 40.04%
Maximum 59.96% 46.03%
Average 56.86% 43.14%
σ 3.00% 3.00%

scenario has more latency-related QoS violations than the cloud-only one stems from
the fact that when switching to executing the scoring in the cloud the first few requests
might take longer than the following ones, especially when switching after a long period
of edge-only scoring.

Although, when examining Table 5.1 in isolation it may look like the adaptation scenario
does not bring any benefits, Table 5.2 shows that we are able to reduce the amount of cloud
resources needed drastically. In the best instance of the experiments this means nearly
cutting the computation power for the service in half, while still keeping the requests that
exceed the maximum latency below 1% and the time the CPU load threshold is exceeded
below 2%. Compared to the scenario where the computation happens exclusively on the
edge we can see that by accepting a slightly worse response time (for some instances),
we can cut the average time that the CPU runs overloaded (according to the defined
threshold) to a 20th of the original value.

This shows that when using the DDAD framework’s runtime adaptation mechanism,
one can reach a rather satisfying trade-off between saving costs and adhering to QoS
parameters. Furthermore, it also demonstrates how extensively computing power at
the edge can be harnessed without interfering with the edge devices’ primary tasks.
However, one has to be aware that there will always be some kind of trade-off. How
much overloading or long running requests one can put up with will always depend on
the particular use case.

Figure 5.12 shows the number of times the round-trip-time SLA was violated. This count
is plotted against the amount of computation that was done in the cloud. Furthermore,
it shows the regression line, which was obtained via the least-squares method [42], where
one tries to find a line such that the sum of the squared distances between the individual
measurements and the line is minimized. Furthermore, the Figure shows the boundaries
of the 95% confidence interval. One can see that there seems to exists a correlation
between the number of SLA violations and the amount of computation done in the cloud.
This is not surprising since transferring data from and to the cloud generally induces an
overhead, and the more data one transfers to the cloud, the higher the likelihood of a
request’s round-trip-time exceeding the previously defined QoS parameter becomes.

The number of times the 15 second average of the edge device’s CPU load exceeded the
previously set QoS value of 75% can be seen in Figure 5.13 plotted against the amount of
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Figure 5.12: Round-Trip-Time SLA Violations During Runtime Adaptation
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Figure 5.13: CPU Load SLA Violations During Runtime Adaptation
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Figure 5.14: CPU Load of the Device Manager During Runtime Adaptation

computation done in the cloud. Additionally, one can see the regression line, which also
was obtained by the least-squares method. The line shows a trend which indicates, that
the more computation is done in the cloud, the fewer CPU-load-related SLA violations
occur. This is not surprising because the more computation one moves away from the
edge device the fewer resources are needed to achieve the remaining computational tasks.

5.2.3 Intrusiveness of Device Manager

Another factor when evaluating the framework was determining how intrusive the Device
Manager was, in terms of consumed memory. This factor is important, because we do not
want the manager to incur too much load onto the system, while not bringing immediate
benefit to the user. A Device Manager that uses too much resources would discourage
users from employing the framework since, computational power is generally a limited
resource at the edge [17, 37]. Furthermore, it would invalidate the overall assumption
that the Device Manager has a reasonable resource consumption.

Figure 5.14 shows the CPU usage of the Device Manager while running our test application
as described above when using runtime adaptation, because with this option the Device
Manager needs to do the most work. This stems from the fact that it has to receive and
parse messages from the DDAD framework and inform the system accordingly. The figure
shows that the manager uses between about 2 and 3% of the CPU which constitutes an
acceptable amount for such an important service. Furthermore, the change indicators
show that there appears to be no relation between a change of the scoring location and a
change in the Device Manager’s CPU consumption.
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5.3 Summary
In this section, we answered the four question we posed at its beginning by showcasing
the results of runtime experiments. These experiments included the execution of the
CPS that is used to determine a valid deployment plan and the analysis of its compile-
and runtime. Furthermore, we implemented and deployed a sample application that we
used to determine the benefit of employing the DDAD framework’s runtime adaptation
mechanism over using cloud- or edge-only computation.

