
Cost- and Latency-Efficient Redundant Data Storage
in the Cloud

Johannes Matt, Philipp Waibel, Stefan Schulte
Distributed Systems Group, TU Wien, Austria

Email: johannes.matt@aon.at, {p.waibel, s.schulte}@infosys.tuwien.ac.at

Abstract—With the steady increase of offered cloud storage
services, they became a popular alternative to local storage
systems. Beside several benefits, the usage of cloud storage
services can offer, they have also some downsides like potential
vendor lock-in or unavailability. Different pricing models, storage
technologies and changing storage requirements are further
complicating the selection of the best fitting storage solution.

In this work, we present a heuristic optimization approach
that optimizes the placement of data on cloud-based storage
services in a redundant, cost- and latency-efficient way while
considering user-defined Quality of Service requirements. The
presented approach uses monitored data access patterns to find
the best fitting storage solution. Through extensive evaluations,
we show that our approach saves up to 30% of the storage cost
and reduces the upload and download times by up to 48% and
69% in comparison to a baseline that follows a state-of-the-art
approach.

Index Terms—Cloud-based storage, Latency-efficient, Cost-
efficient, Long-term storage, Data placement optimization

I. INTRODUCTION

The usage of cloud storage services is a popular alternative
to the usage of a private storage, e.g., company owned servers,
not only for companies but also for private persons and gov-
ernment organizations [1]. Such cloud storage services offer
a cost-efficient solution to store data in a highly accessible
and reliable way. Especially for smaller and medium-sized
enterprises, cloud storage services can help to lower the
storage cost, because of the disappearance of the maintenance
cost that would occur for a private storage system [2].

Due to the popularity of these storage services, several pub-
lic cloud storage providers exist, e.g., Google Cloud Storage1,
Microsoft Azure2 or Amazon S33 [3]. Each of them provides
its own Web and API interfaces to upload and access data.
Each provider offers different storage technologies, pricing
schemes, geographical locations and Quality of Service (QoS).

Due to the large amount of different providers and offers, the
selection of the cloud storage service that suits a customer’s
needs best, is not trivial. Several properties have to be taken
into account by a customer to find the best-fitting provider.
Beside others, the most important properties are: Which QoS
level is required, which storage technology should be used,
which provider should be avoided, and which geographical
location should be preferred.

1https://cloud.google.com/storage/
2http://azure.microsoft.com/en-us/services/storage/
3https://aws.amazon.com/s3/

Also the pricing scheme and, thus, the resulting storage
cost have to be taken into account. The provided pricing
schemes vary a lot from provider to provider and between the
different storage technologies. Furthermore, the data access
pattern has to be considered, since it is a significant cost
factor [4]. For instance, data which is accessed very seldom,
e.g., backups, could be stored on storage services with a cheap
price. However, for often used data another cloud storage
service with a cheap access price is most likely a better choice.
Last but not least, the upload and download latency has to be
considered. Especially for frequently used data, a lower access
latency is worth striving for, while for seldom used data a
higher access latency might be acceptable.

Besides the benefits a cloud storage service can offer, there
are also downsides. As a temporary outage in February 2017
of Amazon S3 in Northern Virginia [5] as well as several
other examples have shown, even big cloud storage providers
struggle with service outages which may lead to temporary
data unavailability [6]. Another significant issue is that the
selected cloud storage provider could increase the price of
the service or go out of business [7]–[9], which leads to the
necessity to migrate the data to another cloud storage provider.
Such a migration involves administrative and transferring cost.
In the worst case, if the provider goes out of business, the data
may even be lost as long as no further replication is available.
A change of the terms of usage, issued by the cloud provider,
or a change of the requirements of the customer to the cloud
storage service may also require a migration of the data to
another cloud storage provider.

A possible solution to those downsides is the redundant
usage of different cloud storage services. Beside the increase
of the availability and durability of the data, which comes
in hand with the redundant usage of different cloud storage
services, this approach decreases the risk of vendor lock-
in [10], [11]. In addition, the access latencies can be reduced
by using different geographically distributed cloud storage
services near the location of the customer [12].

