
Laufzeitverifikation von
Geschäftsprozessen unter

Verwendung der Blockchain

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Christoph Prybila, BSc BSc
Matrikelnummer 0925463

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr.-Ing. Stefan Schulte

Wien, 15. Dezember 2016
Christoph Prybila Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Runtime Verification for Business
Processes utilizing the

Blockchain

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Christoph Prybila, BSc BSc
Registration Number 0925463

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Dr.-Ing. Stefan Schulte

Vienna, 15th December, 2016
Christoph Prybila Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Christoph Prybila, BSc BSc
Weimarer Straße 70, 1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. Dezember 2016
Christoph Prybila

v

Danksagung

Ich möchte mich zuallererst bei meinem Betreuer Dr.-Ing. Stefan Schulte bedanken.
Es passiert schnell, dass man sich bei einem umfangreichen wissenschaftlichen Thema
in Details verrennt. Hier hat seine konstruktive und präzise Kritik mich sehr dabei
unterstützt auf das Wesentliche kontenzentriert zu bleiben. Auch hat es sehr geholfen,
dass ich direkt in den Büroräumen der Distributed Systems Group (DSG) arbeiten durfte.
Auf diese Weise konnte ich jederzeit und unkompliziert Feedback zu offenen Fragen
bekommen. Dies war eine ungemein wertvolle Hilfestellung.

Auch möchte ich bei den vielen Menschen am DSG bedanken die mich während dem
verfassen meiner Arbeit in vielen kleinen Dingen unterstützt haben. Besonders erwähnen
möchte ich dazu Christoph, Michael, Olena und Philipp. Obwohl ich eigentlich keine
Anstellung am DSG hatte, haben sie mich sofort aufgenommen und ein sehr angenehmes
Arbeitsumfeld geschaffen.

Bedanken möchte ich mich zum Schluss bei meiner Familie und den Menschen die mich
während meinem Studium begleitet haben. Die viele menschliche (und auch finanzielle)
Unterstützung welche ich erhalten habe hat mir dabei geholfen dran zu bleiben und bis
zum Ende durchzuhalten. Ich habe lang genug dafür gebraucht danke, dass ihr für mich
da seid.

vii

Acknowledgements

I want to thank my adviser Dr.-Ing. Stefan Schulte for his excellent supervision. His
constructive and precise criticism enabled me to remain focused in an extensive scientific
field of study. By being allowed to work directly at the distributed systems group (DSG)
office I was able to collect feedback whenever needed.

Furthermore, I want to thank all people at DSG that have supported me during the
course of this thesis. Especially Christoph, Michael, Olena and Philipp created a very
friendly and supportive workplace environment. They kept me motivated and provided a
lot of help even though it was not their responsibility.

At last, my deepest gratitude goes to my family and people that accompanied through
the time of my study. Their emotional (and also financial) support helped me to keep
going and to see it through to the finish. It took me long enough, thank you for being
there for me.

ix

Kurzfassung

Zentral orchestrierte Workflow-Managementsysteme sind nur eingeschränkt skalierbar.
Wissenschaftliche Arbeiten forcieren daher einen dezentralen Ansatz zur Workflow-
Choreographie. Hierbei wird die Kontrolle einer Workflow-Instanz zwischen unabhängigen
Teilnehmern einer Choreographie aufgeteilt. Für diese geteilte Kontrolle wird ein un-
abhängiger Mechanismus benötigt mit welchem Workflow-Instanzen dokumentiert und
verifiziert werden können.

Um als kryptographische Währung dezentral und unabhängig zu bleiben, bestehen für
das Bitcoin-Projekt ähnliche Anforderungen. Bei solchen digitalen Währungen kommt
dabei die Blockchain-Technologie zum Einsatz, welche als verteiltes und unabhängiges
Medium zur Kontoführung genutzt wird. Im Rahmen dieser Diplomarbeit wird von uns
die Eignung der Blockchain für eine verteilte Laufzeitverifikation erforscht. Dazu werden
zuerst bestehende Lösungen im Bereich der verteilten Laufzeitverifikation diskutiert und
die Eigenschaften von verschiedenen Blockchains beleuchtet. Basierend auf den daraus
gewonnenen Erkenntnissen wird ein neuartiger Ansatz zur Laufzeitverifikation abgeleitet
und dieser in einem Prototyp umgesetzt.

Der entwickelte Prototyp wird zuerst mit anderen existierenden, verteilten Laufzeitverifika-
tionsansätzen verglichen. Basierend auf übergreifenden Kriterien für Choreographien wird
ein funktioneller Vergleich durchgeführt. Es zeigt sich, dass der Einsatz der Blockchain ein
nahtloses Monitoring der verteilten Ausführung ermöglicht. Gleichzeitig können Anonymi-
tät und Unabhängigkeit der Choreographieteilnehmer gewahrt werden. Weiters ermöglicht
unser Prototyp das bedarfsorientierte Einbinden von neuen Choreographieteilnehmern.
Es bleiben aber auch Nachteile. So können die Vertraulichkeit der Workflowdaten nicht
gewährleistet und eine vorgegebene Ausführungssequenz nicht erzwungen werden.

In einer Leistungsanalyse wird der Overhead unseres Ansatzes ermittelt. Die Verwendung
des Prototyps kann zu einer signifikanten Erhöhung der Laufzeit führen. Der größte
Einflussfaktor dafür ist die Transaktionsbestätigungszeit (TBZ) in der Bitcoin-Blockchain.
Die TBZ betrug während der Analyse im Median 7,741 Minuten. Zusätzlich hat die
TBZ auch eine sehr hohe Standardabweichung. Manche Transaktionen haben daher auch
wesentlich länger benötigt um bestätigt zu werden.

Es ist möglich den Prototyp mittels eines weniger sicheren Arbeitsmodus zu beschleunigen.
Generell ist unser Ansatz jedoch am Besten für Geschäftsprozesse mit zeitintensiven
Aktivitäten geeignet, zum Beispiel für Logistik oder Supply Chain Prozesse.

xi

Abstract

To address the scalability limitations of orchestration-oriented workflow management
systems, scientific contributions propagate workflow choreographies. The control over
a workflow instance is shared between independent participants. Accordingly, an in-
dependent mechanism to document and verify the execution of a workflow instance is
required.

In the unrelated scientific field of cryptocurrencies, the Bitcoin project utilizes the
Blockchain technology as distributed ledger to record payment transactions. This thesis
explores the suitability of the Blockchain to create a novel approach to runtime verification.
Existing approaches to distributed runtime verification are discussed. Next, the properties
of different operating Blockchains are highlighted. Based on these findings a novel
approach to runtime verification that utilizes the Bitcoin Blockchain is developed.

The developed prototype is evaluated in a functional comparison. Based on selected
criteria, runtime verification approaches are categorized and discussed. Findings show
that our Blockchain-based approach enables a seamless execution monitoring while at the
same time preserving anonymity and independence of the participants. Some downsides
remain. Our proposed prototype enables flexible on-demand participant selection but is
not able to provide data confidentiality or to enforce an execution sequence.

At last, the prototype is evaluated in a performance analysis. The usage of the runtime
verification prototype can significantly increase workflow duration. The greatest influence
factor is the transaction confirmation time (TCT) in the Bitcoin Blockchain. A median
TCT of 7.741 minutes is recorded in the evaluation. The TCT also exhibits a very high
standard deviation, indicating that single transactions take even longer to confirm.

While it is possible to reduce the induced execution overhead of the framework with a
less safe but greedy approach, the results suggest that the prototype is most suited for
business processes with long running activities like logistic or supply chain processes.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 7
2.1 Workflow Management Systems . 7
2.2 Monitoring of Workflow Enactment . 11
2.3 Bitcoin . 15

3 Research Challenges 25
3.1 Research Challenges . 26
3.2 Evaluation Approach . 27

4 Motivational Scenario 29

5 Runtime Verification for Choreographies 33
5.1 Current Blockchain Implementations . 33
5.2 Existing Enactment Verification Approaches 39
5.3 Blockchain-based Runtime Verification Proposal 46
5.4 Prototype Description . 57

6 Prototype Evaluation 79
6.1 Functional Comparison . 79
6.2 Performance Analysis . 92
6.3 Enabled Use Cases . 117

7 Conclusion 119

List of Figures 123

List of Tables 124

xv

Appendix 127
Workflow Start Transactions . 127

Bibliography 131

CHAPTER 1
Introduction

Process-based management is one of the latest trends in business management. Companies
document and define how they generate value by defining a set of processes through
modelling languages such as Business Process Model and Notation (BPMN) [1, 59, 72].
After the definition, processes have to be correctly enacted in order to generate value.
These executions are referred to as instances [81]. Controlling large numbers of instances
require automated management systems, called Business Process Management Systems
(BPMSs) [93] respectively Workflow Management Systems (WfMSs) [63]. There are
serveral tasks involved in process based management which are summarized under the
term Business Process Management (BPM) [96].

The term BPM is used to describe both modelling and execution tasks, resulting in
ambiguity in many scientific publications. Software systems which are designed to support
them (e.g. modelling tools or execution engines) are commonly referred to as BPMS.
One approach to provide a distinction is to split the term BPM into the terms process
management and workflow management, where the first describes the modelling task and
the second the execution task [87, 96]. An execution engine, responsible for managing
the running workflow instances, is then referred to as WfMS. The used terminology for
this thesis is further illustrated in Figure 1.1.

First, modeled activities of a process have to executed as tasks. Therefore they have to
be mapped to fitting services, available in the system. Classic WfMS implementations
follow the centralized approach of service orchestration [95]. In these systems, a central
coordinator is responsible for managing the enactment of all workflow instances. The
coordinator receives the output of a service and forwards it to the mapped service of the
next activity. Therefore, the message interaction of instances is routed in their entirety
through the coordinator.

To address the scaling and cooperation limitations resulting from this approach, many
scientific contributions propose WfMSs which implement the approach of service chore-

1

1. Introduction

Business processes

Process management

Workflow management

Definition
and Modelling

Technical
Execution

Workflows

BPMS

WfMS

BPM

Figure 1.1: Terminology Definition Business Processes in contrast to Workflows.
Source: Adapted from [96].

ography [75, 77]. Service choreography distributes the control of the enacted workflow
instances over different independent partners. Each cooperation partner receives in-
formation about the negotiated terms and requirements of a designated part of the
choreography and then acts independently. Messages are exchanged directly between
the involved partners instead of a central coordinator. This design removes single points
of failure and messaging bottlenecks [58]. Scalability is improved and cooperation is
simplified. Choreography-oriented WfMSs especially benefit use cases involving Business
to Business (B2B) cooperation [93].

Through the division of labor, companies strive to focus on their core competences.
Therefore, techniques to support cooperation between independent companies are required.
Many business use cases, e.g. manufacturing or transportation, can be improved through
this approach.

On the other hand cooperation between independent partners creates a lot of coordination
effort. Each company manages its services and resources on its own. Global optimization
becomes very challenging. The required coordination effort should be mitigated by the
proposed choreography-oriented WfMSs. But there are challenges which hinder the
adoption of choreography-oriented approaches. The industrial and scientific research
about choreography-oriented WfMSs is still in its infancy [2]. There are no commonly
agreed techniques to model, convert or execute choreography-oriented processes. For
choreography-oriented WfMS there are no commonly agreed designs or architectures.
To the best of our knowledge, there exist no mature choreography-oriented WfMS

2

implementations.

Beside the technical challenges, companies also hesitate to join choreographies because of
the inherent information sharing discrepancy of the approach. When joining cooperations,
companies want to share as little information as possible about their internal operations.
All participants are still independent companies and potential competitors. The internal
technical facilities of each participant should remain private. Data which is required for
the execution of a workflow should only be disclosed to participants that require it. At
last, the identities of all participants of a workflow should only be known to the workflow
initiator (i.e. process owner).

At the same time, companies that initiate workflows require reliable information about
their remotely enacted workflow instances. They want to be able to determine the
execution path of an instance and which companies are involved in enacting it.

In a choreography-oriented WfMS, the control over a workflow instance is distributed.
Therefore, the documentation of the remote enactment becomes crucial. Since the
foundation of each Business to Business (B2B) interaction is a contract [71], the records
about the distributed enactment of a workflow instance are the only basis for contract
verification. This documentation of the distributed enactment of a workflow instance
must be indisputable and accepted by all choreography participants [13]. It can then
be used to enforce the contract of a choreography. Based on this, a process owner can
penalize a choreography participant in case of an incorrect execution of a task. At the
same time a company can claim payment from the process owner for the participation in
the enactment of a workflow instance.

To enable this kind of documentation, a choreography oriented WfMS must incorporate
an end-to-end verification mechanism for its enacted workflow instances. A feature like
this boosts the overall trust into the robustness of the choreography and the acceptance
of the overall cooperation.

In the unrelated field of digital currencies, one implementation approach already provides
a sophisticated mechanism to perform distributed documentation and verification. The
cryptocurrency Bitcoin documents and verifies its conducted payment transactions in a
distributed ledger, called the Blockchain [99]. Through cryptographic safety measures
the funds of a single actor are protected. In the process of paying another actor, both
parties must have undeniable proof that the correct amount of money was indeed sent.
The Blockchain itself is not maintained by a single financial institution but by a large
number of small and independent peers, called miners [5]. This boosts the trust in the
Blockchain as an independent institution.

Both choreography-oriented WfMSs and Bitcoin face similar challenges when performing
verification. The actors involved in Bitcoin transactions are all independent and mostly
even anonymous. Payment transactions which have been submitted must be permanent
and indisputable [85]. The companies involved in choreography enactment are also
independent, even potential competitors. At the same time, the performed tasks of a
workflow instance must be permanently documented in a distributed and trusted way.

3

1. Introduction

Therefore, the utilization of the Blockchain for choreography-oriented WfMSs appears
promising.

The goal of this thesis is to determine the suitability of the Blockchain to serve as trust
basis for distributed and indisputable runtime verification in the context of choreography-
oriented WfMSs. In order to achieve this, it is highlighted in which ways a Blockchain
can be utilized for choreography-oriented WfMSs. In addition, the prototype created
in this thesis is analyzed and compared to other already existing runtime verification
variants.

To accomplish this, different existing runtime verification variants are discussed in
detail. These runtime verification proposals are selected according to their relevance
for choreography oriented WfMSs. In addition to the discussion of existing runtime
verification proposals, the properties of different existing operating Blockchains are
described. The selection of the Blockchain has great impact on the development of a
Blockchain-based runtime verification prototype. A Blockchain may be specialized to
serve limited amount of use cases only. New implementations of Blockchains offer a
broader range of possibilities but have not yet been extensively reviewed.

Based on the findings of these two sections, a Blockchain-based runtime verification
approach is developed in this thesis. The characteristics of the developed prototype are
further evaluated in a functional comparison similar to the scientific contributions of
[8, 45, 88] and a performance analysis similar to the work of [70].

In order to highlight and discuss the functional differences between the found run-
time verification proposals and the prototype of this thesis, a functional comparison is
conducted. Different criteria which are crucial for the flexibility and acceptance of a
choreography-oriented WfMS are extracted from the findings of this thesis. The listed
runtime verification proposals are categorized by these criteria and discussed. The benefits
and trade-offs are highlighted and compared. Through this analysis a positioning of the
proposed prototype in respect to other already existing prototypes can be defined.

The performance analysis aims to determine the runtime overhead of the proposed
prototype. When utilizing runtime verification in a choreography-oriented WfMS, this
mechanism might impact the overall execution duration. First an optimal baseline for
the average verification-less execution duration is established. These results are then
compared to the execution duration of runtime verification enhanced workflow instances.
This provides a good estimate of the impact of the prototype on the execution duration. It
is further evaluated and discussed which components of the runtime verification prototype
have the greatest responsibility on the produced impact and why.

The remainder of this work is organized as follows: Section 2 describes the different
approaches to WfMS architectures and how workflows are currently monitored. Fur-
thermore the concept of Bitcoin and its operated Blockchain is explained. The research
challenges of this thesis are defined in Section 3. Section 4 outlines the motivational
scenario this thesis operates on. Different Blockchain implementations and variants of
runtime verification are described in Section 5. This includes the Blockchain-based run-

4

time verification proposal of this thesis. Section 6 provides a functional comparison on the
listed runtime verification proposals of the previous section. Furthermore, a performance
analysis is conducted for the proposed prototype. At last, Section 7 summarizes the
proposed prototype and the findings of the evaluation.

5

CHAPTER 2
Related Work

2.1 Workflow Management Systems

2.1.1 Introduction

The enactment of workflow instances must be managed by WfMSs. Different variants
of workflow compositions, which categorize WfMSs, are described in Subsection 2.1.2.
In Subsection 2.1.3 and Subsection 2.1.4, the individual benefits and drawbacks of the
centralized WfMS approach and the decentralized WfMS approach are outlined.

2.1.2 Methods of Service Composition

Classic approaches of WfMSs depict the instance execution engine as a central component,
responsible to coordinate the control and data flow of the running instances [95]. It then
becomes the single contact point for all instances where messages are sent to and from
[84]. Recent scientific approaches propose a different solution where multiple services
communicate directly with each other and share this coordination responsibility [2, 36].
The contrary viewpoints can also be described with the methods of orchestration and
choreography [76]. These two methods originate from the concept of service (or workflow)
composition [93].

Orchestration

Orchestration prescribes the usage of a central coordinator which oversees the whole
execution. This coordinator calls the services in the correct order and forwards the
results. The services involved in the composition do not have any information about
the overall orchestration, they may not even be aware if they are part of one. Business
processes and their workflows which solely are in the control of the same organizational
entity (e.g. pool in BPMN 2.0) can therefore be defined as examples of orchestrations

7

2. Related Work

[95]. A classic centralized WfMS is an execution engine for orchestrations. An example
business process which is also an orchestration is illustrated in Figure 2.1.

O
rg

an
is

a
ti

o
n In

te
rn

al

U
n

it
 #

1
In

te
rn

al

U
ni

t
#2

Activity A Activity B

Activity C

Activity D

Figure 2.1: Business Process modeled as Orchestration

Choreographies

Alternatively compositions can be described as choreographies [95]. In this method a
composition is realized through the collaborative effort of different independent actors
(e.g. multiple pools in BPMN 2.0) and their services. There is no central controlling
entity. Diagrams describing a choreography focus on the interaction of the actors and
services. Instead of communicating through a central WfMS, either the involved actors
or their services directly communicate with each other in a P2P fashion.

Even though many scientific contributions describe the great robustness and the scalability
potential of this method [75, 77], it also creates a number of challenges. It increases the
responsibility of the individual actors and their individual services. They must have at
least partial knowledge about the globally agreed choreography. Services must know
where to expect which kind of messages from and where to forward their generated results
to. Each one must be able to react to unexpected events and adapt the choreography
correspondingly.

Implementing an execution environment which is flexible enough to support the enactment
of choreography-oriented process modells is a challenging task. Different scientific
contributions address this topic by proposing prototype architectures for execution
engines [2, 58]. To the best of our knowledge there currently exists no commercial WfMS
which supports full workflow choreography. The modelling notation for this method has
also not been standardized yet. Different proposals like WS-CDL [90], BPEL4Chor [32] or
the choreography enactment part of BPMN 2.0 [72] have not yet found broad acceptance
[9]. An example business process modeled with distributed control is illustrated in
Figure 2.2.

8

2.1. Workflow Management Systems

O
rg

. A
O

rg
. B

O
rg

. D

O
rg

. C

Activity A Activity B

Activity C
Activity D

Activity E

Figure 2.2: Business Process modeled as Choreography

2.1.3 Centralized Approach

Some of the most important characteristics in BPM are reusability and maintainability.
Centralized WfMS benefit from increased flexibility. In such systems there is only one
controlling entity. The WfMS is in full control of scheduling and resource allocation.
Furthermore, tight monitoring can be implemented in order to provide a global and very
detailed overview of the state of the running instances [50]. Following this description, a
centralized WfMS is an execution engine for service orchestrations.

On the downside many argue that centralized WfMSs do not scale well [75, 77, 84]. Since
those systems only have a single coordinator, they become a bottleneck. Messages as
well as input and output data have to be routed through the central coordinator.

Additionally, it is sometimes not possible to cover every activity within a single company.
This division of labour forces companies to enter inter-organizational cooperation with
partner companies [11, 71, 86, 94]. Such cooperation would be suited to be modeled
as a choreography but can also be modeled as an orchestration. In the later case one
company calls services of other companies only when needed. This can be referred to
as subcontracting. It suffers from the same bottleneck problems as intra-organizational
orchestration [98]. An example business process involving subcontracting is illustrated in
Figure 2.3.

2.1.4 Decentralized Approach

Decentralized WfMSs aim to enable the distributed management of workflows. This means
a workflow is co-managed by a set of different software systems. Such co-management can
either take place on the service level or on the enterprise level. These systems can be seen
as an implementation for the service choreography approach. They can be implemented
on two different levels.

On the service level, the choreography takes place entirely between services [16, 35, 92].
The management responsibility is assigned to the involved services. Services communicate
directly with each other in true P2P fashion. Co-management on the enterprise level

9

2. Related Work

O
rg

. A
O

rg
. B

Activity A Activity B

Activity C

Send Receive

Figure 2.3: Business Process modelled as Orchestration with Subcontracting
Source: Adapted from [86, 98].

places the management responsibility at the involved companies [36, 93]. The message
exchange between the companies is regarded as the essence of the choreography. These
two viewpoints enable different design variants for decentralized WfMSs.

The majority of available process models are designed using the orchestration method [51].
In order to meet increasing demand, companies require such orchestrations to be executed
in a distributed WfMS. The conversion of these orchestrations can be challenging. It
is even possible that they fail if modelled constructs are not suited to be executed in a
distributed fashion [96]. The goal is to convert a orchestration oriented process model into
independent fragments enriched with additional control logic. These fragments can then
be executed independently across the decentralized WfMS. There is no common technique
to achieve this transformation but various proposals have been made [3, 15, 51, 64].

The distributed approach creates lots of opportunities in comparison to the centralized
one. By distributing control and enactment, scalability and robustness are improved
[58]. There is no single point of failure or messaging bottleneck. Instead of relaying the
messages through a single coordinator they are now sent directly between the cooperating
software systems. On the other hand new challenges are created through this approach.
Cooperation creates an increased demand for coordination, in economic sciences also
referred to as transaction cost [80]. It is the task of software systems like WfMSs to
keep these transaction cost as low as possible by automating coordination efforts and by
providing means for distributed information sharing.

2.1.5 Summary

Orchestration-oriented workflow engines have reached their limit in terms of scalability
and cooperation. These engines are not suited for large numbers of instances and

10

2.2. Monitoring of Workflow Enactment

Business to Business (B2B) cooperation. Scientific contributions propose decentralized
choreography-oriented engines as the solution. This research is still in its infancy. There
are no commonly agreed WfMS designs, and therefore no mature implementations. The
main challenge is the decentralized coordination between independent actors.

2.2 Monitoring of Workflow Enactment

2.2.1 Introduction

WfMSs have to monitor the instances and services operating within their system. The
data collected is required to assess the health of the overall system, to react to arising
problems and to further optimize the system in real-time. This real-time feedback process
is also referred to as business activity monitoring (BAM) [50].

The remainder of this section is organized as follows: Subsection 2.2.2 provides an overview
about the general feedback loop of monitoring systems. Complex event processing, a
prominent implementation of the feedback loop, is described in Subsection 2.2.3. Finally
Subsection 2.2.4 describes the specific challenges and possible solutions for monitoring of
B2B choreographies.

2.2.2 The Monitoring Feedback Loop

There is a multitude of data that can be collected in a WfMS. Important artifacts for
monitoring are the enacted workflow instances, the services they utilize and the servers
those services operate on. In a first step basic facts have to be recorded. Workflow in-
stances and services are software constructs, therefore only logical data may be monitored.
Facts regarding those two types of artifacts are for example the start timestamp and
the end timestamp of a workflow instance or a service call. For the provisioned servers,
physical data like RAM or CPU usage can be recorded.

The next step in monitoring is the aggregation of the collected facts into more complex
data sets [81]. Metrics specify how basic facts can be used to produce such metadata. For
instance the start timestamp and end timestamp can be used to calculate the workflow
instance duration. A number of CPU usage observations can be used to calculate the
average CPU usage over a specified timespan.

In order to react upon this vast amount of information, companies specify key performance
indicators (KPIs) [29]. Those KPIs are calculated from aggregations of large amounts
of facts and metadata. An example for a KPI is the average duration of all workflow
instances. A change in a KPI is the first indicator of possible problems within a WfMS.
The operating software components of a WfMS can further analyze the related metrics
and facts of an affected KPI. When the problem sources are identified, the system is able
to react to them. This way the feedback loop is closed.

11

2. Related Work

2.2.3 Complex Event Processing

The monitoring of WfMS, enabling the previously mentioned feedback loop, are summa-
rized under the term BAM [50]. One approach of realizing such system is complex event
processing (CEP).

Observed facts are published as events. It is the core element of CEP [62]. When
something relevant is observed in a sub-system, a so called event generator is responsible
for creating and publishing a new event [50]. Through this approach the recorded facts
are saved in a standardized event format already enriched with identification, time and
category information. How these generators are implemented is not relevant for the
concept of CEP.

Through the definition of aggregation mechanisms (i.e. metrics), sometimes also referred
to as rules, connected basic events (i.e. basic facts) can generate additional complex
events [43]. The standardized format of events combined with additional meta information
enable expressive and flexible rule definition languages. Through this, companies can
define and manage large sets of rules for their system landscape. There is a basic multi-
level architecture which describes common implementations of CEP [50]. On the lowest
level reside the event generators. As mentioned, those generators can be implemented in
various ways. They may observe data from physical sensors and servers or non-physical
software systems. In order to observe the software constructs relevant in a WfMS (e.g.
workflow instances and services) different approaches with varying invasiveness exist.

Most events of a WfMS are generated at the utilized services. Therefore event generators
are likely to be placed in the same runtime environment or the same server as a service.
The most invasive method of creating an event generator is integrating it into a service
itself. Less invasive approaches monitor information about a service from the outside. By
observing a service’s process behaviour, its related databases, its related communication
and its generated log files a process generator can anticipate the status of a service
without being actually integrated [29, 50].

Event processors reside on the second level of the CEP architecture [50]. Those software
components are responsible for collecting basic events and generating complex events
according to defined rule definitions. They represent the logical core of the whole CEP
system and may themselves again be separated into different processing agents performing
different operations[62].

The desired KPIs of a company can be represented as complex events. Therefore as a
result from the second layer, the KPIs of the companies are omitted to the next layer.
The third and last layer consists of the event consumers [81]. These are systems which
require KPIs as input, for example managing dashboard and most important the (possibly
distributed) workflow coordinator component of the WfMS.

Each of the described components from the different levels of the CEP architecture can
be operated on individual physical machines. The CEP itself therefore can be deployed
as a distributed system and is very scalable [50].

12

2.2. Monitoring of Workflow Enactment

2.2.4 Monitoring in B2B Choreographies

As previously described, CEP is suited for the application in distributed systems. But at
the same time it is designed for monitoring within the organizational boundaries of a
single business entity. During the workflow enactment of B2B scenarios new challenges
have to be faced. Companies strive to externalize support activities through cooperation,
they want to be able to participate in flexible and short term cooperation [11, 71, 86, 94].
Internal WfMSs and BAM systems should be extended to be used in such cooperation
with as little effort as possible [78].

While workflow choreographies are enacted remotely companies still require monitoring
information about them. At the same time, when locally hosting a remote workflow
instance from another company, no insight about internal system states and events should
be exposed to the remote company [71, 94]. Due to the lack of mature choreography
execution environments, there currently also exist no mature choreography monitoring
techniques [9]. Only a number of scientific proposals address these challenges. The
remainder of this section describes a selection of them.

[71] cover the first step of cooperation, namely the contract negotiation. In order to form
flexible, short term cooperation with a legal foundation, autonomous software agents must
be able to agree on simple legal contracts on behalf of their companies. While important
aspects of such contracts can be defined in Service Level Agreements (SLAs), other
aspects still require standardization. [71] propose a markup language which supports the
definition and exchange of such extended sourcing contracts. Besides simple SLAs, other
organizational sections, like monitoring, are included in such contract. In the monitoring
section it is defined what monitoring information should be provided by which participant
and through which kind of interfaces the information is shared.

In addition to contractual definitions, monitoring in distributed workflow enactment
must also be defined during the modelling of the service choreographies. [9] describe this
aspect in a semi-static choreography scenario. As in the previously described work, they
argue that the first step in cooperation is a contract. But before the actual enactment,
participants also have to agree on a choreography diagram which serves as a common
definition of the choreography. Monitoring aspects have to be taken into account in such
diagram.

They claim that BPMN 2.0 enables the definition of choreographies but does not provide
sufficient means to define monitoring for them. “BPMN [. . .] already supports including
monitoring injection points with its monitoring and auditing element. However [. . .] the
specification claims details are out of scope and are left to the implementing BPMN
engines.” [9] Therefore they extend these monitoring injection points to support chore-
ographies. Most importantly they address the issue of information correlation in cross
organizational monitoring through specific identification schemata.

BPEL4Chor is a WS-BPEL-based scientific choreography definition language. [94] propose
an event-based choreography monitoring prototype through the definition language
BPEL4Chor. They aim to create a choreography wide BAM system. It is argued

13

2. Related Work

that companies run their own intra-company WfMSs and BAM systems. As soon as
outsourcing decisions are made, normal processes suddenly become B2B processes. As a
common example they describe basic shipment processes.

In a centralized WfMS the enacted workflow instances are all managed by the same
central coordinator component. Therefore all instance-related events can be created by
simply placing an event generator at this central component. In the case of a distributed
WfMS, realized as a company oriented choreography, each monitoring components of
each company has to employ an event generator [94].

The monitoring aspects of choreographies have not yet been integrated into the language.
Therefore, [94] extend BPEL4Chor with an event-oriented XML-based monitoring agree-
ment. In this document, each cooperation partner defines the events she is willing to
share. To address the privacy concerns of the participants, events can only be defined
based on the publicly available choreography. How each participant maps the public
choreography activity to internal processes remains hidden.

The challenge of event correlation is also addressed by [94]. Through common agreement
on IDs, events can be correlated to specific activities and choreography instances. In order
to form a choreography wide BAM system, the local BAM system of each participant is
provided with the negotiated monitoring agreement document. Through this definition
each system knows which basic events to record and which complex events to calculate.
The document also specifies how the events should be published.

BAM systems not only aim to record events but also to enable WfMSs to adjust
accordingly. The main goal is not to react to occurring SLA violations but to avoid them
altogether by taking actions in advance. This violation prediction becomes especially
challenging in the loosely coupled environment of B2B choreographies. [17] propose a
prediction mechanism specialized for choreographies. For their prototype they utilize the
choreography runtime from the CHOReOS EU project [18]. This runtime is able to enact
QoS-aware choreographies, modelled in BPMN with the extension Q4BPMN. According
to [17] choreography SLAs cannot be defined too specific because of the abstract and
unspecific nature of B2B choreographies. Therefore their proposed prediction mechanism
is able to extract implicit unspecified prediction rules during the enactment itself when
opaque activities are mapped to concrete services.

2.2.5 Summary

WfMSs assess the healthiness of their instances and services through monitoring. Based
on the collected data, WfMS react on problems and issue optimizations. CEP is a scalable
monitoring technique, capable of handling vast systems. Events are collected from various
sources and aggregated into interpretable KPIs. In B2B WfMSs, participants require
monitoring for remote workflow instances. At the same time no internal information
should be exposed. Therefore, B2B monitoring has to be explicitly addressed during the
negotiation, the modeling and the implementation of a choreography.

14

2.3. Bitcoin

2.3 Bitcoin

2.3.1 Introduction

The success of currencies and the payment transactions conducted with them always
have been depending on trust. Instead of exchanging one good for another, it can be
purchased through the transfer of tokens i.e. money. Another requirement for currencies
is the limited supply of its tokens [99]. In order to retain value, it must not be possible
to duplicate existing money tokens. Furthermore, the production of new tokens must be
a controlled process.

Governments issue currencies to their citizens. Their federal banks control the production
and distribution of fresh money. In addition great effort is conducted to prevent forgery
by applying security features. Both these measures ensure the limited supply of modern
physical money. Governments have to ensure and facilitate the trust into their currency
through their financial and fiscal politic. The general healthiness of a state’s economy is
used as an monitor for the success of these politics [4].

Digital money must be handled differently than physical money. Since it can easily be
replicated, the exchange of digital tokens is not a practical replacement for physical
money. Known as the double spending problem, a malicious trader could copy digital
money tokens and spend them multiple times for different transactions [85]. The amount
of money one person holds is recorded in a ledger. The ledger must then be managed by
a trusted institution. A digital payment transaction is simply conducted by reducing the
balance in one person’s ledger while increasing the balance of another person’s ledger.

This puts great power into the hands of the book keeping institution. Customers have
to fully trust such institutions to keep their accounts secure, to enact the transactions
correctly and to keep their data anonymous [99]. In practice, only a small group of big
financial institutions carry out most of the digital payment transactions over the internet
today [44]. The performance of these institutions is not flawless. There exist for example
a multitude of reports about problems and lost money from customers of Paypal [44].

