
Edge Client Integration and
Federation of Machine Learning

Models

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Damian Jäger
Matrikelnummer 11776843

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr.-Ing. Stefan Schulte
Mitwirkung: Thomas Hiessl (Siemens Technology)

Wien, 6. März 2021
Damian Jäger Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Edge Client Integration and
Federation of Machine Learning

Models

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Damian Jäger
Registration Number 11776843

to the Faculty of Informatics

at the TU Wien

Advisor: Dr.-Ing. Stefan Schulte
Assistance: Thomas Hiessl (Siemens Technology)

Vienna, 6th March, 2021
Damian Jäger Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Damian Jäger
Johann-Weber-Straße 58, 1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. März 2021
Damian Jäger

v

Kurzfassung

In vielen Bereichen sind Daten verteilt, haben unterschiedliche Besitzer und sind privat,
wodurch es sehr schwer ist, sie zentral zu sammeln, um Machine Learning (ML) Modelle
zu trainieren. Federated Learning (FL) ermöglicht es, in solchen Szenarien ML Modelle zu
trainieren, ohne dass die rohen Daten zwischen Teilnehmern geteilt werden müssen. Dies
ist möglich, indem Updates der Modelle der individuellen Clients an einen zentralen FL
Server gesendet werden. Obwohl FL für Aufgaben auf Smartphones, wie Vorhersage des
nächsten Wortes, gedacht war, sind Anwendungen in verschiedenen Bereichen möglich.
Industrial Federated Learning (IFL) ist ein Ansatz, der versucht, Federated Learning an
den industriellen Kontext anzupassen.

Diese Arbeit behandelt den Entwurf und die Implementierung des IFL Clients, der eine
pythonische API für ein bestehendes IFL System ist, und einer IFL Anwendung, der IFL
App, die den IFL Client verwendet, um auf das IFL System zuzugreifen und ML Modelle
mit FL zu trainieren. Weiters wird die IFL App mit bestehender Management Software
auf Edge Geräten aufgesetzt.

Um das IFL System und den IFL Client zu evaluieren, wird ein Skalierungsexperiment
durchgeführt. Dabei wird gemessen, wie die Genauigkeit und die Anzahl an Kommunika-
tionsrunden bis zur Konvergenz durch das Hinzufügen von Clients - und somit Daten -
zu einer Federation in FL, beeinflusst wird. Bei diesem Experiment hatten die einzelnen
Clients ausreichend Daten, um ein gutes Modell zu erlangen. FL zu verwenden führt
zu schnellerer Konvergenz und spart so Rechenaufwand. Dies kann die zusätzlichen
Kommunikationskosten von FL wert sein, da Edge Geräte, auf denen IFL Anwendungen
laufen, oft nur begrenzte Rechenleistung haben.

vii

Abstract

In various fields, data is distributed, owned by different entities and privacy sensitive,
making collecting it centrally to train Machine Learning (ML) models very hard. Federated
Learning (FL) enables training a central ML model in such scenarios in a way that does
not require any raw data to be shared by participants. This is possible by only sharing
updates of each client’s models with the central FL server. While FL was initially
designed for smartphone-specific tasks, such as next-word predictions, applications in
different fields seem feasible. Industrial Federated Learning (IFL) is an approach aiming
at tailoring FL to the industrial context.

This thesis aims at designing and implementing the IFL Client, which is a pythonic API
for an existing IFL System, as well as an IFL Application, the IFL App, that uses the
IFL Client to access the IFL System to train ML models using FL. Further, the IFL App
is deployed to edge devices using existing management software.

To evaluate the IFL System and IFL Client, a scaling experiment is performed which
measures how accuracy and the number of communication rounds to convergence are
affected by adding clients and, therefore, data to a federation in FL. The results show
that in the given dataset a single client has enough training data to obtain a good model.
However, using FL leads to faster convergence which saves computational cost. This can
be worth the communication cost of FL as edge devices running IFL Applications may
have limited processing power.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Work . 2
1.3 Methodology . 4
1.4 Structure of the Thesis . 4

2 Background 5
2.1 Deep Learning . 5
2.2 Federated Learning . 6
2.3 Computing on Cloud and Edge . 9
2.4 Industrial Federated Learning . 10

3 Related Work 13
3.1 BrainTorrent . 13
3.2 Energy Consumption and Accuracy . 13
3.3 Categorization of Federated Learning . 14
3.4 Challenges in Federated Learning . 15
3.5 Applications of Federated Learning . 15
3.6 Federated Learning Frameworks . 16
3.7 Industrial Edge Computing Reference Model 16
3.8 Edge Management Software . 17
3.9 Conclusions . 17

4 Design 19
4.1 IFL System . 19
4.2 IFL Client . 21
4.3 IFL App . 27
4.4 Industrial Edge Deployment . 29

xi

5 Implementation 31
5.1 Technologies . 31
5.2 IFL Client API . 31
5.3 IFL App Endpoints . 31

6 Evaluation 35
6.1 Scaling Experiment . 35
6.2 Discussion . 38

7 Conclusions and Future Work 41
7.1 Future Work . 41

List of Figures 43

List of Algorithms 45

Listings 45

Acronyms 47

Bibliography 49

CHAPTER 1
Introduction

1.1 Motivation

Learning from distributed data with different owners without exposing the data is a goal
many research communities have pursued for a long time [16]. Federated Learning (FL) is
an approach proposed by McMahan et al. [22] that allows exchanging knowledge between
multiple clients to collaboratively train a central Machine Learning (ML) model. In
contrast to non-federated approaches, sharing raw data is not necessary, which is possible
by decoupling model training from direct access to training data. This way, FL reduces
privacy and security risks. If more clients participate in a federation, more training
data becomes available which may lead to better models. Bonawitz et al. [9] designed
a large-scale FL system which is applied to different ML problems on smartphones.
They include next word prediction for a keyboard application, on-device item ranking of
search results and content suggestions for on-device keyboards. These examples illustrate
the benefits of FL well, as they all possess the following properties: They deal with
privacy-sensitive and highly distributed data, which would make it otherwise harder to
train a ML model as individual clients do not have sufficient training data to obtain a
good model on their own.

Industries have to deal with similar challenges when it comes to training ML models.
Due to highly heterogeneous working conditions of machines, additional challenges arise,
which Hiessl et al. [14] proposed to tackle with Industrial Federated Learning (IFL),
an approach that aims at tailoring FL to the industrial context. IFL is designed to
make use of Edge Computing by using edge nodes, which are computing devices in close
geographical proximity to machines [27], as an intermediary between machines and the
server. This allows the edge nodes to take the heavy computational load of training ML
models while keeping the raw data on devices owned by the operator of machines.

1

1. Introduction

1.2 Aim of the Work

The aim of this work is to design and implement the IFL Client, which is an API for
using IFL. It is then used to build an application that uses the IFL Client for IFL, called
an IFL Application. In order to provide a proof of concept and evaluate the result, the
IFL App is deployed to Industrial Edge1 devices. Industrial Edge is an Edge Computing
platform from Siemens. Among others, it includes tools for developing applications as
well as managing edge devices and applications [2].

FL Application

FL Client

FL Server

FL Plan Processor

ML Models

Federated
Computation
Specifications

FL Cohort Manager

Device
& Asset

Metadata
Catalog

FL Cohorts

FL Population &
FL Task Store &
FL Server Plan

Store

FL Scheduler
R

IFL Architecture - Implementation

Client Registry

FL Resource Optimizer

R

FL Task Manager

Datasets

FL Plan Processor
Device Manager /
Model Manager

R

Asset Model

RR

Client Application ML Models

R

Metrics

R

Figure 1.1: IFL Architecture [14]

1https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge/simatic-
edge.html

2

1.2. Aim of the Work

1.2.1 IFL Client

Based on a research prototype of the IFL System by Hiessl et al. [14] which contains the
IFL Server hosted on the Cloud Computing platform Amazon Web Services2, the IFL
Client is implemented. Figure 1.1 shows how application, client and server are related to
each other. The IFL Client provides an API for accessing the IFL System and handles
the client-side ML model training. It can be integrated into IFL applications which can
be deployed to edge nodes. The IFL Client uses the API provided by the IFL Server and
provides the following functionality:

• Asset management: Assets are the digital representation of machines used in
IFL [14]. Assets and organizations can be created, updated, listed and deleted
(CRUD).

• Model management: CRUD of ML models. This contains both managing ML
models in their internal representation of the IFL System as well as the parameters
of ML models.

• IFL Task submission and execution: IFL Tasks can be submitted to request
the execution of FL training with other suitable IFL Clients. The IFL Client also
has to be able to execute an IFL Task on request.

• IFL Run and metrics retrieval: After successful execution of an IFL Task, the
IFL System provides a corresponding IFL Run object which the IFL Client should
be able to retrieve. The IFL Run contains information on the configuration of the
IFL Task as well as model evaluation results.

The IFL Client is a Python package that can be used by any IFL Application based on
Python to access the IFL System. It should therefore provide an API that is easy to use.
This work aims to design and implement the IFL Client and describe its architecture.