In the work at hand, we address the problem of redundant
storage of data, in the following called data objects, on cloud
storage services while decreasing cost and access latency. For
this, we extend our work from [10], where we introduced
a cloud storage middleware that stores data objects in a
cost-efficient and redundant way. Furthermore, in [10] we
formulated a local optimization problem that optimizes the
placement of data objects on several cloud storage services



while considering user defined requirements, e.g., availability
of the data objects. In this work, we present a heuristic opti-
mization approach for the data object placement on multiple
cloud storage services that:

• Optimizes the data object placement in a cost-efficient
and redundant way.

• Optimizes the data object placement to minimize access
latencies.

• Considers predefined requirements, i.e., availability, dura-
bility, and vendor lock-in.

• Considers monitored access patterns of the data objects
and monitored access latencies of the storage services.

This paper is structured as follows. In Section II, we present
required background information for the presented approach,
while in Section III, we discuss the general approach of storing
data redundantly on cloud storage services. Afterwards, the
heuristic optimization approach is discussed in Section IV.
Section V discusses the evaluation setup and Section VI
presents the evaluation of the novel heuristic approach. The
paper then concludes with the discussion of the related work
in Section VII and the conclusion in Section VIII.

II. BACKGROUND

A. Quality of Service

When storing data on cloud storage services, several QoS
requirements have to be considered. The most important
constraints are availability, durability, vendor lock-in factor
and access latency [9], [12]–[14].

1) Durability: The durability describes the probability that
data stored on a storage service does not get lost permanently,
e.g., due to a hardware failure. This parameter is defined in
percentage over a time span, e.g., a durability of 99.99999%
over a given year [15].

2) Availability: The availability describes the probability
that the permanently stored data can be accessed, i.e., the
storage service is up and running, in percentage [15], [16].
For instance, 99.9999% over a given year defines that the data
on a storage can be accessed at any time within this year with
a probability of 99.9999%.

3) Vendor lock-in factor: A vendor lock-in describes the
situation when the data is stored on a specific storage provider
and cannot be migrated to another provider [4]. This can hap-
pen for example when the provider is temporarily unavailable
or goes out of business [6], [11]. The vendor lock-in factor is
calculated by lockin = 1

N , where N is the number of storage
services that are used to store a data object (lockin ∈ (0, 1]).

4) Latency: Latency defines the delay between sending a
request and receiving a response to the request. It is defined
as the end-to-end Round-Trip Time (RTT), where RTT defines
the time that elapses between sending a request to a service
(here: a storage service) and receiving a response, e.g., the
requested data object. The latency is defined as a time period,
e.g., a latency of 100ms defines that 100ms after sending a
request a response is received [17].

The required QoS attributes are defined in Service Level
Agreements (SLAs) between the provider and the cus-
tomer [16].

B. Erasure Coding

Erasure coding is a redundancy mechanism that splits a data
object into several chunks in a way that a subset of those
chunks is enough to reconstruct the whole data object. An
erasure coding configuration is defined by the tuple (m, n),
where m defines the amount of chunks that are required to
reconstruct the data object and n (m < n) defines the amount
of total chunks [18]–[20]. For instance, an erasure coding
configuration of (2,3) defines that the data object is split into
three chunks in a way that any subset of size two is enough to
reconstruct the data object. Thus, erasure coding is a superset
of RAID and also of a normal replication system [13], since,
e.g., RAID 5 can be achieved by a (4,5) configuration and a
replication system by a (1,3) configuration. The latter one will
result in three identical replications.

C. Pricing Models

There is great variation of pricing models between the
different cloud storage providers and storage technologies.
However, most providers use the same foundation for their
pricing models: All models charge the used storage space,
the outgoing data transfer, and the number of write and read
requests on a monthly base. Most providers do not charge
for the incoming data transfer and delete operations. Several
providers also use a block rate pricing model where the price
decreases with a higher usage of the service [21], e.g., the more
storage is used the cheaper it is to lease additional storage.
There are different variants of the block rate pricing model:
For example, while Amazon S3 uses the block rate pricing
model for the storage cost and for the outgoing data transfer
cost, Google Cloud Storage only uses it for the outgoing data
transfer cost.