The cryptocurrency Bitcoin aims to solve these mentioned problems by utilizing decen-
tralisation and cryptography technology. From its original proposal in 2008 [69] to the
present day the interest in Bitcoin has been growing steadily. It promises to become the
first digital currency which truly reflects the properties of physical money. Like cash in a
person’s wallet, a Bitcoin can only be spent by its owner and cannot be duplicated. The
digital storage, book keeping and validation of payment transactions is not controlled by
a small group of big financial institutions, but by a vast number of smaller independent
actors. The owning as well as the spending of a Bitcoin can be conducted completely
anonymously. Though far away from perfection, Bitcoin is able to fulfil all of these
features to a large extent [99].

The adoption has been slow yet steadily increasing [99]. At the same time the value of
Bitcoin, measured in its exchange rate to fiat currencies, has been very volatile. Trust

15

2. Related Work

into the currency itself is derived from the robustness of its technological foundation,
which withstood every breaking attempt till the present day [99].

The smallest unit in the Bitcoin currency is not the Bitcoin (BTC) itself, but the
Satoshi (SAT). One Bitcoin can be split into one hundred million Satoshis (1BT C =
100, 000, 000SAT). This way the cryptocurrency can adapt to increasing value and an
increasing user base [24].

The remainder of this section is organized as follows. How a Bitcoin transaction is
performed is described in Section 2.3.2. The distributed ledger management system,
which is the core innovation of Bitcoin, is explained in Section 2.3.3. Finally in Sec-
tions 2.3.4 and 2.3.5, the open challenges as well as possible enhancements and variants
of Bitcoin are outlined.

2.3.2 Transactions

The Bitcoin equivalent to an account is called Bitcoin address. It is a identification
string created from the hash of a public key [5]. Therefore it is necessary to create a
private/public key-pair for every new address. The private key then commonly serves as
the access mechanism for funds associated with the address. Every participant of the
network can easily create as many Bitcoin addresses as desired. Payment transactions
are issued between Bitcoin addresses.

A Bitcoin itself is represented as a chain of of transactions [69]. A common transaction is
composed of an input section and an output section. The owner of a Bitcoin has access
to the output of the latest transaction in which the corresponding coin was used. In order
to spend it, the owner has to issue a payment transaction in which the output of the
previously latest transaction becomes the input to the new transaction [85]. The payer
specifies the new owner of the Bitcoin by directing the output of the new transaction to
a specific Bitcoin address. Since the output of the previously latest transaction now has
been used, it is considered spent and cannot be used as input for another transaction.
After creating the overall transaction information, the data is signed by the private key
of the payer’s bitcoin address and broadcasted to the Bitcoin network [34]. Since Bitcoin
can be split into Satoshis, transactions usually contain fractions of Bitcoins.

A standard Bitcoin transaction can have multiple input and output parts defined in its
corresponding sections [99]. Thus, the input section of a single new transaction can be
composed of multiple parts referencing the outputs of multiple old transactions. Likewise
can the resulting amount of a transaction be split into multiple output parts. These
output parts can then be distributed to multiple different Bitcoin addresses. This enables
the payer to pay multiple people at once and receive change a the same time. Change
becomes necessary since one output part of a transaction can only be consumed as a
whole. Thus an output part of a transaction cannot be partially consumed. If the input
of a transaction surpasses the desired payment value, one output part of the transaction
can point back to an address of the Bitcoin’s previous owner thus returning the change.
Figure 2.4 outlines the output to input relations of standard transactions.

16

2.3. Bitcoin

Transaction #3

Input Section

in-Part#1

in-Part#2

Output Section

out-Part#1

out-Part#2

Transaction #1

Input Section

in-Part#1

in-Part#2

Output Section

out-Part#1

Transaction #2

Input Section

in-Part#1

in-Part#2

Output Section

out-Part#1

out-Part#2

Figure 2.4: Output to Input Relation in Bitcoin Transactions

Bitcoins are created through special coinbase transactions which require no input. These
transactions represent the start of a Bitcoin chain. Coinbase transactions are submitted
during the mining process (see Section 2.3.3) as incentives [5].

The technical mechanics of a standard transaction are as follows. Output parts are sums
of Bitcoin money paired with small scripts written in a custom Bitcoin scripting language.
These scripts guard the funds associated with the output. In order to access an output
part, the corresponding script must be supplied with a parameter that renders its result
to true [99].

The most common script requires a signature as input, created from the payee’s Bitcoin
private key. A payer can very easily create this script since the payee’s Bitcoin address
and its associated public key are available. Only the holder of the corresponding private
key is able to create the required signature, thus making the output only accessible to the
owner of the destined Bitcoin address [5]. An input part of a transaction only contains a
reference to its corresponding originating output part and the necessary parameters to
render the script of the output to true. Through this mechanism, everybody receiving
a broadcast transaction can verify if the transaction is really authorized to access the
specified outputs since all necessary informations are available. Figure 2.5 illustrates the
common access mechanic for Bitcoin funds.

17

2. Related Work

out-Part#1 of Transaction #1

1,034 BTC
To access this output provide signature
that matches public key e09e18717

Value Script

in-Part#1 of Transaction #3

Tx#1, op#1 7bbc45a7be80b6bf52334a0b2d0d85b45919eae...

Reference Script

Figure 2.5: Output Access Mechanism in Bitcoin Transactions

After the assembly, the transaction data is signed by the payer and broadcasted to the
network. There exist other protocol variants where also the signature of the payee is
required, thus requiring the agreement of both actors before issuing a transaction.

2.3.3 The Blockchain

One of the most important innovations of Bitcoin is the Blockchain mechanism. It enables
the distributed, secure and undeniable book keeping of the Bitcoin transactions. In the
Bitcoin system, all issued transactions are public [44]. This means everyone can fetch the
historical transaction data and determine how much funds are associated with certain
Bitcoin addresses and what payment transactions have been conducted. This is in fact a
desired functionality. Anonymity is achieved through the abstraction of Bitcoin addresses.
This ensures privacy while all transaction data is publicly available. It is advised to
create a new Bitcoin address for every new transaction in order to increase anonymity
even more.

As described in Section 2.3.2, the access to funds is stored in transaction outputs protected
by access scripts. The commonly used script ensures that only the owner of the payee’s
Bitcoin address can access it. Therefore, a malicious trader is not able to access the
funds of other people [99]. I.e. it could easily be verified that a newly created transaction
is not valid since the scripts guarding the used funds would not render to true. Instead a
malicious trader only has the possibility to use a personal transaction output multiple
times, i.e. to spend the same Bitcoins over and over.

To avoid this problem, the public and distributed book keeping mechanism of Bitcoin
becomes necessary. The Blockchain provides an unchangeable history of all issued Bitcoin
transactions from the past. This way, it can be verified if a Bitcoin has been already spent
thus denying the double spending of funds. Furthermore, timestamping of newly issued
transactions is enabled. When a new transaction is broadcasted to the network, it is first
verified and then added as a new record to the transaction history. Last but not least, the
Blockchain also enables the controlled creation of new Bitcoins, thus slowly increasing the
amount of existing Bitcoins until a certain threshold [85]. The operation and maintenance
of the Blockchain is performed by a large set of individuals and companies. In the Bitcoin
system, those individuals are referred to as miners [5].

As the name points out, the Blockchain consists of a series of interconnected data blocks.
Each block contains a number of transactions as well as a link to the previous block,
incentive information and a proof of work [5]. The most crucial feature of the distributed

18

2.3. Bitcoin

Blockchain is the synchronization between the miners. It must be ensured that all
participants of the network agree on the same Blockchain i.e. the same transaction
history. To perform a double spending attack, a malicious trader would have to rewrite
the Blockchain in order to delete or alter an old transaction containing previously spent
Bitcoins.

To address this, the creation of new blocks requires a proof of work. In order to create a
new block, a miner has to solve a computationally difficult problem. It should require
some minutes to solve on up-to-date hardware. First, a miner collects new transactions
which have been broadcasted throughout the network. The previous block in the chain is
hashed. This hash is stored as link in the new block. As a reward for mining, the miner
is allowed to add a coinbase transaction with a specified amount of Bitcoins to the block
[85]. At last the block contains a nonce i.e. a field which is iterated in order to solve the
problem. The miner must ensure that the hash of the newly created block has a specified
number of leading zeroes [99]. This problem is essentially solved through try-and-error.
After each attempt the nonce is iterated until a match is found. A newly created block is
then broadcasted to the network.

The different miners compete against each other. If a new block is broadcasted, all
miners first validate the contained transactions and then start mining on a new block
[99]. Miners show their approval of the validity of a block by accepting it as the new
head of the chain. The reward contained in each new block works as the incentive for the
miners to keep trying. Currently the reward is made up of newly created Bitcoins and a
percentage transaction fee. The number of newly created Bitcoins is determined by the
Bitcoin protocol and continuously decreasing. In the year 2140 no more new Bitcoins
will be created and the incentive will be made up from transaction fees alone [85]. To
address hardware improvements, the difficulty of the mining problem (i.e. the number of
leading zeroes) is periodically adapted.

If two new blocks are propagated at the same time, a conflict occurs. Every miner starts
working on the first received block but keeps the alternative block in memory. Now the
network is partitioned into two parts, mining on two versions of the Blockchain. By
following the simple rule “adopt the longest chain”, the conflict is resolved as soon as the
next block is created. Since the new block is placed on top of one of the two chains, the
tie is broken and the longer chain is chosen [99]. In this case, the other chain is discarded.

The validity of the Blockchain is therefore protected by the majority of the miner’s
computing power. A malicious trader that wants to rewrite the transaction history would
need to change the corresponding block in the chain and then recalculate all blocks which
have been added on top of the changed block. While doing so, the attacker would have
to out-race the entire network in order to create a chain longer than the valid chain. The
more blocks are placed on top of the changed block, the less likely the attacker is going
to succeed.

It is claimed that an attacker would require more than 50% of the networks total
computing power to conduct this attack [5, 44, 69, 99]. The double spending attack

19

2. Related Work

therefore is reduced to the so called 50% attack. This scenario becomes less likely the
more miners participate in the mining process. It is also argued that an attacker who
controls 50% of the network’s computing power would earn more money through staying
honest and collecting rewards than by double spending money [99].

2.3.4 Current Challenges and Proposed Solutions

There exist numerous challenges that Bitcoin has yet to solve. While not being perfect,
[99] points out that Bitcoin only needs to compete with other forms of digital payment
in order to be accepted. The rest of this section provides an overview about the most
pressing challenges of Bitcoin.

Scalability

The size of the Bitcoin network has been steadily increasing over the past years. Up
until now it was able to serve the increasing demand, but problems for future growth are
already emerging. Currently it takes about ten minutes for a new block to be created
[44]. In the worst case the payees have to wait the full timespan to get confirmation for
their transactions. Even longer if they require stronger assurances [85].

At the same time, the Blockchain is already a highly wasteful mechanism [99]. All miners
have to perform verification of published blocks and compete with each other in the
creation of new blocks. A vast amount of work is performed redundantly which wastes a
lot of energy. In addition to that, all broadcasted messages must be relayed repeatedly
to ensure that they cover the majority of the distributed network.

The maximum size of a Block is currently set to 1MB which limits the amount of
transaction that fit into it. This results in an approximate throughput of one transaction
per second (tps) [82]. For the required speed of a full-fledged global payment medium, the
transaction rate of credit institutions provides a good benchmark figure. Visa processes
on average 2, 000tps [21]. In order to increase the transaction throughput, Bitcoin must
either reduce the block creation time or increase the maximum block size.

Increasing the maximum block size would pose new challenges to miners. Since a complete
copy of the Blockchain is needed for in-depth verification, miners would have to handle
an increase in storage of the magnitude of TB per month. The verification of bigger
blocks requires more computing power. Both of these tasks introduce additional barriers
for new miners.

The worst consequence is the increased propagation delay. Bigger blocks also take longer
to propagate [31]. This significantly increases the likelihood of conflicting blocks which
reduces the resilience to double spending attacks and the overall efficiency of the network
[31].

In order to reduce the block creation time, the required proof of work would have to be
reduced in complexity. This approach suffers from similar problems like the previous one.

20

2.3. Bitcoin

A reduced proof of work results in reduced security against double spending attacks and
increased block creation results in more conflicting blocks.

The transmission speed of the network cannot be increased since Bitcoin operates on an
overlay with independent members. Conflicts through propagation delays are therefore
unavoidable. Approaches addressing the scalability problem therefore focus on making
the Blockchain more resilient to synchronization conflicts.

In their work [82] propose a change to the Bitcoin protocol, named GHOST, and
evaluate its resilience during higher transaction throughput. They propose an alternative
conflict resolution rule. When conflicts occur, miners should Greedily adopt the Heaviest
Observed Sub-Tree. The approval of blocks is demonstrated by miners through extending
them with new ones. The GHOST protocol takes advantage of this and associates weight
to blocks. A block’s weight is defined through the number it is extending blocks (including
forks). The chain with the heaviest sub-tree is chosen as the valid one.

Strategic Behaviour

Miners perform their work in order to collect a reward. But the Blockchain’s incentive
mechanism is designed as a “winner takes it all” mechanism [44]. All miners compete
against each other, but only one miner is rewarded. Miners thus only receive an irregular
income. One logical conclusion is to maximize those profits through strategic behavior.

Specialized hardware is used for the hashing problem, in order to gain an advantage
[14, 99]. Common CPUs where quickly replaced with more potent GPUs. Nowadays,
miners use specialized chip equipment which is specifically designed to perform hashing
operations. This equipment of course is much more expensive than regular hardware.
This leads to factual entry restrictions to the group of Bitcoin miners.

Miners form loose cooperatives, called mining pools, and share the collected profits [85].
This changes the irregular and high income to a regular and low income which reduces
the overall risk for all participants.

Strategic delaying is another strategy to gain an advantage, especially for bigger pools
[34, 99]. It has been observed that sometimes new transactions are not relayed to other
participating miners to hinder others to collect the transaction fee of those transactions.

Mining pools have become so popular that almost every miner is member of a pool. Thus,
the mining of Bitcoins is again fragmented into a small number of big collectives. Some
pools repeatedly came close to cross the dreaded 50% computing power threshold [85].

In summary it can be stated that the economies of scale in the mining process reduce the
overall decentralization of the network which threatens the underlying goal of Bitcoin.

Privacy

Through the abstraction of Bitcoin addresses, the trade with Bitcoins should be private.
But in practice this privacy is weakened, especially for individuals. Since the complete

21

2. Related Work

trading history is public, an account must be exposed only once in order to follow all
trading through it. Even if Bitcoin addresses are used only once, it is possible to deduce
information from it [65].

This weak point starts at the Exchanges. If Bitcoins are not acquired through mining they
need to be purchased at an Exchange against fiat currency. If not carefully conducted,
one has already revealed the own identity at such Exchange, making it very easy for the
corresponding company to follow all traffic through it [44].

To further improve privacy, various proposals have been made. Mixing services aim to
harden the traceability of addresses and transactions by submitting original transactions
as many smaller ones [27]. An original transaction is then hidden behind a convoluted
mix of many different subsequent smaller transactions between newly generated addresses.
The main benefit of this approach is that it requires no changes to Bitcoin.

Other proposals suggest protocol changes to improve privacy through advanced cryp-
tographic methods. ZeroCoin is such an approach [66]. It prevents the traceability of
transactions through zero-knowledge proofs and one-way accumulators. [7] further im-
prove this approach by hiding the transaction amount and the involved Bitcoin addresses.

Legal

Up until now, Bitcoin has not yet attracted enough attention to be relevant for one
nation’s fiscal politics. Therefore, there are still very few legal foundation on how to
treat the possession of Bitcoins [53]. Through Bitcoins design, governments will have
significantly less control in comparison to fiat currencies. While this is one of the reasons
Bitcoin was created, regulatory institutions could view this as a problem. This could
lead to the general prohibition of Bitcoin.

The Bitcoin market is still relatively small and not controlled by central institutions.
Different hypes around the system repeatedly cause the value of Bitcoin to greatly
increase and decrease in short spans of time. While this was not enough to hinder the
further growth of Bitcoin, it currently presents problems for practical sale applications
like refunds [44].

Design

While the Bitcoin concept introduced lots of robust new inventions, it still contains some
design flaws that cause problems.

As an decentralized and open source system there is no strictly enforced update policy.
Still, all participants have to use compatible versions of the Bitcoin software. This makes
the introduction of updates very difficult [99]. To facilitate continuous development,
two version of the Bitcoin Blockchain are operated. A testing realm, called testnet, is
operated with a block creation time that is reduced by 50% and relaxed requirements for
published transactions. Testnet Bitcoins have no real world value and can be acquired

22

2.3. Bitcoin

for free by developers at so called testnet faucets. The operative Blockchain of Bitcoin
where the real currency is traded is referred to as mainnet.

Incentives in the block creation process motivate miners to create new blocks. There
are also other tasks which are vital for the system, but are not rewarded. Especially
for the underlying communication tasks, critical in a decentralized network, there are
currently no rewards for the participants [41]. This affects one of the most crucial tasks,
the forwarding of broadcast transactions and blocks. As described in Section 2.3.4, this
even leads to opportunistic behavior.

Since the output of a transaction is protected by a private/public key-pair, the loss of a
corresponding private key is fatal. This way Bitcoins become unusable [14]. Since there
will always be only a finite number of Bitcoins by design, this could lead to the slow but
steady reduction of the overall volume of Bitcoins.

2.3.5 Alternative Usages

The Bitcoin protocol as well as its provided software is open source. Through this emerged
many adoptions of the technology. Some introduce new variants of cryptocurrencies
with changed functionality. Others utilize Bitcoin for completely new use cases. The
adoptions can be categorized into approaches that build on top of the Bitcoin Blockchain
and approaches that require the operation of a separate Blockchain. The rest of this
section provides some examples of these adoptions.

Numerous alternative digital currencies already exist. Those so called altcoins often
deviate only slightly from Bitcoin by replacing specific features. Most altcoins require
their own Blockchain.

Litecoin [56] introduces an alternative hashing algorithm in order to break the dominance
of specialized hardware during mining. Furthermore, the block creation rate is increased
to approximate 2.5 minutes. Litecoin is specifically suited for large numbers of small
value transactions.

In order to reduce the wastefulness of the mining process, Primecoin [52] adds some
intrinsic value to it. The proof of work mechanisms of Primecoin involves the discovery of
long chains of prime numbers. These chains can also be used in number theory, regardless
of the mining outcome.

A completely different usage of the Bitcoin technology is the Namecoin [48] project. It
provides a decentralized key-value store based on the Blockchain mechanism. On top of
this store, Namecoin operates a decentralized Domain Name Service (DNS).

The Ethereum [37] project enhances the Bitcoin technology even further. It extends the
Bitcoin scripting language and makes it Turing complete. This enables the creation and
distributed execution of arbitrary contracts on top of Ethereum’s Blockchain.

A less invasive alternative usage is the Originstamp [42] approach. It provides a decen-
tralized general purpose timestamping service. Unlike the previous two approaches, this

23

2. Related Work

project operates on top of the Bitcoin Blockchain. It directly stores submitted hashes in
the Blockchain by converting them into Bitcoin addresses. This service can be accessed
through an open Web Service or an API.

2.3.6 Summary

The digital currency Bitcoin aims to incorporate the properties of physical money through
cryptographic measures. Bitcoins cannot be duplicated or forged, they can be spent
anonymously and they are not controlled by any financial institutions. Instead of digital
tokens, Bitcoins are managed in an public distributed ledger, called the Blockchain.
The Blockchain is maintained by a large number of independent peers, called miners.
Distributed consensus is achieved through the majority voting of the available computing
power. When issuing a payment, a payer submits a transaction to the mining network that
transfers a Bitcoin’s ownership. The transaction is then persisted into the Blockchain.

While being a successful and resilient cryptocurrency, Bitcoin faces a number of of
challenges, the most difficult being scalability. In order to become a global cryptocurrency,
the transaction throughput of Bitcoin has to be increased. Due to incorporated security
measures in Bitcoin’s design, this is currently not possible.

There exist lot of variants to the main Bitcoin approach that create alternative imple-
mentations of the cryptocurrency. The Blockchain itself is also utilized in other projects
which are completely unrelated to cryptocurrencies.

24

CHAPTER 3
Research Challenges

Current orchestration-oriented WfMSs suffer from limited scalability and cooperation.
The transition to choreography-oriented WfMSs is regarded as the solution to these
challenges. The distribution of management for workflow instances across equal par-
ticipants removes performance bottlenecks and single points of failure. Furthermore,
choreography-oriented approaches are suited to define cooperation between independent
companies.

At the same time, choreographies create new challenges. B2B choreographies have
increased requirements for coordination and trust. The decentralized enactment requires
companies to hand over the control of their workflow instances to remote partners. Process
owners may not know which partners participate in the enactment of a choreography
instance. In order to encourage companies to join choreography-oriented partnerships,
different mechanisms to facilitate trust between the partners are needed. The formed
cooperation contracts need to be verifiable in order to make them enforceable.

Therefore, companies which participate in choreographies need to be able to collect
trusted information about their remotely enacted workflow instances. At first glance a
monitoring system seems suitable to address this challenge. CEP-oriented monitoring
systems can record logging data and distribute it to the relevant peers. Furthermore,
these monitoring systems can be enhanced to include correlation-ids which enable the
cross-organisational correlation of events [12, 94].

Still, this monitoring approach is not suited to ensure end-to-end runtime verification.
Though CEP events can be enriched with security meta-data, certain security issues
remain. Each CEP system operates under the control of one of the choreography’s
participants and can not be regarded as a trusted system for the others. Events are
commonly broadcast asynchronously, therefore messages may be lost, intercepted or not
sent at all. There is no shared agreement between the participants on which events did
occur and which did not. CEP-oriented monitoring systems are therefore not suited to

25

3. Research Challenges

serve as trusted runtime verification system. A more detailed explanation about this
matter can be found in Section 5.2.

Runtime verification in choreography-oriented WfMSs has to be provided through dedi-
cated mechanisms. Process owners must be able to trace the execution path of a workflow
instance across the boundaries of the different participating companies. At the same time,
a company has to be able to proof its participation in a choreography. The collected
information must be trustworthy enough to serve as legal basis for contract enforcement.

In the unrelated scientific field of digital currencies, the cryptocurrency Bitcoin is utilizing
the Blockchain, a distributed ledger, for transaction verification. Similar to choreographies,
Bitcoin transactions take place between independent partners and must be secure enough
to be considered indisputable. Therefore, the Blockchain seems to be a promising
technology to created new approaches of workflow runtime verification. The Blockchain’s
applicability in this domain will be highlighted in this thesis.

3.1 Research Challenges

At first glance, both choreography-oriented WfMSs and Bitcoin require similar verifi-
cation characteristics. Both systems must moderate between completely independent
participants. There is a strong emphasis on the fact that there is no central controlling
entity in the system. In the case of Bitcoin, no central financial institution is controlling
the cryptocurrency. Likewise, workflows which should be enacted as choreographies must
not be controlled by a single company.

Furthermore, both technologies control very sensitive data, making the security measures
of these systems critical features. The transfer of a Bitcoin from a payer to a payee
must be permanently recorded and the record itself must be valid and indisputable.
Equivalently, the handover of a workflow instance from one company to another must be
permanently and undeniably documented. Process owners must then be able to validate
this documentation. While there is no commonly agreed technique for choreography-
oriented workflow enactment verification, Bitcoin solves this challenges through the
Blockchain. To further investigate the applicability of the Blockchain in choreography-
oriented WfMSs, the following research challenges need to be resolved.

RC-1 How can runtime verification be performed in choreography-oriented
WfMSs by utilizing a Blockchain?
Operating a custom Blockchain is not reasonable. Instead, one of the existing operating
Blockchains must be chosen for the workflow enactment verification approach. This
selection must be done with great care. Each operating Blockchain is specialized for
certain use cases limiting its adaptiveness. Furthermore, the quality of the Blockchain’s
miner base determines its security strength. Only a few different variants of the Blockchain
are currently operated and accessible.

26

3.2. Evaluation Approach

RC-2 How does Blockchain-based runtime verification compete against ex-
isting scientific proposals in terms of performance and flexibility?
The characteristics of the proposed Blockchain approach must be evaluated and compared
to existing runtime verification approaches for workflow choreographies.

3.2 Evaluation Approach
In order to address RC-1, different variants to implement a runtime verification mech-
anism for WfMSs will be outlined. For the most promising approach, a prototypical
implementation will be provided.

RC-2 will be addressed in two parts. After an initial description of existing scientific
runtime verification proposals, a functional comparison between the discovered approaches
and the developed prototype will be conducted. The functional comparison will analyze
the flexibility of the listed approaches in respect to the requirements of choreography-
oriented WfMSs and the companies that use them.

In particular, the comparison will assess the suitability of the select proposals to handle
the unique characteristics of distributed B2B cooperation. Therefore, the term flexibility
is used to measure the capacity of a software system to deal with the dynamic nature
of workflow choreographies. A flexible runtime verification technique can be utilized for
different choreography-oriented WfMS prototypes and their use cases.

The second part of RC-2 will be addressed through a performance analysis of the proposed
prototype from RC-1. This evaluation is carried out similarly to the overhead analysis
described by [70]. During different workflow executions, which include the proposed
runtime verification, the runtime overhead and the transaction overhead (i.e., costs
in terms of the number of additional transactions necessary) will be recorded. These
executions are then compared to verification-less executions as baselines.

27

CHAPTER 4
Motivational Scenario

As described in Section 2.2, there is no commonly agreed implementation approach
for workflow choreographies. Therefore, this section highlights possible choreography
scenarios and assumptions which will be used as reference for further analysis in this
thesis.

In order to address ever-changing market environments, companies require access to
B2B cooperation. It must be possible to define business processes on demand and have
them executed as choreographies by a pool of independent cooperation partners. In
comparison to centralized orchestration-oriented WfMSs, choreography-oriented WfMSs
operate within a distributed system. Therefore, these orchestration-oriented WfMSs must
be able to address the highly dynamic nature of these systems [71, 98].

At the same time, the shared workflows must be enacted in a controlled fashion. The
participating companies will be reluctant to share information about their identity,
data or internal business structure [13, 89]. On the other hand, the process owner
requires information about their enacted distributed workflows. They need to know which
activities have been fulfilled by which partners and how long the enactment took [68, 91].
As the definition of workflow choreography describes, this control over the cooperation
should, if possible, not be centralized. A centralized monitoring facility must be trusted
by all choreography participants.

While scientific contributions agree that choreography-oriented WfMSs must exhibit a
high degree of flexibility in order to deal with the dynamic nature of distributed B2B
cooperation, basic assumptions about the characteristics of these cooperation differ.

One aspect which is often not explicitly discussed by scientific contributions is the
selection mechanism for choreography participants. This mechanism has major impact on
the overall system. Many contributions assume that the participants of a choreography
are selected prior to the actual enactment and do not change during the course of
the enactment [68, 91–93]. Alternatively the participants can be selected on-demand

29

4. Motivational Scenario

during the enactment [19, 92]. Pre-selecting choreography participants certainly reduces
complexity during the actual enactment. On the other hand, participants that can
be selected or changed on-demand increase flexibility during the enactment. Beside
traceability, fault management becomes an important and complex topic for distributed
choreographies [39, 58, 68].

Other characteristics in choreography-oriented scenarios seem to be commonly agreed on.
For example, there always exists one process owner which initiates a business process
and is paying for its successful distributed execution [71]. The different functional and
non-functional execution constraints and monetary reward of an activity are predefined by
the process owner, in many cases described as SLAs. This bundled workflow information
is shared among the different cooperation partners. Activities can potentially be enacted
by many different services. Some may be located directly at the process owner, others
may be located remotely at one of the cooperating partners.

The challenge of this thesis and its proposed prototype is to ensure that these described
choreography scenarios can be executed in a well-documented fashion. The handover
of the control of a workflow instance must be documented in an undeniable way. This
documentation must be accessible for the process owner.

Furthermore, certain assumtions are made. It is assumed that, the process owner initially
hands over the enactment of the workflow to a suitable partner in order to have a specific
task of the workflow executed. To accomplish this, the process owner first selects the next
suitable choreography participant. This participants is either pre-defined or chosen based
on the required service and the defined SLA. When select on-demand, the process owner
and the selected potential cooperation partner negotiate the terms of the handover. This
described search and negotiation steps are well covered and researched in the scientific
field of Service Oriented Architecture (SOA) [79]. After the cooperation partner has
finished the execution of the defined task, the control over the workflow execution is
passed along to another potential choreography participant. This is done by employing
the previously described search and negotiation steps.

As described in Section 2.1.4, two characteristic variants of choreographies are discussed
in the research community. In some discussions, choreography enactment is placed at
the service level [16, 35, 92]. A workflow instance is directly passed along between the
different services that enact it. The routing decision is also made directly at the service.
It is not relevant who operates the services.

Other contributions outline the enactment of a choreography as distributed orchestration.
Workflow instances are passed between choreography partners (i.e. companies) instead of
services [36, 93]. Each partner enacts one or more steps of the choreography instance
before passing it on to other partners. The internal execution of a workflow instance at a
single participant has then to be managed by a local centralized orchestration engine. It
provides the common tasks of a WfMS like mapping the tasks of the instance to services,
scheduling executions and allocating resources for services. This described choreography
setup is illustrated in Figure 4.1.

30

internal

enactment

Company C
internal

enactment

#1
Instance

Handover

#2

Company A (Process Owner)

Company B

Service

Service

Service

Service Local WfMS

Local WfMS Local WfMS

#3

internal passing of workflow

B2B passing of workflow

Figure 4.1: Choreography Setup

Since the progress documentation of a choreography is especially relevant when control is
passed over to other companies, the described choreography scenario of this thesis will
be outlined as cooperation between companies instead of services.

It has to be emphasized that all participants remain independent organizations and
also potential competitors [89]. That is why one goal for runtime verification is to
keep mutual dependencies to a minimum. Companies receive an incoming call for a
workflow instance with all necessary execution data and work on it. After completion,
they forward the instance to the next choreography partner. The handover of a workflow
instance to another company together with the achieved progress must be documented.
No centralized invasive monitoring service can be used. Such monitoring would introduce
a tighter coupling and information sharing between the participants of a choreography,
which is not desired. Any centralized authority must be avoided.

31

CHAPTER 5
Runtime Verification for

Choreographies

As described in RC-1, the Blockchain technology offers a promising basis to implement
independent, distributed and undeniable runtime verification for workflows. This section
analyzes this approach in detail. In an initial step, a short introduction into the current
three major operational Blockchain implementations Bitcoin, Litecoin and Ethereum is
given in Section 5.1. Next, Section 5.2 describes existing approaches and implementations
of runtime verification. Based on the findings of these two sections, the Blockchain-based
runtime verification approach proposed by this thesis will be defined in Section 5.3. At
last, Section 5.4 gives an overview about the prototypical implementation of the proposed
runtime verification framework.

5.1 Current Blockchain Implementations

This section provides an overview about the most important current Blockchain imple-
mentations. The Blockchains are discussed in regard of their features and their quality.
Blockchains can be categorized into first generation and second generation Blockchains
[91]. The first operating Blockchains were all designed to serve a single main purpose
and have limited adaptability for other use cases. They are referred to as first generation
Blockchains. Representatives of first generation Blockchains are Bitcoin and Litecoin.

Recent implementations of Blockchains do not intentionally limit the use cases that can be
addressed by them. By providing an open programming environment in their Blockchain,
they aim to support and facilitate various use cases. These type of Blockchains are
referred to as second generation Blockchains. The Ethereum project is a representative
of second generation Blockchains.

33

5. Runtime Verification for Choreographies

A Blockchain’s goal always is to serve as a shared distributed trust basis. When a
Blockchain is selected for a certain project, not only its offered features but also its
exhibited quality should be considered. This important characteristic is often not taken
into account. Even though it can be a challenging task, the technical foundation and
the supporting group of miners of a Blockchain should be analyzed, at least in a general
fashion.

Synchronization decisions in a Blockchain are not achieved through classic per capita
voting but through computing power voting. As long as no single entity controls more
than 50% of the networks computing power, no single entity is able to execute malicious
actions by rewriting contents of the Blockchain (i.e. rewriting the transaction history)
[85]. Therefore, it is important that a Blockchain is supported by a large miner base.
The more miners contribute their computing power, the less likely a single miner is able
to accumulate enough computing power on its own to carry out a 50% attack. This is
especially critical for newly founded Blockchains which do not have a large miner base
yet.

Two other important characteristics of a miner base are decentralization and geographic
distribution. In order to prevent a single entity from taking over the network, miners
should operate independently and decentralized. On the other hand, miners may form
mining pools in order to share revenues and to reduce their individual financial risk.
At the same time these mining pools erase the independence between the participating
miners. To the rest of the network, a mining pool becomes a new single mining entity,
thus reducing the decentralization of the network [99].

At last, the operating miners of a Blockchain should be geographically distributed.
This ensures that a Blockchain can be used globally with similar network delay. The
distribution also ensures that miners operate from different nations and therefore different
jurisdictions. This further emphasizes the independence of a Blockchain.