1.2.2 IFL App

An IFL Application to provide a proof of concept for both the IFL Client and the IFL
System is implemented. This IFL App uses the IFL Client to access the IFL System and
to federate a ML model for the MNIST 3 dataset which contains handwritten digits. It
also provides output to track the progress of an IFL Task. To show that the IFL System
supports multiple Deep Learning frameworks, two versions of the app, one using PyTorch4

and one using TensorFlow5 are implemented. The IFL App is a Python application
packed into a Docker6 image.

2https://aws.amazon.com
3http://yann.lecun.com/exdb/mnist
4https://pytorch.org
5https://www.tensorflow.org
6https://www.docker.com

3

1. Introduction

1.2.3 Edge Deployment and Integration

The final aim of this work is to deploy the IFL App to Industrial Edge devices to show
the interaction between the IFL System and the IFL App on actual Industrial Edge
devices. For this, existing management software is used, emulating a real-world use case.
A scaling experiment is performed to evaluate the performance of the IFL System and
the IFL App.

1.3 Methodology
To achieve the aim of this work, the following methods are used:

1. Literature review: The literature review covers background information on ML,
FL and Edge Computing. Furthermore, core concepts of IFL are covered.

2. Design: In the design phase, the architecture for both IFL Client and IFL App
is created. Interests of data scientists and asset owners have to be considered.
Furthermore, the interplay and communication between IFL Client and IFL System
are described.

3. Implementation: As discussed previously, both the IFL Client and the IFL App
are implemented in Python. For executing IFL Tasks, the framework PyGrid7 is
used to handle the actual ML work.

4. Evaluation: The evaluation aims at evaluating how well both IFL Client and IFL
System perform. For this, a combination of Industrial Edge devices and virtual
machines is used. The main goal is to evaluate how adding more clients to a
federation affects model quality.

1.4 Structure of the Thesis
Chapter 2 of this thesis covers the Background of the topics Deep Learning, FL, Edge
Computing and IFL. Based on these topics, Related Work is discussed in Chapter 3. In
Chapter 4, the Design of the IFL Client and the IFL App are described. Furthermore,
the interactions with the IFL System as well as the deployment to Industrial Edge devices
are covered. Chapter 5 provides details on the Implementation of the IFL Client and
IFL App. In Chapter 6, the Evaluation of the IFL System and IFL Client is described.
Finally, the Conclusion (Chapter 7) summarizes the thesis and its results, and gives an
outlook at future work.

7https://github.com/OpenMined/PyGrid

4

CHAPTER 2
Background

In this chapter, concepts used in IFL are discussed. First, Deep Learning as well as FL
are discussed. Next, Edge Computing is described as it is an integral part of maintaining
privacy in IFL. Finally, IFL as an adaption of FL to the industrial context is discussed.

2.1 Deep Learning

LeCun et al. [17] describe, that when using conventional ML techniques, transforming
raw data into an internal representation that is suitable for a model to produce good
results has been a great challenge for a long time. This transformation is required, as
conventional ML techniques struggle with processing natural data. For example, ML
systems for image classification require that the pixel values are transformed into a feature
vector. Representation Learning enables machines to find the internal representation they
require automatically from raw data. Deep Learning is a form of Representation Learning
where multiple layers of representation that build upon each other are used. For example,
the first layer transforms the raw input into some more abstract representation, the second
layer takes this representation and transforms it into an even more abstract representation
and so forth. These transformations can be composited to learn highly complex functions.
Deep Learning is capable of finding intricate structures in high-dimensional data. It can
be applied to a wide range of problems in many different fields. Examples include image
classification, speech recognition and analysing particle accelerator data [17].

Deep Learning is often applied to images where the raw data is an array of pixels. The
first layer transforms them into a representation which often contains the occurrence of
edges at some locations and orientations. Based on this, the second layer usually finds
motifs. The third layer may then detect familiar objects based on the arrangement of
motifs in the previous representation. Further layers can then detect objects that the
network is intended to find [17].

5

2. Background

2.2 Federated Learning

FL is a privacy-preserving distributed Deep Learning approach introduced by McMahan
et al. [22]. In FL, a federation of devices (FL clients) solve an ML problem and are
coordinated by a central FL server. Datasets are kept on the client and therefore training
data is never sent to the server. Instead, clients train the model locally and only updates
to the global model are sent to the server. This allows the global model to be trained
without the server needing to access the raw training data.

McMahan et al. [22] describe that FL is best suited for problems where the data is
privacy sensitive and training using distributed data is advantageous compared to using
proxy data available on the server. They initially suggested using FL for training models
with data on mobile devices. This includes models for speech recognition, text entry
and selecting good photos. Compared to centralized training on a server, FL offers
more privacy, since the data does not have to leave the client. The updates sent to the
server should be ephemeral and contain less information than the dataset. However,
updates may still contain sensitive information. This problem can be tackled with Secure
Aggregation which allows the server to aggregate the sum of all updates without being
able to access the individual updates [10].

FL enables training a model with data from multiple parties without compromising
privacy. This makes it possible to use ML for problems for which individual parties
do not want to share their data, but do not have enough training by data themselves.
Therefore, FL has the potential to be used in a variety of fields. A notable example is
smart healthcare. As medical data is highly sensitive it is only accessible to isolated
medical facilities and is hard to gather. Due to this lack of data, creating good ML
models is a great challenge. Since FL enables training models without the need to expose
medical data, it has the potential to vastly improve smart healthcare [28]. Similarly,
owners of industrial machines do not want to expose the data their machines produce,
as they might contain information about the way they operate. However, ML can, for
example, be used for smart condition monitoring, which aims to determine the state and
health of a machine by analyzing sensor data as described by Bangert [7]. FL may be
able to improve the quality of such models, as more training data becomes available.

2.2.1 Federated Optimization

The term Federated Optimization was introduced by McMahan et al. [22] and refers to
the optimization problem in FL. Compared to other distributed optimization problems it
deals with Non-IID (Independent and Identically Distributed) training data. Different
clients may also have different amounts of data. In Federated Optimization, a synchronous
update scheme where communication is performed in rounds is used. In each round
a random C-fraction of K clients is selected and the server sends the current model
parameters to them. The clients update their local models using their local datasets and
send the updates to the server which updates the global model.

6

2.2. Federated Learning

When examining neural networks the objective function is of the form minw∈Rd f(w)
where w represents the model parameters and f(w) = 1

n

∑n
i=1 fi(w). Typically, fi(w) is

the loss for the prediction made for some data with the model parameters w. In that case,
f(w) is the average loss of the model with parameters w over n samples [22]. K clients
hold the training data where Pk is the set of indices of data points which client k holds
and nk = |Pk|. The objective for Federated Optimization proposed by McMahan et
al. [22] then is f(w) =

∑K
k=1

nk
n Fk(w) where Fk(w) = 1

nk

∑
i∈Pk

fi(w).

2.2.2 Federated Averaging

McMahan et al. [22] propose the FederatedAveraging (FedAvg) algorithm for updating the
global model based on the local updates. As Stochasic Gradient Descent (SGD) is widely
used in Deep Learning, the FedAvg algorithm is based on it. In each round, a C-fraction
of all clients is selected. Typically a fixed learning rate η is used. Each client k calculates
the average gradient gk = ∇Fk(wt) for the model wt on its local data. The server can
then calculate and apply the aggregated update wt+1 ← wt− η

∑K
k=1

nk
n gk which can also

be written as wt+1 ←
∑K

k=1
nk
n w

k
t+1 where wk

t+1 ← wt − ηgk. This means that each client
takes a step of gradient descent on its local model and the server computes a weighted
average of all models. The client can now update its local model iteratively by executing
the update wk ← wk − η∇Fk(wk) multiple times. The number of training passes each
client makes can be controlled by the parameter E. With the parameter B, the batch
size for the local updates can be controlled. The entire FederatedAveraging algorithm
can be found in Algorithm 2.1.

Taking the average of any ML models can lead to arbitrarily bad models. When models
are initialized independently and then trained and averaged, low quality models may be
the result. If all models are initialized with the same seed, however, averaging models
leads to higher quality models than the individual models in experiments by McMahan
et al. [22] on the MNIST training set.

2.2.3 Federated Learning Tasks

Based on the work of McMahan et al. [22], Bonawitz et al. [9] built a production Federated
Learning system and introduced the terms FL task and FL population. An FL population
represents a particular learning problem or application and is identified by a globally
unique name. FL tasks represent specific computations such as training the model. Once
an FL client is ready to run an FL task for an FL population, it contacts the FL server.

In this system, Bonawitz et al. [9] split the rounds of training into three phases: selection,
configuration and reporting. In the selection phase, devices signal to the server that they
are ready for training. The server then chooses devices that will participate in the round
and tells the remaining devices to reconnect at a later time. During configuration, the
server sends the FL plan to the clients and they start the local training. In the reporting
phase, the server waits for the clients to send their updates and aggregates them. If a
sufficient number of clients report their updates, the server updates the global model.