Storage providers with different geographically distributed
data centers, called regions, are often offering cheaper prices to
migrate data between different regions of the same provider. If
data has to be migrated from one provider to another provider,
the outgoing transfer and the incoming transfer are charged,
which is normally more expensive than the migration prices
within the same provider.

In addition to different geographical locations, several
providers also offer different storage technologies. For in-
stance, Amazon S3 offers the following technologies: Standard
Storage, Standard-Infrequent Access (IA) Storage, and Glacier
Storage. Each of them with different QoS properties and
pricing models, e.g., while the Standard-IA Storage has a
cheaper storage price it also has lower availability than the
Standard Storage.

Especially in the case of long-term storage services, the
pricing models differ from the pricing models of the standard
storage services. Long-term storage services are designed
for storage of data with rare data access, e.g., backup data.
Therefore, those pricing models have lower storage cost but



TABLE I
SLA ATTRIBUTE EXAMPLE, PORTED FROM [10]

File Name Availability (%) Durability (%) Vendor lock-in
image.png 99.8 99.999 0.4
backup.tar 99.9 99.99999 0.5

higher access cost that may include additional data retrieval
cost. Long-term storage services often define a Billing Time
Unit (BTU) and a Billing Storage Unit (BSU). The BTU
defines a minimum storage duration which is charged as soon
as the storage is used. This means that as soon as a data
object is stored on such a long-term storage, the whole BTU is
charged, no matter if the data object is deleted before the BTU
is over. The BSU defines the minimum size of a data object
that is billed. If the data object is smaller than the BSU, the
BSU is charged, despite the fact that only a part of the storage
is used. For instance, the Amazon S3 Standard-IA Storage has
a BSU of 128 KB and a BTU of 30 days.

III. REDUNDANT DATA STORAGE IN THE CLOUD

The general idea of a redundant data storage in the cloud
is the usage of several cloud storage services to store a data
object in a redundant way in order to increase the availability
and durability of the data object and to decrease the risk of
vendor lock-in. In our former work [10], we presented an
approach that uses several cloud storage services to store data
objects in a cost-efficient and redundant way. The approach is
based on a middleware, called CORA, between the customer
and different cloud storage services. The middleware thereby
manages the communication between the customer and the
cloud storage services and optimizes the placement of the data
objects on the storage services.

If a customer uploads a data object, the middleware splits
up the data object into several chunks by the usage of erasure
coding. Those chunks are then uploaded to different cloud
storage services. Each chunk of a data object is stored on a
separate storage service, where the amount of storage services
is greater or equal to the maximal amount of chunks, to ensure
that there are enough chunks left to reconstruct the data object
if one storage service is unavailable.

To ensure a cost-efficient storage of the data objects and
the fulfillment of the customer-defined SLAs, the middleware
uses an optimization algorithm that optimizes the placement of
the chunks. The SLA definition is done by the customer for
each file. Table I shows an example definition for two data
objects. The optimization algorithm uses monitored access
pattern information of the chunks to optimize the placement
of them. For instance, if a chunk is accessed very seldom, the
optimization will select a long-term storage service to store the
chunk. If the cost can be decreased by migrating one or more
chunks, this will be done automatically by the middleware.

If a customer wants to download a data object, the middle-
ware downloads the related chunks from the storage services
and recreates the original data object, which is then sent back
to the customer. To save cost, the middleware only downloads

as many chunks as required to reconstruct the data object. For
instance, for an erasure coding configuration of (2,3), only two
chunks have to be downloaded to reconstruct the data object.

Furthermore, if the middleware detects the unavailability of
a storage service, all chunks that are stored on this particular
service are recreated and stored on another available storage
service. This recreation is done by using the remaining avail-
able chunks. After the chunk is recreated, the optimization is
used to find the best-fitting storage service for the recreated
chunk to guarantee the fulfillment of the defined SLAs and to
find a cost-efficient placement solution once again.

IV. DATA OBJECT PLACEMENT

In the following, a heuristic approach for the optimization
of the data object placement on multiple cloud-based storage
services is introduced.