Based on the estimated market capitalizations of cryptocurrencies from [30], dating from
the 28th of august 2016, the top three operating Blockchains were selected for a short
analysis. These three Blockchains had the highest market capitalization at that date.
Note that while the Ripple project ranks on the third place, it is not a cryptocurrency that
relies on a Blockchain and is therefore omitted. In addition to these three Blockchains,
the Counterparty project is also briefly explained [33]. This project does not maintain
its own Blockchain but operates on top of the Bitcoin Blockchain. Therefore, it is worth
mentioning in this context.

5.1.1 Bitcoin

The first and oldest Blockchain was established for Bitcoin. It is a first generation
Blockchain with the purpose to support the exchange of digital currency. The technical
foundation of Bitcoin is described in Section 2.3. Bitcoin and its Blockchain is still the most
popular project among cryptocurrencies. It achieves the highest market capitalization
and outranks the Ethereum project on the second place by a factor of about nine.

34

5.1. Current Blockchain Implementations

At the same time, this has drawn a lot of attention to the project and increased its
user base. While its cryptography foundation remained solid and uncorrupted to the
present day, Bitcoin currently suffers from major scalability problems. As described in
Section 2.3.4, the transaction throughput of the network is not high enough. Reducing the
block creation time or incrementing the block size both increase the threat of conflicting
blocks occurring in the network.

Since Bitcoin operates a cryptocurrency which is not backed by banks or nations, its value
is solemnly dictated by the trust of users into the security of its technical foundation.
That is why new conflict resolution proposals, like GHOST [82], have not yet been
integrated in order to lower the block creation time. Instead the community is trending
towards a very conservative increase of the size of Bitcoin’s blocks.

Because Bitcoin was the first cryptocurrency, it attracted a lot of attention from re-
searchers around the world. Therefore, various evaluations about its network and miner
base have already been published. A quantitative and qualitative analysis of the Bitcoin
P2P network was conducted in 2014 by [34]. During 37 days of monitoring they identified
more than 872,000 Bitcoin nodes homogeneously spread across the world, making the
Bitcoin overlay a global network. The majority of all active nodes where discovered in
United States and China. Together the nodes found in these countries made up 37% of
all nodes.

Another evaluated feature was the propagation time of published transactions and
blocks. For this purpose more than 13,000 nodes where specifically monitored in greater
detail. Some discrepancies were revealed between the propagation time of blocks and
the propagation time of transactions. 50% of all blocks on average needed less than 22
seconds to be propagated to 25% of all the monitored nodes. At the same time 50% of
all transactions needed up to 17 minutes to be propagated to the same amount of nodes.

As in every open P2P network the overall activity and reliability of the participating
nodes varies a lot. The authors of [34] observed that approximately 6,000 nodes form the
reliable core of the network. This reliability is also reflected in the propagation activity
of the nodes. Only 20 nodes from the pool of 13,000 specifically monitored nodes serve
as the first relay hop for more than 70% of all propagated blocks and transactions.

The evaluation of [97] two years later shows only a slightly changed picture. [97] operates
an agent that contiguously crawls the Bitcoin network and publishes the results on a
web page. It is important to note that, [97] and [34] employ two different monitoring
techniques. While [34] conducted a detailed scientific examination of the network over
a short timespan, [97] operates a crawler which continuously crawls the network in a
general manner. The distribution of nodes to countries discovered by [97] on the 15th of
September 2016 resulted in the following top four nations.

1. United States (27.53%)

2. Germany (16.70%)

35

5. Runtime Verification for Choreographies

3. France (7.71%)

4. Netherlands (5.63%)

As already mentioned, Bitcoin operates on top of a first generation Blockchain. Still it
is possible to adapt Bitcoin transactions for other use cases to a certain degree. Since
Bitcoin resulted in the first implementation of a Blockchain, various possibilities for
alternative usages where initially incorporated in the design. Section 5.1.4 gives an
example of an alternative use of the Blockchain. Also the Sections 5.3 and 5.4.1 describe
in detail how an alternative use can be achieved.

5.1.2 Litecoin

The Litecoin project was started in 2011 as a payment alternative to Bitcoin [56].
It is fully based on the technology stack of Bitcoin and added just a few changes.
Therefore, the project also operates a first generation Blockchain. Despite having a
market capitalization of the size of only 2% of Bitcoin’s market capitalization, it is still
the third biggest operating Blockchain in terms of market worth.

The first change incorporated in Litecoin is a different proof of work hashing method. As
already described in Section 2.3, Bitcoin mining has become very professional. Through
the usage of specialized and expensive hardware, mining became unaffordable for private
Bitcoin miners. Through the use of the scrypt hashing method, Litecoin aimed to reduce
the effectiveness of specialized hardware. Unfortunately they were only successful to a
certain extend [99].

As a second change, [56] reduced the block creation time to about 2.5 minutes. This
reduction of the creation time is achieved by reducing the proof of work complexity. This
reduction results in an increased rate of conflicting blocks and therefore an increased
number of orphaned blocks. This alone might not be a problem. But other scientific
evaluations point out that the required 50% computing power threshold to carry out a
double spending attack is successively lowered when the network fails to fully synchronize
in between the block creation intervals [31, 41, 85].

At last, no scientific evaluations about the P2P network of Litecoin could be found.
To the best of our knowledge there currently exists no scientific estimation about the
size, distribution and quality of Litecoin’s mining pool. The only crude estimate about
Litecoin’s miner base is its market capitalization. A cryptocurrency that achieves a
higher capitalization and therefore a higher potential to earn money as a miner, will
attract a larger miner base. This general estimation metric was also proposed by [42].

5.1.3 Ethereum

The Ethereum project and its Blockchain was launched in 2015. It implements a second
generation Blockchain. Instead of a singular purpose, Ethereum enables the use of so called
smart contracts [73]. These smart contracts are program agents that are executed within

36

5.1. Current Blockchain Implementations

the Ethereum environment. They are defined in a Turing complete scripting language
and enriched with private storage and monetary balance. Through these features smart
contracts can operate completely autonomous. The Ethereum project received a lot of
attention in recent months and is currently the fastest growing Blockchain implementation.
It has the second highest market capitalization of all operating Blockchains. Still the
project reaches only about a 9th of Bitcoin’s market capitalization.

The project also defines its own currency to fuel its operations, called Ether. This
currency can either be used directly for payment transactions or to fuel the execution
of smart contracts. It is possible to define contracts in the scripting languages Solidity
and Serpent and have them executed by all Ethereum mining nodes. Besides mining,
these nodes operate a so called Ethereum Virtual Machine (EVM) which is a runtime
environment for the smart contracts. Once submitted, a contract is able to send and
receive messages. The exchange of these messages is performed through the transactions
which are submitted to the Blockchain. The code of a contract is executed each time it
receives a message. To compensate for this execution, each message defines an amount of
Ether, so called gas money, to pay the nodes that run the contract inside their EVMs.

During the execution of its code, a contract is able to interact with its storage, send
messages or even create other contracts. The private state of a contract is implemented
as a key-value store. Since smart contracts are only executed upon receiving messages,
the state is propagated through the exchanged messages. Beside new transactions, newly
mined blocks include also the new current state. While this seems impractical, the
implemented nodes only store one instance of the state and include references to the
relevant parts inside the blocks. Since each block is likely to only change a small part of
the state, this information does not take up much space.

The Ethereum project implements a very low Block Creation time of 15 second. To
address the resulting increase in conflicting blocks, a simplyfied version of the GHOST
[82] conflict resolution proposal is used [38].

While the proposal of [82] holds a lot of potential, the Ethereum project is its first
integration in a major Blockchain implementation. There has yet to be a thorough
investigation if the GHOST approach is able to handle a block creation time as low as
15 seconds. To the best of our knowledge it has not yet been evaluated if the ghost
approach is effectively able to address synchronization conflicts in this frequency. Since
the creation time is so low, the network most likely will not be able to synchronize in
time. If not properly addressed, this situation could result in lowering the 50% threshold
for double spending attacks [31, 41, 85].

Ethereum’s mining network has not yet been throughtly analysed [6]. The evaluation
of [6] revealed that up until now, only 15% of all documented transactions targeted
smart contracts. The major portion of all transactions still consists of normal payment
transactions. While being advertised as second level Blockchain, it seems that Ethereum
is still mainly regarded as another cryptocurrency. A general scan of the network showed
that the network of Ethereum is global with a strong tendency towards Northern America,

37

5. Runtime Verification for Choreographies

Russia and China. Unfortunately [6] provide no estimates about the number of active
miners.

5.1.4 Counterparty

The goal of the Counterparty project is to offer second generation Blockchain capabilities
while operating on top of the Bitcoin Blockchain [33]. An extensive meta-framework
has been developed which extends the main Bitcoin software1 with additional compo-
nents. Standard Bitcoin transactions are used to store miscellaneous data in the Bitcoin
Blockchain. While this data does not have special meaning to classic Bitcoin nodes,
specialized Counterparty nodes are able to interpret and execute the stored data, if
required.

In order to regulate the usage of its various features, Counterparty defines its own
currency, called XCP. Like the framework itself, XCP operates as a meta-currency on
top of BTC. In order to obtain XCP, one has to burn Bitcoin. This is done by sending
Bitcoins to specific fake Counterparty addresses. Since the address itself is fake, the
coins that have been sent there can never be forwarded again and become unusable. At
the same time, specialized Counterparty nodes in the Bitcoin network monitor these
kind of transactions and issue XCP to the senders of these burn-transactions. While
this seems highly wasteful and unnecessary, XCP are used to regulate the usage of
Counterparty features, i.e. to avoid spam. Since small amounts of XCP are required to
use most features of Counterparty, users have to demonstrate their dedication to the
project by burning Bitcoins and spending XCP. Already created XCP can also be bought
at exchange platforms.

While XCP are the native tokens of the Counterparty project, one of the first and simplest
features offered by the project is the creation of custom tokens. By defining a dedicated
token name and converting a certain amount of XCP into the newly created token, users
and developers can use these tokens to control and fuel their applications. This enables
various use cases, like voting, betting or access control.

The second and most advertised feature is the usage of Turing complete smart contracts.
Instead of defining their own smart contract language and execution environment, the
Counterparty project adopted the smart contract techniques of Ethereum. Specifically
they support the scripting languages Solidity and Serpent. Therefore, contracts can be
defined in the same way as Ethereum contracts and migration between the frameworks
should be possible with only minor adoptions. Counterparty smart contracts are fuelled
by XCP, and executed by the specialized Counterparty nodes. As compensations for
these execution, XCPs are collected as fees. The smart contract feature of Counterparty
has not yet been declared ready for productive use. Currently it is only possible to
publish and use smart contracts in the Bitcoin testnet. Another downside are the required
specialized Counterparty nodes. While the miner base of Bitcoin has been well evaluated,

1https://github.com/bitcoin/bitcoin/

38

https://github.com/bitcoin/bitcoin/

5.2. Existing Enactment Verification Approaches

the supporting node base of Counterparty has to be evaluated additionally. This node
base must exhibit the same quality features as a classic Blockchain miner base.

The last advertised feature of Counterparty is the lightning payment framework. This
payment framework addresses the problem of the long block creation time in Bitcoin.
The resulting long transaction verification time represents a problem for many real
world payment scenarios. By providing a side channel to the Blockchain, the lighting
payment framework aims to speed up payment transactions, especially micropayments.
The basic concept of such side channels relies on multi-signature transactions to establish
shared wallets and sharing off-chain refund transaction with lock-times. As explained in
Section 5.4.1, Bitcoin includes a transaction type which requires the signature of two
or more parties to access funds. A transaction can have a lock-time associated upon
creation. This lock-time defines a future date. Until this date is reached, the transaction
is defined as invalid and can not be included in the Blockchain.

Assume that two parties, Alice and Bob, want to quickly exchange a series of micropay-
ments. Bob wants to repeatedly send Alice money. First a wallet that is shared between
Alice and Bob has to be created. To achieve this, Bob creates a transaction that locks
a certain amount of his funds in an output that can only be accessed by providing a
signature of both parties. Before Bob publishes this transaction, Alice creates and shares
a refund transaction which returns all funds to Bob but is locked for n hours. Then Bob
publishes the initially created wallet transactions. Alice and Bob now have a shared wallet
to perform micropayments. If Alice stops responding, Bob can recollect his funds after n
hours by using the refund transaction. In order to pay Alice, Bob simply has to create
and share a new refund transaction which splits the contents of the wallet between Alice
and Bob and has a lock-time of n− 1 hours. The refund transactions can be exchanged
off-chain and directly between Alice and Bob. If Bob wants to perform another payment,
he simply has to resent a new refund transaction with adjusted balances and a lock-time
of n− 2 hours.

Similar to the smart contract feature, the lightning payment feature has not yet been
completed and is therefore not yet available.

5.2 Existing Enactment Verification Approaches

5.2.1 Introduction

In choreographies process owners hand over the control over their workflow instances to
remote partners. Depending on the design and flexibility of the system or the workflow,
the process owner might not know which companies are participating or which activities
they cover. In such systems process owners can only trust to receive the result of their
workflow at some point in the future.

As described in [71], contracts are always the basis of a choreography or any other kind
of B2B cooperation. They specify how cooperating companies are rewarded and how
they are penalized. Contracts form the trust basis of choreographies. In order for such

39

5. Runtime Verification for Choreographies

contracts to be enforceable, the distributed enactment of processes must be provable.
Process owners have to be able to determine which company covered a task and how
long this task took [62].

WfMSs collect information about their subsystems by using monitoring frameworks.
The CEP approach can be utilized to implement monitoring features for centralized
WfMSs and B2B WfMSs alike. Section 2.2 explained monitoring approaches in B2B
choreographies. These enable a process owner to collect information about the status of
remotely enacted workflow instances. While being suited for collecting information and
calculating KPIs, most event-based architectures do not incorporate end-to-end security
features [28].

Section 2.2 discussed CEP-based montoring as a theoretical solution approach for B2B
workflow runtime verification. It is possible to enhance event messages with security
measures. They can be enriched with identification information and their integrity as well
as their privacy can be protected through cryptography [12]. CEP systems are expected
to handle a vast amount of events. Adding security features to those events greatly
increases the complexity of such systems. Furthermore, each CEP system operates under
the control of one of the choreography’s participants and can not be regarded as a trusted
system for others. Malicious participants can still generate messages for events which did
not take place. In addition, events are commonly broadcast asynchronously. Messages
may be lost or intercepted. Without a centralized monitor component there is no shared
agreement on which events did occur and which did not. CEP-oriented monitoring
systems therefore are not suited to serve as trusted runtime verification systems.

This requires choreography-oriented WfMS to implement additional security mechanisms
to ensure end-to-end integrity, authenticity and non-repudiation for workflow instances
[54, 68].

The remainder of this section is organized as follows: Section 5.2.2 provides an overview
over the different solution approaches from the scientific field of workflow runtime
verification. The integration of verification mechanisms in actual implementations of
choreography-oriented WfMS is discussed in Section 5.2.3. Runtime verification solutions
based on Blockchains are described in Section 5.2.4.

5.2.2 Solution Approaches

The verification of workflow enactment does not present a problem in centralized WfMSs
[54]. How this challenge can be solved in a choreography-oriented WfMS depends on the
system’s design. The more flexible a system is designed, the more difficult enactment
verification becomes. Unfortunately, making a system more static is no solution. While
verification becomes a lot easier in static choreographies, the overall robustness of the
distributed WfMS is greatly reduced [19].

In a federation of independent partners, one cannot rely upon constant availability of
all services. The used services or involved partners in a choreography are therefore not

40

5.2. Existing Enactment Verification Approaches

static. The same is true for the execution time of specific service calls. Some service
execution times are predictable. Others operate on “best effort” basis and can only
provide worst-case predictions of their execution time.

Process owners require the possibility to track the execution of an instance. Existing
research addressing this challenges appears to be limited. “There seems to be a relatively
small amount of work that examines basic security issues of workflow systems, particularly
in terms of authenticity and integrity protection of workflow information and sequence”
[60]. There seem to be two general approaches to provide enactment verification in
choreographies. The first approach aims to control the message flow between the
participants.

[89] propose the usage of multiple Enterprise Service Buses (ESBs) to handle all commu-
nication between the cooperating companies. In their work they suggest the usage of
Web Service proxies which are supposed to intercept all communication. These proxies
log all necessary information to a central logging component. Through metadata, which
provide time and correlation information, the central logging component is able to sort
and associate the information.

A similar approach is described by [13]. In their scenario, the cooperating participants
of a choreography are already chosen at deployment time by the process owner. The
initiating company is then able to generate choreography-specific messaging policies
for each participant. Those policies individually specify accepted message patterns. In
order to guarantee the enforcement of given policies, all participants must run the same
communication gateways which intercepts all traffic. If deviations are observed, CEP
fashioned events are emitted to notify the process owner.

The second general approach proposes token passing along the participants of the
choreography. By enhancing it with cryptography features, the token becomes a proof
for the path it travelled along. Through keeping a copy, each company can proof its
participation in the corresponding instance. Upon receiving the corresponding tokens,
process owners are able to verify the exact sequence of execution. Depending on the
structure of a choreography’s required data sources, this technique can also be used to
ensure data integrity and confidentiality. If the required data can be sent along the
choreography as a single document, the document becomes the token upon which the
security features are applied.

An early and simple variant is proposed by [19]. Through the usage of simple cryptographic
signatures, the participants can integrate and sign information about their contribution
into the choreography token. Upon receiving a token each participant performs the
required service on the document and then appends information about their contribution
to it. To enable process owners to interpret the contributions, [19] requires them to be
formatted in a defined XML schema.

[54] further develop this approach by combining it with Trusted Platform Modules (TPMs).
These hardware components provide the trusted platform the distributed network operates
on. Each module contains a private key, is able to perform cryptographic operations

41

5. Runtime Verification for Choreographies

and is tamper-proof. As a security token a so called process slip structure is used. This
structure contains the data relevant for the choreography. It is protected by cryptography
measures. In order to access the required data, services have to use their associated
TPMs. They will only return the data if its associated service fits the execution plan.
After a service has been enacted, the slip structure is updated and forwarded to the next
service call.

The two previously described approaches provide means to prove that a participant
possessed the security token at one point during the enactment. [68] further enhance this
approach with enforcement of sequence mechanics and privacy for participants. Their
security token is called an onion, which is made up of several layers of encryption.

At first the process owner has to select the desired participants prior to the deployment
of the instance. Then the security token is generated by layering encrypted information.
Each layer can only be accessed by the destined participating partner of the choreography.
Upon receiving, a service “peels” of the topmost layer of encryption. Inside this layer
reside the necessary data required to enact the current process step. Upon completion the
result is appended to the onion and the whole token is forwarded to the next participants.
A business partner can be sure that the previous steps have been fulfilled correctly when
it is possible to decrypt the top layer of the onion.

Through a sophisticated encryption key management system, each choreography uses
unique keys for all layers. The process owner distributes the keys after the onion has
been created. Through this technique, the privacy between the partners is preserved.
Only the process owner maintains a global picture of the choreography. The design of the
onion approach is clearly very static, as the participants have to be selected in advance
and cannot change. Therefore [68] also include a recovery mechanism. Intermediate
results are stored at the partners and used during re-enactment after a failure.

Inspired by this, [60] propose an alternative approach which promises more flexibility.
By adapting the concept of hierarchical identity-based signatures they create workflow
signatures. These signatures further enhance the functionality of traditional public key
infrastructure (PKI) based signatures. Instead of key pairs, identity-based signatures
are generated from a key-identity pair. A key, referred to as private key, is used for
encryption while a publicly available String identifier is used for decryption.

The core enhancement of the concept is the fact that identity-based signatures can also
be generated by using combinations of more than one private key. This enables the
signatures to serve as evidence for the sequence of the fulfilled tasks as well as to reflect
the logical paths of the workflow. Each task of a workflow instance is associated with
an hierarchical identifier composed from the task-ids of the already taken path and the
current task-id.

Upon forwarding a workflow instance to a cooperating partner, a company is able to
determine the identifier for the next step and compute the associated private key to it.
Upon merging a parallel execution, a participant simply has to wait until all preceding
paths are finished and the corresponding private keys have been received. The signature

42

5.2. Existing Enactment Verification Approaches

of all private keys combined then serves as proof that all required prior paths have been
completed.

5.2.3 Verification in Scientific WfMS Prototypes

The development of choreography-enabled WfMS is still in its infancy [2, 58]. There
are no mature frameworks which support the enactment of choreographies. Different
scientific proposals have been made on how such WfMS could be designed. Only few
of those proposals cover security-related aspects let alone enactment verification. The
following WfMS proposals incorporate security aspects related to the verification of
workflow instance enactment.

[46] propose a distributed B2B WfMS which is optimized to run in clouds. The B2B and
cloud aspects led to the incorporation of various security features to ensure authentica-
tion, confidentiality, data integrity, and non-repudiation. They employ a token-based
verification approach. A XML document, including the relevant workflow data is passed
along the choreography. The document is heavily secured with element-wise encryption,
timestamps and digital signatures. To increase reliability, a distributed cloud storage is
used to pool all active tokens. Through the limited but sufficient access regulations of
the storage, the enactment of the workflow instance is further secured.

The coordination through distributed storages is also employed in the work of [64].
They propose the use of Linda-based Tuplespaces to coordinate the participants of a
choreography. “A space can be seen as a synchronized container shared among all
participants in a workflow [...]” [64]. The variables in those containers are accessed
through templates. These templates outline the necessary conditions for different tasks.
Each participant specifies a custom template. As soon as all conditions are met, a
participant starts its execution. Through these distributed containers the enactment
of each workflow instance can be observed and verified. Unfortunately the authors did
not evaluate the scalability of the synchronization tasks required for the distributed
containers.

There exist many other scientific WfMSs prototypes which are able to enact choreographies
of different forms and variants, e.g. BPELCube [74], SwinDeW-C [61], Jadex WfMS
[49], OSIRIS-SR [83] or MonALISA [57]. These WfMSs are not described in this section
because they do not explicitly address security related topics.

5.2.4 Blockchain-based Verification Prototypes

Message controlling and token passing are two approaches for controlling and propagating
the execution state of a choreography. Both impose different challenges when being
applied to the motivational scenario of this thesis.

If loose coupling is a priority in the cooperation environments, the runtime verification
approach of message controlling becomes difficult. Different communication frameworks,
like message buses, can ensure that choreography messages passed between the participants

43

5. Runtime Verification for Choreographies

are only exchanged by using the provided connectors. But in order to set up a such
communication framework between different companies, a tight integration between their
software systems becomes necessary.

Also the token-based approach introduces new problems. The found existing runtime
verification implementations for WfMSs [46, 64] all follow this approach. Still they suffer
from the major problem that the controlling token, which is passed along in the distributed
system, might get lost. The described prototypes therefore save the tokens, which controls
access to the choreography, in a shared storage. [46] uses a distributed cloud storage
to save XML files which serve as access tokens. [64] describes the usage of Linda-based
Tuplespaces which control access and provide navigation decisions. The tuplespace is
describe as a shared container, which is synchronized among the participants. This shared
storage then again becomes the controlling entity for the system. The shared storage
must be operated by another party and be trusted by the choreography’s participants.

New scientific proposals aim to solve the problems of these approaches by using a
Blockchain as the trusted entity for the choreography. Through its design, the Blockchain
can provide a shared trust basis which is not under the control of a single organiza-
tion. Messages can be exchanged directly through Blockchain transactions and token
information can be stored in the Blockchain by embedding them in transactions. The
remainder of this subsection describes two different proposals which utilize the Blockchain
for documentation, message passing or controlling purposes.

The simplest security application of the Blockchain is the public documentation of
timestamp hashes. While this feature alone is not enough to serve as a token-based
runtime verification system for choreographies, it can provide an important basis. The
control information of a choreography is shared publicly. Its changes and progress can be
documented and proven with timestamp hashes, placed in the Blockchain. [42] describe
such a feature in their work. Since not all Blockchains are designed to freely allow the
storing of arbitrary data the core invention presented by the paper is how the data stored
in the Bitcoin Blockchain.

Over the course of 24 hours, various submitted timestamp hashes are collected and hashed
again, resulting in one aggregated hash. This aggregated hash is then used to create a
Bitcoin private key. By using the corresponding Bitcoin address of this private key, a
new transaction is published. In this transaction the smallest possible Bitcoin amount
(0.00000001 BTC) is transferred from the given generated Bitcoin address to another
arbitrary address. This way the Bitcoin address is stored in the Blockchain and becomes
publicly available. By publishing the submitted hashes, together with their aggregated
hash in a separate medium, like Twitter, the correctness of the resulting Bitcoin address
can be validated. [42] offer this simple and, in terms of Bitcoin transactions, cheap
feature as a public service via their website 2.

An advanced and in-depth proposal is made in the work of [91]. By utilizing so called smart

2http://www.originstamp.org/

44

http://www.originstamp.org/

5.2. Existing Enactment Verification Approaches

contracts [73], enabled in the Ethereum Blockchain, they provide a runtime verification
solution for choreographies.

Unlike the Blockchain of Bitcoin which mostly focuses on financial transactions, Ethereum
encourages developers to utilize their Blockchain for any number of use cases. In order
to facilitate this, the Ethereum scripting language is very flexible and Turing complete.
This enables the management of complex and advanced smart contracts in Ethereum’s
Blockchain. In addition, each contract has access to a private key-value based storage
space. Further details about this Blockchain are provided in Section 5.1.

The first contribution of [91] is a translator component which is able to convert BPMN
models into smart contracts, described in Ethereum’s scripting language. This initial
factory contracts provide an abstract definition of the BPMN model’s corresponding
workflow. When a workflow needs to be enacted, these factory contracts are able to
create dedicated smart contracts for each instance.

The instance contracts become the controlling entities of their corresponding workflow
instances. During the creation of an instance contract, the public keys of the choreogra-
phy’s participants together with their corresponding roles must be provided. Enriched
with this information, the instance contract is able to control and document all execution
steps (i.e. the overall execution state), taken by the participants.

The participants do not communicate directly with each other. Instead they interact
through transactions which are submitted against an instance contract and its contract
storage. These transactions alter the state of the given contract and at the same time
advance the execution state of the given workflow instance. Since all transactions
are validated against the contract definition, it can be ensured that only authorized
participants can alter the workflow state at a given execution point. Furthermore, the
execution sequence can be enforced to match the workflow definition. At last, all this
information is publicly documented in the Ethereum Blockchain.

The smart contracts for workflows are proposed in a passive and an active variant. The
passive variant, called choreography monitor, simply provides the described controlling
mechanisms. The other variant, called mediator, is further enhanced with active features
like data transformation, message sending or other simple computations. These features
are embedded in the contract’s definition and executed if required by all mining Ethereum
nodes.

Ethereum’s scripting language is still executed under a closed-world assumption. The
language itself is Turing complete, but can not access remote APIs or services. Further-
more, data-intensive transactions and computations should not be placed directly on the
Blockchain. Therefore, [91] propose another component, called trigger, which provides a
bridge for smart contracts to the outside world. Triggers are essentially clients which
run full Blockchain nodes. They run local programs which constantly monitor the newly
created Blocks on the Blockchain. Therefore, they are also enabled to react on updates
to certain smart contracts. Given a specific execution state, they may call external APIs
or receive information from remote sources. These triggers then automatically update

45

5. Runtime Verification for Choreographies

the contract based on the external information. Among other things, this component
can be used to handle data intensive storages off-chain, e.g. external databases.

Since the workflow management communication is performed entirely through smart
contracts, the proposed feature of [91] can be categorized as a message controlling-based
approach. The instance contracts together with the Blockchain P2P network becomes
sort of a communication bus for workflow controlling.

The main downside of this described approach is the fact that all participants of the
choreography must be known in advance. This is required in order to include the relevant
public keys and roles into an instance contract during its creation. This greatly reduces
the flexibility of the overall choreography and makes the workflow execution less robust. If
one of the participants is unreliable or becomes unreachable, the whole workflow instance
may be stuck. On the other hand, without the public key and role information access
security and execution sequence enforcement are not possible.

At last, the approach of [91] is utilizing the novel Blockchain implementation Ethereum.
While these second generation Blockchains provide great programmatic freedom, they have
to operate their own Blockchain environment and often also employ new synchronization
and conflict resolution mechanisms in order to improve their performance. The software
foundation of every Blockchain together with the number, independence and geographic
distribution of its miners have great impact on the security level of the projects using
it. These questions about a Blockchain’s quality are further discussed in the following
section.

5.3 Blockchain-based Runtime Verification Proposal

Based on the described motivational scenario from Section 4 a novel runtime verifica-
tion approach is proposed by this thesis. It aims to retain the flexibility of workflow
choreographies, while at the same time providing a maximum of security and verifiability.

Instead of utilizing smart contracts of second generation Blockchains like Ethereum,
only transaction techniques of existing first generation Blockchains are used. This limits
the possible features but enables the usage of existing well supported and high security
Blockchains, like Bitcoin. As outlined in the previous section, Bitcoin currently has the
largest and most distributed miner base of all operated Blockchains. On the downside,
the runtime verification proposal has to address limited adaptability and scalability when
using Bitcoin.

Counterparty already offers a programming framework operating on top of Bitcoin. But
at the same time it requires the conversion of BTC into the specialized currency XCP.
Furthermore, the advertised feature of smart contracts is currently only enabled for the
Bitcoin testnet. By directly using custom Bitcoin transactions, the usage of this meta-
framework can be avoided. In order to ensure the correct execution of Counterparty’s
specialized syntax, another pool of specialized Counterparty nodes is operated. Similarly

46

5.3. Blockchain-based Runtime Verification Proposal

to Litecoin, there exist to the best of our knowledge no scientific evaluation about this
node base.

At last, the usage of Counterparty prohibits the usage of alternative features like the
simple payment verification (SPV) or the greedy publishing mode which are described
in Section 5.4.3. Therefore, the Bitcoin Blockchain is directly used. Similar to the
choreography monitor component proposed by [91], the solution approach describes a
passive component which enables access restricted documentation of the progress of a
workflow.

Initially, a free Bitcoin output is selected by the process owner at the start of a new
workflow instance to serve as the control token for the choreography. At the same time,
the Blockchain becomes the distributed storage for the token. Whoever is currently in
possession of the token is responsible for the execution of a part of the choreography. In
order to enable parallelism, the token can be split and joined. Participants can document
progress of the workflow and most importantly the handover to other participants by
submitting new transactions which propagate the token.

Each transaction is enriched with additional metadata about the current state of the
workflow. Since Bitcoin transactions are push based, a token sender gives its approval of
a handover from one participant to anther by simply publishing the transaction. But
also the approval of the token receiver must be documented in the transaction. Therefore
a signature of the token receiver is embedded in the workflow metadata stored in the
transaction.

As described in Section 2.2.4, the basis for a choreography is always a contract [71]. The
transaction chain related to the token of a workflow instance provides undeniable proof
about the workflow’s progress. If this progress somehow violates the agreements of the
contract, penalties can be claimed by the process owner from the involved participants.
At the same time, it is possible for participants to prove their successful involvement in a
choreography to claim their rewards.

In order to preserve the flexibility of the choreography, the participants are not predeter-
mined but can be chosen dynamically on demand. On the downside this prevents the
enforcement of a correct workflow sequence. Still, it is not possible for a single participant
to forge critical documentation entries. Therefore, a process owner can always monitor
the progress of a workflow instance by observing the Blockchain. If the execution of a
certain workflow instance deviates from the given process model, a process owner and all
other choreography participants of this instance will be able to detect and react on it.

To change a Bitcoin transaction into a documentation entry which proofs that a workflow
instance has been handed over from one participant (i.e. company) to another, it must
provide the following characteristics and contain the following information.

First, token handovers must be access-protected. Only the current owner of a workflow
token must be able to decide where to pass on the token. Since the token is essentially an
amount of Bitcoins, this kind of access protection is already a built-in feature of Bitcoin.

47

5. Runtime Verification for Choreographies

As described in Section 2.3, each output of a Bitcoin transaction is protected by a script
which commonly requires a Bitcoin signature of the owner as parameters.

At the same time the receiver of the token must confirm that a handover, together with
the included metadata, is accepted. Bitcoin transactions are by design only push-based.
This means, there is no built-in requirement for a payee to agree to a transaction. If a
payer decides to forward a certain amount of Bitcoins to a payee and knows about a
Bitcoin address of the payee, money can be forwarded without questions. Therefore a
Bitcoin signature of the token receiver, which signs the handover transaction data must
also be included into the transaction.

When the handover transaction is completed, signatures of both sender and receiver must
be contained. Next, the following information has to be included in the transaction to
document the state of the current workflow execution path.

Workflow instance id To emphasize which instance is addressed by the transaction,
the identification number of the workflow must be included.

Task id A company works on a specific tasks and then hands over the control of the
workflow to another company to perform the next task. The identification number
of the task which should be performed by the receiving company must be included
in the transaction.

timestamp This timestamp documents the moment the current task, processed by the
sending company, ends and the following task, processed by the receiving company,
starts.