To evaluate the quality of the formulation of the CSP that determines the optimized
deployment location for each service, and answer Question 1 we created a multitude of
artificial, yet realistic, services, that need to be deployed to a set of hosts. The evaluation
showed that the most time-consuming factor of solving the CSP was the compiling part.
However, we argued in Section 4.5 that having a parameterizable problem that only
needs to be provided with the data is an important feature of the Deployment Planner.
Furthermore, when using other solvers, like the IBM CPLEX Optimizer6, the data also
has to be provided and the actual constraints have to be derived from it. Additionally,
since the intended use case of our framework is for a plant operator to deploy services to
their available devices, the scale, at which the experiment is conducted, is appropriate,
and the runtime of the solving for 60 hosts and 300 services at about one minute, can
also be seen as acceptable.

Next we answered Question 2 by evaluating how the runtime behavior of the application
changes when employing the DDAD framework’s runtime adaptation mechanism. The
experiments show that there is a substantial reduction of CPU load incurred onto the edge
device and the amount of computation done in the cloud can be substantially reduced,
when changing the evaluation location of scoring requests based on the current state of
the device. However, the round-trip-time of scoring requests, grows drastically. This fact
however, was anticipated, and is acceptable, because the when moving computation from
the edge to the cloud, one trades fast response times for reduced CPU load. The results
also show that, once the device is instructed to not invoke the local service anymore,
there is a rapid drop in CPU load, which is not surprising, since the data handler then
only has to wrap and unwrap requests and responses respectively.

Table 5.1 and Table 5.2 show that we were able to move a substantial amount of
computation from the cloud to the edge, while still adequately adhering to the previously
defined QoS parameters, which answers Question 3. By allowing to move some of the
computation to the edge, we enable users to achieve a trade-off between their QoS
parameters and the operational costs of their system. More precisely, we were able
to reduce the costs by 43% on average, as compared to the cloud-only scenario, while
simultaneously reducing the number of CPU-load-related SLA violations by roughly 94%,
when compared to the edge-only scenario. However, these numbers are first and foremost
only averages, and Table 5.1 shows that standard deviation of the measurements can be

6https://www.ibm.com/software/commerce/optimization/cplex-optimizer/
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quite high. Furthermore, our goals was to achieve a trade-off, which implies that every
gain, usually comes with a loss. In this concrete case, the loss is a larger amount of
latency-related SLA violations. More precisely, an increase by a factor of 2.28 on average
as compared to the cloud-only scenario. However, the overall number of latency-related
SLA violations is still below 1.5% on average, which is an acceptable number, given
the cost savings when compared to the cloud-only scenario (which are roughly 40% on
average) and the SLA improvements when compared to the edge-only scenario.

Lastly, Figure 5.14 shows that the resource consumption of the Device Manager can be
described as reasonable, since its 15 second average never exceeds 4% and the maximum
is around 12%, which also allows to answer Question 4.
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CHAPTER 6
Discussion & Conclusion

6.1 Comparison to Related Work
To highlight, what separates our work from the presented, related work, we want to
point out key differences between the holistic framework we propose and the approaches
that are presented in the literature. The biggest being that our framework is a holistic
approach that aims to cover the whole lifecycle of an application, from planning and
executing the deployment, over monitoring the running services, to using the obtained
information to realize runtime adaptation.

Bonomi et al. [6] provide a detailed insight into fog computing’s conceptual basics. They
achieve this by sketching out several use cases and deriving key requirements for an
orchestration middleware layer, that facilitates fog computing. Although supplying a
sound, theoretical framework, whose goal it is to exploit the complementary benefits
of cloud and edge computing in a single system, we see a lack of an realization of this
framework that could act as a reference implementation for fog computing. In contrast
to that, we provide a prototypical implementation of a framework that enables users to
harness resources present at the edge, and allows the combination of said edge-resources
with cloud services in a sensible fashion.

Since, cloud and edge platforms both bring complementary benefits and drawbacks, one
might be better suited as the execution environment of a task than the other one, based
on different resource-, as well as, non-functional-requirements of the indivdual services [6].
Deciding, which part of an application can run on the edge, and which parts should
be executed in the cloud is not a trivial task which can be approach in multiple ways.
Hong et al. [19] choose a service as the finest level of granulairty which can be executed
independently. Although, we agree with this approach, the authors assume that an
applications can be split into a hierarchical structure that implicitly dictates where each
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part of the application can run [19]. At a much finer level of granularity, Chun et al. [9]
propose a static code analyzer that moves computation from Android applications to a
nearby server. A similar approach is taken by Cuervo et al. [10], which use annotations
to let the user decide which parts of a .NET based application can be offloaded to the
cloud.