Since the data object placement on multiple cloud-based
storage services is an NP-complete problem [14], [22], we
present in the work at hand a heuristic approach that aims at
finding a cost- and latency-efficient solution in a reasonable
amount of time. To decrease the cost, the algorithm uses
monitored historical access pattern information of the data
objects and for the access latency optimization the algorithm
uses monitored historic access latency information.

The basic approach of the heuristic is built on two obser-
vations [23]:

• The biggest cost saving is achieved by migrating not or
rarely used chunks from standard storage services to long-
term storage services.

• For an erasure coding configuration (m,n), only m
chunks have to be downloaded to reconstruct a data
object. Therefore, by storing m chunks on standard
storage services and the remaining n − m chunks on
long-term storage services, a cost saving can be achieved
since the storage prices of long-term storage services
are lower than the storage prices of standard storage
services. However, long-term storage services have a
higher download price in comparison to standard storage
services. By choosing the cloud storage services with the
cheapest download price for the m chunks, further cost
savings can be achieved.

Those two observations are the basis for the heuristic
approach for the placement optimization of the chunks. The
heuristic is based on two algorithms, the first one is triggered
by an upload of a data object (Algorithm 1) and the second
one by a download of a data object (Algorithm 2). Both
algorithms use ranking functions that create rankings of the
storage services to find the best-fitting storage solution. The
ranking of the storage services is done according to their
pricing model and their access latency.

In the following, the ranking function as well as the algo-
rithms will be explained in detail.

A. Ranking Function

In eq. (1) the cost ranking function, which creates a ranking
value of a storage service according to its pricing model, is



shown. Furthermore, eq. (2) shows the ranking function that
considers the pricing model and the monitored latency.

The result of eq. (1) is a ranking value of a storage service s
by considering a chunk f . The idea of the ranking function is
to calculate a ranking value according to the cost that would
be charged if a data object was stored on a storage service for
one hour and downloaded once. In the equation, σf returns
the size of a chunk f . Furthermore, pSs returns the storage
price of s, pWs and pRs return the write and read request prices
of s, pTout

s returns the outgoing data transfer price, and prets

the data retrieval price. Finally, hf ∈ {0, 1} indicates if f is
stored on a long-term storage service or not. If f is stored on
a long-term storage service hf = 1, otherwise hf = 0.

rs,f = σf ·
pSs

30 · 24
+ pWs + pRs + σf · (pTout

s + prets · hf ) (1)

Equation (1) is composed of four subterms. The first subterm
σf · pS

s

30·24 calculates the price of storing a chunk f on a cloud
storage service s for one hour. Since the storage prices are
given on a monthly basis the price has to be divided by 30·24.
Subsequently, pWs and pRs add the cost of one write and one
read request to the calculation. Finally, the last subterm σf ·
(pTout

s +prets ·hf ) calculates the transfer cost for downloading
the data object once. To facilitate the calculation of the ranking
function to get a highly scalable solution, we neglect the block
rate pricing model and always take the first step in the block
rate pricing model.

In eq. (2), the cost ranking function is extended to also
consider the latency for each storage service.

rLs,f = rs,f · (1 + αs,f ) (2)

The equation uses the already discussed cost ranking function
rs,f from eq. (1) and multiplies it with 1+αs,f . The subterm
αs,f ∈ [0, 1] is a weighted multiplier that returns high values
for storage services with a high latency and low values for
storage services with a low latency. Therefore, the resulting
value will increase the result of rs,f significantly for storage
services with a high latency and increase it slightly if the
service has a low latency.

B. Placement Algorithms

After discussing the ranking functions, the upload and
download algorithms can be explained. Algorithm 1 shows
the (pseudo-) code that is triggered each time an upload of a
data object takes place. This algorithm takes care of finding the
best-fitting storage services, according to the described ranking
functions, for a new data object, respectively its chunks. Which
ranking function is used depends on the requirements of the
customer. If the data object placement should be optimized
only by considering the cost, eq. (1) is used, if the latency
also has to be considered, eq. (2) is used.

Since the access pattern is not known at the beginning, the
best-fitting storage services are the cheapest standard storage
services. However, as explained above by using an erasure
coding configuration, m chunks are enough to reconstruct
the data object. Algorithm 1 makes use of this characteristic

and uploads in the beginning m chunks to standard storage
services and the remaining n−m chunks to long-term storage
services. The download algorithm will then only download the
m chunks on the standard storage services as long as all of
them are available. This approach helps us to decrease the cost
already at the beginning, since most providers do not charge
for incoming traffic.