Workflow data hash Most workflow instances require data to operate on. This data
is continuously altered by the fulfilled steps of the workflow. In order to document
the current state of the workflow data before the execution of the next task, a hash
must be placed in the transaction.

Receiver signature Not only the sender must confirm the handover of a workflow,
also the agreement of the receiver must be documented. Therefore, the receiver
must also sign the transaction template before publishing. In this transaction
template, all the data described above must already be included. This way the
receiver documents approval to receive control over the workflow instance under
the documented conditions.

At last, identification data of sender and receiver must be exchanged. By design Bitcoin
transactions are sent between Bitcoin addresses. In this proposed approach new addresses
are generated for each handover. These addresses are anonymous and protect the privacy
of the involved participants. Still sender and receiver must be able to mutually prove
with whom they performed the handover.

48

5.3. Blockchain-based Runtime Verification Proposal

Therefore, it is assumed that beside the Bitcoin infrastructure, a RSA-based public key
infrastructure (PKI) is in place. By utilizing RSA-based signatures and certificates, an
actor can prove its identity to others. When sender and receiver want to perform a
handover, they first have to share the respective Bitcoin addresses they want to use.
This exchange is enriched with RSA-based signatures and certificates. This way, each
handover partner confirms the ownership to a given Bitcoin address before the handover
takes place. By storing this received signature, a choreography participant can also prove
the identity of the corresponding handover partner to the process owner, if required.

The handover process for the runtime verification approach, proposed in this thesis,
consists of the following steps. Furthermore, Figure 5.1 illustrates this handover process
in a sequence diagram.

#1 The first tasks are common to all choreographies. After the sending company
has selected a potential receiving company they mutually identify each other and
negotiate the metadata of the handover.

#2 When a consensus is reached, the sender transfers the symmetrically encrypted
workflow data to the receiver. This way, the time consuming data transfer is
completed before the handover but the receiver can not yet start working on the
following task. On the sender side, the workflow data is hashed to prove its state
during handover.

#3 Bitcoin addresses are exchanged through PKI signatures to provide a legal confirma-
tion that the address is indeed owned by the respective partner.

#4 A transaction template is created by the sender which holds the negotiated handover
terms (i.e. the required metadata to completely document the state of a workflow).

#5 The sender transmits the transaction template to the receiver together with the
symmetric key to unlock the workflow data. The template is sent as an RSA-based
signature. This way, the receiver already has proof that the sender intends to
perform the given handover. If the transaction template contains the negotiated
handover terms from step #1, the receiver approves the template by creating and
returning a Bitcoin-based signature of the template. For this signature, the private
key of the receiver’s Bitcoin address is used. Since the receiver can now decrypt
the workflow data, the execution of the next workflow task can be started.

#6 The sender validates the receiver’s signature. If the signature is correct, the transac-
tion is finalized by adding the Bitcoin-based signature of the sender. At last, the
Bitcoin transaction is published by the sender. Since all Bitcoin transactions are
broadcast and shared publicly, the receiver can monitor if the sender actually takes
care of publishing the transaction. If the sender does not take care of publishing, the
receiver needs to contact the respective mediator of the choreography (i.e. probably
the process owner). The transaction template, signed by the sender, serves as proof
that a workflow handover was intended by the two partners.

49

5. Runtime Verification for Choreographies

B
o

b
A

lic
e

in
it

Ta
ke

O
ve

r(
P

K
I-

si
gn

(B
it

co
in

_A
d

dr
es

s_
A

lic
e)

)

re
sp

(P
K

I-
si

gn
(B

it
co

in
_A

d
dr

es
s_

B
o

b
))

h
as

h
 c

ur
re

n
t

w
o

rk
fl

o
w

-d
at

a

tr
an

sf
er

(s
ym

-e
n

c(
W

o
rk

fl
o

w
_D

at
a

))

id
e

n
ti

fy
(P

K
I c

h
al

le
n

ge
)

re
sp

(P
K

I r
es

p
o

n
se

)

N
eg

o
ti

at
e

te
rm

s
o

f
w

o
rk

fl
o

w
 in

st
an

ce
 h

an
d

o
ve

r
(i

n
cl

. s
h

ar
in

g
 o

f
ch

o
re

o
gr

ap
h

y
m

o
d

el
)

si
gn

T
ak

eO
ve

r(
P

K
I-

si
gn

(T
ra

n
sa

ct
io

n
_T

e
m

p
la

te
),

 S
ym

Ke
y_

W
FD

a
ta

)

re
sp

(B
it

co
in

-S
ig

n
(T

ra
n

sa
ct

io
n

_T
e

m
p

la
te

))

P
u

b
lis

h
 T

ak
e

O
ve

r
tr

a
n

sa
ct

io
n

C
re

at
e
 H

a
nd

o
ve

r-
Tr

an
sa

ct
io

n

te
m

p
la

te
 w

it
h

o
u

t
 s

ig
n

at
u

re
s

V
al

id
a

te
 r

ec
ei

ve
d

te

m
p

la
te

V
al

id
at

e
 a

n
d

 a
d

d
si

g
n

at
u

re
s

to

tr
a

n
sa

ct
io

n
A

b
or

t
if

 v
al

id
at

io
n

 f
ai

ls
.

P
ro

ce
ed

 w
it

h
w

o
rk

fl
o

wC
o

m
m

o
n

 c
h

o
re

o
gr

ap
h

y
o

ve
rh

e
ad

U
p

d
at

e

re
ce

iv
ed

 t
em

p
la

te

w
it

h
 p

u
b

lis
h

e
d

o

n
lin

e
 d

at
a

P
re

p
a

ri
n

g
of

 w
o

rk
fl

o
w

d

at
a

ex
ch

an
ge

C
o

n
ta

in
s:



<W
F_

IN
ST

A
N

C
E_

ID
>



<N
EX

T_
TA

SK
_I

D
>



<T
IM

ES
TA

M
P

>


<W
F_

D
A

TA
_

H
A

SH
>

C
o

n
fi

rm
 o

w
n

er
sh

ip
 o

f
ad

d
re

ss
e

s

#1 #2 #3 #4 #5
R

e
ce

iv
er

 a
p

p
ro

ve
s

th
e

tr

an
sa

ct
io

n
 t

e
m

p
la

te

#6

Figure 5.1: Intermediate Handover of a Workflow Instance between Companies

50

5.3. Blockchain-based Runtime Verification Proposal

By observing the Blockchain, the process owner can monitor the progress of the workflow
instance. Optionally, it is possible for the process owner to immediately collect more
detailed information about the latest progress of a workflow instance. For example
initially, the process owner hands over the workflow instance to the first choreography
participant Alice. After completing the designated task, the Alice performs a handover
with the next participant Bob. Right after the new handover transaction is published, the
process owner observes the changes and can contact Alice in order to collect the identity
information about Bob. In comparison to other approaches, the information collection is
pull-based rather than push-based. This process is further illustrated in Figure 5.2.

Alice

handover(Workflow)

resp(Confirm)

Publish
transaction

Perform
task

Process
Owner

Bob

Monitor
Blockchain

handover(Workflow)

resp(Confirm)

Publish
transaction

Perform
task

collect(nextParticipant)

resp(PKI-sign(Bitcoin_Address_Bob),
 Bob)

Figure 5.2: Pull based monitoring of process owner

51

5. Runtime Verification for Choreographies

The general structure of a workflow-handover transaction is illustrated in Figure 5.3.

workflow token

[data hash]

workflow token

workflow id

task id

time-stamp

From: Alice To: Bob

receiver signature

Figure 5.3: General Structure of a Workflow-Handover Transaction

To completely describe the execution of a workflow instance that includes activities,
exclusive-or (XOR) path decisions and parallel execution paths, additional types of
transactions are needed. The controlled handover between companies, as described
above, documents the execution of activities. Each handover can mark the end of a
previous activity and the start of a new one. XOR path decisions do not require a
dedicated documentation marker since they always resolve into one single execution
path. By analyzing the sequence of activities, a participant can determine how the
XOR path decision was resolved. Besides this, the following documentation elements (i.e.
transactions) are required.

Start of a workflow In order to mark the execution start of a workflow instance, this
documentation element has to be published.

End of a workflow By publishing the distinct end of a workflow instance, all partici-
pants get notified that this instance has ended. Furthermore the instance’s duration
can be calculated.

Split into parallel execution To enable parallel execution paths the documentation
of a workflow instance must be split and follow different paths. This split must be
explicitly recorded to mark the start of the different sub-paths that diverge from it.

52

5.3. Blockchain-based Runtime Verification Proposal

Join from parallel execution When parallel executing paths of a workflow instance
are joined, the different documentation paths of the sub-paths must also be joined.
To explicitly record this, a designated transaction is required.

The transaction to start a workflow is submitted by the process owner. It takes an
arbitrary number of common Bitcoin inputs and outputs the token to be used for the
workflow instance. It further documents the workflow id, a timestamp and a specific
start-of-workflow marker. The timestamp of this transaction defines the starting time of
its given workflow instance. At last, a change output can return the surplus Bitcoins.
Thus, this transaction prepares the workflow instance token. The token itself still remains
under the control of the process owner, the output which holds the token still belongs to
the process owner.

The general structure of a workflow-start transaction is illustrated in Figure 5.4.

Bitcoin input

Bitcoin input

...

workflow token

workflow id

time-stamp

start-marker

From: process owner To: process owner

change

Figure 5.4: General Structure of a Workflow-Start Transaction

53

5. Runtime Verification for Choreographies

In this thesis it is assumed that a process always starts and ends at the process owner.
Since the process owner usually expects some kind of result to be returned by the
participants of the choreography, the last workflow handovers should point back to the
process owner. Therefore, the transaction to end a workflow is also submitted by the
process owner. As input it expects the token of the workflow instance and optional a
data hash to document. The token is then no longer required for the runtime verification
framework and the output can be used for arbitrary purposes. The transaction further
documents the workflow id, a timestamp and a specific end-of-workflow marker. The
timestamp of this transaction defines the ending time of its given workflow instance.
Input as well as output remain under the control of the process owner. The Bitcoin
money received through the workflow token can then be used for new workflow instances.
The general structure of a workflow-end transaction is illustrated in Figure 5.5.

workflow token Bitcoin output

workflow id

time-stamp

end-marker

From: process owner To: process owner

[data hash]

Figure 5.5: General Structure of a Workflow-End Transaction

54

5.3. Blockchain-based Runtime Verification Proposal

In order to enable parallelism in workflows a specific transaction to split a workflow is
required. This transaction is not meant to be used to transfer workflow tokens between
different participants. Instead, only one participants who decides to split a workflow
creates the transaction. The single token input and at least two token outputs are all
under the control of the current workflow token owner. This predefines the number of
paths, the workflow execution is split into. For each of the created paths, the workflow
token owner can then add individual workflow-handover transactions to other participants.
Again also the workflow id, a timestamp and a specific split-of-workflow marker are
documented. The timestamp of this transaction defines when the given workflow instance
was split into parallel paths. If a data hash was documented from the previous task
execution, this data is documented along with the token. The general structure of a
workflow-split transaction is illustrated in Figure 5.6.

workflow token

...

workflow token

workflow id

time-stamp

split-marker

From: token owner To: token owner

workflow token

[data hash]

Figure 5.6: General Structure of a Workflow-Split Transaction

55

5. Runtime Verification for Choreographies

To join parallel execution paths, a transaction to join a workflow is required. Similar to
the start-, end- and split-transactions it is not used to transfer the ownership of a workflow
token. When a choreography participant accepts a workflow task which requires inputs
from multiple execution paths (i.e. it requires a workflow join), the execution can not
be proceeded until all other execution paths also have been handed over to this specific
participant. When executing different workflow paths in parallel, one path will always be
the first to finish. The workflow token of this subpath is then handed over to a participant
which agrees to proceed the execution. All other execution subpaths then must also
handover their execution tokens to this specific participant. The different execution
tokens are then merged into a single token by a dedicated workflow-join transaction.
Naturally this transaction expects at least two token inputs with optional data hashes
and provides a singe token output. As usual also the workflow id, a timestamp and a
specific join-of-workflow marker are documented. The timestamp of this transaction
defines when the given workflow instance was joined from parallel paths The general
structure of a workflow-join transaction is illustrated in Figure 5.7.

workflow token

...
workflow token

workflow id

time-stamp

join-marker

From: token owner To: token owner

workflow token

[data hash]

[data hash]

Figure 5.7: General Structure of a Workflow-Join Transaction

56

5.4. Prototype Description

5.4 Prototype Description

The previous section provided a general description of the runtime verification proposal of
this thesis. In this section implementation specific details about the Bitcoin transactions,
the handover between participants and the implemented prototype are given. Section 5.4.1
explains the concept of standard transactions in Bitcoin, describes how they are structured
and demonstrates how they are validated. The detailed implementation of Bitcoin
transactions enriched with workflow information is outlined in Section 5.4.2. At last, the
framework implemented around the proposed runtime verification concept is described in
Section 5.4.3.

5.4.1 Bitcoin Standard Transactions

In comparison to second generation Blockchains like Ethereum, the Bitcoin Blockchain
was designed to serve a specific purpose, the transfer of digital money. Since Bitcoin
established the first Blockchain, its original design provided various possibilities to create
experimental transactions for other use cases. As described in Section 2.3, a Bitcoin
transaction basically consists of a set of inputs and outputs. Each input points to the
output of a previous transaction. The funds associated with each output are locked by a
script. An output can only be accessed if an input can provide input parameters that
resolve the script guarding the output to true. The structure of a Bitcoin transaction
is welldefined. Only two elements do not have a defined length and can be filled with
arbitrary values, the script locking an output, historically called scriptPubKey, and the
unlocking script provided by an input, historically called scriptSig. In this thesis these
two scripts will be referred to as locking script and unlocking script as done by [10].

Bitcoin defines a custom scripting language which is expected to be used for the locking
and unlocking scripts. While it is on purpose not Turing Complete, it still enables
extensive variants of programs. Unfortunately, different bugs where encountered in the
implementation of the script’s interpreter in earlier versions of Bitcoin. As a solution a
standardization test for transactions was introduced [10]. The developers of the main
Bitcoin software3 added an IsStandard() method which checks the contained scripts.
Only if all locking and unlocking scripts of a transaction exhibit one of five different
predefined structures, the received transaction is regarded as “standard”. Currently the
main Bitcoin software discards all incoming transactions that are sent across the mainnet
which are not standard. This means that all miner nodes which run an instance of the
main Bitcoin software will not accept non-standard transactions. In order to include a
non-standard transaction into the Bitcoin Blockchain one first must find a miner that
is accepting non-standard transactions. In addition, this specific miner then must win
the race of creating a new block, which can take a very long time. It is not explicitly
prohibited to create and publish non-standard transactions but it has become de facto
very difficult to integrate them into the Blockchain.

3https://github.com/bitcoin/bitcoin/

57

https://github.com/bitcoin/bitcoin/

5. Runtime Verification for Choreographies

Only two of the five variants still provide the possibility to insert arbitrary data and still
be considered as standard [10]. The first three transaction types are called Pay-to-Public-
Key-Hash (P2PKH), Pay-to-Public-Key and Multi-Signature. These three transaction
types define very specific script structures and therefore only serve very specific use cases,
namely payment. The most commonly used script type is the P2PKH scripts. It is
used for every simple payment transaction which is conducted between two actors. The
proposed runtime verification approach also partly relies on this transaction type. That
is why it is described in greater detail. The locking script has to be of the following
structure.

Listing 5.1: P2PKH locking script
1 OP_DUP OP_HASH160 <publ ic −key−hash> OP_EQUAL OP_CHECKSIG

The unlocking script has to be of the following structure.

Listing 5.2: P2PKH unlocking script
1 <s ignature > <publ ic −key>

In order to determine if the locking script results to true, both scripts are concatenated
and executed together. All elements which are not well-known commands are considered
as data chunks. Since the Bitcoin script language is stack-based, all encountered data
chunks are pushed to the stack. The combination of a P2PKH unlocking and locking
script results in the following script.

Listing 5.3: P2PKH scripts combined for validation
1 <s ignature > <publ ic −key> OP_DUP OP_HASH160
2 <publ ic −key−hash> OP_EQUAL OP_CHECKSIG

The execution of this P2PKH is very straightforward. The provided signature and
corresponding public key are pushed to the stack. The public key on the stack is
duplicated and the topmost public key entry on the stack is hashed. These steps are
illustrated in Figure 5.8.

58

5.4. Prototype Description

<signature> <public-key> OP_DUP OP_HASH160 <public-key-hash>
OP_EQUAL OP_CHECKSIG

Stack

 OP_DUP OP_HASH160 <public-key-hash> OP_EQUAL OP_CHECKSIG<public-key>
<signature>

Stack

#1

#2

OP_HASH160 <public-key-hash> OP_EQUAL OP_CHECKSIG

<public-key>
<public-key>
<signature>

Stack

#3

Figure 5.8: First steps of validating a P2PKH transaction (adapted from [10])

Next the public key hash of the locking script is pushed to the stack and compared to
the just created hash. This is a cheap way of determining if the public key, provided by
the unlocking script, is the expected one. At last the remaining public key on the stack
is used to check the signature which also resides on the stack. These steps are illustrated
in Figure 5.9.

59

5. Runtime Verification for Choreographies

<public-key-hash> OP_EQUAL OP_CHECKSIG

<public-key-
hash>

<public-key>
<signature>

Stack

OP_EQUAL OP_CHECKSIG

<public-key-
hash>

<public-key-
hash>

<public-key>
<signature>

Stack

#4

#5

OP_CHECKSIG<public-key>
<signature>

Stack

#6

Figure 5.9: Next steps of validating a P2PKH transaction (adapted from [10])

The signature is expected to contain a hash of the currently validated transaction. Since
the signature itself can not be part of this hash, the unlocking scripts must be removed
before hashing the transaction. The unlocking script of the referenced input is replaced
with the locking script of the currently validated output. The unlocking scripts of all
other inputs are set to blank. The process of validating the signature to an input of a
transaction that uses the P2PKH method is further illustrated in Figure 5.10.

60

5.4. Prototype Description

unlocking script

Tx#0

locking script out#1 Ref Tx#0, out#1

out#1

value

in#1 outputs

Tx#1

unlocking scriptRef Tx#x, out#y

in#2 in#n

locking script out#1Ref Tx#0, out#1

in#1 outputs

<blank>Ref Tx#x, out#y

in#2 in#n

Tx#1

Create signature with
private key corresponding
to out#1

Figure 5.10: Creation process of Bitcoin validation signatures

The Pay-to-Public-Key script type is an older and simpler variant of the P2PKH type.
The locking script directly contains the public key and only the signature is expected
as input. This omits the hash check before the signature check. While still being used
by older Bitcoin clients, this transaction type has two disadvantages in comparison to
the P2PKH type. Instead of the cheap hashing check, the expensive signature check is
always executed in order to check the validity of the unlocking script. Furthermore, the
placement of the used public key in the locking script increases the byte size of this script
significantly. To perform quick and efficient validation of new broadcast transactions,
mining nodes try to keep all unspent transaction outputs directly in memory. The usage
of P2PKH transactions instead of Pay-to-Public-Key transactions greatly reduces the
memory required for the unspent outputs.

In order to enable payments which have to be approved by multiple parties, the Multi-
Signature script type is defined. It enables payers to lock a transaction output with a
script that requires not one but multiple signatures from different Bitcoin key pairs to
unlock. This transaction type can be used to implement fault management strategies in
the proposed runtime verification prototype. Since fault management strategies are out
of scope for this thesis, the Multi-Signature script type is not discussed in detail.

The two standard transaction types which still allow a certain degree of freedom are Data
output and Pay-to-Script-Hash (P2SH). Data output is the only standard type without a
direct purpose for payment. It is designed to serve as simple and limited data field. It

61

5. Runtime Verification for Choreographies

is the last remaining concession towards alternative and experimental use cases in the
Bitcoin Blockchain. To directly place data in a transaction, a specialized output with
0 BTC must be created. Since its only purpose is to contain data, it should never be
referenced by another input or carry value.

In order to ensure that this output is never successfully consumed by a new input,
its locking script must never evaluate to true. This is achieved by simply placing the
OP_RETURN operator at the top of the script. When this operator is executed, it
immediately stops the execution. At that point, the value true is not on top of the stack,
therefore the validation fails. Miners therefore can safely archive this kind of unspent
output and do not have to keep it in memory. Originally only 40 bytes of data were
allowed to be stored in such an output. As of version 0.11. of the main Bitcoin software
it is allowed to store up to 80 bytes of information in such data output output. Only
one such data output is allowed per transaction. The data output transaction type is
illustrated in Figure 5.11.

Tx#0

locking script out#1

out#1

value

OP_RETURN 48304502207fa7 .

out#2

0 BTC

Figure 5.11: Structure of standard transaction type “data output”

The P2SH type is a quite new and powerful transaction type to conduct payments.
Amongst others, it allows the controlled usage of non-standard scripts. In contrast to the
strictly defined P2PKH transaction type structure, the P2SH transaction type enables
the usage of various payment scripts. In order to allow miners to save memory, the
locking script of P2SH transactions remains short and strictly defined. It is the unlocking
script which can contain arbitrary data. P2PKH locking scripts require a signature
and a public key as parameters. P2PKH locking scripts require as parameter an entire
redeem script followed by the redeem script’s own parameters. The locking script of a
P2SH transaction is a simple hash value comparison. Upon creating a P2SH output,
the transaction publisher must decide which script should be provided for unlocking the
output and hash it. This hash is then placed in the locking script in the following way.

62

5.4. Prototype Description

Listing 5.4: P2SH locking script
1 OP_HASH160 <s c r i p t −hash> OP_EQUAL

In order to unlock an output with such a defined script, a redeem script which matches
the placed hash must be provided. In addition, this provided redeem script itself is
evaluated and must resolve to true. This feature is normally used for Multi-Signature
scripts which tend to be quite long. When used in the P2SH variant, they save memory
for the miners. The unlocking process of a P2SH is illustrated in the following listings.
As redeem script, a simple P2PKH is used. Listing 5.5 shows the redeem script, defined
by the publisher of Tx#0.

Listing 5.5: P2SH redeem script example
1 <redeem−s c r i p t > = OP_DUP OP_HASH160 <publ ic −key−hash> OP_EQUAL OP_CHECKSIG

In order to unlock a P2SH output, the redeem script and its required parameters must
be placed in the unlocking script.

Listing 5.6: P2SH unlocking script example
1 <s ignature > <publ ic −key> <redeem−s c r i p t >

The P2SH validation is then performed in two stages, first the provided redeem script is
compared against the defined hash. Second, the redeem script itself is evaluated with its
parameters.

Listing 5.7: P2SH validation example
1 Stage #1: <redeem−s c r i p t > OP_HASH160 <s c r i p t −hash> OP_EQUAL
2
3 Stage #2: <s ignature > <publ ic −key> OP_DUP OP_HASH160 <publ ic −key−hash>
4 OP_EQUAL OP_CHECKSIG

5.4.2 Workflow Handover Transactions

To store the workflow information required for a handover between two participants in
the Blockchain, as defined in Section 5.3, the two transaction types data output and
P2SH are used. The elements workflow instance id, task id, timestamp and receiver
signature are included in a transaction by using a data output element. By using a simple
adapted P2SH output, the workflow data hash can also be included. The only downside
of using P2SH elements is the fact that the stored data can only be placed in the redeem
script. This redeem script is part of the unlocking script which becomes only visible on
the Blockchain after the output has been spent, i.e. another transaction consumed the
output by placing the redeem script on the Blockchain.

The 80 bytes storage of the data output element are divided in the following way to
store the described elements. The first byte is used to store the length of the stored data
block, which may vary depending on the workflow transaction type. Next, two bytes are

63

5. Runtime Verification for Choreographies

reserved to store the workflow instance id. This enables the definition of 65, 535 unique
workflow instances in this kind of runtime verification proposal. To store the task id,
which follows after the workflow instance id, one byte is reserved. Therefore, 255 different
tasks can be defined inside a single workflow model. The task id is followed by a Unix
timestamp with a length of 4 byte. At last, the Bitcoin signature of the receiver is placed.
Then length of this signature is not fixed but commonly ranges between 71 to 72 bytes.
This results in a data block with a total length of 79 to 80. The structure of the data
output workflow element is illustrated in Figure 5.12.

OP_RETURN data-length workflow-instance-id

task-id time-stamp receiver-signature

1 byte 2 byte

1 byte 4 byte 71-72 byte

Figure 5.12: Structure of workflow data in a Bitcoin data output

The workflow data hash does not fit into the data output element, therefore a P2SH
transaction has to be used to store it. At the same time, such P2SH outputs are used
to transfer workflow instance tokens, therefore also the access restriction features of a
P2PKH transaction are required. In order to achieve this, a P2PKH script with an
optional data hash appended is used as redeem script. The data hash itself does not add
any specific functionality to the script, it is just there to be placed on the Blockchain
as plain text. A simple OP_DROP command ensures that the hash is removed from
the stack before the actual P2PKH script is executed. The inclusion of the data hash is
completely optional. The structure of the P2SH redeem script with included workflow
data hash is illustrated in the following listing.

Listing 5.8: P2SH workflow handover redeem script
1 <workflow−data−hash> OP_DROP OP_DUP OP_HASH160 <publ ic −key−hash>
2 OP_EQUAL OP_CHECKSIG

The complete unlocking script, including the required parameters of the P2PKH script,
is illustrated in Listing 5.9.

64

5.4. Prototype Description

Listing 5.9: P2SH workflow handover unlocking script
1 <s ignature > <publ ic −key> <workflow−data−hash> OP_DROP OP_DUP OP_HASH160
2 <publ ic −key−hash> OP_EQUAL OP_CHECKSIG

As mentioned before, the workflow data hash is placed onto the Blockchain only after
the given output has been consumed, i.e. the given token has been passed on. But
the redeem script hash placed in the P2SH locking script ensures that only the correct
workflow data hash can be placed in the redeem script. Furthermore, before a handover
transaction can be published both workflow participants are in possession of the workflow
data in its current state. The receiver of a workflow handover is able to verify that the
given P2SH output incorporates the correct workflow data hash. In addition, the sender
of a workflow handover can provide the data hash when the process owner demands it.
This way, a process owner can also verify that a data hash has been documented, even if
the corresponding token output has not yet been passed on.

The general steps to perform a handover between two participants were illustrated in
Figure 5.1. In step 4 a handover-transaction template is created by the sender of the
handover which already includes almost all required workflow data. This template is
only missing two signatures, one from the receiver and one from the sender. This initial
template is described in detail in Figure 5.13.

INPUT#1 <TOKEN> BTC
 <-> <wfData_hash> <OP_DROP <Public Key A> OP_CHECKSIG>

OUTPUT#1 <TOKEN> BTC
 OP_HASH160 54c55... OP_EQUAL

OUTPUT#2 0,0 BTC
 OP_RETURN
<DATA_LENGTH>
<WF_INSTANCE_ID>
<NEXT_TASK_ID>
<TIMESTAMP>

<->

Hash of last transaction

Empty signature placeholder

Figure 5.13: Handover transaction template without signatures

65

5. Runtime Verification for Choreographies

Upon receiving the template, the handover receiver is able to validate the correctness of
the following critical elements.

INPUT#1 contains redeem script INPUT#1 references the output of a previous
transaction. This output must contain a P2SH locking script. The unlocking
script, currently included in the template, is still missing parameters (i.e. the
sender signature and public key) but the redeem script itself is already complete.
Therefore the handover receiver is able to validate the correctness of the redeem
script, thus also the correctness of the included wfData_hash of the last transaction.

OUTPUT#1 can be retrieved Though the data of OUTPUT#1 is abstracted by a
P2SH script, the handover receiver knows the defined structure of the script. In
addition, all required data to check the correctness of the included script hash is
already known. The redeem script should be constructed from the hash of the
receiver’s public key and the hash of the already transferred workflow data. By
recreating the redeem script and comparing it to the hash placed in OUTPUT#1,
the handover receiver ensures that the token is indeed correctly passed on and that
the hash of the just received workflow data is correct.

OUTPUT#2 contains the negotiated terms Except for the workflow data hash,
all negotiated workflow data is included in OUTPUT#2, as defined above. The
correctness of the included data, therefore can directly be verified.

Previous workflow execution is valid During the negotiation the handover receiver
also receives the workflow model. Since INPUT#1 is referencing a previous workflow
transaction, the receiver is able to trace the execution history of the workflow
instance. Besides other meta-information about the workflow, it can be determined
if the workflow execution still conforms with the defined workflow model.

If the received handover template is successfully validated, the handover receiver simply
hashes it and signs it. For the signature the same Bitcoin key-pair is used that has been
utilized to receive the token in OUTPUT#1.

After defining which data elements are stored by what transaction elements, the technical
structure of a workflow-handover transaction is illustrated in Figure 5.14.

66

5.4. Prototype Description

P2SH token P2SH token

From: Alice To: Bob

[prev. data hash]
Data Output

workflow id, task id,
time-stamp,

receiver signature

Figure 5.14: Detailed structure of a workflow-handover transaction

It is also possible to incorporate other types of redeem scripts inside the P2SH script.
Fault management strategies can be employed through the usage of a Multi-Signature
type script instead of P2PKH type script. While the P2PKH script only can be unlocked
by the new token owner, a Multi-Signature script can be unlocked by multiple different
parties. In case a fault occurs during a workflow, an escalation strategy has to be
employed by the process owner. To enable the process owner to intercept a workflow
token in the case of incorrect enactment, a Multi-Signature script can be placed as redeem
script in the P2SH locking script.

The Multi-Signature script is then configured to grant access for two people instead of
one, namely the next token owner and the process owner. For instance, if the new token
owner stops responding and does not perform the negotiated task, the process owner
could decide to collect the token instead. Fault management is out of scope for this
thesis, therefore in the proposed prototype only simple P2PKH scripts are employed as
redeem scripts.

The technical details of the other required workflow transaction types workflow-start and
workflow-end are illustrated in the following figures. As explained in the general concept
in Section 5.3, for these transactions the token itself remains under the control of the
same participant.

67

5. Runtime Verification for Choreographies

P2PKH value

P2PKH value

...

P2SH token

From: process owner To: process owner

P2PKH change

Data Output

workflow id, time-stamp,
start-marker

Figure 5.15: Detailed structure of a workflow-start transaction

P2SH token P2PKH value

From: process owner To: process owner

Data Output

workflow id, time-stamp,
end-marker

[prev. data hash]

Figure 5.16: Detailed structure of a workflow-end transaction

68

5.4. Prototype Description

The technical details of the required workflow transaction types workflow-split and
workflow-join are illustrated in the following figures.

P2SH token

...

P2SH token

From: token owner To: token owner

P2SH token

Data Output

workflow id, time-stamp,
split-marker

[prev. data hash]

Figure 5.17: Detailed structure of a workflow-split transaction

P2SH token

...

P2SH token

From: token owner To: token owner

P2SH token

[prev. data hash]

[prev. data hash]

Data Output

workflow id, time-stamp,
join-marker

Figure 5.18: Detailed structure of a workflow-join transaction

69

5. Runtime Verification for Choreographies

5.4.3 Workflow Handover Framework

A Java-based software framework was developed to implement the runtime verification
approach as described above. This framework is designed to efficiently abstract away all
implementation details in order to simplify its integration into choreography-oriented
WfMSs. The framework is further enhanced by using a simple payment verification
(SPV) [23] Bitcoin client as slim foundation, a remote REST API for data collection and
a greedy publishing mode. All these features increase the usability and testability of the
prototype. On the other hand, these features are not essential for the implementation of
the proposed approach.

Traditional Bitcoin clients interact with the Bitcoin P2P network and manage an internal
keystore for the received and sent funds. These keystores are referred to as wallets, since
the contained keys define which unspent transaction outputs can be accessed. In order
to listen for changes concerning a wallet, Bitcoin clients are connected to the Bitcoin
P2P network. They monitor blocks and transactions that are broadcast across the
network. Based on the received information, they maintain their own copy of the Bitcoin
Blockchain. Bitcoin clients always want to ensure that their copy of the Blockchain is
up-to-date. This way clients are able to verify received transactions and can ensure that
only valid payment transactions are created by them.

This precondition leads to two challenges. The Bitcoin Blockchain is continuously growing
and currently requires over 73 GB of disc space [6]. In addition, the synchronization of a
local Blockchain copy with the P2P network is not very fast. The missing information is
collected from other nodes in the P2P network. If a client is running all the time, updates
can be received continuously. But if a client was offline for a longer timespan, larger
chunks of information have to be obtained. Such synchronization may take minutes,
making clients very impractical for infrequent usage.

Both of these challenges hinder the creation of slim Bitcoin clients. Especially mobile
applications can not operate under these conditions. They do not have the required disc
space available and the significant increase of the starting time of these applications
are unacceptable for users. To address this problems, the concept of simple payment
verification (SPV) was proposed. This concept, which is also used by the prototype of this
thesis, does not rely on downloading the entire contents of the Blockchain. This benefit
is gained by reducing the level of security during transaction verification in comparison
to a full node.