The most important difference between [19] and our proposed solution is, that in our
framework the services’ hierarchy does not directly dictate where a service should
run. In contrast, we focus on resource- and non-functional-requirements to determine
admissible deployment strategies. What differentiates the DDAD framework from the
MAUI framework [10] and the approach taken by Chun et al. [9] is that it is not bound
to any specific programming language or software ecosystem. Thereby, providing the
possiblity to use a wider variety of tools and porgramming languages based on the users’
needs. However, the granularity at which parts of an application can be offloaded is
much more coarse-grained in our framework since the smallest conceptual part is a
service. Urging users to employ a microservice architecture forces them to plan their
service architecture accordingly, but unlike [19] it does not enforce any structure upon
the application. Furthermore, Bass et al. [5] and Balalaie et al. [3] argue, that using such
an architecture helps to cope with the complexity of highly distributed applications.

The question how individual components of an application (in our case these components
are the individual services) should be deployed onto available infrastructure, is answered
by van der Burg et al. [36]. They propose a tool that automatically deploys given services
onto available infrastructure. Similar to the Disnix tool [36] we use a software agent on
each device to which user services can be deployed. However, when using the approach
described in [36], users have to define the mapping of services to hosts themselves, which
is something we explicitly want to avoid, and which our framework takes care of in an
automated way. Thereby, the amount of automation in the deployment process can be
further increased which helps reducing errors and speeds up the time it takes until a
change in a service makes it to production.

Gabbrielli et al. [16] and Matougui and Leriche [29] all employ a CSP based tool that
determines the optimal location. This tool is used in combination with a deployment
framework, that takes care of actually deploying the individual services to the determined
locations. However, our knowledge graph not only represents resource and software
requirements, but also takes non-functional-requirements (e.g., data-privacy, elastic-
scalability, . . . ) into account when determining the admissible deployment locations for
the individual services. Another key difference to our proposed framework, stems from
the fact, that the other presented solutions do not concern themselves with monitoring
and automatically adapting the system once it is in place. We identified these tasks to
be at the core of an holisitc framework that supports the developers and operational staff
throughout the lifecycle of a service once it has gone into production.
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6.2 Limitations and Future Work
Although, we have determined our framework to be a possible starting-point for unifying
cloud and edge services, its functionality is by no means complete and there are much
possibilities for future work. The most important and apparent ones can be summarized
as follows:

Optimized Monitoring Intervals We choose a fixed observation interval for all
metrics that are collected by the Device Manager and a fixed interval for the delivery
of metrics from the Device Manager to the QoS Watcher. However, the best intervals
are likely not the same for each device and each metric [12]. Thus it would be better to
dynamically change the time between individual measurements and between individual
meteric deliveries, so we incur an optimal amount of overhead, similar to [12]. This way it
would be possible to further reduce the intrusiveness of the Device Manager and improve
the monitoring process.

Dynamic Detection of Joining and Leaving Devices For the purpose of this
work we assumed that the topology at the edge and in the cloud remains stable between
deployments. But, since the edge can be rather changing with regards to what devices
are available, it would be favorable to automatically react to devices joining and, more
importantly, leaving the network. This would mean that in the cloud one of the services
(most likely the QoS Watcher or the App Model) would have to keep track of heartbeat
messages of the Device Managers and react accordingly for example, by triggering a new
deployment.

Improved Adaptation Strategies The responsiblity of defining actions that need to
be taken should the system move towards an undesireable state was shifted to the users
of the DDAD framework. However, defining generic adapation strategies as proposed by
Huber et al. [21] would increase the advantages for the users, since they could potentially
be shared through a central repository. Thereby, removing the need for users to define
their own actions for common adaptation scenarios. Furthermore, it would be desirable to
not only completely activate or deactivate hosts and edge devices, but to set a maximum
percentage of workload that clients are allowed to route there. This would allow for a
more fine grained adaption of the services. To decide which services should actually be
invoked by others, an approach similar to what Chen et al. [8] propose, would yield a
better runtime adaptation. However, this would imply, that all service would have to
obtain additional information about other services, or collect this information themselves.

Automatic Detection of System Health Deterioration To define what an un-
desirable system state is can be done by defining QoS parameters to which individual
applications or the system as a whole have to adhere. However, defining what event or
chain of events indicate such a movement is also left to the user in our framework. It
would be much more desirable to have a way to automatically derive rules for the users.
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This could for example be done by using a pobabilistic model, as done by Chen et al. [8].
Another possibility to free users of the burden of manually defining and fine-tuning rules
that indicate a deterioration of the system’s health would be to employ machine learning
techniques or the use of artificial intelligence, to proactively take action should a SLA
violation be immanent, similar to [24, 26].