In Algorithm 1, lines 3 and 4 use the ranking function to
get a list of ranked standard and long-term storage services.
In lines 5-7, the m best-fitting standard storage services are
selected and stored in the set storages. In lines 8-10, the n−m
best-fitting long-term storage services are selected and also
stored in the set storages. Subsequently, in lines 11 and 12,
all n chunks are assigned to the set placement. This results in
an assignment of m chunks of the data object f to the standard
storage services and the remaining n−m chunks assigned to
the long-term storage services.

Algorithm 1 Upload Placement Function
Input: The data object f that should be uploaded
Output: A list of chunk to storage service assignments

1: placement← ∅
2: storages← ∅
3: standardStorages← rankedStandardStorages(f)
4: longTermStorages← rankedLongTermStorages(f)
5: for i← 1 to m do
6: storages.add(standardStorages[i])
7: end for
8: for i← 1 to n−m do
9: storages.add(longTermStorages[i])

10: end for
11: for i← 1 to n do
12: placement.add(storages[i], f.chunks[i])
13: end for
14: return placement

Algorithm 2 presents the algorithm that is triggered by
the download of a data object. For a cost-efficient solution,
our heuristic aims at optimizing the placement of unused
data objects. The algorithm considers a data object as unused
if it has not been downloaded for a predefined amount of
time. The algorithm holds a list of all unused data objects in
predefined time periods. After each time period, the placement
of all unused data objects is optimized. Furthermore, to reduce
the complexity of the algorithm, the update of the list of
unused data objects is not done after each download but after
predefined intervals.

In Algorithm 2, lines 2 and 3 are checking if the time
between the last update of the unused data object list and
the current time is greater than or equal to the predefined
step interval called stepInterval. Following, lines 4-9 are
checking, for all data objects, if they are used or unused. If they
are unused, they are stored in the set unused. The resulting
set of unused data objects of this iteration is then added to the
set allUnusedObjects in line 10. Furthermore, the variables
timePeriodCount and previousT ime are updated in lines



11 and 12. If timePeriodCount ≥ timePeriodThreshold
is reached, an optimization of all unused data objects takes
place, shown in line 14.

Lines 15-23 iterate through all unused data objects stored
in allUnusedObjects. Following with an iteration of all
chunks of the currently unused data object, shown in lines
16 and 17. Lines 18-21 are then checking if the current
chunk is already stored on a long-term storage service or
not. If it is not stored on a long-term storage service, the
placement of the chunk is changed to a long-term storage
service. Similar as in Algorithm 1, the best-fitting long-term
storage service is determined by the ranking function. Finally,
timePeriodCount and allUnusedObjects are reset (lines 24
and 25) and the new placement is returned (line 27).

Algorithm 2 Download Placement Function
Input: All data objects F
Output: A list of chunk to storage service assignments for

all unused data objects
1: placement← ∅
2: timeDiff ← currentT ime− previousT ime
3: if timeDiff ≥ stepInterval then
4: unused← ∅
5: for all f ∈ F do
6: if isUnused(f) then
7: unused.add(f)
8: end if
9: end for

10: allUnusedObjects.put(timePeriodCount, unused)
11: timePeriodCount← timePeriodCount+ 1
12: previousT ime← currentT ime
13: end if
14: if timePeriodCount ≥ timePeriodThreshold then
15: for all unused f in all past time periods do
16: for i← 1 to n do
17: chunk ← f.chunks[i]
18: if currentStorage(chunk) is not long-term then
19: stor ← bestRankedLongTerm(chunk)
20: placement.add(stor, chunk)
21: end if
22: end for
23: end for
24: timePeriodCount← 0
25: allUnusedObjects← ∅
26: end if
27: return placement