7

2. Background

Algorithm 2.1: FederatedAveraging after McMahan et al. [22]
1 Server executes:
2 initialize w0
3 for each round t = 1, 2, ... do
4 m← max(C ·K, 1)
5 St ← (random set of m clients)
6 for each client k ∈ St in parallel do
7 wK

t+1 ← ClientUpdate(k,wt)
8 end
9 wt + 1←

∑K
k=1

nk
n w

k
t+1

10 end
11
12 ClientUpdate(k, w): //Run on client k
13 B ← (split Pk into batches of size B)
14 for each local epoch i from 1 to E do
15 for batch b ∈ B do
16 w ← w − η∇`(w; b)
17 end
18 end
19 return w to server

2.2.4 Secure Aggregation

Even though updates sent to the server in FL are ephemeral, it might be possible to
obtain information about the training data of a client from them [22]. This poses a
privacy risk that can be solved using Secure Aggregation. Secure Aggregation is a class
of secure multi-party protocols which allows private values held by different parties to
be aggregated without exposing the private data to other parties. Bonawitz et al. [10]
propose a Secure Aggregation protocol for Federated Learning. It utilizes the fact that
the server does not need to know the values of the individual updates, but only the sum.

Each of the n users u ∈ U has their private value xu. The server S needs to be able to
obtain

∑
u∈Ũ

xu where Ũ ⊆ U and |Ũ | ≥ n
2 but must not be able to access any u ∈ U .

Thus, S can learn no more than what is derivable from the aggregate
∑

u∈Ũ
xu about

each xu and the users can not learn anything.

To achieve this, Bonawitz et al. [10] developed a protocol with four rounds. In the first two
rounds, clients establish a shared secret for masking the aggregated update. For this, a
scheme such as Shamir’s Secret Sharing [26] can be utilized. Devices dropping out during
this round will not be considered in the final aggregate. In the third round, clients send
their updates cryptographically masked to the server. Updates uploaded in this step will
be part of the final aggregate. If too many clients drop out, the entire aggregation fails.
In the final round, clients share their part of the cryptographic information necessary to

8

2.3. Computing on Cloud and Edge

allow the server to compute the aggregated update. Unless too many clients drop out,
this step completes even if not all clients finish it.

This secure aggregation protocol is designed to work, even if part of of the clients drop out.
Cost in computation, communication and storage grow quadratically, effectively limiting
the number of participants in real-world application. To circumvent this limitation,
Bonawitz et al. [9] suggest aggregating intermediate sums until a master aggregator
aggregates them into the final result.

2.3 Computing on Cloud and Edge

In the past decade, Cloud Computing has been a dominant paradigm in the IT discourse
according to Satyanarayanan [25]. It offers high scalability combined with removing the
need for companies to build data centers by using computing resource from large service
providers. With the emergence of the Internet of Things (IoT) and mobile computing,
however, Edge Computing has become more and more relevant. Edge Computing leverages
added computing and storage resources on devices placed close to mobile devices and
sensors.

2.3.1 Cloud Computing

According to the National Institute of Standards and Technology (NIST), Cloud Comput-
ing is a model that allows ubiquitous and convenient access to a shared pool of computing
resources [24]. These resources can be scaled up or down with minimal management effort.
Providers of computing resources serve multiple customers. Examples for these providers
are Amazon Web Services (AWS)1, Microsoft Azure2 and Google Cloud3. Resources are
shared using a multi-tenant model where resources are dynamically assigned. Customers
therefore do not control which hardware is used.

The Cloud refers to the data centers operated by the providers of computing resources
mentioned before. A major advantage of using the Cloud is the possibility to scale quickly.
Services can scale up to handle high load and then quickly scale back down to save
money [12].

2.3.2 Edge Computing

In contrast to Cloud Computing, where data processing is done centrally in data centers,
Edge Computing, explores using edge nodes for performing computations as an interme-
diary between the Cloud and edge devices, according to Varghese et al. [27]. Edge nodes
can be devices through which network traffic flows, such as routers, switches, and base
stations, or any other computing devices which are placed geographically closer to edge

1https://aws.amazon.com
2https://azure.microsoft.com
3https://cloud.google.com

9

2. Background

devices than the Cloud. Edge devices refer to devices on the edge of the internet, such as
mobile phones or sensors.

Motivation

Varghese et al. [27] describe that Edge Computing enables computing tasks geographically
closer to the edge devices compared to the centralized Cloud Computing approach. This
reduces latency and therefore improves the service provided. That way, Edge Computing
can make real time applications, which are not running on front-end devices, viable.

Edge devices often have limited resources. In the industrial context, for example, machines
may do not have sufficient computing power to train a ML model. An edge node could
assume the workload while keeping latency low [27].

Another aspect mentioned by Satyanarayanan [25], is that Edge Computing can reduce
the amount of network traffic the Cloud has to handle. This can be achieved by only
passing extracted information and metadata for the edge nodes to the Cloud. For example,
in IFL sensor data only has to be sent to an edge node. Only the model updates are then
passed to the Cloud, which amounts to significantly less network traffic to the Cloud.
Edge nodes can also act as a fallback service when Cloud outages occur. In IFL this
means that the ML models stored on an edge node are still accessible when the Cloud is
available and therefore machines are not affected.

Edge nodes can decide which data is passed on to the Cloud. This way, the owners can
enforce a privacy policy for their data. In an industrial setting, for example, machines
may pass sensitive data to edge nodes for processing. Then edge nodes can decide, which
data to pass on to the Cloud [25].

Challenges

While edge nodes are better equipped to handle computationally intense workloads then
edge devices, not overloading them is a challenge according to Varghese et al. [27]. It is
important that they maintain high throughput, which might not be possible when they
are overloaded. Therefore, it is important to choose the tasks edge nodes have to handle
correctly in order to keep the quality of service.

Ensuring the security of public edge nodes is another challenge in Edge Computing. In
data centers using virtualization, the risks for both customers and providers are known.
Multi-tenancy on edge nodes can only be done securely, if security is central in developing
the required technology. Furthermore, the primary function of devices such as routers,
switches, and base stations must not be affected [27].

2.4 Industrial Federated Learning
Federated Learning was initially designed with smartphones as clients in mind [22].
Training decentralized models with FL is, however, interesting for machine data as well.

10

2.4. Industrial Federated Learning

There are different types of machines and they operate under different conditions. This
can lead to a lack of similarity of data which could decrease the quality of a model if
federated. Hiessl et al. [14] proposed Industrial Federated Learning which aims to tailor
FL to the industrial context and its requirements.

In IFL, machines are treated as their digital representation called assets which generate
data, e.g., through sensors, to be used by FL. In order to differentiate different types
of machines, assets are assigned an asset type. Each asset type has a number of aspects
with their corresponding aspect types which contains the variables. An example would be
a concrete machine (asset) which is an engine (asset type). It has sensors collecting data
about vibrations at the surface (aspect). Surface vibrations are vibrations (aspect type)
and are collected in x, y and z dimensions (variables). For assets, a description of the
environment is saved as well.

Assets with a different asset type use a different global model as their data does most
likely not have enough similarity. Machines of the same asset type may produce highly
heterogeneous data as well based on the environment they are operating in. Therefore,
the selection of clients for an FL task is highly relevant. To account for the lack of
similarity in data originated from different machines of the same asset type, Hiessl et
al. [14] introduced FL cohorts. FL clients can submit FL tasks to an FL cohort which
has a corresponding global ML model. Clients within a cohort only share their updates
with FL tasks in the same cohort. With this approach training of a model with highly
heterogeneous data due to different operating conditions is prevented. Tasks can be
moved to a different cohort to improve model quality. For this, factors like model accuracy
and environmental changes are considered.

IFL is designed to make use of Edge Computing. Machines do not perform ML tasks
themselves, but delegate these to edge nodes which are computing devices in close
geographical proximity to the machines operated by the owner of the machines. There
the data is stored and used in the training of ML models. This approach enables machines
to work independently without being affected by the heavy workload caused by training
ML models while keeping the data within company bounds and therefore private. Due
to the proximity to the edge nodes, latency is kept low.

11

CHAPTER 3
Related Work

3.1 BrainTorrent

BrainTorrent is a server-less peer-to-peer FL environment proposed by Roy et al. [13]
which aims to adapt FL to the context of medical centers. The authors identified some
key differences between the environment of FL in its initially proposed form and the
medical environment: While FL is designed to be able to scale to millions of devices,
medical centers are part of much smaller communities. Furthermore, centers are expected
to have good communication infrastructure, eliminating the bottleneck of communication
cycles. Lastly, there may not be a trusted server, instead centers want to coordinate with
each other directly. This context is similar to the one encountered in IFL, making it an
interesting comparison. Unlike IFL, BrainTorrent requires a high level of coordination
between all participating parties.

Instead of relying on a central server, Roy et al. [13] decided to take a peer-to-peer approach
for BrainTorrent. This enables clients to start update rounds more freely. Furthermore,
the central server as a single point of failure is eliminated, making BrainTorrent more
reliable than traditional FL.

3.2 Energy Consumption and Accuracy

Magid et al. [21] explored how energy consumption of image classification tasks using ML
on edge devices is affected by parameters such as dataset size and image resolution, among
others. Furthermore, they looked at the effects these parameters have on processing
duration and accuracy. Magid et al. found that lowering the resolution of images signifi-
cantly reduces energy consumption but does not impair the accuracy drastically. Dataset
size, too, has a drastic effect on energy consumption. Reducing energy consumption is
relevant in the industrial context as well. However, this is outside the scope of this work.