A full node maintains a full copy of the Blockchain, including all blocks with all their
transactions. Therefore, a full node is able to verify on its own, if a received block or
transaction are valid or if an output is still unspent. Upon starting, a SPV client does
not synchronize the whole content of each block in the Blockchain. Instead, only the
header of each block is stored. In addition, only information relevant to transactions and
addresses contained in the client’s wallet are requested from other clients. This reduced
synchronization is way faster than the synchronization of full nodes and therefore more
feasible for slim Bitcoin clients with long offline periods.

70

5.4. Prototype Description

SPV clients are not able to verify the contents of blocks or transactions. Instead the used
wallet framework BitcoinJ connects to a random number of Bitcoin peers (>=10). If all
peers relay the same blocks or transactions, they are considered valid. The greatest threat
to this kind of SPV clients therefore are Sybil attacks [67], where an attacker is in full
control of a clients internet connection. Another, but less realistic threat is the Finney
attack [22]. During this attack, a malicious node prepares a valid block which includes a
transaction that simply shifts funds of the attacker from one address to another. Before
publishing, the attacker spends the same funds at a merchant that accepts unconfirmed
transactions. After the transaction, the prepared block is published. This scenario is
very unlikely in this certain use case, since the attacker must be able to create a valid
block faster than the entire mining network. Furthermore, the attacker must be able to
purchase and receive goods from a merchant before a block is created by another mining
node.

After the initial synchronization, the SPV client monitors the Bitcoin network just like a
full node, but only collects information about addresses and transactions that are related
to its wallet. Each newly created block that is relayed by all connected nodes and fits
on top of the stored and synchronized block header chain increases the trust into this
synchronized data. Among other information, the header of a block stores the hash of
the previous block and its Merkle root [55]. By using this Merkle root, a SPV client is
able to verify if a certain transaction is indeed included in a certain block. Through the
usage of Bloom filters [26], a SPV client can request information about a transaction
from other Bitcoin nodes. These nodes then return the requested transactions together
with their respective Merkle paths. As long as the SPV client trusts the collected header
of a block, it can prove that a transaction was included into the given block. This is
another way of meta-verifying the validity of a given transaction for SPV clients.

During the handover of a workflow choreography the receiving participants want to
validate the execution path of the instance prior to the handover. Therefore, they need
to be able to obtain information about old transactions that have been submitted to
the network or are currently pending. Since the implementation proposed by this thesis
relies on a SPV foundation, only block hashes and transactions directly related to the
client’s wallet are monitored. In order to obtain information about transactions unrelated
to the wallet, a separate data collection framework has to be used. Many different
companies4,5,6 provide live access to Bitcoin information through remote REST APIs. By
calling different REST interfaces, slim Bitcoin clients can obtain information about any
confirmed or still pending transaction in the Bitcoin network. This way clients are able
to reconstruct the execution of a workflow instance without running a full Bitcoin node.
For the prototypical implementation in this thesis the REST API of blockcypher.com
is used.

As described in Section 2.3, the required proof of work for the creation of new blocks in
4https://blockchain.info/de/api
5https://api.blockcypher.com
6https://www.blocktrail.com/api

71

blockcypher.com
https://blockchain.info/de/api
https://api.blockcypher.com
https://www.blocktrail.com/api

5. Runtime Verification for Choreographies

Bitcoin is configured to result in a median block creation time of ten minutes. Unfortu-
nately there is a lot of variation in the time between block creations. The time between
the arrival of two blocks roughtly follows an exponential distribution. There may be mere
seconds between the creation of two blocks or even an hour [40]. If too many transactions
are published at the same time or if blocks are created too slow, published transaction
must be buffered by the miners of the P2P network. On average only 1, 500 transactions
are currently included in a new block [25]. If there are more than 1, 500 transactions
queued to be included in a new block, some transactions might need to wait two or even
three block creation intervals until they are confirmed. Also the fees offered by each
transaction affect their confirmation time. Naturally, transactions with higher fees are
treated with higher priority. This results in an even higher variation for the confirmation
time of transactions [40].

Therefore, the transaction confirmation time of Bitcoin is expected to be a major challenge
for a runtime verification approach based on the Bitcoin Blockchain. The conservative
approach to runtime verification would be to wait for the confirmation of each published
transaction before appending new transactions to it. For long running use cases with
long intervals between handovers, like transportation, this would be sufficient. But it
would represent a bottleneck for fast running workflows with short intervals between
handovers, like software computations.

Because of this, the workflow handover framework, which implements the approach
proposed by this thesis also incorporates a greedy publishing mode. A full Bitcoin node
receives notifications about pending transactions on its own. Alternatively, the Blockchain
information retrieval REST API, described above, is able to return information about
pending transactions as well. This way, also SPV-based clients are able to retrieve
information about pending transactions.

Through this greedy approach, it is possible to append new transactions to a workflow,
even though the latest ones have not yet been confirmed. Since information about these
transactions has not yet been placed in the Blockchain but is available in the Bitcoin
network, choreography participants are still able to verify the validity of a transaction to
a given workflow instance. Also Bitcoin miners accept new transactions which reference
unconfirmed transactions as input. It is possible to create whole chains of unconfirmed
transactions, enabling the participants of a shared workflow instance to continue with
its execution even though not all workflow transactions have been included into the
Blockchain yet.

By using this approach, the execution of a fast pacing workflow is not delayed. Fur-
thermore, multiple chained transactions can be confirmed at once in a single block.
Through this, less blocks have to be created to confirm all published transactions of a
workflow instance. In addition, each participant is in possession of the complete workflow
execution chain and can prove that handovers of the workflow instance took place that
were confirmed by both handover partners. The risk of this approach is that a whole
chain of pending transaction may be dropped if something goes wrong.

72

5.4. Prototype Description

If one intermediate transaction of the pending chain is somehow lost, the whole remaining
chain is also dropped since it became invalid. Each published transaction is flooded
through the P2P network and stored in the buffers of various miners. Even during
a conflict in the Blockchain, where it may occur that single blocks are dropped, the
transactions should still remain in the pending buffer. The highest threat for this
greedy approach is malicious behaviour of one of the participants. Each participant is
theoretically able to publish an alternative version of an intermediate transaction in the
pending chain. In this case, two alternative transactions become available for a single
output. It is undefined which transaction will be included in the Blockchain. If the
alternative transaction of the malicious participant is chosen, the remaining pending
transaction chain is dropped.

On the contrary, it is very unlikely that the alternative transaction, published by the
malicious participant, is a valid handover transaction. The malicious participant still
requires another participant to confirm a handover. At the same time, this participant
can easily verify that another workflow transaction is already pending for the given token
output. At last, the alternative transaction also documents which participant caused the
disruption, resulting in penalties and loss of reputation.

The features SPV and greedy publishing both simplify the usage of the runtime verification
framework. By using a SPV foundation, the framework becomes much easier to test and
integrate into a choreography-oriented WfMS. The proposed usage of a remote REST
API as an additional information source reduces the risk introduced by the SPV approach.
The runtime verification framework can operate in the same way, if a full node is used
instead. While reducing the usability of the framework, its level of security would be
increased.

Greedy publishing aims to enable fast paced workflows in the slow running environment
of the Bitcoin Blockchain. To enable this feature in conjunction with an SPV client also
requires the usage of a remote REST API to fetch additional information. If a full node
would be used, the feature of greedy publishing would still be possible but the usage of
the remote REST API can greatly be reduced. Since the full node receives and buffers
most pending transactions itself, the REST API would only be required during rare
exceptions.

The prototype itself was developed by using the following technologies and frameworks.

Java Development Kit (JDK) 1.8 Serves as the technological foundation.

Apache Maven 3.3.9 Provides flexible dependency management. Required software
libraries for the prototype can easily be defined and are loaded automatically.
Furthermore, Maven defines clear build processes which are supported by many
integrated development environments (IDEs).

Spring Beans 4.2.6 Supports the modular composition of the different components of
the framework through dependency injection. Single components of the prototype

73

5. Runtime Verification for Choreographies

are defined by using either annotation-based or XML-based configuration. These
elements can then dynamically be injected into higher level components where
needed.

Apache HttpClient 4.5.2 & Google Gson 2.7 The framework HttpClient is able
to request and load any type of web resource, including a REST interface. The
data returned by the mentioned Bitcoin Blockchain information REST APIs is
commonly structured in JSON7. In order to extract the required information from
the returned JSON objects, the framework GSON is used.

BitcoinJ 0.14.2 This framework provides basic management functions to operate a
Bitcoin wallet. It can operate as a SPV Bitcoin client or as a full Bitcoin node.
When running as SPV client, the reduced copy of the Bitcoin Blockchain can easily
be created and maintained. The original purpose of the framework is to enable
common payment transactions. Therefore, many of the original payment-oriented
functions were adapted or re-purposed in order to enable the creation and publishing
of transactions with data outputs and P2SH outputs as defined in the previous
subsection.

JUnit 4.12 In order to assert the correct behavior of single components or of the whole
framework itself, numerous test where defined by using the JUnit testing framework.

The software framework is divided into three main modules. The module bitcoin-core
provides the basic Bitcoin functionality required to create the raw Bitcoin transactions
which are enriched with runtime verification information. The information retrieval
functionality from remote REST APIs is enabled by the module bitcoin-crawler. At last,
these two models are both utilized by the module handoverFramework which provides
a high level interface to perform the identity-aware workflow runtime verification tasks
that have been described in the previous two subsections.

The module bitcoin-core is responsible for maintaining a Bitcoin wallet. In addition, the
module provides the functionality to create and broadcast the workflow transactions
as defined in Subsection 5.4.2. As the handover process describes, incoming workflow
transactions are first received as templates from other participants. Therefore, this
module also contains functionality to validate the structural correctness of both sent and
received workflow transactions. The following figure illustrates the class diagram of this
module.

7http://json.org

74

http://json.org

5.4. Prototype Description

Figure 5.19: Class Diagram of Module bitcoin-core

75

5. Runtime Verification for Choreographies

The class WorkflowDataBlockConverter is able to create the byte blocks for the data
output outputs of the different workflow transaction types as outlined in Figure 5.12.
The means to create the structurally defined workflow transactions are provided by the
class TransactionBuilder. The exchange and off-chain signing of handover templates
between handover partners is supported by the classes TransactionOffChainProcessor and
TransactionSerializer. To validate the structural correctness of basic workflow handover
transactions the class TransactionStructureVerifier can be used. The main features of
this module are exported by the class BitcoinConnection. It initializes and maintains a
BitcoinJ wallet. All exposed functions operate on top of this wallet.

The retrieval of arbitrary Bitcoin transaction data is enabled by the module bitcoin-
crawler. It can be used to retrieve existing information about a Bitcoin transaction. The
following figure illustrates the class diagram of this module.

Figure 5.20: Class Diagram of Module bitcoin-crawler

76

5.4. Prototype Description

The basic retrieval functionality is abstractly defined in the class BlockChainCrawler. As
already mentioned, the prototype of this thesis relies on the REST API of blockcypher.
com. The retrieval mechanisms required for the specific structure of this API are
implemented in the class BlockcypherBlockChainCrawler. Since there is a distinction
between the APIs operating on top of the Bitcoin mainnet and the Bitcoin testnet,
there are two distinct configurations of this crawler. Some of the provided broadcasting
functions from module bitcoin-core can be optionally used in conjunction with this
information retrieval features. A transaction does not have to be re-published if it can
already be found as a pending transaction by the information crawling module. Therefore,
the class BitcoinConnection already relies on the functionality of this module.

The functions of the two previously described modules are utilized to enable the man-
agement of identity-aware workflow handovers. This runtime verification framework is
finalized in the module handoverFramework. In the following Section 6 it is demonstrated
how the described framework can be used during the execution of a workflow in a
choreography-oriented WfMS environment. The structure of this module is illustrated
through the class diagram in Figure 5.21.

Figure 5.21: Class Diagram of Module handoverFramework

The class which combines all functionality exported by this framework is named Work-
flowHandoverManager. It uses an instance of BitcoinConnection to operate a Bitcoin
wallet and exchange Bitcoin transactions. Furthermore, it maintains a persistent workflow
graph storage. This storage contains the workflow metadata known by this runtime verifi-
cation instance. The stored metadata is used in conjunction with the Bitcoin transactions
contained in the wallet.

The workflow graph stores and updates information about all started or received workflow
instances together with available identity information about the involved participants.
Following the proposed concept described in Section 5.3, a RSA-based PKI infrastructure
is used to identify different actors in the choreography network. The class OwnIdenti-
tyProvider is used to provide the runtime verification framework with the RSA identity
information of the operator of the currently running program instance. All cryptographic

77

blockcypher.com
blockcypher.com

5. Runtime Verification for Choreographies

PKI operations which are required during a workflow handover are provided by the class
BasicCryptographyManager.

If a new workflow instance is started by the WorkflowHandoverManager, the class
TokenSizeEstimator is used to estimate the required token size of the workflow instance.
Since each transaction requires a fee which is deducted from the workflow token itself, the
token must be sizable enough to suffice for the whole duration of a workflow execution.
Based on the estimated number of tasks and splits the required token size is approximated.
This estimation is performed very conservatively to ensure that the token will always be
sizable enough.

The functionality, offered by the WorkflowHandoverManager, can optionally be performed
in the described greedy publishing mode. This mode operates in contrast to the classic
conservative mode, were each workflow transaction has to be confirmed before the
workflow execution can be proceeded.

Before receiving the control over a workflow instance from another choreography partic-
ipant, the class WorkflowUpdater uses a BlockChainCrawler to retrieve the published
execution information of the workflow instance so far. Based on this information, a
choreography-oriented WfMS is able to validate if this execution information conforms
with the defined workflow model and if the handover can be accepted.

78

CHAPTER 6
Prototype Evaluation

Research challenge RC-1 was addressed in the previous section. For this, different
enactment verification approaches were discussed. We demonstrated that it is indeed
possible to utilize a first generation Blockchain for runtime verification in choreography-
oriented WfMSs.

In order to address RC-2, different functional and non-functional properties of the
proposed prototype are evaluated in this section. Different characteristics related to
the dynamic nature of distributed workflow choreographies are discussed in Section 6.1.
The discovered results are then compared to the proposed prototype and other already
existing approaches for runtime verification.

To assess the performance overhead created by the proposed framework, a performance
analysis is conducted in Section 6.2. Similar to the performance evaluation conducted
by [70], different workflow choreographies are simulated with and without runtime
verification. This way an estimate about the framework’s impact on the execution
performance of workflow instances in a choreography-oriented WfMS can be calculated.

6.1 Functional Comparison
A comprehensive qualitative comparison of existing runtime verification approaches
for WfMSs is a challenging task. As described in Section 5.2, runtime verification
approaches are limited in number and of heterogeneous nature. Additionally as explained
in Section 2.1, in the scientific field of choreography-oriented WfMSs there exist no
established standards or architectures. Suitability of a given runtime verification approach
for choreography-oriented WfMSs becomes difficult to assess. A functional comparison
therefore has to focus on the few commonly agreed features of workflow choreographies.

Workflow choreographies operate as distributed systems. The more heterogeneous,
geographically distributed and organisationally independent such systems become, the

79

6. Prototype Evaluation

more dynamic and diverse they become. Many established solutions from orchestration-
oriented WfMSs can not be applied in this context. Therefore, in choreography-oriented
WfMSs many unique situations have to be addressed by fault management strategies
[39, 58, 68]. For instance workflow participants might become unavailable, tasks might
be processed incorrectly or network participants might compete against each other. In
order not to limit these fault management strategies, a runtime verification system must
remain as flexible as possible. In this thesis the term flexibility is therefore used to
describe the capability of a runtime verification system to deal with the dynamic nature
of a distributed choreography and its participants.

Choreography-oriented WfMSs and runtime verification approaches have been extensively
discussed in the previous sections. Based on the findings, different relevant criteria have
been extracted and are described in Section 6.1.1. Furthermore,the runtime verification
approaches described in Section 5.2 are discussed in respect to these criteria. A similar
kind of comparison approach has also been used by other scientific publications in the
field of distributed software systems [8, 45, 88].

6.1.1 Extracted Flexibility Criteria

The following criteria which influence choreography-oriented fault management, choreog-
raphy - oriented WfMSs and their participants in general have been extracted from the
findings of this thesis. Depending on their structure and implementation approach, the
different described approaches for runtime verification influence those criteria.

Participant Selection

A major influence on the stability of a distributed workflow instance is the selection of
its involved participants [39, 68]. While often not directly discussed, predefining the
participants greatly reduces the organizational effort during the enactment. At the same
time, the workflow also becomes less robust. Depending on the nature of a distributed
system, it is possible that participants might become unavailable. In a predefined setting,
a workflow instance may halt in this case.

The alternative variant would be to select the required participants on-demand during
the enactment. Especially for long running workflows where participants may have to
wait a long time before they are involved, this can increase overall the robustness. Of
course also a mixture out of the two approaches is possible. The different variants in
participant selection are further illustrated in Figure 6.1.

80

6.1. Functional Comparison

Predefined On-Demand

Participant
Selection

Mixed

Figure 6.1: Variants of participant selection

Information Sharing

The categories outlined in this section influence the acceptance of the overall distributed
system by the participants.

When choreography-oriented workflow enactment takes place as cooperation between
independent companies, information sharing becomes an issue [13, 89]. Participants of
B2B choreographies might also be potential competitors. It becomes a requirement to
share as little information as possible with other participants. Therefore, it is important to
evaluate if runtime verification approaches require companies to share internal information
more than absolutely necessary. The less information is shared the more the system
becomes acceptable for the independent participants.

The factor information sharing can be divided into three sub-factors as illustrated in
Figure 6.2.

Information
Sharing

Participant Identities
Sharing

Documented Data
Sharing

Internal Structure
Sharing

Figure 6.2: Sub-factors of information sharing

Participant Identities Sharing Cooperation requires companies to disclose identity
information about themselves. But this information is only really required by the
owner of a workflow instance and the direct interaction partners in a choreography.
There is no actual necessity for choreography participants to know the identity of
all other choreography participants.

81

6. Prototype Evaluation

Documented Data Sharing Analogous to the previous sub-variant, it is not required
that choreography participants have knowledge about all the data shared during a
workflow enactment. Participants just need to know about the data shared with
their direct neighbors.

Internal Structure Sharing While not desired, some runtime verification approaches
may require participants to disclose parts of their internal structure. Therefore this
sub-variant has to be highlighted.

The different variants of the sub-factors participant identity sharing and documented data
sharing are illustrated in Figure 6.3.

MinimumAll

Participant Identities
Sharing

Mixed

(a) Variants of participant identity sharing

Documented Data
Sharing

MinimumAll Mixed

(b) Variants of documented data sharing

Figure 6.3: Participant Identity sharing and Documented Data sharing

As stated before, internal structure sharing is not desirable in a B2B setting but some
approaches to runtime verification might require it. The different variants of this influence
factor on flexibility are illustrated in Figure 6.4.

Internal Structure
Sharing

Not
Required

Required Mixed

Figure 6.4: Variants of internal structure sharing

6.1.2 Exhibited Security Features

The previous section described criteria through which runtime verification proposals can
influence the flexibility of choreography oriented WfMSs. Additionally, these runtime
verification proposals are also expected to provide certain security-related features.

82

6.1. Functional Comparison

First and foremost a runtime verification framework should enable the discovery of
incorrect enactment. It must not be possible for a participant to conduct incorrect
behavior during the enactment of a choreography-oriented workflow instance without
being noticed by the process owner or other process participants. In addition to this
feature, runtime verification frameworks may be able to apply even stricter constraints.
The enactment sequence of a workflow instance can be completely enforced. The different
security features are illustrated in Figure 6.5.

Security
Features

Discover
Incorrect Enactment

Enforce
Enactment Sequence

Figure 6.5: Possible security features exhibited by runtime verification frameworks

The different variants of the sub-factors discover incorrect enactment and enforce enact-
ment sequence are illustrated in Figure 6.6.

Discover
Incorrect Enactment

Semi-Supported Supported

Enforce
Enactment Sequence

Not Supported Supported

Figure 6.6: Variants of the sub-factors of the exhibited security features

The discovery of incorrect enactment can either be completely supported or semi-supported.
Semi-supported means that there might occur cases where runtime verification can not
be conducted. For each workflow instance enactment the process owner must receive an
undeniable proof. Furthermore, the process owner must be able to monitor the current
state of the enactment at any given time.

6.1.3 Application of Flexibility Criteria

The results of the functional comparison are listed in Tables 6.1, 6.2 and 6.3. Each
approach provides different means to document the execution of a workflow execution.
Still, none of the listed approaches limit the dynamic execution of workflow instances.
Also, fault management strategies can still be applied.

83

6. Prototype Evaluation

In addition to the previously described criteria, the verification trust basis of each
approach is listed. The verification trust basis is the component of the systems the
participants of a choreography have to trust when performing verification. Afterwards,
the individual result of each listed runtime verification proposal is briefly discussed.

Table 6.1: Criteria application to runtime verification approaches (part I)

Proposal Participant Participant
Selection Identities Sharing

Bengtsson and Westerdahl [19] On-Demand All
Kuntze et al. [54] Predefined Minimum
Montagut and Molva [68] Predefined Minimum
Von Riegen and Ritter [89] On-Demand Minimum
Baouab et al. [13] Predefined Minimum
Lim et al. [60] On-Demand All
Hwang et al. [46] On-Demand Minimum
Weber et al. [91] Predefined Minimum
Thesis proposal On-Demand Minimum

Table 6.2: Criteria application to runtime verification approaches (part II)

Proposal Data Internal Structure Fault
Sharing Sharing Discovering

Bengtsson and Westerdahl [19] All Not required Semi-Supported
Kuntze et al. [54] Minimum Required Semi-Supported
Montagut and Molva [68] Minimum Not required Semi-Supported
Von Riegen and Ritter [89] Minimum Mixed Supported
Baouab et al. [13] Minimum Mixed Semi-Supported
Lim et al. [60] All Not required Semi-Supported
Hwang et al. [46] Minimum Not required Supported
Weber et al. [91] Mixed Not required Supported
Thesis proposal All Not required Supported

84

6.1. Functional Comparison

Table 6.3: Criteria application to runtime verification approaches (part III)

Proposal Sequence Verification
Enforcement Trust Basis

Bengtsson and Westerdahl [19] Not Supported Signature enhanced Token
Kuntze et al. [54] Supported Trusted Platform Module &

Process Slip
Montagut and Molva [68] Supported Cryptographic Onion
Von Riegen and Ritter [89] Supported Enterprise Service Bus
Baouab et al. [13] Supported Message Interception Component
Lim et al. [60] Not supported Hierarchical Signatures
Hwang et al. [46] Supported DRA4WfMS Cloud Storage
Weber et al. [91] Supported Blockchain
Thesis proposal Not Supported Blockchain

6.1.4 Result Discussion

Discussion of Bengtsson and Westerdahl [19]

The approach of Bengtsson and Westerdahl [19] is a very simplistic one. In their scenario,
document-based web service calls are used to enact a choreography. The XML encoded
web service request is passed on between the participants of the choreography. Each
participant appends its cryptographic signature to the document as proof for participation.
Furthermore, each participant sends its intermediate result to the process owner through
asynchronous requests.

While this proposal is very flexible, the runtime verification capabilities are very limited.
The participant selection can be carried out on-demand, since nothing is predefined.
Likewise the passed token is not encrypted, all previous participants are disclosed to
whoever holds the token. Same holds true for the shared data. The element to proof the
enactment and to perform verification on is the signature-enhanced XML document. The
process owner receives this token at the end of the enactment and as intermediate results
of the choreography. These results are sent asynchronously to the process owner. It is
not guaranteed that these messages arrive at the process owner. A monitoring through
the process owner is therefore also not guaranteed. The handover between participants is
not explicitly documented. If the XML document is intercepted, a malicious participant
can hijack the execution.

Discussion of Kuntze et al. [54]

The shared trust basis in the work of Kuntze et al. [54] are physical devices called Trusted
Platform Modules (TPMs). In their scenario, each service must be situated on a hardware
platform where such a device is installed. TPMs are able to carry out cryptographic
operations. They are used to verify the operating service and incoming workflow requests.

85

6. Prototype Evaluation

The controlling element of a workflow instance is called a Trusted Process Slip (TPS). It
is a cryptographic token that is passed along with the workflow instance.

Since the TPS must ensure that only authorized companies can participate, the participant
selection must be done prior to the execution. The data included in the TPS is encrypted.
Through the TPM it is ensured that only authorized participants can access instructions
relevant to them. The identity of the participants and the processed data therefore does
not have to be shared with all participants. Two major drawbacks of this approach are
its invasiveness and its lack of monitoring. The TPMs have to be physically installed
at each participant by a third party, requiring them to reveal information about their
internal structure.

Furthermore, TPMs are only able to collect audit data locally. The process owner is
not notified about the progress of its enacted workflow instances. The process model
is included in the TPS. Only when the process slip is returned to the process owner,
the path of the enactment can be determined. Upon receiving a workflow instance, the
trusted process slip is verified and updated by the TPM. This way, a correct enactment
of a workflow instance can be enforced while at the same time fallback strategies can be
implemented.

Discussion of Montagut and Molva [68]

Montagut and Molva [68] propose a token passing concept, similar to [19] but in advanced
form. Instead of a unprotected XML document, a token that is encrypted in multiple
layers like an onion is passed along. The onion structure also is supposed to ensure the
confidentiality and correct sequence of the workflow instance enactment. After each
task execution, a choreography participant is supposed to report back to its preceding
participant which in succession reports back to its preceding participant. This way, the
process owner is notified about the progress of the workflow instance.

The process owner must create the token prior to the enactment. To create this crypto-
graphic structure, keys must be distributed to all participants. Therefore the participants
must be known in advance. The process owner must incorporate all possible paths,
including fallback strategies into the onion. This way, the enactment course can remain
dynamic within the boundaries of the process model. Depending on the complexity of
the process model, this can significantly increase the size of the onion. Each layer of
the onion can be accessed by the appropriate choreography participant. It contains the
minimal information the participant requires to execute its work.

Since no additional framework is required beside the passed on token, no internal structure
has to be shared by the participants. Likewise to the approach of [19], the concept of
voluntary and asynchronous reporting back to the process owner is not a robust way of
providing monitoring. When messages get lost or are not sent on purpose, the process
owner is not able to discover faulty behavior. But all other participants, involved in the
enactment are able to discover faulty behavior. The onion structure completely enforces
the correct enactment of the workflow instance.

86

6.1. Functional Comparison

Discussion of Von Riegen and Ritter [89]

Instead of utilizing a token as the controlling instance, this approach suggests the
mandatory usage of a shared communication medium. All independent organisations
that want to participate in choreographies must connect to an enterprise service bus
(ESB). Instead of directly connecting their offered web services with each other, these
services are registered in the ESB. When this is done, all service communication is routed
through the ESB. [89] further enhance the ESB with a atomic logging mechanism. All
service calls are persisted to a shared logfile. This file can then be utilized to monitor
and verify the behaviour of a workflow instance. Similar to the proposal of [60], other
aspects of runtime verification are not discussed and must therefore be deduced.

While not explicitly stated, the usage of an ESB allows the dynamic allocation of services
and resources. Therefore, it should be possible to select choreography participants on
demand. Similar to the enhancement of atomic logging, an ESB can be enhanced to
ensure confidentiality. Therefore participant identity sharing and data sharing is assumed
to be minimal. The same holds true for the enforcement of the correct sequence for
workflow instances. The main benefit of the approach is the atomic logging mechanism
which produces a shared logfile. This logfile serves as proof of the workflow execution. By
monitoring the logfile a process owner is notified about the progress of enacted workflow
instances and can discover faults immediately.

Even though [89] claim that the ESB approach is very lightweight, it represents a somewhat
invasive approach for the participating companies. The ESB connection software has
to be integrated into the local infrastructure by each company in order to participate
in a choreography. Furthermore, the ESB becomes the shared trust basis. While not
explicitly stated, the ESB itself must also be maintained and operated. Effectively, the
third party that provides the ESB becomes the shared trust basis.

Discussion of Baouab et al. [13]

Similar to the previous approach, Baouab et al. [13] propose a message controlling
facility. The published services of each participant are masked with a message filtering
component. Based on different message and security policies the component decides
whenever messages should be filtered, reordered or routed. If required, notifications to
other participants are sent through a event publishing facility not unlike CEP.

The proposal strongly emphasizes the loose coupling of the companies. Therefore,
instances of the message controlling facility are only deployed on the infrastructure of
each participant. No shared infrastructure is utilized for the message control facilities.
Since no global state is exchanged, the process owner has to define and distribute the
requirements of a workflow choreography prior to the enactment. These rules and
requirements are referred to as policies. Therefore, the participants must be selected
beforehand. Since the policy generation and distribution is entirely controlled by the
process owner, the participant identity sharing and data sharing can be kept to a
minimum.

87

6. Prototype Evaluation

Similar to the approach of [89], the message interception component must be integrated
into the facilities of each participant. It is not specified if the message interception
component is integrated by the participants themselves or a third party. If the participants
are able to integrate the message interceptor themselves, no internal structure must be
shared. If not, they must disclose parts of their internal structure to a third party.

The communication to other participants (i.e. also the process owner) is handled through
event based messaging. This is an asymmetric communication variant. It is possible
that published events are intercepted or lost, therefore the fault discovery is only semi-
supported. Through the defined policies the process owner is able to define and enforce
the correct execution sequence of the workflow instances. The trust basis in general
is the message interception component. Since this component must be utilized by all
choreography participants, it is likely to be provided by a third party.

Discussion of Lim et al. [60]

While not covering the entire verification process, this proposal aims to use special
hierarchical signatures to document the progress of a workflow instance. These signatures
allow the usage of multiple keys to create a signature, thus enabling process participants
to document the progress of a workflow accordingly. When the execution of a workflow
is joined from multiple parallel paths, the keys of all directly preceding companies can be
used to document their approval.

The concept of Lim et al. [60] strongly focuses on the mechanics of those hierarchical
signatures and does not discuss other aspects of runtime verification in detail. Similar
to the concept of [19], the usage of signatures does not require the selection of the
choreography participants prior to the enactment. As stated, the issues of confidentiality
are not addressed. Therefore, all previous participants are known to anyone who holds
the token and all shared data is visible.

The lightweight approach that utilizes only signatures does not require the participants
to share information about their internal structure. Like all other previously described
token-based approaches, fault discovery is only semi-supported. That means the process
owner or anyone else can discover faulty behavior, if the token element is returned. In
case the token gets lost or intercepted, no runtime verification can be performed.

Discussion of Hwang et al. [46]

In an attempt to make the choreography-oriented execution of a workflow instance
independent of the participating companies and their local WfMSs, Hwang et al. [46]
propose a cloud-based approach. The entire execution state of a workflow instance is
encapsulated in one single XML file. This file is passed along the participants like a
token.

At the same time, a cloud-based control instance, called DRA4WfMS Cloud, is used to
repeatedly store and monitor the passed tokens. Through various cryptographic access

88

6.1. Functional Comparison

restrictions it is ensured that all participants can access and alter only data relevant to
them. Furthermore, this way the document is secured in the untrusted cloud environment.

Each time a participant is finished with executing a task, the token is returned to the
cloud system. The system performs verification and stores the document. Furthermore,
subsequent participants are notified.

At first glance, the approach of [46] combines all the benefits. Through the regular
returning of the control token to the cloud system, the participants can be selected
on demand. The identities and data of the involved participants must only be shared
minimally. The internal structure of each participant must not be disclosed, since the
entire workflow is controlled through one encryption protected XML file.

Faults can quickly be discovered though the central monitoring of the cloud system. At
last, since routing is also performed by the cloud system the correct enactment sequence
of the workflow instance can be enforced.

The flaw in the concept is the shared trust basis. While being referred to as a scalable
and trustworthy approach, the controlling cloud system DRA4WfMS effectively becomes
the new centralized coordinator. This does not fit to the definition of decentralized
control in workflow choreographies. While being operated on a scalable cloud platform
the routing system DRA4WfMS becomes the new bottleneck and single point of failure.
Furthermore, the entire encryption is managed by the system. Therefore, all participants
have to trust this third party to correctly manage their initiated workflow instances.

Discussion of Weber et al. [91]

A combination of the benefits of both token-based and messaging control-based approaches
is attempted by a new kind of strategy, the employment of Blockchains. The approach of
[91] is described in greater detail in Section 5.2.4. A token-like object is used to protocol
the state changes of a workflow instance. But instead of passing this token along with
the participants, the token is stored in the Ethereum Blockchain as a smart contract. As
the state of the contract is altered by the participants, the contract changes its access
restrictions, thus controlling the control flow of the workflow instance.

In order to include access keys during the creation of smart contracts for workflow
instances, all choreography participants must be known prior the workflow enactment.
On the other hand, this way the identities of the participants can be protected from each
other. The participants do not directly interact with each other, instead the input and
output data is shared through the state management transactions of the smart contract.
Furthermore, this payload is encrypted to protect it, thus keeping on-chain data sharing
to a minimum.

Data-intensive tasks are supposed to be handled by trigger components. These com-
ponents are under the control of single choreography participants and must be trusted.
Therefore, the required data sharing is classified as mixed.