Automatic Installation of Missing Software The inability to automatically install
needed software packages onto the target edge devices as done by Vögler et al. [38], is
another limiting factor of the DDAD framework. This limitation could be overcome by
either using an approach similar to the one presented in [38] or by using Docker-based
artifacts. Since the data model of the App Model is very flexible it would be possible to
model the individual services in way that they have a runtime dependency to the Docker
engine being installed on the target device and defining the artifact of the services as
a Docker image. However, it would be necessary to make adjustments to the Device
Manager, since accessing a Docker registry works different from simply downloading a
file from a server.

6.3 Summary
In this work we aimed to provide a holistic framework that allows users to profit from
computational resources available at the edge of the network, while still being able to make
use of the virtually unlimited power of the cloud. The combination of the benefits (and the
overcoming or mitigation of the drawbacks) of both platforms should happen transparently
to the users, freeing them of the burden of tailoring their application to either one of
the platforms. Furthermore, the framework should support the users in all stages of
operating a system based on a microservice architecture. This includes (i) planning and
executing the deployment process automatically, (ii) monitoring deployed services, and
(iii) gathering runtime metrics about the deployed services, thereby influencing (i).

First, we provided the necessary background for this work by introducing fog computing
as an emerging paradigm to utilize cloud and edge resources in a way that exploits their
complementary benefits and drawbacks. Furthermore, we presented the microservice
architectural style and how systems that employ such a style differ from traditional
monolithic applications. Lastly, we gave an overview of the DevOps methodology and
how it colludes with a microservice architecture to help cope with the complexity inherent
to distributed systems.

After establishing a background knowledge, we gave an overview of the current state of
the art in the subfields which were of interest for the course of this work. This includes a
more detailed discussion of current approaches in fog and edge computing, as well as a
deeper look into the current state of automatic deployment mechanisms. Furthermore, we
presented approaches how efficient and unintrusive runtime monitoring can be realized,
especially for cloud-edge scenarios and QoS relevant monitoring. Lastly, we discussed
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how the runtime behavior of individual services and an application as a whole can be
influenced dynamically by employing different approach to realize runtime adaptation.

Next, we conducted a detailed discussion about the design and implementation of the
proposed DDAD framework. We started by identifying its key requirements, namely (i) the
abstraction of heterogeneous edge devices to allow transparent access to the computational
resources. (ii) automatically determining and executing optimized deployment strategies
in cloud-edge scenarios. (iii) the definition and implementation of an unintrusive and
efficient runtime monitoring mechanism for IoT applications, as well as (iv) a mechanism
for dynamic runtime adaptation of said applications. Once we identified the requirements
we presented our key design decisions along with their justifications.

Thereafter, we discussed the individual components of the framework, how they commu-
nicate with each other, and which data they exchange. In the course of this discussion we
first presented each component in separation and then detailed their interaction during
the individual stages of an application’s lifecycle (i.e., deployment planning, deployment
execution, monitoring, and adaptation).

To show the validity of our approach, we implemented a sample application, that realizes
a use case in an industry context. Furthermore, we defined a set of QoS parameters which
the services needed to adhere to. We then conducted a number of runtime experiments
to show that when using the proposed framework and employing its runtime adaptation
mechanism, one can achieve a trade-off between SLA violations and costs incurred by
using cloud resources.

Based on the results of the experiment we concluded that a rather satisfying trade-off
between QoS adherence and reduced costs for computational cloud resources can be
reached by using runtime adaptation. One can either choose to have no costs for cloud
resources by keeping all computation locally, while simultaneously regularly overloading
the edge devices. Alternatively, it is possible to pay “the full price“ by having all
computation in the cloud which brings the benefit of never overloading ones devices but
also introduces latency-related SLA violations. However, we assume that users want
to find a trade-off between regularly violating SLAs by using only edge devices and
incurring high monetary costs by using only cloud computing. Thus, we also conducted
the experiments while employing the DDAD framework’s runtime adaptation mechanism.
We defined a set of rules based on the previously defined QoS parameters to switch back
and forth between using cloud and edge resources in a way that aimed to keep SLA
violations at a minimum, while still allowing the maximum amount of computation to be
done at the edge. This allowed us to reduce the amount of computation done in the cloud
to by 43% on average while still keeping the average number of SLA violations below 2%.
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