13

3. Related Work

Data from A

Data from B Labels

Features
Sa

m
pl

es

Data from A

Data from B
 Labels

Features

Sa
m

pl
es

Data from A

Data from B Labels

Features

Sa
m

pl
es

Federated Transfer Learning

Vertical Federated Learning

H
or

iz
on

ta
l F

ed
er

at
ed

Le
ar

ni
ng

Figure 3.1: Categories of Federated Learning after Yang et al. [28]

3.3 Categorization of Federated Learning

Yang et al. [28] divide FL into the three categories horizontal FL, vertical FL and
Federated Transfer Learning (FTL). Horizontal FL can be used if datasets share the
same features but have different samples. The FL framework introduced by McMahan et
al. [22] is an example of horizontal FL. If the sample ID space overlaps but the features
do not, vertical FL is applicable. It combines feature spaces which leads to a model
with more features. An example for vertical FL would be if two companies in a different
business field are located in the same area. Due to their different business goals, their
models have different feature spaces but they share a large number of clients. Lastly, FTL
is best suited for scenarios in which neither sample nor feature spaces have large overlaps.
As an example, Yang et al. [28] state a bank in China and an e-commerce company in
the United States. Naturally, they neither share many customers nor features. FTL aims
to provide solutions for the whole sample and feature space. All three categories are
depicted in Figure 3.1.

14

3.4. Challenges in Federated Learning

3.4 Challenges in Federated Learning

FL still faces a lot of challenges, Aledhari et al. [5] list the following, among others: First
of all, devices participating in FL can be highly heterogeneous. They may have widely
varying capabilities in terms of capacity, processing power and network capacity, which
can lead to extremely high communication costs. Moreover, fault tolerance has to be
considered, as devices may drop out at any point. For IFL, these issues are not relevant
as a solid infrastructure can be expected. Second, the FL framework by McMahan et
al. [22] as well as IFL require that all devices agree on and use the same architecture
for the ML model. In some cases, for example in the medical context, different parties
may want to choose to use a different model architecture based on their environment
and capacities. Especially in healthcare, sharing specifics about models can be hard due
to privacy concerns. In the industrial context, companies may have similar concerns.

Li et al. [20] describe further challenges in FL: Statistical heterogeneity and privacy con-
cerns. An important challenge in FL is that devices generate varying amounts of data that
are non-identically distributed as, for example, usage patterns of smartphones are highly
heterogeneous. This may add complexity, as in distributed optimization the assumption
of independent and identically distributed data is commonly used. Furthermore, even
though FL was designed with privacy in mind, privacy is still a concern. As raw training
data does not leave the device, only updates are sent to the server, improving privacy
significantly. However, these updates may still contain sensitive information which is
then available to the central server. As this is a privacy issue, different approaches try
to improve privacy but often at the cost of model performance or efficiency [20]. This
trade-off has to be considered when implementing IFL as well.

Bhagoji et al. [8] identified model poisoning as a threat in FL. Model poisoning means
that an adversary causes the global model to wrongly classify a set of chosen inputs with
high confidence. For this, the attacker only needs to control a small number of agents.
Bhagoji et al. [8] conclude that FL in its original form is highly vulnerable to model
poisoning. However, it is more challenging to do it stealthily. Similarly, Bagdasaryan
et al. [6] were able to introduce backdoor functionality into the global model without
strongly affecting the accuracy on the main task. As metrics for evaluating model quality
focus on the accuracy of the model for its main task, they might not detect what else
the model has learned. This allows introducing covert backdoor functionality. These
security issues are highly relevant in the industrial context as well. However, IFL is only
concerned with improving performance, leaving them to future research.

3.5 Applications of Federated Learning

Aledhari et al. [5] describe that FL has gained a lot of attention for its application for
mobile devices. One of the most prominent applications is Gboard, a mobile keyboard
application by Google. This use case includes next-word prediction and word completion.
It features an environment which is highly suitable for FL: User input is privacy sensitive

15

3. Related Work

data that is highly distributed and low latency is crucial. Another application of FL on
mobile devices is ranking browser-history suggestions. This feature turned out to be hard
and expensive to test, as it was rolled out to a large number of Firefox1 users, risking
negative user experience.

In industrial engineering, too, FL has gained popularity according to Li et al. [19]. Due to
laws and regulations concerning data privacy protection, FL enables leveraging distributed
datasets in this area. Applications include data monitoring and visual inspection tasks.
Further, research into using FL for detecting attacks in the communication system of
drones and detecting credit card fraud has been conducted. FL has the potential to
enable more industries to use ML to become more intelligent. IFL is an approach aiming
at improving FL in this area.

Another area of application for FL is healthcare. As individual medical facilities might
not have enough training data available, FL is promising for training prediction models
on patient data. Possible applications for FL in healthcare range from biomedical imaging
analysis to analyzing electronic health records with natural language processing [19].
Further applications include functional magnetic resonance imaging (fMRI) analysis and
brain tumor segmentation [5].

3.6 Federated Learning Frameworks
Li et al. [19] state the two open source frameworks TensorFlow Federated (TFF)2 and
Federated AI Technology Enabler (FATE)3 as the mainstream frameworks for FL. TFF
features FedAvg for updating models as well as Secure Aggregation to improve privacy.
It is highly scalable and has been used in applications installed on more than ten million
devices. FATE is designed for a cross-organizational architecture. It also supports
Transfer Learning and other ML algorithms.

Since then, other frameworks such as PySyft4, CrypTen5 and LEAF6 have emerged,
which each focus on different aspects such as privacy, mobile devices or multi-tasking.
The IFL System uses PySyft, which is mainly focused on privacy [5].

3.7 Industrial Edge Computing Reference Model
Dai et al. [11] describe the industrial edge computing reference model which consists of
three layers: Edge Computing controller (control layer), Edge Computing gateway and
industrial cloud platform. The control layer contains, for example, robots and sensors
which deliver data to the Edge Computing gateway on request via protocols such as

1https://www.mozilla.org/en/firefox/
2https://www.tensorflow.org/federated
3https://fate.fedai.org/
4https://github.com/OpenMined/PySyft
5https://crypten.ai/
6https://leaf.cmu.edu/

16

3.8. Edge Management Software

RESTful APIs, WebSocket or TCP/UDP. The Edge Computing gateway is responsible
for tasks such as data buffering and filtering, real-time monitoring and data analysis.
It exchanges data with the industrial cloud platform through encrypted challenges and
protocols such as MQTT or any of the aforementioned protocols. The industrial cloud
platform can contain a public or private cloud. It provides storage and computing
resources to analyze data collected by the lower layers. In the case of the IFL System,
IFL Applications are placed in the Edge Computing gateway layer and receive data from
sensors in the control layer. They communicate with the IFL Services, which are placed
in the cloud platform layer, using RESTful APIs and WebSockets.

3.8 Edge Management Software
Li et al. [18] cover architecture patterns for developing industrial software, in particular
industrial edge systems. They present microservice patterns for the stages of industrial
software delivery, which are deployment, monitoring, adaptation and testing. These
include, for example, patterns for moving services from the cloud to edge devices, load
balancing between edge and cloud, and testing microservices on edge devices without side
effects. The work at hand uses existing management software for deploying the IFL App
to edge nodes and is therefore not concerned with the implementation of such systems.

3.9 Conclusions
Since FL is a rather recent approach, there still are many open research challenges.
As privacy and security are important promises of FL these topics have been studied
intensely. Solutions typically lead to having to make a trade-off between privacy and model
performance or efficiency. As different applications of FL feature different requirements,
adaptions for different contexts have been developed. For example, IFL targets the
industrial context and BrainTorrent the context of medical centers. The industrial edge
computing reference model describes how an Edge Computing service can be structured.
This work covers a design for an application in the Edge Computing gateway layer.

17

CHAPTER 4
Design

This chapter discusses the design of the IFL Client and the IFL App. To understand
the interactions with the IFL System, the IFL System is described as well. Finally, the
deployment of the IFL App to Industrial Edge devices is discussed.

4.1 IFL System
The IFL System is a prototype based on the work of by Hiessl et al. [14]. It is hosted on
AWS and provides the server-side services for managing data related to IFL as well as
for executing FL tasks with cohorts. The IFL System consists of various services which
are available through REST APIs.

4.1.1 PyGrid

PyGrid is a peer-to-peer network for training ML models using the secure Deep Learning
framework PySyft1 which supports FL and is based on the ML framework PyTorch2. It is
composed of a network, nodes and workers. The network is used to manage instructions
related to executing FL and routes them to grid nodes. Grid nodes store models as well
as the private data uploaded to them. They also manage workers, to which they issue
instructions to compute data [4].

The IFL System makes use of PyGrid, to which it delegates communication and processing
for the FL component of executing IFL Tasks. IFL Applications spawn or use existing
PyGrid nodes (from now on referred to as grid nodes) which connect to a PyGrid network
(grid network) provided by the IFL System. Ideally, grid nodes run on edge nodes, as
this ensures that the data, IFL Applications send to grid nodes for training, is not sent
to the cloud.