89

6. Prototype Evaluation

Since the entire management of the workflow takes place in the Blockchain, nothing about
the internal structure of the participants must be shared. The progress of a workflow
instance is publicly documented in the Blockchain as its corresponding smart contract is
altered. Through this, a process owner can monitor the progress of a workflow instance
the entire time. The correct sequence of a workflow is enforced by the control logic of a
smart contract.

Discussion of own proposal

The runtime verification prototype of this thesis is discussed in detail in Section 5.3.

Due to its open design, the participant selection of this thesis’s proposal can be done
on-demand. Since each next participant is selected by the current token owner, the
identities of all participants do not need to be shared. Only the process owner, who is
able to collect the workflow information pull-based is able to know the identities of all
participants.

Data sharing is not handled in the current design of the proposal. The passed along
data is visible to all participants of the choreography. Similar to the approach of [91],
the utilization of a Blockchain externalizes the used trust basis and does not require the
participants to share information about their internal resource structure.

To perform correct handovers for workflows, both the sending and the receiving participant
must provide their signature. Each new task that is performed is documented in these
handover transactions. The process owner and all other participants can monitor the
Blockchain in order to analyze the execution path of a workflow instance. Incorrect
behavior immediately becomes visible to all choreography participants, including the
process owner. Due to the fact that the process model of a workflow is not incorporated in
the logic of a workflow transaction, the sequence of performed tasks can not be enforced.

6.1.5 Summary

The perfect approach for runtime verification in choreography-oriented WfMSs has not yet
been found. Many approaches utilize tokens that are passed along with the participants
during the enacment in order to document and/or controll the progess of a workflow
instance [19, 46, 54, 60, 68]. In token-only approaches, participants have to be predefined
to subsequently protect the privacy of identity and data. Furthermore, the enactment
sequence can only be enforced this way. All token-only approaches suffer from limited
fault discovery. Since the token is the only element of proof that work was done, the
communication of this token is critical.

But there is no mechanism in place that guarantees that a token is returned to the
process owner. It may get intercepted or lost. Furthermore, a process owner is only able
to monitor the progress of a workflow instance, if the intermediary token is returned
periodically.

90

6.1. Functional Comparison

Other approaches aim to control the messages that are passed between the participants
[13, 46, 89]. To enable this, different communication and control facilities have to be
established. By utilizing this approach the proposals of [89] and [46] are able to exhibit
very flexible features. On the downside the facilities introduced by those approaches
become the shared trust basis. This new shared trust basis is under the control of a third
party. The same partially holds true for the approach of [13] but they explicitly address
this tight coupling issue. In their approach they yet again trade flexibility in participant
selection and fault discovery in order to provide a somewhat more decentralized and
trustworthy message controlling facility.

Recent approaches try to overcome the issue of the shared trust basis by incorporating a
Blockchain. [91] utilizes the Ethereum Blockchain and the proposal of this thesis utilizes
the Bitcoin Blockchain. Through this, both approaches are able to provide complete fault
discovery and to fully protect the internal technical structure of the participants. At
the same time the respective Blockchain serves as secure, independent and decentralized
basis of trust.

The selected Blockchain has great impact on the exhibited features of a Blockchain-
based approach. While both Blockchain-based approaches protect the identities of their
participating companies, they differ in their participant selection, data sharing and
sequence enforcement.

[91] requires the participants to be selected in advance. This way, [91] are able to partially
protect the confidentiality of the protected data and to enforce the execution sequence of
the enacted workflows. The approach of this thesis exhibits greater flexibility by enabling
an on-demand participant selection. On the other hand, our proposed approach is not
yet able to provide confidentiality for the shared data and also the correct execution
sequence can not be enforced. Nevertheless, the work of Weber et al. [91] comes closest
to this thesis.

91

6. Prototype Evaluation

6.2 Performance Analysis

[70] conducted a performance analysis for software applications by comparing the execu-
tion time of an application with and without a specific feature included. They executed
workflow applications within computational Grids. In order to approximate the imposed
time overhead of the Grid, they compared the execution time of the workflow applications
within the Grid against an idealized model for the execution time.

Similar to the described approach of [70], this thesis assesses the impact of the runtime ver-
ification feature on the execution time of enacted choreography-based workflow instances.
The workflow instances are executed with and without the proposed runtime verification
prototype included. As discussed in Section 2.1, the research about choreography-oriented
workflow systems is still in its infancy. That is why there is a lack of mature choreography-
oriented workflow systems that can be used as foundation for the performance analysis.
As a compromise, the routing mechanics of a choreography-oriented WfMS are custom
built instead. The remainder of this section is organized as follows. Section 6.2.1 describes
the approach, design and implementation of this choreography enactment simulation as
well as the simulated workflow instances. The results are outlined in Section 6.2.2.

6.2.1 Simulation Setup

A choreography is conducted by various individual participants. According to the mo-
tivational scenario defined in Section 4, that is addressed in this thesis, the various
participants all represent independent companies. Each company operates an inter-
nal WfMS, which can be either orchestration-oriented or choreography-oriented. The
cooperation of the WfMSs of these companies represents the actual choreography.

Choreography Participants

As a simplification, the different available companies are represented as a collection of
semantically isolated routing endpoints implemented in Java. Each company operates its
own choreography logic and runtime verification instance (i.e. instance of WorkflowHan-
doverManager). The runtime verification instance itself operates on top of a designated
SPV Bitcoin wallet. As explained in Section 5.4, the runtime verification prototype is
designed to be integrated in an existing choreography-oriented WfMS. Instead of a full
fledged WfMS, the prototype now is integrated into the custom build choreography logic.

Since a mature choreography-oriented WfMS implementation is unavailable, a choreogra-
phy logic was custom built for the simulation. It is capable of handling basic business
process models as described in the following section. Using this choreography logic,
companies are able to start the enactment of their corresponding workflow instances.
Furthermore, each company listens to a specified port, waiting for incoming handover
requests of other companies. When a correct workflow handover is received, the execution
of the next task of the workflow is simulated. Since an actual execution of a task is
not required in the course of this analysis, each task execution is only represented by a

92

6.2. Performance Analysis

waiting period of 5 seconds. After the simulated execution, the next handover partner is
selected and the workflow instance is passed on. This way, a workflow instance is passed
along the choreography participants through TCP/IP socket communication.

Each company is strictly isolated. It maintains its own RSA key-pair to support the
cryptographic steps of the workflow handovers. Furthermore, only specific information is
publicly available for every company. Namely the contact ports of companies to send
workflow handover requests to, the public RSA key to exchange signed and encrypted
information and the used business process models together with the execution paths
defined by the simulation.

The described components of the simulated companies are further illustrated as FMC
Blockdiagram [47] in the following figure.

Choreography Participant

TCP/IP Communication
Interface

Choreography
Logic

Other Choreography
Participants

R

Runtime Verification
Framework

Handover
Listener-Thread

RSA
Key-Pair

Workflow
Starter-Thread

Bitcoin
Wallet

Routing & Handover
Logic

BP
Models

RSA
Public-Keys

Company
Contact

Information

Public
Information

Figure 6.7: FMC Blockdiagram of the basic components of a choreography participant in
the simulation

In order to document the course of the choreography enactment, all companies log their
progress to a shared logfile.

Simulated Business Processes

In addition to a custom routing logic, a custom interpretable representation of business
processes must be defined. This custom choreography logic controls the routing of

93

6. Prototype Evaluation

rudimentary business processes. The following well-known BPMN-like elements can be
used to define basic processes.

• Process Start

• Process End

• Activity

• XOR Split- and Join-Gateway

• AND Split- and Join-Gateway

The elements Start and End mark the beginning and end of a business process. In
our simplified setting only one Start- and End-element is allowed per process model.
The Activities depict the actually execution of tasks. Each activity is associated with
a task-name and task-id. Activities also may require input data, produce new output
data or change the given input data. XOR gateways mark necessary decisions that
have to be made during the execution. The outcome of these decisions defines on which
process branch a workflow instance proceeds. Parallel execution is enabled through AND
gateways. These gateways simply split or join the execution of a workflow into branches
that can be executed in parallel. By utilizing the BPMN notation [72], these elements
can be illustrated in the following way.

Process Start

Name

Process End And-
Gateway

XOR-
Gateway

Activity

Figure 6.8: Business process elements used in the simulation, in BPMN notation

Using these elements, basic business processes can be defined. During choreography-based
workflow execution, a process owner initially hands over the enactment of a workflow
instance to a partner company. Without a runtime verification framework, as soon as this
partner company passes the workflow instance on to another choreography participant,
the process owner has no more knowledge on who is currently enacting the initiated
workflow instance. Therefore, any business process which contains at least two activities
is a suitable candidate for the runtime verification system. To maximize the verification
effort of the prototype, in the simulation each activity is enacted by another company.
Therefore for each activity a handover is required. The following four business process
models, illustrated in BPMN notation, are used as basis for the simulation.

94

6.2. Performance Analysis

Activity A Activity B Activity C

Figure 6.9: Business process model for simulation, named Simple BP

Activity A

Activity B

Activity C

Activity D

Figure 6.10: Business process model for simulation, named XORSplit BP

Activity A

Activity B

Activity C

Activity D

Figure 6.11: Business process model for simulation, named ANDSplit BP

The three previous business process models combine the described elements only in a
sequential way. But as the following model illustrates, the elements can also be combined
in multiple layers.

95

6. Prototype Evaluation

Activity A

Activity B

Activity C

Activity E

Activity D

Figure 6.12: Business process model for simulation, named Layered BP

Even though the business process models are illustrated by using the BPMN notation,
inside the simulation program they are directly defined in the code. Since there exits
no mature choreography-oriented WfMS that can be utilized for the simulation, the
hard-coded definition of the business process models is the simplest solution.

Simulation Moderation

In order to start, moderate and end a single simulation run, a Java program operates
as the main controlling entity. It expects a number of input parameters to configure
the simulation as well as a valid Spring Application Context that defines the different
available companies as described above.

While there is a lot of simulation data which is generated during the start of the simulation
by utilizing a random number generator, the simulation is kept deterministic by its input
parameters. Amongst other things, a seed is used to initialize the random number
generator. These conditions are required to keep the simulation reproducible. When
a simulation is executed twice using the same input parameters, the deviation of the
results will only be determined by the given behavior of the Blockchain. The following
input parameters are expected by the simulation.

Testnumber Number to uniquely distinguish the current test configuration from other
configurations. Also used to uniquely name the produced logfile.

Business process model name Business process model to enact, as described above.

Execution variant number Whenever a XOR gateway is used in a process model,
different execution variants are created, depending on which branch gets selected
for the further enactment. By using this variant number as input, the selected
paths of the XOR gateways can be predetermined.

96

6.2. Performance Analysis

Include fault in process flag The most basic purpose of the proposed runtime verifi-
cation framework is to prevent or highlight incorrect workflow executions during a
choreography. By following the chain of workflow transactions in the Blockchain,
a process owner can determine if the execution paths still conform to the defined
business process model. In addition, each potential choreography participant can
also collect and verify the execution trace of a workflow instance before accepting a
handover. The given input parameter flag defines if one of the participants in the
simulation should attempt to perform an incorrect handover.

Random number generator seed As already mentioned, the results of the used ran-
dom number generators are kept deterministic by employing a seed for the initial-
ization.

Use runtime verification flag In order to establish an optimal baseline a simulation
can also be run without the runtime verification framework. This baseline can then
be compared to the test runs that utilized the framework. Through this comparison
the impact of the framework on the execution time can be assessed. The given input
parameter flag determines if the framework should be used in the given simulation
run.

Run in greedy publishing mode flag As explained in Section 5.4.3, the implemented
prototype can be configured to greedily publish chains of workflow transactions
to the Bitcoin P2P network without waiting for confirmation first. Whether this
publishing mode should be used or not is controlled by this input flag.

Company set to use In order to enable parallel simulation runs, different sets of
independent company configurations are defined. As long as there are enough funds
available, different simulation runs can be executed in parallel. Which configuration
set should be used for the current simulation run is defined by this input parameter.

Index of company with enough money One company in a configuration set must
have enough funds in its wallet to start the Blockchain documentation of a workflow
instance. This input parameter defines which company should be chosen to start a
given workflow instance in the current simulation run.

Bitcoin network to use Bitcoin operates a testnet and mainnet Blockchain, as de-
scribed in Section 2.3. Which net should be used in the simulation run is defined
by this input parameter.

97

6. Prototype Evaluation

The companies along with their included runtime verification frameworks are defined as
beans in Spring Application Contexts. As described, there exist different independent sets
of companies. Each set is configured as one consistent application context. Determined
by the input parameter Company set, the simulation loads a specific Spring Application
Context (i.e. company set). This step also immediately loads the wallets which are
included in the runtime verification framework components of the companies.

After the companies have been loaded through the application context, the business
process model to be simulated is generated according to the parameter business process
model name. To enforce deterministic behavior, this business process model is further
enriched with execution metadata according to the input parameters execution variant
number, fault in process number, random number generator seed and index of company
with enough money. Amongst other things it is predefined which path should be taken
through the business process model, which companies are responsible to execute specific
tasks or what workflow data is produced by certain tasks. The general business process
model as well as the specific execution instructions are transferred to the companies.

After this initial generation of testdata, the configured companies are instructed to spawn
the required execution threads. While the companies enact the given workflow instance,
the main Java program keeps monitoring their progress. As soon as all companies have
finished the enactment of the process instance, a final verification of the documented
workflow traces against the expected execution paths is performed.

All relevant data of a given simulation run is logged to a file. The documentation files of
all recorded simulation runs provide the basic data which is further analyzed in Section
6.2.2.

98

6.2. Performance Analysis

The structure of the simulation program, described in this section, is further illustrated
in Figure 6.13 as FMC Blockdiagram.

Simulation Monitor

Execution
Verification

Execution
Information

BP
Models

Public
Information

Input
Parameters

Spring Application
Contexts

(Company Definitions)

Company #1

Company Set

Company #n

Company #m
...

R

R

R

...

Simulation
Initializer

Logfile

Figure 6.13: Blockdiagram of the simulation monitor component

Prototypical Limitations

As mentioned before, due to the prototype state of the proposed runtime verification
framework a number of technical limitations remain in the implementation. As described
in Section 5.3, only during the publishing of a workflow-handover transaction the control
over the workflow token is passed on. During the publishing of the other workflow
transactions, the token remains under the control of the same workflow participant. This
implementation approach was not a conceptual necessity but a result of simplification
reasons. Unfortunately, simplification leads to some difficulties during the enactment.

99

6. Prototype Evaluation

For instance, a workflow must only have one start- and end-node. Furthermore a workflow
must be ended by the same company (i.e. process owner) it was started by. Since the
end-workflow transaction can not be used to transfer token ownership, the token must
be under the control of the process owner prior to publishing. When the last activity of
a business process is not enacted by the process owner, the token must be transferred to
the process owner in an extraordinary workflow-handover transaction. In the simulation
these extraordinary transactions are called filler tasks. They do not simulate any task
and serve only as a mechanism to transfer token ownership. Due to this compromise it is
possible that a simulation may incorporate more workflow-handover steps as defined in
the business process model.

Technical Structure

As already described, the Simulation is implemented as a Java program. It includes
rudimentary choreography-oriented routing logic and utilizes the runtime verification
prototype through the class WorkflowHandoverManager of module handoverFramework.

To enable the definition of basic business processes which also can be used as routing
instructions of workflow instances, the simulation defines a custom model. This model
incorporates different variants of the class BusinessProcessElement. These variants
correspond to the business process elements described above. Compositions of different
business process elements are stored as instances of the class BusinessProcessDescription.
To further enhance this business process descriptions with execution metadata they are
stored as instances of the class ExecutionPath. The following figure illustrates the class
diagram of the model.

Figure 6.14: Class Diagram of the custom business process model

100

6.2. Performance Analysis

The simulation software is structured accordingly to the simulation descriptions above.
The main simulation moderation is provided by the class Simulator. This main class
utilizes simple helper classes from the package dataGeneration to generate the required
simulation data. The previously described business process definitions reside in the
package model. Companies together with their multi-threaded logic are represented by
the class SimulationAgent.

The logic to start workflow instances resides in the class StartClientThread. Each
simulation agent (i.e. company) listens for incoming handover requests by utilizing the
class BitcoinRuntimeVerifierServer. The class BitcoinRuntimeVerifierHandoverClient
contains the logic to hand over a workflow instance to another simulation agent. The
class ServerConnectionThread contains the logic to receive a workflow instance from
another simulation agent. The public information which is available for all simulation
agents is provided by a number of shared data storages which are defined in the package
sharedStorages.

At last during the handover of a workflow instance and at the end of each simulation,
the recorded workflow execution traces are verified against the defined business process
models. This logic is provided by the class SimulationExecutionVerification. The following
figure illustrates the class diagram of the simulation.

Figure 6.15: Class Diagram of the Simulation

101

6. Prototype Evaluation

6.2.2 Simulation Result

In order to conduct the simulation, a pool of test data is defined which contains different
variations of the test parameters described in the previous section. This test data
can be viewed in Section 6.2.3. The course of these simulation runs is documented in
logfiles. The analysis of these logfiles enable the comparison of test runs which use the
runtime verification framework and test runs which do not. In addition to that, it can be
determined if incorrect handover are indeed detectable through the runtime verification
framework. At last, the simulation highlights the difference in transaction throughput
when the proposed greedy publishing mode is used.

In total 122 workflow instances were enacted through the custom choreography-oriented
WfMS described in Section 6.2.1. A list with the transaction hashes of the workflow
instances starting transactions can be found in the appendix. The workflow instances
which used the runtime verification prototype published a total of 450 transactions
enriched with workflow metadata to the Bitcoin Blockchain. The total execution time of
all workflow instances amounts to 50.551 hours. The execution time of workflow instances
include waiting periods for transaction confirmations. Each published transaction must
reach at least a confirmation depth of 1 before a workflow enactment is considered
finished.

Approximately 0.085417 BTC were spent to fuel the transactions of the simulation. Given
the currency exchange rate of Bitcoin to Euro from 08.31.2016, one Bitcoin amounts
to e 512.8969 1. The cost to fuel the transactions in fiat currency therefore amounts to
approximately e 43.81. Considering that 450 transactions were published during the
simulation, the average fee of a Bitcoin transaction enriched with workflow metadata
results to 0.000189816 BTC or e 0.09735581.

In order to create a baseline for the impact of our proposed runtime verification prototype,
the business process models described in Section 6.2.1 were enacted as choreographies
without using the runtime verification framework. Table 6.4 illustrates the resulting
median execution times of the different test runs.

1http://api.coindesk.com/v1/bpi/historical/close.json?currency=EUR&start=
2016-08-31&end=2016-08-31

102

http://api.coindesk.com/v1/bpi/historical/close.json?currency=EUR&start=2016-08-31&end=2016-08-31
http://api.coindesk.com/v1/bpi/historical/close.json?currency=EUR&start=2016-08-31&end=2016-08-31

6.2. Performance Analysis

Table 6.4: Verification-less workflow test runs

Test Business Process Activities Test Average StdDev (σ)
Number Covered Runs Duration [s] Duration [s]

1 Simple BP 3 3 15.544 0.074298198
4 Simple BP 2 3 10.468 0.012283684
11 XORSplit BP 3 3 15.510 0.047590849
12 XORSplit BP 3 3 15.553 0.130349104
14 XORSplit BP 1 3 5.016 0.001247219
19 ANDSplit BP 4 3 18.016 0
20 ANDSplit BP 4 3 18.016 0
21 ANDSplit BP 3 3 13.021 0.007318166
27 Layered BP 4 3 15.592 0.048689492
28 Layered BP 4 3 15.548 0.015369523
29 Layered BP 4 3 16.570 1.399602166
30 Layered BP 4 3 15.539 0.023338095

These results of verification-less test runs serve as baselines. Without the runtime
verification framework included the duration of the test runs is very consistent. In
comparison to the average duration, the standard deviation is very small. These baselines
are compared to test runs of similar configuration but with the runtime verification
framework included. Test runs which utilize the runtime verification prototype are
repeated more often. They are run with and without the proposed greedy mode enabled.
It is expected that these test runs exhibit a higher standard deviation (σ) due to their
dependency on the Bitcoin Blockchain. The resulting average execution times of the
runtime verification-based test runs are illustrated in Tables 6.5 and 6.6.

Table 6.5: Verification framework workflow test runs in non-greedy mode

Test Business WF Steps Test Total # Average StdDev (σ)
Number Process Runs of Tx Duration [s] Duration [s]

3 Simple BP 6 2 12 5,501.125 936.20350
8 XORSplit BP 6 4 24 3,489.367 1,110.33008
15 ANDSplit BP 10 4 40 7,835.141 2,309.38215
25 Layered BP 10 4 40 9,973.858 6,135.97428
26 Layered BP 9 - 10 4 37 7,537.909 3,443.67078
32 Layered BP 9 4 36 9,591.835 3,106.87162

Total 189

103

6. Prototype Evaluation

Table 6.6: Verification framework workflow test runs in greedy mode

Test Business WF Steps Test Total # Average StdDev (σ)
Number Process Runs of Tx Duration [s] Duration [s]

2 Simple BP 6 4 24 706.864 429.716
5 Simple BP 3 6 18 650.132 944.669
7 XORSplit BP 5 - 6 4 21 710.946 306.177
10 XORSplit BP 4 5 20 4,050.133 7,250.916
16 ANDSplit BP 9 - 10 4 39 541.850 221.299
23 Layered BP 10 3 30 2,829.985 2,039.841
24 Layered BP 11 5 55 1,154.829 645.618

Total 207

In order to demonstrate that the proposed runtime verification framework is capable
of detecting errors, a number of workflows include corrupted handovers. Upon noticing
such incorrect behavior the enactment of the workflow is stopped prematurely. That is
why not all test runs are suited for the overall time impact comparison of the runtime
verification prototype. Therefore not all 32 test run configurations are listed in Tables 6.4,
6.5 and 6.6. Therefore, also the number of transactions in Tables 6.5 and 6.6 do not
amount to the total of 450 submitted transactions.

A quick analysis of the tables makes it obvious that the usage of the runtime verification
framework significantly increases the duration of the enacted workflows. But also
workflows that do not run in the proposed greedy mode exhibit a significant longer
duration in comparison to the ones that do.

The following section analyses the results of the runtime verification framework without
the greedy mode in greater detail. After this, the impact of the runtime verification
framework based in conjunction with the greedy mode is also further analyzed.

Non-Greedy Mode Results

Workflows that were enacted using the runtime verification framework in the non-greedy
mode exhibited the highest increase in execution duration. The duration difference per
business process of the baseline results and the non-greedy runtime verification results
are illustrated in the following bar diagram. Note that the y-axis is plotted in log10.

104

6.2. Performance Analysis

Figure 6.16: Bar Diagram comparing durations of the baseline and the non-greedy test
runs

The average increases in duration per business process are listed in Table 6.7.

Table 6.7: Average duration increase in non-greedy runtime verification test runs

Business Process Average Duration Average Duration
[%] Increase [s] Increase

Simple BP 42,297 5,488
XORSplit BP 29,014 3,477
ANDSplit BP 47,918 7,819
Layered BP 57,136 9,019

The only difference between a baseline enactment and a non-greedy runtime verification
enactment is the usage of the runtime verification framework, described in Section 5.3. To
properly document and control a workflow instance, the runtime verificatoin framework
creates different workflow documentation elements. For instance, the start, the end or a
handover of a workflow have to be recorded in the framework and the Blockchain. These
documentation tasks, managed by the framework, must be responsible for the significant
increase in execution duration.

Each time the runtime verification framework records a workflow step, similar sub-routines
are executed. Each of these sub-routines has an impact on the time required by the

105

6. Prototype Evaluation

recording effort of the framework. Each recording task of the runtime verification is made
up of the following sub-routines.

REST API Requests Each runtime verification framework instance operates on top of
a Bitcoin wallet. When this underlying Bitcoin wallet is operated in SPV mode, only
transactions that directly concern the wallet are recorded and received. Therefore, a
number of requests to the REST API may be required during a documentation task
in order to collect information about workflow transactions that are not provided
by the wallet.

Bitcoin Transaction Broadcasts & Confirmations When finally prepared, work-
flow transactions have to be broadcast to the Bitcoin P2P overlay. Furthermore, in
the non-greedy mode of the simulation, each choreography participant waits for
a confirmation depth of 1 for every broadcast transaction before continuing the
enactment of the choreography.

Framework Recording Logic Each documentation task requires its own dedicated
logic. Amongst other things, this includes preparing Bitcoin transactions, ver-
ifying the correctness of the instance’s execution path and persisting the given
documentation step to the permanent framework storage.

The average duration of a recording task performed in non-greedy mode is 879.677 seconds.
In order to assess how the different sub-routines influence the runtime verification recording
tasks of the framework, the duration of each recording task together with the duration of
its sub-routines were analyzed. This analysis was conducted across all business process
types, since the executed recording steps are always the same. The following diagram
illustrates how the average execution time of a recording step is composed of the described
sub-routines.

106

6.2. Performance Analysis

Figure 6.17: Pie diagram illustrating the composition of the average duration of a
non-greedy runtime verification recording step

These results demonstrate that waiting for a transaction to confirm takes up the most
time in the documentation steps of the runtime verification framework. Still, knowing the
average recording duration for a workflow step does not enable estimations of the expected
increase in overall execution duration. This becomes obvious when the average test run
executions of the Tables 6.5 and 6.6 are compared to their respective standard deviations
(σ). The execution durations of both modes have a very high standard deviation in
comparison to their average. In some cases the standard deviation is even higher than
the average. Therefore, even though the number of required recording steps of the test
runs is known in advance, the exhibited execution duration varies significantly.

In Table 6.5, test run number 3 exhibited a much higher average execution duration than
test run number 8 even though they perform the same number of recording steps. The
same holds true for other test runs like test run number 15 and 25. Table 6.6 illustrates
similar results. For example, test run number 2 has a higher average execution duration
than test run number 16, even though test run number 16 performs more recording steps.

Therefore, the workflow transaction confirmation time has to be analyzed in greater
detail. The distribution of all non-greedy transaction confirmation waiting durations is
illustrated as a Box Plot in Figure 6.18.

107

6. Prototype Evaluation

Figure 6.18: Box Plot illustrating the distribution of confirmation duration [min] of
non-greedy transactions

A median transaction confirmation time of 7.741 minutes was recorded for all workflow
transactions in the non-greedy mode. This is even slightly faster than the median
confirmation time of 10 minutes the Bitcoin network is configured to exhibit. Still, a lot
of outliners were recorded. One transaction took even 172.779 minutes to confirm.

This result is not surprising, given the fact that the block creation duration is approxi-
mately distributed exponentially [40]. But there also seem be other factors which influence
the confirmation time of a transaction. During the simulation the following potential
factors on the transaction confirmation were uncovered.

As described in Section 2.3, the Bitcoin network struggles with scalability. The over-
all transaction throughput is sometimes not high enough for the increasing demand.
Transactions which are queued to be included into a block must be buffered by the
miners. During a time of peak load, the number of waiting transactions can increase
significantly, effectively jamming all other transactions that arrive at a later point in time.
The measurements for this thesis were recorded from 10.29.2016 to 11.15.2016. During
this time period the load in the Blockchain network remained relatively stable 2. Shortly
before and shortly after the recordings, the Bitcoin network exhibited rapid load spikes,
which both times resulted in a immense increase of waiting transactions3. It is very likely

2https://blockchain.info/de/charts/mempool-count?start=2016-10-29&
timespan=3weeks&sampled=true

3https://blockchain.info/de/charts/mempool-count?start=2016-10-15&
timespan=2months&sampled=true

108

https://blockchain.info/de/charts/mempool-count?start=2016-10-29×pan=3weeks&sampled=true
https://blockchain.info/de/charts/mempool-count?start=2016-10-29×pan=3weeks&sampled=true
https://blockchain.info/de/charts/mempool-count?start=2016-10-15×pan=2months&sampled=true
https://blockchain.info/de/charts/mempool-count?start=2016-10-15×pan=2months&sampled=true

6.2. Performance Analysis

that a submitted transaction will take longer to confirm when there are already a lot of
other waiting transactions buffered by the network.

Another potential influencing factor on the transaction confirmation time is the transaction
fee. Each transaction must provide a fee in order to give miners an incentive to store it
into a block. The higher this fee is, the higher the priority of the transaction becomes.
Transaction fees are measured in BTC per kilobyte (kB). The number of inputs and
outputs as well as the utilized scripts in these inputs and outputs determine the size of a
transaction. Estimating the optimal fee for a transaction can be challenging. This value
may be influenced by various factors, like operational cost for miners (e.g. power cost
or hardware cost) or the current load in the Bitcoin P2P network. In version 0.12.0 of
the official Bitcoin software the minimal transaction fee is configured as at least 0.00001
BTC/kB 4 but this is not a representative value.

The website blocktrail.com offers a metric for the current optimal fee per kilobyte for
transactions 5. Based on the observations collected during the last 30 blocks, transactions
which provide at least this optimal fee have a change of a least 75% to be included into
the next block. On the date of 11.24.2016, blocktrail.com suggested an amount of
0.00069654 BTC/kB as the current optimal fee. This metric can certainly serve as a
guideline. On the other hand, the runtime verification framework proposed by this thesis
creates workflow transactions with a fee of about 0.0005 BTC/kB. Even though this fee
is lower than the optimal fee suggested by blocktrail.com, the measured median
confirmation time of the workflow transactions was still lower than the networks specified
median confirmation time of 10 minutes.

At last, the amount of Bitcoins sent by a transaction may also be a potential influence
factor. As mentioned, the size of a transaction is mostly determined by its number of
inputs and outputs. When only standard P2PKH payment scripts are utilized, the size of
the used scripts always stays the same. For example a payment transaction that moves
four BTC can have a similar size than a transaction that moves only 0.01 BTC. There
are a number of reasons why transactions that move a higher amount of Bitcoins might
be treated with a higher priority than transactions that move a lower amount.

Miners might prioritise high value transactions because this way they increase the overall
monetary throughput of the network. But most importantly, small value transactions are
frowned upon because they potentially can be used to spam the network. One person may
purchase 1 BTC and publish 1, 000, 000 transactions of 0.000001 BTC for free in order to
spam the network. This is why the official Bitcoin software incorporates the dust rule
[20]. The output of a transaction is referred to as dust when the fees for spending exceeds
1/3 of its value. This rule establishes a lower bound to the amount one transaction can
possibly move but the problem of small value transactions as a thread for polluting the
network remains.

4https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/
release-notes-0.12.0.md

5https://api.blocktrail.com/v1/BTC/fee-per-kb?api_key=
18d4abb73b9375470ee74d7d0260d079bb813e63

109

blocktrail.com
blocktrail.com
blocktrail.com
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.12.0.md
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.12.0.md
https://api.blocktrail.com/v1/BTC/fee-per-kb?api_key=18d4abb73b9375470ee74d7d0260d079bb813e63
https://api.blocktrail.com/v1/BTC/fee-per-kb?api_key=18d4abb73b9375470ee74d7d0260d079bb813e63

6. Prototype Evaluation

The simulation uncovered this potential influence factors on the confirmation time of a
transaction. A thorough evaluation of these influence factors remains a part of future
work.

As a summary, it can be concluded that the confirmation duration for workflow transac-
tions is by far the greatest impact factor for the performance of the runtime verification
framework in non-greedy mode. Also the requests of the REST API play a somewhat
significant role. The REST component requires ten times more execution time than the
framework’s actual verification logic. But these requests can be avoided when the wallet,
the runtime verification framework operates on, is not run in SPV mode.

Due to the high standard deviation of the transaction confirmation duration, a reliable
prediction model for the increase in execution duration can not be created based on the
test data collected in this thesis. Therefore, estimates of the expected duration increase
imposed through the runtime verification framework can not be given.

Greedy Mode Results

When operating in greedy mode, the runtime verification framework still exhibits a
significant increase in execution duration of the enacted workflows in comparison the
verification-less baseline. Still, the impact of the verification framework on the execution
duration is somewhat reduced in comparison the non-greedy test runs. The duration
difference per business process of the baseline results and the greedy runtime verification
results are illustrated in the following bar diagram. Note that the y-axis is plotted in
log10.

Figure 6.19: Bar diagram comparing durations of the baseline and the greedy test runs

110

6.2. Performance Analysis

The average increases in duration per business process are listed in Table 6.8.

Table 6.8: Average duration increase in greedy runtime verification test runs

Business Process Average Duration Average Duration
[%] Increase [s] Increase

Simple BP 5,217 665
XORSplit BP 19,794 2,369
ANDSplit BP 3,314 525
Layered BP 12,600 1,977

Again the only difference between the baseline enactment and the greedy runtime
verification enactment is the conducted recording of the single workflow steps. During
each workflow step recording the sub-routines REST API requests, Bitcoin transaction
broadcast and framework recording logic, described in the last section, are executed. Note
that the sub-routine Bitcoin transaction confirmation is not executed for each recording.
Instead, in the greedy mode there is only one collective waiting period for the transactions
of a workflow instance.

First the composition of a single recording task is highlighted. The average duration of
such a recording task is 12.296 seconds. The influence of the different sub-routines on
the recording tasks of the runtime verification framework are illustrated in Figure 6.20.