1https://github.com/OpenMined/PySyft/
2https://pytorch.org/

19

4. Design

4.1.2 Services

The IFL System offers the following services, each of which provides a REST API, to the
IFL Client:

IFL Registry The IFL Registry (registry) can be used to obtain, create, modify and
delete organizations, assets, asset types, aspects, aspect types, variables, ML models
and datasets. It is responsible for persisting this data. Furthermore, IFL Tasks can be
submitted to the registry for execution.

IFL Plan Processor The IFL Plan Processor (plan processor) is responsible for the
execution of IFL Tasks. It also provides feedback on the status of IFL Runs.

IFL Grid Network Manager The IFL Grid Network Manager (grid network man-
ager) offers functionality for spawning and destroying grid nodes in the cloud to IFL
Applications. This can be used if it is not possible to spawn the grid node on the edge.
It therefore violates the idea of using Edge Computing for IFL. Due to limitations in
the current version of PyGrid, however, it is necessary to use grid nodes running in the
cloud if no edge node with a publicly reachable IP address can be spawned on the edge.

4.1.3 Server Plans

Once a sufficient number of tasks have been submitted to the registry, the plan processor
generates a server plan. A server plan holds information about the execution of tasks,
such as the IFL Population, which contains the participating tasks and cohorts, and a
description. Furthermore, it contains the URL of the grid network used.

4.1.4 IFL Algorithms

The IFL System supports several algorithms for updating the global models during task
execution. Clients can choose between the following when submitting a task:

• Central Learning: Central Learning collects the training data from each client
and updates the global model by centrally training on the server. Therefore, it is
not an FL approach. However, its results serve as a benchmark to compare different
algorithms, as it represents a near best-case scenario for obtaining good models.

• Sequential FL: When using Sequential FL the model is sequentially updated by
each participating client within every round. This means, that the model is sent to
a client and updated there. The resulting model is then sent to the next client and
so forth.

• Federated Averaging: Federated Averaging uses the FedAvg algorithm proposed
by McMahan et al. [22] to update the model.

• Cohort-based Federated Averaging: Cohort-based Federated Averaging is
based on the idea of forming FL cohorts introduced by Hiessl et al. [14] combined
with FedAvg. First, a cohorting algorithm forms cohorts from the participating

20

4.2. IFL Client

tasks. To update the ML model, the FedAvg algorithm is then used within the
cohorts.

4.2 IFL Client
As the services provided by the IFL System are offered as REST APIs, the IFL Client is
developed to provide a pythonic API. Furthermore, it provides additional utility that
enables executing IFL Tasks through the IFL System. The IFL Client is a Python library
that can be used to communicate with and use the IFL System. Figure 4.1 shows the
primary use case where it serves as a link between an edge node connected to assets and
the IFL System. In the following, actors using the IFL Client, the domain model and
architecture as well as the most important workflows are described.

IFL Client IFL Client
IFL Client

IFL Registry IFL Task & Cohort
Scheduling IFL Plan Execution

IFL Metrics &
Evaluation IFL Algorithms

Asset A1
(Asse Type T1)

Asset A2
(Asse Type T2)

Asset A3
(Asse Type T2)

Asset A5
(Asse Type T2)

Asset A4
(Asse Type T1)

Data
generation

Model Training

Model Aggregation

Figure 4.1: IFL System Functional Blocks

4.2.1 Actors

The IFL Client has to be able to serve the needs of machine builders, data scientists,
asset owners and machine operators. As it is a Python library, it can be used either in
programs and automated systems or directly in Python for manual use, depending on
the needs of the actor.

Machine builders: Machine builders create the assets for machines they sell to cus-
tomers. Additionally, they assign the respective aspect types and asset types to the

21

4. Design

assets.

Data scientists: Data scientists are responsible for managing ML models and datasets.
They provide the structure of the ML model as well as metadata about datasets. Fur-
thermore, data scientists can use the IFL Client to obtain, analyze and improve ML
models.

Asset owners: Asset owners need to be able to manage their organization as well as
their assets. Additionally, they can use the IFL Client in their IFL Applications to submit
and execute IFL Tasks. For this, they use data generated by their sensors to participate
in the FL process. The IFL Client allows them to implement IFL Applications with
reduced effort as it provides the required functionality to use the IFL System.

Machine operators: Machine operators use the IFL Client in their IFL Applications
to obtain ML models, that are continually being improved through IFL. They profit from
better operation of their machines by using these models.

4.2.2 Domain Model

For creating a domain model, the terminology used by Hiessl et al. [14] is used. Figure 4.2
depicts the models the IFL Client has to handle as well as their relationships to each
other. In the following, they are described in more detail.

Each machine is represented by an Asset identified by an asset_identifier for which
metadata such as name, location and a description of the operating environment is stored.
Each asset belongs to an Organization, which is represented by its name, industry and
location. A location consists of a street_address, postal_code, city, country as well as the
exact position given in longitude and latitude. Assets are assigned an AssetType identified
by an asset_type_identifier for which a name and a description is stored. It can be
assigned multiple aspects and variables. An Aspect has a name and is assigned at least
one Aspect Type which contains a name, description, variables and a temporal_category
which can be static or dynamic. Each Variable consists of a name, unit, data_type and a
default_value.

An FL task is represented as an IflTask (IFL Task) which has a name, description,
ifl_algorithm, federation_criteria and a cohort_strategy. The ifl_algorithm specifies
which IFL algorithm the task uses. IFL Tasks also store an ifl_run_id which is the id of
the corresponding IflRun (IFL Run) object, and are associated with the MlModel that
is used for training as well as the asset that has submitted the task. Each MlModel
represents an ML model whose URL is stored in its base_model_url. It also has a dataset
associated with it, a name and description, a type, which contains the format the ML
model is stored in, and a train_test_split, which defines how much of the dataset should
be used for training and testing, respectively. The training_parameter contain additional
instructions for the training of the ML model, their format can vary between different
IFL algorithms. Each dataset consists of a name, description, and size and is assigned
an Aspect Type. An IFL Run contains the results of the execution of IFL Tasks and is

22

4.2. IFL Client

1 0..*

Asset

+ url: str

+ asset_identifier: str

+ name: str

+ environment_description: str

+ location: Location

10..*

Organization

+ url: str

+ name: str

+ industry: str

+ location: Location

0..* 1

AssetType

+ url: str

+ asset_type_identifier: str

+ name: str

+ description: str

Location

+ url: str

+ street_address: str

+ postal_code: str

+ city: str

+ country: str

+ longitude: str

+ latitude: str

1

0..*

Aspect

+ url: str

+ name: str

0..*1

1

0..*

AspectType

+ url: str

+ name: str

+ description: str

+ temporal_category: str

Variable

+ name: str

+ unit: str

+ data_type: str

+ default_value: str

1

0..*

1 0..*

IflTask

+ url: str

+ id: int

+ name: str

+ description: str

+ ifl_algorithm: str

+ cohort_strategy: str

+ ifl_run_id: str

+ federation_criteria: str

1..* 0..1

1

0..*

IflRun

+ run_id: str

+ trained_model: str

+ validation_metrics: str

+ state: str

+ model_identifier: str

+ model_type: str

1 0..*

MlModel

+ url: str

+ model_identifier: str

+ id: str

+ name: str

+ description: str

+ type: str

+ train_test_split: float

+ base_model_url: str

+ training_parameter: str

0..*

1

Dataset

+ url: str

+ name: str

+ description: str

+ size: int

Figure 4.2: Domain Model

identified by a run_id. Whether it was successful is stored in its state. IFL Runs also have
a URL to the updated model, stored in trained_model, and validation_metrics, which
contain detailed information on the execution of the run. They also store information
about the ML model used, in particular the model_type and model_identifier.

Each model, other than IFL Runs, also contains a url that is assigned by the IFL Registry
and points to the corresponding instance in the registry.

4.2.3 Architecture

This section describes the components of the IFL Client and which services they provide.
Figure 4.3 shows the parts of the library and how they are related to each other.
While FLClient, Asset- and ModelManager, FLTaskManager and FLPlanProcessor
interact directly with the user of the IFL Client, IFLRegistry-, IFLPlanProcessor- and
IFLGridNodeManagerApi only provide services to other components of the IFL Client.
In the following, each component is described.

23

4. Design

FLClient

AssetManager/
ModelManager FLTaskManager FLPlanProcessor

IFLGridNodeManagerApiIFLPlanProcessorApiIFLRegistryApi

Figure 4.3: IFL Client Architecture

FLClient

The FLClient serves as an entry point into the IFL Client. It is responsible for managing
the URLs of the IFL Registry, IFL Plan Processor and IFL Grid Network Manager the
client uses. The FLClient can be used to obtain instances of AssetManager, ModelMan-
ager, FLTaskManager and FLPlanProcessor.

Asset- and ModelManager

The AssetManager and ModelManager provide a way to use the IFL Registry with Python
objects. The AssetManager can be used to create, read, update and delete Organizations,
Assets and AssetTypes, while the ModelManager provides the same functionality for
MlModels, Datasets and AspectTypes. Furthermore, ML models can be imported and
exported through the ModelManager.

FLTaskManager

The FLTaskManager provides functionality for submitting tasks as well as accessing
additional information of tasks. IFL Tasks can be submitted and existing ones can be
read. In order to track the progress of an IFL Task, the current progress can be queried
to acquire temporary validation metrics. Furthermore, functionality for waiting for a
task to complete is provided. Once an IFL Task has completed, its corresponding IFL
Run can be accessed through the FLTaskManager.

FLPlanProcessor

The FLPlanProcessor contains the necessary utility to execute IFL Tasks and to manage
PyGrid nodes. When executing a task, either an existing node can be used, or a

24

4.2. IFL Client

Data
scientist

Asset
owner

IFL Registry
Machine
builder

create variables

create aspect types

create dataset

create ML model

create aspects

create asset type

asset create asset

create organization

Figure 4.4: Model and Asset Registration

new node can be spawned either using a local Docker3 installation or in the cloud by
accessing the grid network manager. Grid nodes can be started and stopped through the
FLPlanProcessor in either case. For the execution of tasks, the FLPlanProcessor provides
utility for getting the address of the PyGrid network used for the task, registering datasets
on grid nodes and marking tasks as ready.

IFLRegistry-, IFLPlanProcessor- and IFLGridNodeManagerApi

The IFLRegistryApi, IFLPlanProcessorApi and IFLGridNodeManagerApi provide an
abstraction of the APIs offered by the services of the IFL System IFL Registry, IFL Plan
Processor and IFL Grid Node Manager, respectively. They are responsible for parsing
Python objects, dispatching calls to the APIs and parsing the responses.

4.2.4 Model Creation

Model creation is handled by a data scientist familiar with the ML problem at hand. At
first, the variables representing the data collected by machines have to be determined
and created in the IFL Registry as part of an aspect type. Afterwards, a dataset for the
previously created aspect type is created. Lastly, the MlModel is added to the registry
and an initial ML model is uploaded by the data scientist. Figure 4.4 shows the steps for
registering an MlModel by the data scientist followed by the necessary steps for asset
registration.

4.2.5 Asset Registration

For the registration of an asset, the asset owner has to have the organization registered
in the IFL Registry. Furthermore, the relevant aspect types need to have been created by

3https://www.docker.com/

25

4. Design

IFL
Client

IFL Registry IFL Plan
Processor

loop
request network url

network url?

[network url not available]

PyGrid node

mark task as ready

register dataset

loop [task is executing]
get progress

progress

get IFL Run

IFL Run

submit FL Task

stop

start

task id

Figure 4.5: Task Execution

a data scientist. The machine builder can then create aspects and register an asset type
with the necessary aspects and variables assigned. Finally, the machine builder registers
the asset of this asset type to the registry and provides it to the asset owner.

4.2.6 IFL Task Execution

In order for a client to participate in the execution of an IFL Task, it has to indicate that
it wants to join a federation by submitting a task to the IFL Registry. Once a sufficient
amount of similar tasks, depending on the selected cohort strategy and IFL algorithm,
has joined, the IFL Plan Processor indicates, that a server plan has been generated
and provides the URL of a grid network for participating clients to connect to. Clients
spawn their respective grid nodes, which connect to the grid network and register their
training data to them. Once that is done, they tell the IFL Plan Processor that they are
ready for training. The server waits for some amount of time for a sufficient number of
clients to be ready before starting the training process. If not enough clients are ready in
time, the server plan fails. Otherwise, the IFL Plan Processor starts executing training
rounds. During execution, the client can query the progress of the training and receive
intermediate validating metrics. As soon as the training is complete, an IFL Run is
available from the IFL Registry. It contains a link to the updated model, which clients
can use for inference. The client may choose to stop the grid node it started. Figure 4.5

26

4.3. IFL App

shows the sequence of a successful IFL Task execution from the perspective of the IFL
Client.

When submitting an IFL Task, the client can pass federation criteria to control properties
of the federation. These include a minimum number of clients that have to join for the
task to be executed.

4.3 IFL App
The IFL App is an IFL Application that uses the IFL Client to access the IFL System.
It is able to execute IFL Tasks and use the updated model for inference. Furthermore,
the IFL App provides a web interface for managing IFL Tasks and IFL Runs.

4.3.1 Architecture

The IFL App consists of the aforementioned web interface, data and logging services, and
the TaskExecutor. This section describes them in greater detail. Figure 4.6 visualizes the
parts of the IFL App and their dependencies to each other.

Web Interface

Data Services

TaskExecutor

Logging Services

IFL App

Figure 4.6: IFL App Architecture

Web Interface

The web interface provides a user interface for controlling the IFL App. It allows setting
the id of the asset the current instance of the application represents, i.e. setting the
identity of the machine within the IFL System. Further, IFL Tasks can be managed
through the web interface. New tasks can be submitted and previously submitted tasks
can be monitored. For this, the progress of a running task, which contains information on
accuracy, loss and dataset size for each round, is output. For completed tasks, a link to
the associated IFL Run is provided. For IFL Runs, the validation metrics are displayed,
which contain the final progress of each task as well as the average accuracy and loss
before and after the execution of the corresponding server plan. Furthermore, a graph
containing the accuracy for each task and each round is shown.

27

4. Design

With the help of the web interface, machine operators can keep track of the IFL Tasks
executed by the IFL App as well as of the improvements in performance of the ML
models achieved by IFL.

Data Services

The data services are responsible for providing the test and training data for executing
IFL Tasks as well as for exporting the resulting ML models. They are also used for
loading locally saved ML models which resulted from task execution.

TaskExecutor

The TaskExecutor is responsible for actually executing tasks and is invoked once a task
has been submitted by the IFL App. For this, it uses the IFL Client, in particular the
FLPlanProcessor and the FLTaskManager. The FLPlanProcessor is used to start and
stop grid nodes in the cloud as well as for executing tasks and the FLTaskManager is
used to obtain IFL Runs. During task execution, the TaskExecutor periodically requests
the progress of the task from the FLTaskManager.

Logging Services

The logging services are responsible for handling writing log output. This includes writing
to the standard Python logging API as well as writing log output to the databus of
Industrial Edge devices. This enables analyzing and monitoring the IFL App through
monitoring tools other than the web interface.

4.3.2 Task Submission and Execution

The execution of an IFL Task can be triggered through the web interface or by sending
a HTTP POST request to the IFL App. For this, the id of an MlModel and a name
and description for the task have to be provided. Additionally, federation criteria can be
submitted. An IFL Task with the provided information is then submitted to the IFL
Registry through the FLTaskManager. A TaskExecutor for this task is then started and
executes the task using the IFL Client as described in Section 4.2.6 with a grid node
running in the cloud, which is started with the grid network manager. The training data
is provided by the data services. During the whole process, the logging services are used
to provide output on the state and progress of the execution.

4.3.3 Inference

Once a task has been completed, the corresponding IFL Run is available and contains
the updated ML model. This model can be used for inference through the IFL App.
To show that the IFL System can be used with different ML framework, the IFL App

28

4.4. Industrial Edge Deployment

Industrial Edge
Publisher

Industrial Edge
Management System

Industrial Edge
device

Industrial Edge
device

IFL App
(Container)

IFL App
(Container)

IFL App
(Container)

Figure 4.7: Industrial Edge Deployment

supports inference with the two widely-used Deep Learning frameworks PyTorch4 and
Tensorflow5.

To start inference, the id of the IFL Run whose model should be used and a tensor
containing the data on which inference should be executed, have to be provided. The
data services are then responsible for obtaining the correct ML model. It is then parsed
to the respective Deep Learning framework and the resulting predictions are returned.

4.4 Industrial Edge Deployment

This section covers the deployment of the IFL App to Industrial Edge devices using
existing management software. For this, Siemens Industrial Edge is used.

4.4.1 Siemens Industrial Edge

Siemens Industrial Edge is an Edge Computing platform developed by Siemens6 for the
industrial context. It is designed to be used for tasks such as analyzing high-frequency
data from machines, optimizing machine processes and condition monitoring. Siemens
Industrial Edge consists of three parts: the Industrial Edge Management System, Edge
devices and Edge apps. The Edge Management System serves as a central infrastructure
to manage connected Edge devices. Users can install software, in particular Edge apps,
on Edge devices and the system takes care of distribution. Edge apps are either provided
by Siemens or can be individually developed. For this, the open source software Docker7,
which provides virtualization, runs on Edge devices. The IFL App is one such Edge
app [1][3].

4https://pytorch.org/
5https://www.tensorflow.org/
6https://new.siemens.com/
7https://www.docker.com/

29

4. Design

4.4.2 Deployment

To deploy the IFL App to Edge devices, the devices have to be registered in the Industrial
Edge Management System first. Then, a project in the system has to be created for
the app. Using the Industrial Edge Publisher, a program that allows packaging and
uploading Edge apps to the Industrial Edge Management System, the IFL App is made
available in the Edge Management System for distribution. From there, Edge devices, on
which the IFL App should be installed, can be selected. The Edge Management System
then takes care of the distribution and installation. Figure 4.7 shows how the IFL App is
passed from the developer using the Edge Publisher to the Edge Management System
and to Edge devices in its packaged state.

30

CHAPTER 5
Implementation

This chapter briefly covers implementation details of the IFL Client and IFL App as well
as the most important technologies used.