Figure 6.20: Pie diagram illustrating the composition of the average duration of a greedy
runtime verification recording step

This is a much more diverse result. The REST API requests and the Bitcoin transaction
broadcasts both impact the duration of a single workflow step recording about the
same. Also the average recording step duration of 12.296 seconds is much lower than the

111

6. Prototype Evaluation

879.677 seconds of the non-greedy mode. The framework can potentially be even faster
when operated on top of a full Bitcoin node instead of SPV wallet. This would remove
the need for the REST API requests. Most importantly the workflow instances and their
included tasks can be enacted faster.

But the collective waiting time for the transaction confirmations also have to be taken into
account. A workflow instance is only considered finished when its submitted transactions
have reached at least a confirmation depth of 1. The average execution duration of the
greedy test runs is 1, 520.677 seconds. This duration is composed of the recording steps
and the single transaction confirmation waiting period in the following way.

Figure 6.21: Pie diagram illustrating the composition of the average duration of a greedy
test run

Even though the greedy mode was able to reduce the execution duration of the enacted
workflow instances, the transaction confirmation duration remains the greatest impact
factor. The distribution of the transaction confirmation waiting time of greedy published
transactions is illustrated as a Box Plot in Figure 6.22.

112

6.2. Performance Analysis

Figure 6.22: Box Plot illustrating the distribution of confirmation duration [min] of
greedy transactions

The greedily published workflow transactions exhibit a median transaction confirmation
time of 8.755 minutes. Similar to the results of the non-greedily published workflow
transactions a lot of outliners occurred. The recorded maximum confirmation duration is
309.180 minutes.

No statement can be given if chaining unconfirmed transactions has any effect on the
transaction confirmation time. To the best of our knowledge, this method is not discussed
in any other Bitcoin related publication or software. The median transaction confirmation
time of the greedy mode results is slightly higher than the median transaction confirmation
time of the non-greedy mode results. It can not be determined if this deviation is related
to the chaining of unconfirmed transactions. The deviation between the two median
confirmation durations can also be explained through the exponential distribution of
Bitcoin’s block creation time.

Due to the high standard deviation of the recorded transaction confirmation durations,
a reliable prediction metric could not be created for the duration of greedily enacted
workflow instances when the number of recording steps is known.

Summarized Result

In both the non-greedy and greedy choreography enactments result, waiting for the
published transactions to be confirmed has by far the highest impact on the performance
of the proposed runtime verification framework. This is a very unpredictable factor since
the transaction confirmation duration is distributed exponentially [40]. Besides the block
creation duration, other potential influence factors on the transaction confirmation time
were discussed. An detailed evaluation of these factors remains part of future work.

113

6. Prototype Evaluation

The greedy enactment mode of the prototype was able to reduce the overall test run
duration by about a factor of 56 in comparison to the non-greedy enactment mode. This
significant improvement was achieved even though the median transaction confirmation
duration of the non-greedily published transaction was lower than the median of the
greedily published transactions. While the framework has to wait for the confirmation of
each non-greedy transaction independently, the chained greedy transactions only have
one overlapping waiting time. This increase in performance is traded against a reduced
level of security, as explained in Section 5.4.3.

Due to the limited resources of this thesis, the simulated choreography participants
operated on SPV wallets instead of full node wallets. The REST API requests that had
to be sent to counteract the shortcomings of the SPV wallets were explicitly separated
from the actual verification logic of the framework. In comparison to the confirmation
waiting time, the REST API did not impact the execution time significantly. By using
full node wallets, they can be avoided entirely.

Due to the high standard deviation of the transaction confirmation duration, the collected
results were not suited to construct a practical prediction metric. Therefore, the expected
increase of the execution duration of workflow instances can currently not be estimated.

Enactment Correctness

The capability of the runtime verification framework to actually detect incorrect enact-
ments was also tested. A number of test runs were configured to purposefully exhibit
incorrect behavior at a random handover between choreography participants. To perform
incorrect behavior, a company tries to handover a workflow instance to another company
with the instructions to enact a task which does not fit at this certain stage of the
enactment.

This is a valid attack angle, since the task which is supposed to be executed by the
receiving company is documented by the handover transaction that is signed by both the
sending and the receiving participant. When a receiving company detects such incorrect
behavior during a handover it aborts the handover process. Therefore, this company also
does not sign the workflow handover template proposed by the sending company.

The sending company is therefore not able to publish a correct workflow handover
transaction. When the sending company is notified that the receiver recognized the
incorrect handover, it ends the enactment of the workflow instance by publishing an
extraordinary workflow-end transaction.

The fault detection success rate of the runtime verification prototype in the various test
runs is listed in Table 6.9.

114

6.2. Performance Analysis

Table 6.9: Fault detection success rate of executed test runs

Test Business Test Runs Successful
Number Process Detections

5 Simple BP 6 100%
6 Simple BP 7 100%
9 XORSplit BP 7 100%
10 XORSplit BP 5 100%
17 ANDSplit BP 7 100%
18 ANDSplit BP 4 100%
31 Layered BP 2 100%
32 Layered BP 4 100%

The prototype was able to successfully detect all attempts of incorrect behavior.

115

6. Prototype Evaluation

6.2.3 Simulation Data

The simulation was conducted, using the random number generator seed 1714322490.
Test data definitions used for the test runs are listed in table 6.10.

Table 6.10: Test run defintions

Test Business Execution Included fault Use runtime Run in
Number process model variant in process verification greedy mode

1 Simple BP 1 false false true
2 Simple BP 1 false true true
3 Simple BP 1 false true false
4 Simple BP 1 true false true
5 Simple BP 1 true true true
6 Simple BP 1 true true false
7 XORSplit BP 1 false true true
8 XORSplit BP 2 false true false
9 XORSplit BP 1 true true false
10 XORSplit BP 2 true true true
11 XORSplit BP 1 false false true
12 XORSplit BP 2 false false true
13 XORSplit BP 1 true false true
14 XORSplit BP 2 true false true
15 ANDSplit BP 1 false true false
16 ANDSplit BP 1 false true true
17 ANDSplit BP 1 true true false
18 ANDSplit BP 1 true true true
19 ANDSplit BP 1 false false true
20 ANDSplit BP 1 false false true
21 ANDSplit BP 1 true false true
22 ANDSplit BP 1 true false true
23 Layered BP 1 false true true
24 Layered BP 2 false true true
25 Layered BP 1 false true false
26 Layered BP 2 false true false
27 Layered BP 1 false false true
28 Layered BP 2 false false true
29 Layered BP 1 false false true
30 Layered BP 2 false false true
31 Layered BP 2 true true true
32 Layered BP 2 true true false

116

6.3. Enabled Use Cases

6.3 Enabled Use Cases
The runtime verification approach of this thesis enables on-demand selection of choreog-
raphy participants. Therefore, any company that is currently in control of a workflow
token can freely decide where to forward this token to.

In addition, the performance evaluation demonstrated that in the most secure non-greedy
operation mode the proposed prototype significantly increased the execution duration of
a workflow. The main influencing factor of the duration increase was the transaction
confirmation time. During the conducted evaluation a median transaction confirmation
time of 7.741 minutes were recorded.

Both these factors implicate that the runtime verification prototype is best suited for use
cases with long running task. In B2B workflows with tasks that take themselves a very
long time the duration increase generated by Blockchain-based runtime verification is of
little significance. Exemplary real world use cases that fit this description are logistic
and supply chain processes. In some cases also long running execution processes may fall
into this category.

For processes with many short running activities the runtime verification prototype in
the non-greedy mode is not suited. The performance evaluation was conducted with
exactly such processes. All the business processes that were used during during the test
runs include only simulated activities. The enactment of each activity is represented
by a waiting period of 5 seconds. In this environment of software-only processes, the
enactment of the verification-less test runs was very fast, as listed in Table 6.4. On the
other hand as illustrated in Figure 6.16, increased the average execution duration through
the usage of the non-greedy runtime verification prototype significantly. In some cases
up to 57.136 %.

The proposed greedy mode of the runtime verification prototype was able to mitigate
this issue to a certain extend. The overall test run durations of greedily enacted test
runs are reduced by a factor of 56 in respect to the non-greedily enacted test runs. Real
world business processes that include a series of very short activities can alternatively
incorporate runtime verification that operates in the greedy mode. Examples for such
business process would be software-only processes which perform a series of software-based
calculation steps. While suffering from a reduced security level, the main benefit of the
greedy mode is its non-blocking nature. A workflow instance can be enacted with almost
no delay until its end is reached. Before these workflow instances are then ultimately
considered finished they then have to wait for the collective confirmation of a greedily
published workflow transaction.

117

CHAPTER 7
Conclusion

In choreography-oriented cooperation the control over workflow instances is shared by all
participants [75, 77]. When a workflow instance is enacted as a choreography, the company
owning the process hands over the control of the instance to other participants for a
number of subsequent process steps. This approach increases scalability and robustness
but requires the participants to trust each other to a certain extent, even though the
involved companies might be potential competitors [58, 93].

For such scenarios the need for distributed verification arises. It is essential for process
owners to be able to verify which task was performed by which cooperating partner at
what specific time. Unfortunately, the research about choreography-oriented WfMSs is
still in its infancy [2]. To the best of our knowledge there are no commonly agreed on
standards for the design, implementation or operation of B2B workflow choreographies.
Based on this situation, there are also only a small number of solutions to perform
runtime verification in a distributed environment, as described in Section 5.2. Both
problems mutually influence each other. The lack of a mature choreography-oriented
WfMS prevents the inclusion of a runtime verification prototype. On the other hand, the
lack of a suited solution for distributed runtime verification might hinder the adoption of
choreography-oriented WfMS.

The recent trend about the cryptocurrency Bitcoin and its Blockchain inspires a new
solution approach to this problem. Bitcoin was developed as a distributed digital currency.
Actors protect the access to their funds through cryptographic safety measures. But in
the payment process between two independent actors a documentation mechanism is
required. As with every financial transaction, thorough documentation and verification is
crucial [85]. The transfer of ownership of Bitcoins must be indisputable and non-reversible.
At the same time, this documentation mechanism should be independent. Bitcoin solved
this problem with a novel technology, a distributed ledger called the Blockchain [99]. The
maintenance of a Blockchain is performed by a large number of independent peers, called
miners [5].

119

7. Conclusion

To foster the development of mature choreography-oriented WfMSs, a novel approach to
runtime verification that utilizes a Blockchain was developed in this thesis as scientific
contribution. In its first research challenge this thesis highlighted ways to utilize the
Blockchain technology for distributed runtime verification.

To address this, a number of existing runtime verification approaches from the areas
of workflow management and B2B cooperation have been described in Section 5. The
discovered existing approaches can be divided into two categories. Runtime approaches
of the first category rely on a cryptographic token that is passed along the choreography
participants [19, 46, 54, 60, 68]. This token is used to document the progress and to
control the enactment of a workflow instance. Other existing approaches aim to control
the message exchange between the participants [13, 46, 89]. Only one other found
approach also utilized the Blockchain as trust basis [91].

Furthermore, the properties of the Blockchains of three main operating cryptocurrencies
were discussed in Section 5. These cryptocurrencies were selected according to their
market capitalization [30]. The selected Blockchains can be divided into first generation
and second generation Blockchains. First generation Blockchains are purpose built for a
specific use case, for instance the exchange of digital currency. These Blockchains only
offer a limited set of features which can be used for other not originally intended use
cases. Blockchains of the second generation are designed with a broad set of features to
intentionally promote a variety of use cases.

The basic security concept of Blockchains only works if, a large, independent and geograph-
ically distributed set of miners supports and maintains it. Furthermore, the underlying
cryptographic concept of a Blockchain must be sound. Only for Bitcoin’s Blockchain, the
oldest first generation Blockchain, both the miner base and the cryptographic concepts
have been evaluated.

Based on the findings about existing runtime verification approaches and operating
Blockchains a novel prototype which utilizes the Bitcoin Blockchain was developed.
Though not intended or supported by its design, the Bitcoin Blockchain is used by the
proposed prototype to serve as trust basis for the indisputable documentation of the
enactment of a workflow instance to meet these demands [34, 97].

As a second research challenge, this thesis evaluated the functional and non-functional
properties of the developed prototype. In a feature comparison, the prototype was com-
pared to the already existing runtime verification proposals. Based on the findings about
choreography-oriented WfMSs, general criteria and requirements of runtime verification
in the context of distributed workflow enactment were defined. By applying these criteria,
the runtime verification approaches were categorized. This categorization was used as
basis for a comparative discussion.

Token-based runtime verification approaches suffer from limited fault discovery capability.
The designated workflow token might get lost or intercepted. There is no guarantee that
the process owner gets the token back. Without the token, no proof for the enactment of

120

a workflow instance exists. Furthermore, in order to provide privacy for the individual
participants they always have to be predefined.

Message-control based approaches exhibit great fault discovery capabilities while at the
same time providing privacy features and advanced runtime verification features. On the
other hand, they are very invasive. The flaw in these approaches lies in their basis of
trust. The utilized messaging facilities essentially becomes the new basis of trust. These
messaging facilities require resources on their own and must be operated, potentially by
a third party.

[91] and the prototype presented in this thesis use a Blockchain as shared trust basis.
This Blockchain is used to manage cryptography tokens that represent the status of
workflow instances. Furthermore, the Blockchain is used to control the access to the
token (i.e. the message flow). [91] and the approach proposed in this thesis use a different
Blockchain. While the approach of this thesis relies on the Bitcoin Blockchain, [91]
utilizes the Ethereum Blockchain. Both approaches are able to protect the identities of
their participating companies. They diverge in their participant selection, data sharing
and sequence enforcement.

In order to protect the privacy of the workflow data and to enforce the execution sequence,
[91] requires the participants to be selected prior to the enactment. In comparison to
that, the approach of this thesis enables on-demand participant selection but is not yet
able to ensure the privacy of the workflow data or to enforce the execution sequence.

To further assess the quality of the proposed runtime verification prototype a performance
evaluation was conducted. The goal was to evaluate the overhead imposed by the usage
of the prototype. Similar to the scientific contribution of [70], the performance of
verification-enhanced workflow instances are compared to typical baselines. A simulation
scenario was constructed to enable the enactment of workflow instances in an exemplary
choreography-oriented WfMS.

The baseline measurements consisted of verification-less workflow instances that contained
a number of small tasks. A verification-enhanced workflow instance is considered finished,
when all published workflow transactions reached a confirmation depth of 1. In an initial
conservative approach for each broadcasted transaction the enactment was halted until a
confirmation was received. In this scenario, the utilization of the runtime verification
framework led to an immense increase in execution duration. The duration of workflow
instances increased up to 57.136 %. Different sub-routines of the runtime verification
framework were analyzed to identify the cause for this increase in execution duration. The
leading factor that caused the increase was the waiting period required by the published
transactions to be confirmed.

Unfortunately the transaction confirmation time is a very unpredictable factor. In the
Bitcoin Blockchain, the block creation duration is distributed exponentially [40]. Besides
that, the thesis discusses other potential factors that might influence the confirmation
time of a transaction.

121

7. Conclusion

As an alternative to the conservative approach, a greedy variant of the runtime verification
framework was evaluated. By chaining unconfirmed transactions the average test run
duration could be reduced by a factor of about 56. This improvement is unfortunately
achieved through a reduced level of security. Similar to the conservative approach, the
greedy operation mode was impacted the most through the transaction confirmation
waiting period.

The transaction confirmation duration exhibited a high standard deviation. The recorded
results could not be used to construct a prediction metric. It is therefore not possible to
estimate the increase in duration for a verification-enhanced workflow instance.

Besides the measured performance, the proposed runtime verification prototype was able
to uncover all incorrect handovers performed by the simulated companies.

During the conservative test runs a median confirmation time of 7.741 minutes was
recorded. The Bitcoin network is configured to a block creation time of 10 minutes. Both
these measures indicate that the prototype can be best utilized for business processes with
long running activities. Real world examples for such business processes are transportation
and supply chain processes.

For business processes with many short activities the greedy variant of the runtime
verification framework can be used. In this configuration the waiting period for the
transaction confirmations is postponed to the end of the enactment. The tasks of the
workflow can be done beforehand. This way also real world processes like software-only
processes with short calculation steps can be supported.

The runtime verification framework proposed in this thesis can be further enhanced.
As described in Section 5, a fault management mechanism can be included by using
multi-signature redeem scripts. To avoid unnecessary workflow handovers, the workflow
transactions workflow-start, workflow-end, workflow-split and workflow-join can be ex-
tended to support the transfer of token ownership. Mechanisms to support confidentiality
for the data of a workflow instance must be integrated. At last, the prototype should be
tested in conjunction with other choreography-oriented WfMSs.

Different fields for future work were uncovered during the course of this thesis. There
is currently no quality metric for Blockchains in general. The cryptographic features
and miner base of many operating Blockchains has not yet been evaluated. At last, the
influencing factors on the transaction confirmation time of the Bitcoin network should be
further analyzed.

122

List of Figures

1.1 Terminology Definition Business Processes in contrast to Workflows.
Source: Adapted from [96]. 2

2.1 Business Process modeled as Orchestration 8
2.2 Business Process modeled as Choreography 9
2.3 Business Process modelled as Orchestration with Subcontracting

Source: Adapted from [86, 98]. 10
2.4 Output to Input Relation in Bitcoin Transactions 17
2.5 Output Access Mechanism in Bitcoin Transactions 18

4.1 Choreography Setup . 31

5.1 Intermediate Handover of a Workflow Instance between Companies 50
5.2 Pull based monitoring of process owner . 51
5.3 General Structure of a Workflow-Handover Transaction 52
5.4 General Structure of a Workflow-Start Transaction 53
5.5 General Structure of a Workflow-End Transaction 54
5.6 General Structure of a Workflow-Split Transaction 55
5.7 General Structure of a Workflow-Join Transaction 56
5.8 First steps of validating a P2PKH transaction (adapted from [10]) 59
5.9 Next steps of validating a P2PKH transaction (adapted from [10]) 60
5.10 Creation process of Bitcoin validation signatures 61
5.11 Structure of standard transaction type “data output” 62
5.12 Structure of workflow data in a Bitcoin data output 64
5.13 Handover transaction template without signatures 65
5.14 Detailed structure of a workflow-handover transaction 67
5.15 Detailed structure of a workflow-start transaction 68
5.16 Detailed structure of a workflow-end transaction 68
5.17 Detailed structure of a workflow-split transaction 69
5.18 Detailed structure of a workflow-join transaction 69
5.19 Class Diagram of Module bitcoin-core . 75
5.20 Class Diagram of Module bitcoin-crawler . 76
5.21 Class Diagram of Module handoverFramework 77

123

6.1 Variants of participant selection . 81
6.2 Sub-factors of information sharing . 81
6.3 Participant Identity sharing and Documented Data sharing 82
6.4 Variants of internal structure sharing . 82
6.5 Possible security features exhibited by runtime verification frameworks 83
6.6 Variants of the sub-factors of the exhibited security features 83
6.7 FMC Blockdiagram of the basic components of a choreography participant in

the simulation . 93
6.8 Business process elements used in the simulation, in BPMN notation 94
6.9 Business process model for simulation, named Simple BP 95
6.10 Business process model for simulation, named XORSplit BP 95
6.11 Business process model for simulation, named ANDSplit BP 95
6.12 Business process model for simulation, named Layered BP 96
6.13 Blockdiagram of the simulation monitor component 99
6.14 Class Diagram of the custom business process model 100
6.15 Class Diagram of the Simulation . 101
6.16 Bar Diagram comparing durations of the baseline and the non-greedy test runs105
6.17 Pie diagram illustrating the composition of the average duration of a non-

greedy runtime verification recording step . 107
6.18 Box Plot illustrating the distribution of confirmation duration [min] of non-

greedy transactions . 108
6.19 Bar diagram comparing durations of the baseline and the greedy test runs . . 110
6.20 Pie diagram illustrating the composition of the average duration of a greedy

runtime verification recording step . 111
6.21 Pie diagram illustrating the composition of the average duration of a greedy

test run . 112
6.22 Box Plot illustrating the distribution of confirmation duration [min] of greedy

transactions . 113

List of Tables

6.1 Criteria application to runtime verification approaches (part I) 84
6.2 Criteria application to runtime verification approaches (part II) 84
6.3 Criteria application to runtime verification approaches (part III) 85
6.4 Verification-less workflow test runs . 103
6.5 Verification framework workflow test runs in non-greedy mode 103

124

6.6 Verification framework workflow test runs in greedy mode 104
6.7 Average duration increase in non-greedy runtime verification test runs 105
6.8 Average duration increase in greedy runtime verification test runs 111
6.9 Fault detection success rate of executed test runs 115
6.10 Test run defintions . 116

1 Transaction hashes of workflow-start transactions (part I) 127
2 Transaction hashes of workflow-start transactions (part II) 128
3 Transaction hashes of workflow-start transactions (part III) 129

125

Appendix

Workflow Start Transactions
Since the have been stored in the Blockchain, all workflow transactions can be viewed
online through Blockchain explorers1.

Table 1: Transaction hashes of workflow-start transactions (part I)

Test Transaction Hash
Number

2 16e549e5e6b64d071a2e5f876d88f7f4eeade9764732e07e367b4b4a25825ef2
2 6fc9e091641e9e052c405d489729e7da51dc3f0ffd542487a7707442e0663b6b
2 70cf626adca38794e5d72988c9a68244f955147826fc578115e3e16b9afb7b49
2 9213fee15b311870c54deaf0f1137449a0c42ff8c38cd587c6be1b482cb2c3c1
3 407bdfc1733c274e9c374446201fd07c8b28398364b46dc3652ef452bf2580ac
3 a388b02c52a3730e27e3546ccee24f68444318a83133d3dd7b379df36495ffdf
5 05c39679a9fb76d2cfc9ccd7b4ec393e53efe430dc77c5a9328725fdedebafab
5 49c1c24b57a31680e30fcf3f5df6df544551e72496d682827fd0d3eb659484f4
5 5ed132c84a0d98ce0644d829d9a87bbf9a6206c75285f23f4c93700f5947e915
5 aecdb191c72b670d45c4c182f76d13a6b093456811dc8375735968afd66b0436
5 bf4abe581b4b34df84107ee34252d54746f0091c18f42f2285840c34df9916c7
5 c02cbbdfbe87430005f274f9f539cae46f4f1fe4a1647ba60226771a3ccf0b46
6 05f8ab32846d6381d2a9b2f15bef340cdea6af73c20c41914ac86c421545f4ad
6 077dc0eddac30450d36a8c3417cca646fda6c8ee7ce415810c83809e25960277
6 38758c8003875947ba9b4aad8a767be330917879eda8d4c9f9bc420600f7e1d3
6 4cc25f6729a7bc7ad49d466fab2cca57068d7b6e2671338eb43943f9d799db96
6 60b9302f69adab8b664c7fc05b7ae28537a0a3763532219095799c577c2db202
6 8db8db0287989c18c798c03a7656275fe976d2ba82e1b8d98cfb4da422e2dace
6 eb6f8b8d1917af8963d5ef2df16960cc5e29ce33c3f988dda3eb43e34aab5692

1https://www.blocktrail.com/

127

https://www.blocktrail.com/

Table 2: Transaction hashes of workflow-start transactions (part II)

Test Transaction Hash
Number

7 489f3a0f0b0a22bc23cccd64675e56b1a11eb5058e87e1e1b917bbde73ed3f9d
7 4e18271dd104112bc9bf6b8db7afaab8d5fe1454e7180bed855f86e885d0278f
7 818a7d055f9f272a1681e09b600d49f8074705e150809af5f9c9807db6617a33
7 f90a67caf165d7ca8ec3d5efa4b9d5413c71b5055c95bec4fbe03a57a2c618af
8 5f12a6ebbe1d648f389f894f8ff4a05b4288b8e58b1fb60aa30e57e4672b52ac
8 836fce7f8a5156a097824c229d06ce753c5e6535b27083064a1479272364c4cf
8 c1a7134b6afa646fc2e3200665404e219494083fbb55ce67a58da3831f892eb4
8 daf23f43906fb5e598e51dbb787818fb1f8d80a59a34a426acdf93a9d39ec21c
9 0dfee070e09999abe8c664023d75441d7e0530f4979ee58dac3212c9e7c41ffe
9 475214bf321d563a999d37b46a5d1ef65afcd3e4b7647a68f21d18ef74232559
9 70b3e54258d22a63ca516d1577142a8557a8b8e852144db29901291e42c8fe03
9 87febe802e6677d59f9ebf29c9382ddebce012a0497a70ee08b3a53f08549091
9 9d20fc388bc48e85ab85cf640bc39a8ca51947f63864fad9b40a7d82e24cc34b
9 d6ee6470f4bf1b273659c5f1ef39d533c67f2afb5ef58146f8111e676a628285
9 fb8ce6d04ff509d9e252cc253211a0d8b062bd9bdf7a3aa5966669632422898c
10 122a0d8d187245c5727c3d2d697ee08b54234e2cc2fbcf01db133e28ed686e84
10 2d6e0b05a2b4b56c91d740140887e8e023ce288a02d7440b86f86e6bc1311e70
10 625d3ec50a9037005a1e420e9362032adbcf6d63b429c703b2dda4a47fcf01e0
10 cbc4f792ddca70991c22f48a5e3e98e84af85c1f8d13389c14d012295f67d44a
10 f615e1918f0f3645fcfbab89eda05d42557e932a9843d2da1a7aaf3faaa9d2c8
15 19e78683e71c45ea4e1359e7899a43e80ea80f7d7d11b3cef5ac45a07f3475e5
15 3b210d5bb25ec2bf4ccbcb0e079b94df22423fe33f75556e8909051bd3ff30b7
15 4bef472827091739cf859edaed719d46164a27e25977e70670eb8d37f4c189f2
15 be96407de4aa6ecf3913a73909c36c1f22f06a3738017d22a8ec24677dbb4668
16 20a911821585540a718b2d265249bd704831d69de3a30790eeac8c64f888f4e0
16 450c55058d942ed5733adc73dd5bc71ab23e24383084f7955b64ce25747db53b
16 826fe60c7e6835dcfe4e25c0774be61643634e9d81d318e8b2c196d643ba3e50
16 da9a2082ede3245f17fb3a916419d43ca04612a7caf923aa8fa4d416893d0a01
17 242e5cca2fd1b46b65e81469991392b831af5b7a866f7642492ccf224565fbb2
17 48e88b71dfae1be7af495bc065d974d3fdde9eb34bca019ae9ace25b7a937851
17 544712615c9485d8549a25d363996048e2b3abded6474b527865a85361aa13c9
17 5c848bdc8c700c596456582424b9c7c6f418606bf424b1253cf72ef621da0689
17 63ac3a839031f247bf37e1bec8f50c9f1084d86bee5a6d2f075096aabd6914d7
17 c567fc696abc03c8c7176d86ba985e10cfc26592a4856233e846780f3ef0fd5b
17 cbf530e636394ea87369268c63c747acf4c817e44f28d01898bc6fdec697966b

128

Table 3: Transaction hashes of workflow-start transactions (part III)

Test Transaction Hash
Number

18 08992fe9e0a950f76ccbf1932542dfd071b15f5c4b6aea89b71b959129acd43d
18 3dbcf2d72a7d4480ed56716e106f7913c2005d8ac73396cebd3f876461d03888
18 46512a6f0fcda7b1743235e8713cac1b91465e2a8f460bfe4e19ab01865ee2d8
18 7179609c60868e464fe519989aac259539f8b12a62fe6bcccefc86e0a41803d3
23 014b39e97c955dc2b2f3718293e4c678b9d96fb1caa62bcaf63b1ca049e3c574
23 0e7d93666cd6f3882ffa50f72dacd5ccbb034ef87adeeb98ac1614aad459ee44
23 a0a8bad745f7cf6f3e2eaade7f807b5abe456eb1e2576c664c80dbc8bc6340c3
24 03e01049619e6a9b571dd8654c162ea75a058805fe021af1e722c68c850b677e
24 09cc3c43d74ef6d9d74259e317b08064d9dbc3d7dd59a8278dec00046d3cea2c
24 3fb86f6b40746843fd380e135a9142f2bcbb22b1f273f5b58ec3557b8b5e6bd6
24 5ef6f04dcbb99ec16645bc557568f87332443dcb35cc48a0e9a672fd8b562963
24 d134cf24591d50252e3da22370a0efdc3e2fa2eb960a914dbf68456b01adda6a
25 1158074ad81ce985871c8170f29557007a7105a6bc8e72ee6c9957c16f8de10e
25 5e53a1462fd34ff0e9af1fe4508e7bd650d35702d377e9fd0f49d1b90adca0e9
25 8810835c19077f01201d3fcabbaaa698b49fd4cbe34f2c016d3c5570910c47a1
25 e3d60ec37bf113c56eb3ed0f679e1a8007024367a87d60cf78e198a55574b9b2
26 07ac6aed5de520a4fefbd0f9b520bbf6e447f13ddc291dadec3745680abfdbb5
26 556cfd1765b3a899d3784b3602f32d29bf129cf3a7712f1ddeb7d653c287a78e
26 5bf6c1dae6af6c5407e0c49a8e4ad0e475ffa8bdc625d9dca482aa2ba551286b
26 7c83b01a9d700f74c9546c8acf34c88416592ffb343c0d6f7d3579c1cbf72c22
31 2154dfb40705dd9436556eab112ecfdbc8bd714e29a186b5d07655b8868a2de1
31 433dc4939670df5dc0cc0035beb4311ddbb063efd2fd61b748dcd1b600950e0e
32 13e0fc93777f5095f89b82c9b6f19921d44d52e9e969d5212ffa86c90df88246
32 35dc078c0d9e81f1dbf987e12d9988eba381ff782fe1fd4d189bc6ebfd9c91bb
32 cf33a06d2ee104f31bcb306e8f6b384e60745317ad870cc64a876856c686b019
32 ea90e0546031e041b5b5d75f928b50bd08519ee4eecb8d4eacc8475b6cefc3ac

129

Bibliography

[1] G. Aagesen and J. Krogstie. Handbook on Business Process Management 1: In-
troduction, Methods, and Information Systems, chapter BPMN 2.0 for Model-
ing Business Processes, pages 219–250. Springer, 2015. ISBN 978-3-642-45100-
3. doi: 10.1007/978-3-642-45100-3_10. URL http://dx.doi.org/10.1007/
978-3-642-45100-3_10.

[2] T. Ahmed and A. Srivastava. Service choreography: Present and future. In
International Conference on Services Computing, pages 863–864, 2014. doi:
10.1109/SCC.2014.126. URL http://dx.doi.org/10.1109/SCC.2014.126.

[3] E. Aitenbichler, S. Borgert, and M. Mühlhäuser. 2nd International Conference on
Subject-Oriented Business Process Management, chapter Distributed Execution of
S-BPM Business Processes, pages 19–35. Springer, 2011. ISBN 978-3-642-23135-
3. doi: 10.1007/978-3-642-23135-3_2. URL http://dx.doi.org/10.1007/
978-3-642-23135-3_2.

[4] L. Allen. The Global Economic System Since 1945. Reaktion Books, 2005. ISBN
978-1-86189-242-3.

[5] I. Alqassem and D. Svetinovic. Towards reference architecture for cryptocurrencies:
Bitcoin architectural analysis. In 2014 IEEE International Conference on Internet
of Things, Green Computing and Communications, and Cyber, Physical and Social
Computing, pages 436–443, 2014. doi: 10.1109/iThings.2014.78. URL http://dx.
doi.org/10.1109/iThings.2014.78.

[6] L. Anderson, R. Holz, A. Ponomarev, P. Rimba, and I. Weber. New kids on the block:
an analysis of modern blockchains. Computing Research Repository, abs/1606.06530,
2016. URL http://arxiv.org/abs/1606.06530.

[7] E. Androulaki and G. O. Karame. Hiding transaction amounts and balances in
bitcoin. In 7th International Conference on Trust and Trustworthy Computing, pages
161–178, 2014. doi: 10.1007/978-3-319-08593-7_11. URL http://dx.doi.org/
10.1007/978-3-319-08593-7_11.

131

http://dx.doi.org/10.1007/978-3-642-45100-3_10
http://dx.doi.org/10.1007/978-3-642-45100-3_10
http://dx.doi.org/10.1109/SCC.2014.126
http://dx.doi.org/10.1007/978-3-642-23135-3_2
http://dx.doi.org/10.1007/978-3-642-23135-3_2
http://dx.doi.org/10.1109/iThings.2014.78
http://dx.doi.org/10.1109/iThings.2014.78
http://arxiv.org/abs/1606.06530
http://dx.doi.org/10.1007/978-3-319-08593-7_11
http://dx.doi.org/10.1007/978-3-319-08593-7_11

[8] R. J. Annette, A. W. Banu, and S. P. Chandran. Rendering-as-a-service: Taxon-
omy and comparison. Procedia Computer Science, 50:276–281, 2015. ISSN 1877-
0509. doi: 10.1016/j.procs.2015.04.048. URL http://dx.doi.org/10.1016/j.
procs.2015.04.048.