5.1 Technologies
Both IFL Client and IFL App are developed in Python 3.81. Pip2 is used as a package
installer and to manage dependencies. The IFL Client uses the older versions 1.4.0 and
0.2.9 for PyTorch3 and PySyft4, respectively, for compatibility with PyGrid. The IFL
App uses Flask5 for providing the web interface and endpoints.

5.2 IFL Client API
The IFL Client is available through the class FLClient, which is shown in Figure 5.1.
It is initialized with the base URLs of the IFL Registry, IFL Plan Processor and IFL
Grid Network Manager to be used. From the FLClient, the user can obtain instances of
the AssetManager, ModelManager, FLTaskManager and FLPlanProcessor to use their
functionality as described in Section 4.2.3.

5.3 IFL App Endpoints
The IFL App provides the following endpoints, which are used by the web interface but
can be used by other applications as well:

1https://www.python.org/downloads/release/python-386/
2https://pip.pypa.io/en/stable/
3https://pytorch.org/
4https://github.com/OpenMined/PySyft
5https://flask.palletsprojects.com/en/1.1.x/

31

5. Implementation

FLClient
+ asset_manager: AssetManager

+ model_manager: ModelManager

+ task_manager: FLTaskManager

+ plan_processor: FLPlanProcessor

+ FLClient(base_registry_url,
 base_plan_processor_url,
 base_grid_node_manager_url)

Figure 5.1: FLClient Class Diagram

Set asset: This endpoint can be used to set the id of the assets to be used by this Edge
device in the future.

Execute task: To execute a task, this endpoint can be called. For this, the id of
an MlModel, a name and a description of the task have to be submitted. Optionally,
federation criteria can be submitted to control some aspects of the federation for the
task, as discussed in Section 4.3.2. The endpoint then submits the task and starts a
TaskExecutor on a new thread to execute it.

Inference: To perform inference on models resulting from an IFL Run, the IFL App
offers two endpoints: one for inference with PyTorch and one with Tensorflow. They
take a tensor in JSON format and perform inference on it. The endpoints return a JSON
document containing the framework used for inference as well as the results. An example
for a response can be seen in Listing 5.1.

32

5.3. IFL App Endpoints

Listing 5.1: Inference Response
1 {
2 " framework " : " pytorch " ,
3 " p r e d i c t i o n s " : [
4 [
5 −4.799382209777832 ,
6 −5.252931118011475 ,
7 −5.099876880645752 ,
8 −3.368135452270508 ,
9 −6.1609015464782715 ,

10 −5.038578510284424 ,
11 −7.690005779266357 ,
12 −0.13186393678188324 ,
13 −4.5497050285339355 ,
14 −2.997725009918213
15]
16]
17 }

33

CHAPTER 6
Evaluation

This chapter covers the evaluation of the IFL Client and IFL System using a scaling
experiment. First, the scaling experiment is described, then the results are discussed.

6.1 Scaling Experiment

To evaluate the IFL Client and the IFL System, a scaling experiment is performed. It
aims at comparing the performance of models individual clients can achieve compared to
models created using FedAvg with different numbers of clients.

6.1.1 Dataset

The MNIST1 dataset is used to evaluate the performance of the IFL Client and IFL System.
It contains 60,000 examples of handwritten digits and is widely used for evaluating ML
and FL approaches, for example by McMahen et al. [22] and Roy et al. [13]. Further, it
is an image classification problem, which is a class of problems that can be encountered
in the industrial context. Examples include detecting object contamination in industrial
food packaging [23] as well as quality and process control [15].

6.1.2 Methodology

The dataset is shuffled and split into four parts of equal size, each of which belongs to an
instance of the IFL App. For every evaluation run, 10-fold cross validation is used and
the results of each fold are averaged.

For the base case, a single instance of the IFL App is used to obtain the accuracy a
single client can achieve with only its training data. Then, a second IFL App instance is

1http://yann.lecun.com/exdb/mnist

35

6. Evaluation

added and both Central Learning and FedAvg are applied. Finally, the number of clients
is doubled again by adding two more instances of the IFL App to both Central Learning
and FedAvg. This procedure enables analyzing the performance gains FedAvg delivers by
training on more data without having to expose the data compared to the performance
a single client can achieve. Furthermore, the differences in performance when doubling
the number of clients once versus doubling them twice can be observed. The results of
Central Learning can be used for comparison as a near best-case scenario.

Effectively, performance differences of the following scenarios are being looked at:

• A company has a single machine and trains a model on its data (one instance,
Central Learning).

• Two/four companies have one machine each and share their data with each other
to train a model (two/four instances, Central Learning).

• Two/four companies have one machine each and do not want to share their data.
They collaborate to train a model using FL (two/four instances, FedAvg).

This allows evaluating the benefits companies can expect from collaborating with each
other through FL without having to share their privacy sensitive data.

6.1.3 Metrics

The metrics used for evaluation are the number of communication rounds until the
accuracy of the model converges and the best accuracy achieved. The accuracy for a
round is calculated as an average of the achieved accuracies of all folds of all clients on
their respective test sets. The highest accuracy of all rounds is then used as the best
accuracy. The accuracy enables evaluating the quality of the model that is achieved in a
given scenario. The number of communication rounds until convergence indicates how
many communication rounds it takes until no more improvement of the accuracy occurs
with additional rounds. As communication costs rise with each communication round in
FL, a low number of rounds is desirable.

6.1.4 Setup

As the collected metrics are not influenced by the performance of the machine the clients
run on, such as time-critical metrics, the IFL Apps are run in Docker containers on a PC
instead of on Industrial Edge devices. The IFL System is hosted in the cloud and grid
nodes are spawned in the cloud as well. Again, this does not affect the collected metrics.
However, it does not make use of Edge Computing during the evaluation runs. Running
grid nodes in the cloud is currently necessary due to the technical reasons described in
Section 4.1.2.

The Deep Learning model used is the convolutional neural network McMahen et al. [22]
use for evaluation on the MNIST dataset. It features two 5x5 convolution layers, each

36

6.1. Scaling Experiment

Figure 6.1: Central Learning with a single client versus FedAvg with 2 and 4 clients

followed by 2x2 max pooling, a fully connected layer with 512 units with ReLU activation
and another fully connected layer with 10 units and Softmax activation. A learning rate
of 0.001, batch size of 128 and the Adam optimizer were experimentally determined to
give good results and used. Each evaluation run consists of 15 communication rounds.

6.1.5 Results

A single client using Central Learning was able to achieve an accuracy of 98.2% on the
test set after 14 communication rounds, two clients achieved an accuracy of 98.5% after
13 communication rounds and four clients converged at an accuracy of 98.2% after eight
communication rounds. For FedAvg with two and four clients, an accuracy of 98.4%
and 98.3% respectively, were reached after 15 communication rounds. A table of the
average accuracy and standard deviation for each round in each scenario can be found in
Figure 6.3.

Figure 6.1 shows how Central Learning with a single client compares to FedAvg with
two and four clients. FedAvg with two clients converged significantly faster than Central
Learning with a single client. Adding another two clients to FedAvg gave nearly no
advantage.

37

6. Evaluation

Figure 6.2: Central Learning versus FedAvg with 2 and 4 clients

6.2 Discussion
Surprisingly, all evaluation runs reached similar accuracies and adding clients did not
improve the achieved accuracy. This could be due to the size of the MNIST dataset
and the rather low complexity of the problem. The data of a single client was sufficient
to reach good results leading to a low impact of number of clients on accuracy. A
significantly higher number of clients with accordingly smaller datasets would likely lead
to less accuracy for a single client and a similar accuracy for Central Learning and FedAvg
with multiple clients.

Using FedAvg with multiple clients converges faster than if every client trains on its own
data as Figure 6.1 shows. This was expected, since the data is IID and in each round
more training data is available. As computational resources at the Edge are often limited
and fewer communication rounds lead to less computational effort, using FedAvg is more
efficient than letting each client train their own model. As the experiment shows, this is
the case even if each client has enough data to obtain a good model by itself. Using FL
does, however, introduce communication costs.

When comparing Central Learning and FedAvg for an equal number of clients, Central
Learning converges in less communication rounds than FedAvg as Figure 6.2 shows.
However, FedAvg reaches a similar accuracy to Central Learning.

38

6.2. Discussion

Figure 6.3: Average accuracy and standard deviation for each round in each evaluation
scenario

39

CHAPTER 7
Conclusions and Future Work

FL enables training ML models on decentralized data without sharing the raw training
data. This makes it possible to collaboratively improve ML models on privacy sensitive
data which has many potential applications in different areas ranging from biomedical
imaging analysis to next-word prediction on smartphones. IFL tailors FL to the industrial
context. Based on the IFL System, this work discussed the design and implementation of
the IFL Client as an interface to the IFL System and the IFL App as a proof of concept
for the IFL Client and the IFL System. Further, the deployment of the IFL App to
Industrial Edge devices is described.

The experiments show that the computational effort of training a model of each client
can be reduced by using FL as the model of a federation converges faster than a model
trained on a single client. This is the case, even if every single client has enough training
data to obtain a good model by itself. Using FL does, however, incur communication cost,
making it a trade-off between computational and communication cost in such scenarios.
In the experiments, FL achieved almost identical accuracy to Central Learning. The
primary benefit of FL, however, is improving accuracy when individual clients have
insufficient training data.

7.1 Future Work
This work focuses on the design of the IFL Client and IFL App as well as how they
communicate with each other and with the IFL System. It does, however, not consider
how the IFL App communicates with machines. Designing a communication protocol for
this and expanding the data services to provide up-to-date data for training is considered
future work.

The IFL App is designed to represent a single machine per instance. As Industrial Edge
devices may have to be shared between multiple machines, expanding the IFL App to

41

7. Conclusions and Future Work

support managing multiple machines can be considered.

As IFL focuses on improving performance, security aspects are not considered at this
point. Future work could investigate whether attackers can influence the cohort building
process.

42

List of Figures

1.1 IFL Architecture [14] . 2

3.1 Categories of Federated Learning after Yang et al. [28] 14

4.1 IFL System Functional Blocks . 21
4.2 Domain Model . 23
4.3 IFL Client Architecture . 24
4.4 Model and Asset Registration . 25
4.5 Task Execution . 26
4.6 IFL App Architecture . 27
4.7 Industrial Edge Deployment . 29

5.1 FLClient Class Diagram . 32

6.1 Central Learning with a single client versus FedAvg with 2 and 4 clients . . . 37
6.2 Central Learning versus FedAvg with 2 and 4 clients 38
6.3 Average accuracy and standard deviation for each round in each evaluation

scenario . 39

43

List of Algorithms

2.1 FederatedAveraging after McMahan et al. [22] 8

Listings

5.1 Inference Response . 33

45

Acronyms

AWS Amazon Web Services. 9, 19

CRUD create, read, update and delete. 3

FATE Federated AI Technology Enabler. 16

FedAvg FederatedAveraging. 7, 16, 20, 21, 35–38

FL Federated Learning. vii, ix, 1, 4–6, 13–17, 19, 20, 22, 35, 36, 38, 41

fMRI functional magnetic resonance imaging. 16

FTL Federated Transfer Learning. 14

HTTP Hypertext Transfer Protocol. 28

IFL Industrial Federated Learning. vii, ix, 1–5, 11, 13, 15–17, 19, 22, 28, 41, 42

IID Independent and Identically Distributed. 38

IoT Internet of Things. 9

JSON JavaScript Object Notation. 32

ML Machine Learning. vii, ix, 1, 3–6, 10, 11, 13, 15, 16, 19, 21, 24, 25, 28, 29, 35, 41

MQTT Message Queuing Telemetry Transport. 17

NIST National Institute of Standards and Technology. 9

REST Representational State Transfer. 17, 19–21

SGD Stochasic Gradient Descent. 7

TCP Transmission Control Protocol. 17

47

TFF TensorFlow Federated. 16

UDP User Datagram Protocol. 17

URL Uniform Resource Locator. 20, 23, 24, 26, 31

48

Bibliography

[1] Industrial Edge for production machines. https://new.siemens.com/
global/en/products/automation/topic-areas/industrial-edge/
simatic-edge.html. Accessed: 2020-12-07.

[2] Industrial Edge, the SIEMENS Edge Computing Platform - Industrial
Edge. https://documentation.mindsphere.io/resources/html/
industrial-edge/en-US/user-docu/industrialedge.html. Accessed:
2020-11-08.

[3] Siemens Industrial Edge takes the benefits of the Cloud to field
level. https://press.siemens.com/global/en/pressrelease/
siemens-industrial-edge-takes-benefits-cloud-field-level.
Accessed: 2020-12-07.

[4] OpenMined/PyGrid. https://github.com/OpenMined/PyGrid, Nov. 2020.
Accessed: 2020-11-22.

[5] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed. Federated Learning: A Survey on
Enabling Technologies, Protocols, and Applications. IEEE Access, 8:140699–140725,
2020. Conference Name: IEEE Access.

[6] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to backdoor fed-
erated learning. In International Conference on Artificial Intelligence and Statistics,
pages 2938–2948. PMLR, 2020.

[7] P. Bangert. Smart Condition Monitoring Using Machine Learning. In SPE Intelligent
Oil and Gas Symposium, Abu Dhabi, UAE, 2017. Society of Petroleum Engineers.

[8] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo. Analyzing federated learning
through an adversarial lens. In International Conference on Machine Learning,
pages 634–643. PMLR, 2019.

[9] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kid-
don, J. Konečný, S. Mazzocchi, H. B. McMahan, T. Van Overveldt, D. Petrou,
D. Ramage, and J. Roselander. Towards Federated Learning at Scale: System
Design. arXiv:1902.01046 [cs, stat], Mar. 2019. arXiv: 1902.01046.

49

https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge/simatic-edge.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge/simatic-edge.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge/simatic-edge.html
https://documentation.mindsphere.io/resources/html/industrial-edge/en-US/user-docu/industrialedge.html
https://documentation.mindsphere.io/resources/html/industrial-edge/en-US/user-docu/industrialedge.html
https://press.siemens.com/global/en/pressrelease/siemens-industrial-edge-takes-benefits-cloud-field-level
https://press.siemens.com/global/en/pressrelease/siemens-industrial-edge-takes-benefits-cloud-field-level
https://github.com/OpenMined/PyGrid

[10] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ra-
mage, A. Segal, and K. Seth. Practical Secure Aggregation for Federated Learning
on User-Held Data. arXiv:1611.04482 [cs, stat], Nov. 2016. arXiv: 1611.04482.

[11] W. Dai, H. Nishi, V. Vyatkin, V. Huang, and Y. Shi. Industrial Edge Computing:
Enabling Embedded Intelligence. IEEE Industrial Electronics Magazine, 13:48–56,
Dec. 2019.

[12] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al. Above the clouds: A berkeley view of cloud computing.
Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Rep.
UCB/EECS, 28(13):2009, 2009.

[13] A. Guha Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger. Braintorrent: A
peer-to-peer environment for decentralized federated learning. arXiv e-prints, pages
arXiv–1905, 2019.

[14] T. Hiessl, D. Schall, J. Kemnitz, and S. Schulte. Industrial Federated Learning
– Requirements and System Design. arXiv:2005.06850 [cs], May 2020. arXiv:
2005.06850.

[15] H. Jia, F. J. Xi, A. Ghasempoor, and A. Dawoud. A tolerance method for industrial
image-based inspection. The International Journal of Advanced Manufacturing
Technology, 43(11-12):1223–1234, 2009.

[16] E. b. P. Kairouz and H. B. McMahan. Advances and Open Problems in Feder-
ated Learning. Foundations and Trends® in Machine Learning, 14(1), Mar. 2021.
Publisher: Now Publishers, Inc.

[17] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
May 2015.

[18] F. Li, J. Fröhlich, D. Schall, M. Lachenmayr, C. Stückjürgen, S. Meixner, and
F. Buschmann. Microservice Patterns for the Life Cycle of Industrial Edge Software.
In Proceedings of the 23rd European Conference on Pattern Languages of Programs,
pages 1–11, Irsee Germany, July 2018. ACM.

[19] L. Li, Y. Fan, M. Tse, and K.-Y. Lin. A review of applications in federated learning.
Computers & Industrial Engineering, 149:106854, 2020.

[20] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated Learning: Challenges,
Methods, and Future Directions. IEEE Signal Processing Magazine, 37(3):50–60,
May 2020. Conference Name: IEEE Signal Processing Magazine.

[21] S. A. Magid, F. Petrini, and B. Dezfouli. Image classification on iot edge devices:
profiling and modeling. Cluster Computing, pages 1–19, 2019.

50

[22] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial Intelligence
and Statistics, pages 1273–1282. PMLR, 2017.

[23] L. D. Medus, M. Saban, J. V. Francés-Víllora, M. Bataller-Mompeán, and A. Rosado-
Muñoz. Hyperspectral image classification using cnn: application to industrial food
packaging. Food Control, page 107962, 2021.

[24] P. Mell, T. Grance, et al. The nist definition of cloud computing. 2011.

[25] M. Satyanarayanan. The Emergence of Edge Computing. Computer, 50(1):30–39,
Jan. 2017.

[26] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
Nov. 1979.

[27] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos. Chal-
lenges and Opportunities in Edge Computing. In 2016 IEEE International Conference
on Smart Cloud (SmartCloud), pages 20–26, Nov. 2016.

[28] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST),
10(2):1–19, 2019.

51

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the Work
	Methodology
	Structure of the Thesis

	Background
	Deep Learning
	Federated Learning
	Computing on Cloud and Edge
	Industrial Federated Learning

	Related Work
	BrainTorrent
	Energy Consumption and Accuracy
	Categorization of Federated Learning
	Challenges in Federated Learning
	Applications of Federated Learning
	Federated Learning Frameworks
	Industrial Edge Computing Reference Model
	Edge Management Software
	Conclusions

	Design
	IFL System
	IFL Client
	IFL App
	Industrial Edge Deployment

	Implementation
	Technologies
	IFL Client API
	IFL App Endpoints

	Evaluation
	Scaling Experiment
	Discussion

	Conclusions and Future Work
	Future Work

	List of Figures
	List of Algorithms
	Listings
	Acronyms
	Bibliography