[9] J. Anseeuw, G. van Seghbroeck, B. Volckaert, and F. De Turck. BPMN extensions
for decentralized execution and monitoring of business processes. In 5th Inter-
national Conference on Cloud Computing and Services Science, pages 304–309,
2015. doi: 10.5220/0005492303040309. URL http://dx.doi.org/10.5220/
0005492303040309.

[10] A. M. Antonopoulos. Mastering Bitcoin - Unlocking Digital Cryptocurrencies.
O’Reilly Media, 2014. ISBN 978-1-4493-7404-4.

[11] E. Asnina and G. Alksnis. Survey on information monitoring and control in
cross-enterprise collaborative business processes. In 7th International Work-
shop on Information Logistics and Knowledge Supply, pages 1–12, 2014. URL
http://ceur-ws.org/Vol-1246/paper-01.pdf.

[12] J. Bacon, D. M. Eyers, J. Singh, B. Shand, M. Migliavacca, and P. R. Pietzuch.
Security in multi-domain event-based systems. it - Information Technology, 51:277–
284, 2009. doi: 10.1524/itit.2009.0552. URL http://dx.doi.org/10.1524/
itit.2009.0552.

[13] A. Baouab, O. Perrin, and C. Godart. An event-driven approach for runtime
verification of inter-organizational choreographies. In IEEE International Conference
on Services Computing, pages 640–647, 2011. ISBN 978-1-4577-0863-3. doi: 10.1109/
SCC.2011.55. URL http://dx.doi.org/10.1109/SCC.2011.55.

[14] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to better - how to make bitcoin a
better currency. In 16th International Conference on Financial Cryptography and
Data Security, pages 399–414, 2012. doi: 10.1007/978-3-642-32946-3_29. URL
http://dx.doi.org/10.1007/978-3-642-32946-3_29.

[15] L. Baresi, A. Maurino, and S. Modafferi. Towards distributed BPEL orchestrations.
European Association of Software Science and Technology, 3, 2006. doi: 10.14279/
tuj.eceasst.3.7. URL http://dx.doi.org/10.14279/tuj.eceasst.3.7.

[16] A. Barker, P. Besana, D. Robertson, and J. B. Weissman. The benefits of service
choreography for data-intensive computing. In 7th International Workshop on
Challenges of Large Applications in Distributed Environments, pages 1–10. ACM,
2009. doi: 10.1145/1552315.1552317. URL http://dx.doi.org/10.1145/
1552315.1552317.

[17] C. Bartolini, A. Bertolino, G. De Angelis, A. Ciancone, and R. Mirandola. Apprehen-
sive qos monitoring of service choreographies. In 28th Annual ACM Symposium on

132

http://dx.doi.org/10.1016/j.procs.2015.04.048
http://dx.doi.org/10.1016/j.procs.2015.04.048
http://dx.doi.org/10.5220/0005492303040309
http://dx.doi.org/10.5220/0005492303040309
http://ceur-ws.org/Vol-1246/paper-01.pdf
http://dx.doi.org/10.1524/itit.2009.0552
http://dx.doi.org/10.1524/itit.2009.0552
http://dx.doi.org/10.1109/SCC.2011.55
http://dx.doi.org/10.1007/978-3-642-32946-3_29
http://dx.doi.org/10.14279/tuj.eceasst.3.7
http://dx.doi.org/10.1145/1552315.1552317
http://dx.doi.org/10.1145/1552315.1552317

Applied Computing, pages 1893–1899, 2013. ISBN 978-1-4503-1656-9. doi: 10.1145/
2480362.2480713. URL http://dx.doi.org/10.1145/2480362.2480713.

[18] A. Ben Hamida, F. Kon, N. Lago, A. Zarras, and D. Athanasopoulos. Inte-
grated choreos middleware - enabling large-scale, qos-aware adaptive choreographies,
2013. URL https://hal.inria.fr/hal-00912882/document. [ONLINE],
Accessed: 2016-04-07.

[19] A. Bengtsson and L. Westerdahl. Secure choreography of cooperating web services.
In IEEE International Conference on Web Services, pages 152–159, 2005. ISBN
0-7695-2484-2. doi: 10.1109/ECOWS.2005.21. URL http://dx.doi.org/10.
1109/ECOWS.2005.21.

[20] Bitcoin. Dust definition of the bitcoin client, 2016. URL https:
//github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/
transaction.h#L137. [ONLINE], Accessed: 2016-11-25.

[21] F. Bitcoin. Scalability, 2016. URL https://en.bitcoin.it/wiki/
Scalability. [ONLINE], Accessed: 2016-01-11.

[22] F. Bitcoin. Finney attack, 2016. URL https://en.bitcoin.it/wiki/
Double-spending#Finney_attack. [ONLINE], Accessed: 2016-09-16.

[23] F. Bitcoin. Simplified payment verification, 2016. URL https://en.bitcoin.
it/wiki/Thin_Client_Security. [ONLINE], Accessed: 2016-09-19.

[24] F. Bitcoin. Satoshi (unit), 2016. URL https://en.bitcoin.it/wiki/
Satoshi_%28unit%29. [ONLINE], Accessed: 2016-01-05.

[25] L. S. Blockchain. Average number of transactions per block, 2016.
URL https://blockchain.info/charts/n-transactions-per-block?
timespan=1year. [ONLINE], Accessed: 2016-09-19.

[26] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-
tions of the ACM, 13(7):422–426, 1970. ISSN 0001-0782. doi: 10.1145/362686.362692.
URL http://dx.doi.org/10.1145/362686.362692.

[27] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Fel-
ten. Mixcoin: Anonymity for bitcoin with accountable mixes. In 18th Inter-
national Conference on Financial Cryptography and Data Security, pages 486–504,
2014. doi: 10.1007/978-3-662-45472-5_31. URL http://dx.doi.org/10.1007/
978-3-662-45472-5_31.

[28] A. P. Buchmann and B. Koldehofe. Complex event processing. it - Information
Technology, 51:241–242, 2009. doi: 10.1524/itit.2009.9058. URL http://dx.doi.
org/10.1524/itit.2009.9058.

133

http://dx.doi.org/10.1145/2480362.2480713
https://hal.inria.fr/hal-00912882/document
http://dx.doi.org/10.1109/ECOWS.2005.21
http://dx.doi.org/10.1109/ECOWS.2005.21
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#L137
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#L137
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#L137
https://en.bitcoin.it/wiki/Scalability
https://en.bitcoin.it/wiki/Scalability
https://en.bitcoin.it/wiki/Double-spending#Finney_attack
https://en.bitcoin.it/wiki/Double-spending#Finney_attack
https://en.bitcoin.it/wiki/Thin_Client_Security
https://en.bitcoin.it/wiki/Thin_Client_Security
https://en.bitcoin.it/wiki/Satoshi_%28unit%29
https://en.bitcoin.it/wiki/Satoshi_%28unit%29
https://blockchain.info/charts/n-transactions-per-block?timespan=1year
https://blockchain.info/charts/n-transactions-per-block?timespan=1year
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1007/978-3-662-45472-5_31
http://dx.doi.org/10.1007/978-3-662-45472-5_31
http://dx.doi.org/10.1524/itit.2009.9058
http://dx.doi.org/10.1524/itit.2009.9058

[29] A. Calabrò, F. Lonetti, and E. Marchetti. KPI evaluation of the business pro-
cess execution through event monitoring activity. In International Conference
on Enterprise Systems, pages 169–176, 2015. doi: 10.1109/ES.2015.23. URL
http://dx.doi.org/10.1109/ES.2015.23.

[30] CoinMarketCap. Crypto-currency market capitalizations - august 28, 2016, 2016.
URL https://coinmarketcap.com/historical/20160828. [ONLINE], Ac-
cessed: 2016-08-28.

[31] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network.
In 13th IEEE International Conference on Peer-to-Peer Computing, pages 1–10,
2013. doi: 10.1109/P2P.2013.6688704. URL http://dx.doi.org/10.1109/
P2P.2013.6688704.

[32] G. Decker, O. Kopp, F. Leymann, and M. Weske. Bpel4chor: Extending bpel for
modeling choreographies. In Proceedings of the IEEE 2007 International Conference
on Web Services, pages 296–303. IEEE Computer Society, 2007. doi: 10.1109/ICWS.
2007.59. URL http://doi.acm.org/10.1109/ICWS.2007.59.

[33] R. Dermody, A. Krellenstein, and E. Wagner. Counterparty, 2016. URL http:
//counterparty.io. [ONLINE], Accessed: 2016-09-16.

[34] J. A. Donet Donet, C. Pérez-Solà, and J. Herrera-Joancomartí. The bitcoin
P2P network. In Financial Cryptography 2014: Workshops, pages 87–102,
2014. doi: 10.1007/978-3-662-44774-1_7. URL http://dx.doi.org/10.1007/
978-3-662-44774-1_7.

[35] C. Duhart, P. Sauvage, and C. Bertelle. EMMA: A resource oriented framework for
service choreography over wireless sensor and actor networks. Computing Research
Repository, 2015. URL http://arxiv.org/abs/1506.02531.

[36] J. Eder and A. Tahamtan. 19th International Conference on Database and
Expert Systems Applications, chapter Temporal Conformance of Federated
Choreographies, pages 668–675. Springer, 2008. ISBN 978-3-540-85654-2.
doi: 10.1007/978-3-540-85654-2_57. URL http://dx.doi.org/10.1007/
978-3-540-85654-2_57.

[37] S. Ethereum. Ethereum, 2016. URL https://www.ethereum.org/. [ONLINE],
Accessed: 2016-01-12.

[38] S. Ethereum. Ethereum white paper, 2016. URL https://github.com/
ethereum/wiki/wiki/White-Paper. [ONLINE], Accessed: 2016-09-19.

[39] W. Fdhila, S. Rinderle-Ma, and M. Reichert. Change propagation in collaborative
processes scenarios. In 8th International Conference on Collaborative Computing,
pages 452–461, 2012. doi: 10.4108/icst.collaboratecom.2012.250408. URL http:
//dx.doi.org/10.4108/icst.collaboratecom.2012.250408.

134

http://dx.doi.org/10.1109/ES.2015.23
https://coinmarketcap.com/historical/20160828
http://dx.doi.org/10.1109/P2P.2013.6688704
http://dx.doi.org/10.1109/P2P.2013.6688704
http://doi.acm.org/10.1109/ICWS.2007.59
http://counterparty.io
http://counterparty.io
http://dx.doi.org/10.1007/978-3-662-44774-1_7
http://dx.doi.org/10.1007/978-3-662-44774-1_7
http://arxiv.org/abs/1506.02531
http://dx.doi.org/10.1007/978-3-540-85654-2_57
http://dx.doi.org/10.1007/978-3-540-85654-2_57
https://www.ethereum.org/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://dx.doi.org/10.4108/icst.collaboratecom.2012.250408
http://dx.doi.org/10.4108/icst.collaboratecom.2012.250408

[40] P. Franco. Understanding Bitcoin: Cryptography, Engineering and Economics. Wiley,
2014. ISBN 978-1-119-01916-9.

[41] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Advances in Cryptology – EUROCRYPT 2015 - 34th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 281–310, 2015. doi: 10.1007/978-3-662-46803-6_10. URL
http://dx.doi.org/10.1007/978-3-662-46803-6_10.

[42] B. Gipp, N. Meuschke, and A. Gernandt. Decentralized trusted timestamping using
the crypto currency bitcoin. Computing Research Repository, abs/1502.04015, 2015.
URL http://arxiv.org/abs/1502.04015.

[43] N. Herzberg, A. Meyer, and M. Weske. An event processing platform for business
process management. In 17th IEEE International Conference on Enterprise Dis-
tributed Object Computing, pages 107–116, 2013. doi: 10.1109/EDOC.2013.20. URL
http://dx.doi.org/10.1109/EDOC.2013.20.

[44] D. Hobson. What is bitcoin? XRDS: Crossroads, 20:40–44, 2013. ISSN 1528-4972.
doi: 10.1145/2510124. URL http://doi.acm.org/10.1145/2510124.

[45] C. N. Höfer and G. Karagiannis. Cloud computing services: taxonomy and com-
parison. Journal of Internet Services and Applications, 2:81–94, 2011. ISSN 1869-
0238. doi: 10.1007/s13174-011-0027-x. URL http://dx.doi.org/10.1007/
s13174-011-0027-x.

[46] G. Hwang, Y. Kao, and Y. Hsiao. Scalable and trustworthy cross-enterprise wfmss
by cloud collaboration. In IEEE International Congress on Big Data, pages 70–
77, 2013. ISBN 2379-7703. doi: 10.1109/BigData.Congress.2013.19. URL http:
//dx.doi.org/10.1109/BigData.Congress.2013.19.

[47] A. Intervista. Fmc, 2016. URL http://www.fmc-modeling.org/notation_
reference. [ONLINE], Accessed: 2016-11-04.

[48] F. Jacobs. Providing better confidentiality and authentication on the internet using
namecoin and minimalt. Computing Research Repository, abs/1407.6453, 2014. URL
http://arxiv.org/abs/1407.6453.

[49] K. Jander and W. Lamersdorf. Jadex wfms: Distributed workflow management
for private clouds. In Conference on Networked Systems, pages 84–91, 2013. ISBN
978-1-4673-5645-9. doi: 10.1109/NetSys.2013.20. URL http://dx.doi.org/10.
1109/NetSys.2013.20.

[50] C. Janiesch, M. Matzner, and O. Müller. Beyond process monitoring: a proof-of-
concept of event-driven business activity management. Business Process Management
Journal, 18:625–643, 2012. doi: 10.1108/14637151211253765. URL http://dx.
doi.org/10.1108/14637151211253765.

135

http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://arxiv.org/abs/1502.04015
http://dx.doi.org/10.1109/EDOC.2013.20
http://doi.acm.org/10.1145/2510124
http://dx.doi.org/10.1007/s13174-011-0027-x
http://dx.doi.org/10.1007/s13174-011-0027-x
http://dx.doi.org/10.1109/BigData.Congress.2013.19
http://dx.doi.org/10.1109/BigData.Congress.2013.19
http://www.fmc-modeling.org/notation_reference
http://www.fmc-modeling.org/notation_reference
http://arxiv.org/abs/1407.6453
http://dx.doi.org/10.1109/NetSys.2013.20
http://dx.doi.org/10.1109/NetSys.2013.20
http://dx.doi.org/10.1108/14637151211253765
http://dx.doi.org/10.1108/14637151211253765

[51] R. Khalaf and F. Leymann. 8th International Conference on Business Process
Management, chapter Coordination for Fragmented Loops and Scopes in a Dis-
tributed Business Process, pages 178–194. Springer, 2010. ISBN 978-3-642-15618-
2. doi: 10.1007/978-3-642-15618-2_14. URL http://dx.doi.org/10.1007/
978-3-642-15618-2_14.

[52] S. King. Primecoin, 2016. URL http://primecoin.io/bin/
primecoin-paper.pdf. [ONLINE], Accessed: 2016-01-12.

[53] A. Krohn-Grimberghe and C. Sorge. Practical aspects of the bitcoin system. Com-
puting Research Repository, abs/1308.6760, 2013. URL http://arxiv.org/abs/
1308.6760.

[54] N. Kuntze, A. U. Schmidt, Z. Velikova, and C. Rudolph. Trust in business processes.
In 9th International Conference for Young Computer Scientists, pages 1992–1997,
2008. ISBN 978-0-7695-3398-8. doi: 10.1109/ICYCS.2008.78. URL http://dx.
doi.org/10.1109/ICYCS.2008.78.

[55] T. Lange. Encyclopedia of Cryptography and Security, chapter Hash-Based
Signatures, pages 540–542. Springer, 2011. ISBN 978-1-4419-5906-5.
doi: 10.1007/978-1-4419-5906-5_413. URL http://dx.doi.org/10.1007/
978-1-4419-5906-5_413.

[56] C. Lee. Litecoin, 2016. URL https://litecoin.org/. [ONLINE], Accessed:
2016-01-12.

[57] I. Legrand, H. Newman, R. Voicu, C. Dobre, and C. Grigoras. Workflow management
in large distributed systems. Journal of Physics: Conference Series, 331:072022,
2011. doi: 10.1088/1742-6596/331/7/072022. URL http://dx.doi.org/10.
1088/1742-6596/331/7/072022.

[58] L. A. F. Leite, G. Ansaldi Oliva, G. M. Nogueira, M. A. Gerosa, F. Kon, and
D. S. Milojicic. A systematic literature review of service choreography adaptation.
Service Oriented Computing and Applications, 7(3):199–216, 2012. ISSN 1863-
2394. doi: 10.1007/s11761-012-0125-z. URL http://dx.doi.org/10.1007/
s11761-012-0125-z".

[59] F. Leymann. Bpel vs. bpmn 2.0: Should you care? In Business Pro-
cess Modeling Notation, pages 8–13. Springer, 2010. ISBN 978-3-642-16298-
5. doi: 10.1007/978-3-642-16298-5_2. URL http://dx.doi.org/10.1007/
978-3-642-16298-5_2.

[60] H. W. Lim, F. Kerschbaum, and H. Wang. Workflow signatures for business
process compliance. IEEE Transactions on Dependable and Secure Computing,
9:756–769, 2012. ISSN 1545-5971. doi: 10.1109/TDSC.2012.38. URL http:
//dx.doi.org/10.1109/TDSC.2012.38.

136

http://dx.doi.org/10.1007/978-3-642-15618-2_14
http://dx.doi.org/10.1007/978-3-642-15618-2_14
http://primecoin.io/bin/primecoin-paper.pdf
http://primecoin.io/bin/primecoin-paper.pdf
http://arxiv.org/abs/1308.6760
http://arxiv.org/abs/1308.6760
http://dx.doi.org/10.1109/ICYCS.2008.78
http://dx.doi.org/10.1109/ICYCS.2008.78
http://dx.doi.org/10.1007/978-1-4419-5906-5_413
http://dx.doi.org/10.1007/978-1-4419-5906-5_413
https://litecoin.org/
http://dx.doi.org/10.1088/1742-6596/331/7/072022
http://dx.doi.org/10.1088/1742-6596/331/7/072022
http://dx.doi.org/10.1007/s11761-012-0125-z"
http://dx.doi.org/10.1007/s11761-012-0125-z"
http://dx.doi.org/10.1007/978-3-642-16298-5_2
http://dx.doi.org/10.1007/978-3-642-16298-5_2
http://dx.doi.org/10.1109/TDSC.2012.38
http://dx.doi.org/10.1109/TDSC.2012.38

[61] X. Liu, D. Yuan, G. Zhang, J. Chen, and Y. Yang. Handbook of Cloud Computing,
chapter SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System, pages 309–332.
Springer, 2010. ISBN 978-1-4419-6524-0. doi: 10.1007/978-1-4419-6524-0_13. URL
http://dx.doi.org/10.1007/978-1-4419-6524-0_13.

[62] D. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.,
2002. ISBN 0-201-72789-7.

[63] B. Ludäscher, M. Weske, T. McPhillips, and S. Bowers. Scientific workflows: Business
as usual? In 7th International Conference on Business Process Management, pages
31–47, 2009. doi: 10.1007/978-3-642-03848-8_4. URL http://dx.doi.org/10.
1007/978-3-642-03848-8_4.

[64] D. Martin, D. Wutke, and F. Leymann. A novel approach to decentralized workflow
enactment. In 12th International IEEE Conference on Enterprise Distributed Object
Computing, pages 127–136. IEEE Computer Society, 2008. doi: 10.1109/EDOC.2008.
22. URL http://dx.doi.org/10.1109/EDOC.2008.22.

[65] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage. A fistful of bitcoins: characterizing payments among men with no
names. In Proceedings of the 2013 Internet Measurement Conference, pages 127–140,
2013. doi: 10.1145/2504730.2504747. URL http://doi.acm.org/10.1145/
2504730.2504747.

[66] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In 34th IEEE Symposium on Security and Privacy, pages
397–411, 2013. doi: 10.1109/SP.2013.34. URL http://dx.doi.org/10.1109/
SP.2013.34.

[67] A. Mohaisen and J. Kim. The sybil attacks and defenses: A survey. Computing
Research Repository, abs/1312.6349, 2013. URL http://arxiv.org/abs/1312.
6349.

[68] F. Montagut and R. Molva. Bridging security and fault management within dis-
tributed workflow management systems. IEEE Transactions on Services Com-
puting, 1:33–48, 2008. ISSN 1939-1374. doi: 10.1109/TSC.2008.3. URL http:
//dx.doi.org/10.1109/TSC.2008.3.

[69] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL https:
//bitcoin.org/bitcoin.pdf. [ONLINE], Accessed: 2016-01-05.

[70] F. Nerieri, R. Prodan, T. Fahringer, and H. L. Truong. Overhead analysis of
grid workflow applications. In 7th IEEE/ACM International Conference on Grid
Computing, pages 17–24, 2006. doi: 10.1109/ICGRID.2006.310993. URL http:
//dx.doi.org/10.1109/ICGRID.2006.310993.

137

http://dx.doi.org/10.1007/978-1-4419-6524-0_13
http://dx.doi.org/10.1007/978-3-642-03848-8_4
http://dx.doi.org/10.1007/978-3-642-03848-8_4
http://dx.doi.org/10.1109/EDOC.2008.22
http://doi.acm.org/10.1145/2504730.2504747
http://doi.acm.org/10.1145/2504730.2504747
http://dx.doi.org/10.1109/SP.2013.34
http://dx.doi.org/10.1109/SP.2013.34
http://arxiv.org/abs/1312.6349
http://arxiv.org/abs/1312.6349
http://dx.doi.org/10.1109/TSC.2008.3
http://dx.doi.org/10.1109/TSC.2008.3
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1109/ICGRID.2006.310993
http://dx.doi.org/10.1109/ICGRID.2006.310993

[71] A. Norta, L. Ma, Y. Duan, A. Rull, M. Kõlvart, and K. Taveter. econ-
tractual choreography-language properties towards cross-organizational busi-
ness collaboration. Journal of Internet Services and Applications, 6:8:1–8:23,
2015. doi: 10.1186/s13174-015-0023-7. URL http://dx.doi.org/10.1186/
s13174-015-0023-7.

[72] I. Object Management Group. Bpmn, 2016. URL http://www.omg.org/spec/
BPMN/2.0/PDF. [ONLINE], Accessed: 2016-01-12.

[73] S. Omohundro. Cryptocurrencies, smart contracts, and artificial intelligence. AI
Matters, 1:19–21, 2014. ISSN 2372-3483. doi: 10.1145/2685328.2685334. URL
http://doi.acm.org/10.1145/2685328.2685334.

[74] M. Pantazoglou, I. Pogkas, and A. Tsalgatidou. Decentralized enactment of BPEL
processes. IEEE Transactions on Services Computing, 7:184–197, 2014. ISSN
1939-1374. doi: 10.1109/TSC.2013.6. URL http://dx.doi.org/10.1109/TSC.
2013.6.

[75] G. Pedraza and J. Estublier. International Conference on Software and Sys-
tems Process, chapter Distributed Orchestration Versus Choreography: The
FOCAS Approach, pages 75–86. Springer, 2009. ISBN 978-3-642-01680-
6. doi: 10.1007/978-3-642-01680-6_9. URL http://dx.doi.org/10.1007/
978-3-642-01680-6_9.

[76] C. Peltz. Web services orchestration and choreography. Communications of the
ACM, 36:46–52, 2003. ISSN 0018-9162. doi: 10.1109/MC.2003.1236471. URL
http://dx.doi.org/10.1109/MC.2003.1236471.

[77] M. Poulin. Collaboration patterns in the soa ecosystem. In Proceedings of the 3rd
Workshop on Behavioural Modelling, pages 12–16. ACM, 2011. ISBN 978-1-4503-
0617-1. doi: 10.1145/1993956.1993958. URL http://doi.acm.org/10.1145/
1993956.1993958.

[78] A. Röder, M. Lehmann, and K. Kabitzsch. Monitoring service choreographies.
In 9th IEEE International Conference on Industrial Informatics, pages 142–147,
2011. doi: 10.1109/INDIN.2011.6034852. URL http://dx.doi.org/10.1109/
INDIN.2011.6034852.

[79] M. Rosen, B. Lublinsky, K. T. Smith, and M. J. Balcer. Applied SOA: SERVICE-
ORIENTED ARCHITECTURE AND DESIGN STRATEGIES. John Wiley & Sons,
2008. ISBN 978-0-470-22365-9.

[80] M. Schermann, K. Dongus, P. Yetton, and H. Krcmar. The role of transaction
cost economics in information technology outsourcing research: A meta-analysis of
the choice of contract type. The Journal of Strategic Information Systems, 2016.
ISSN 0963-8687. doi: 10.1016/j.jsis.2016.02.004. URL http://dx.doi.org/10.
1016/j.jsis.2016.02.004.

138

http://dx.doi.org/10.1186/s13174-015-0023-7
http://dx.doi.org/10.1186/s13174-015-0023-7
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://doi.acm.org/10.1145/2685328.2685334
http://dx.doi.org/10.1109/TSC.2013.6
http://dx.doi.org/10.1109/TSC.2013.6
http://dx.doi.org/10.1007/978-3-642-01680-6_9
http://dx.doi.org/10.1007/978-3-642-01680-6_9
http://dx.doi.org/10.1109/MC.2003.1236471
http://doi.acm.org/10.1145/1993956.1993958
http://doi.acm.org/10.1145/1993956.1993958
http://dx.doi.org/10.1109/INDIN.2011.6034852
http://dx.doi.org/10.1109/INDIN.2011.6034852
http://dx.doi.org/10.1016/j.jsis.2016.02.004
http://dx.doi.org/10.1016/j.jsis.2016.02.004

[81] S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch. Elastic business
process management: State of the art and open challenges for bpm in the cloud.
Future Generation Computer Systems, 46:36–50, 2015. ISSN 0167-739X. doi: 10.
1016/j.future.2014.09.005. URL http://www.sciencedirect.com/science/
article/pii/S0167739X1400168X.

[82] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin. In
19th International Conference on Financial Cryptography and Data Security, pages
507–527, 2015. doi: 10.1007/978-3-662-47854-7_32. URL http://dx.doi.org/
10.1007/978-3-662-47854-7_32.

[83] N. Stojnić and H. Schuldt. Osiris-sr: A scalable yet reliable distributed workflow ex-
ecution engine. In Workshop on Scalable Workflow Execution Engines and Technolo-
gies, pages 3:1–3:12, 2013. ISBN 978-1-4503-2349-9. doi: 10.1145/2499896.2499899.
URL http://dx.doi.org/10.1145/2499896.2499899.

[84] C.-H. Tsai, K.-C. Huang, F.-J. Wang, and C.-H. Chen. A distributed server ar-
chitecture supporting dynamic resource provisioning for bpm-oriented workflow
management systems. Journal of Systems and Software, 83(8):1538 – 1552, 2010.
ISSN 0164-1212. doi: 10.1016/j.jss.2010.04.001. URL http://dx.doi.org/10.
1016/j.jss.2010.04.001.

[85] F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical survey on
decentralized digital currencies. Technical report, Cryptology ePrint Archive, 2015.
URL https://eprint.iacr.org/2015/464.

[86] W. M. P. van der Aalst. Loosely coupled interorganizational workflows:: modeling and
analyzing workflows crossing organizational boundaries. Information & Management,
37(2):67 – 75, 2000. ISSN 0378-7206. doi: 10.1016/S0378-7206(99)00038-5. URL
http://dx.doi.org/10.1016/S0378-7206(99)00038-5.

[87] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business process
management: A survey. In 2nd International Conference on Business Process
Management, pages 1–12, 2003. doi: 10.1007/3-540-44895-0_1. URL http://dx.
doi.org/10.1007/3-540-44895-0_1.

[88] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the
clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication
Review, 39:50–55, 2008. ISSN 0146-4833. doi: 10.1145/1496091.1496100. URL
http://doi.acm.org/10.1145/1496091.1496100.

[89] M. Von Riegen and N. Ritter. Reliable monitoring for runtime validation of chore-
ographies. In 4th International Conference on Internet and Web Applications and
Services, pages 310–315, 2009. ISBN 978-1-4244-3851-8. doi: 10.1109/ICIW.2009.52.
URL http://dx.doi.org/10.1109/ICIW.2009.52.

139

http://www.sciencedirect.com/science/article/pii/S0167739X1400168X
http://www.sciencedirect.com/science/article/pii/S0167739X1400168X
http://dx.doi.org/10.1007/978-3-662-47854-7_32
http://dx.doi.org/10.1007/978-3-662-47854-7_32
http://dx.doi.org/10.1145/2499896.2499899
http://dx.doi.org/10.1016/j.jss.2010.04.001
http://dx.doi.org/10.1016/j.jss.2010.04.001
https://eprint.iacr.org/2015/464
http://dx.doi.org/10.1016/S0378-7206(99)00038-5
http://dx.doi.org/10.1007/3-540-44895-0_1
http://dx.doi.org/10.1007/3-540-44895-0_1
http://doi.acm.org/10.1145/1496091.1496100
http://dx.doi.org/10.1109/ICIW.2009.52

[90] W3C. Web services choreography description language (wscdl), 2005. URL https:
//www.w3.org/TR/2005/CR-ws-cdl-10-20051109/. [ONLINE], Accessed:
2016-03-04.

[91] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling.
Untrusted business process monitoring and execution using blockchain. In 14th In-
ternational Conference on Business Process Management, pages 329–347, 2016.
doi: 10.1007/978-3-319-45348-4_19. URL http://dx.doi.org/10.1007/
978-3-319-45348-4_19.

[92] A. Weiß, S. G. Sáez, M. Hahn, and D. Karastoyanova. Confederated International
Conferences: On the Move to Meaningful Internet Systems, chapter Approach
and Refinement Strategies for Flexible Choreography Enactment, pages 93–111.
Springer, 2014. ISBN 978-3-662-45563-0. doi: 978-3-662-45563-0. URL http:
//dx.doi.org/10.1007/978-3-662-45563-0.

[93] M. Weske. Business Process Management - Concepts, Languages, Architectures, sec-
ond edition. Springer, 2012. ISBN 978-3-642-28615-5. doi: 10.1007/978-3-642-28616-2.
URL http://dx.doi.org/10.1007/978-3-642-28616-2.

[94] B. Wetzstein, D. Karastoyanova, O. Kopp, F. Leymann, and D. Zwink. Cross-
organizational process monitoring based on service choreographies. In ACM Sym-
posium on Applied Computing, pages 2485–2490, 2010. ISBN 978-1-60558-639-7.
doi: 10.1145/1774088.1774601. URL http://dx.doi.org/10.1145/1774088.
1774601.

[95] A. S. White and D. Miers. BPMN Modeling and Reference Guide. Future Strategies
Inc., 2008. ISBN 978-0977752720.

[96] D. Wutke. Eine Infrastruktur für die dezentrale Ausführung von BPEL-Prozessen.
PhD thesis, Universität Stuttgart, 2010. URL http://elib.uni-stuttgart.
de/opus/volltexte/2010/5677.

[97] A. Yeow. Bitnodes - global bitcoin nodes distribution, 2016. URL https://
bitnodes.21.co. [ONLINE], Accessed: 2016-09-15.

[98] S. Zaplata, D. Bade, K. Hamann, and W. Lamersdorf. Ad-hoc management capabil-
ities for distributed business processes. In Business Process and Service Science -
Proceedings of ISSS and BPSC, pages 139–152, 2015. URL http://subs.emis.
de/LNI/Proceedings/Proceedings177/article6200.html.

[99] A. Zohar. Bitcoin: Under the hood. Communications of the ACM, 58:104–113, 2015.
ISSN 0001-0782. doi: 10.1145/2701411. URL http://doi.acm.org/10.1145/
2701411.

140

https://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
https://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://dx.doi.org/10.1007/978-3-319-45348-4_19
http://dx.doi.org/10.1007/978-3-319-45348-4_19
http://dx.doi.org/10.1007/978-3-662-45563-0
http://dx.doi.org/10.1007/978-3-662-45563-0
http://dx.doi.org/10.1007/978-3-642-28616-2
http://dx.doi.org/10.1145/1774088.1774601
http://dx.doi.org/10.1145/1774088.1774601
http://elib.uni-stuttgart.de/opus/volltexte/2010/5677
http://elib.uni-stuttgart.de/opus/volltexte/2010/5677
https://bitnodes.21.co
https://bitnodes.21.co
http://subs.emis.de/LNI/Proceedings/Proceedings177/article6200.html
http://subs.emis.de/LNI/Proceedings/Proceedings177/article6200.html
http://doi.acm.org/10.1145/2701411
http://doi.acm.org/10.1145/2701411

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Workflow Management Systems
	Monitoring of Workflow Enactment
	Bitcoin

	Research Challenges
	Research Challenges
	Evaluation Approach

	Motivational Scenario
	Runtime Verification for Choreographies
	Current Blockchain Implementations
	Existing Enactment Verification Approaches
	Blockchain-based Runtime Verification Proposal
	Prototype Description

	Prototype Evaluation
	Functional Comparison
	Performance Analysis
	Enabled Use Cases

	Conclusion
	List of Figures
	List of Tables
	Appendix
	Workflow Start Transactions

	Bibliography