The computational time of the update algorithm (Algo-
rithm 1) mainly depends on the amount of chunks and the
amount of standard and long-term storage services. Since
our algorithm requires that the amount of storage services
S is |S| ≥ n, where n is the total amount of chunks of
a data object, we know that rankedStandardStorages(f)
and rankedLongTermStorages(f) together need equally or
more iterations than lines 11-13 in Algorithm 1. This results in
a complexity of O(|S|). Since the amount of storage services

TABLE II
EVALUATION STORAGE SERVICES

Provider Region Storage Class
AWS S3 US N. Virginia Standard Storage
AWS S3 US N. Virginia Infrequent Access (IA)
AWS S3 US N. California Standard Storage
AWS S3 EU Frankfurt Standard Storage
AWS S3 EU Frankfurt Infrequent Access (IA)
AWS S3 Asia Pacific Tokyo Standard Storage
AWS S3 Sao Paulo Standard Storage
Google Cloud Europe Standard Storage
self-hosted - Standard Storage
self-hosted - Long-term Storage

has a small upper limit, also the complexity of the algorithm
is small and does not increase if the amount of data objects
increases.

The complexity of the download algorithm (Algorithm 2)
mainly depends on lines 6-8 and lines 15-23. Lines 6-8 iterate
through all stored data objects and check if they are unused.
Lines 15-23 then iterate through all unused data objects of
the last timePeriodThreshold. The resulting complexity is
therefore O(max(|data objects in allUnusedObjects|, |F |).

V. EVALUATION SETUP

In the following we discuss the evaluation setup, before we
discuss the actual evaluation of the presented approach.

A. Prototype

For the evaluation, we extended the middleware CORA, pre-
sented in our former work [10], with the heuristic optimization
approach presented in the work at hand. The prototype triggers
the heuristic optimization each time a data object is accessed.

B. Storage Services

For the evaluation, we use several real-world cloud storage
systems. Table II provides an overview of the used cloud
storage services, their providers and the chosen storage tech-
nology.

For the evaluation, we use the real-world pricing models
from AWS S34 and Google Cloud Storage5. For the self-hosted
Standard Storage, the pricing model of AWS S3 Frankfurt
Standard Storage is used and for the self-hosted Long-term
Storage, the one from AWS S3 Frankfurt IA is used.

C. Evaluation Data

For the evaluation, we use a real-world access trace pre-
sented in [24]. This access trace contains data object’ access
traces on a cloud storage used by more than 1,000,000 users
over a time period of 30 days.

For the evaluation, we extracted a dataset with 100,000
randomly selected data objects and one dataset with around
1,900 data objects. The data object usage of the larger dataset
is as follows: 0.12% of the data objects are used more than 100
times over the 30 days, 0.29% are used more than 30 times

4https://aws.amazon.com/s3/pricing/
5https://cloud.google.com/storage/pricing



0
10

20
30

40
50

60

Data Object Size in KB

U
pl

oa
d 

T
im

e 
in

 s

10 1,024 102,400
● ● ● ●

●

●

●

Frankfurt
N. Virginia
N. California

Sao Paulo
Tokyo

(a) Upload times location Vienna

0.
0

0.
5

1.
0

1.
5

2.
0

Data Object Size in KB

D
ow

nl
oa

d 
T

im
e 

in
 s

10 1,024 102,400

● ●

● ● ●
●

●

Frankfurt
N. Virginia
N. California

Sao Paulo
Tokyo

(b) Download times location Vienna

0
10

20
30

40
50

60

Data Object Size in KB

U
pl

oa
d 

T
im

e 
in

 s

10 1,024 102,400
● ● ● ●

●

●

●

Frankfurt
N. Virginia
N. California

Sao Paulo
Tokyo

(c) Upload times location Tokyo

0.
0

0.
5

1.
0

1.
5

2.
0

Data Object Size in KB

D
ow

nl
oa

d 
T

im
e 

in
 s

10 1,024 102,400

● ● ●

● ● ●

●

Frankfurt
N. Virginia
N. California

Sao Paulo
Tokyo

(d) Download times location Tokyo

Fig. 1. Measured upload and download times from Vienna and Tokyo to
different AWS S3 cloud storage service regions.

and less than 100 times during this time and the remaining
objects are used less than 30 times. The data object usage of
the smaller dataset is as follows: 31% of the data objects are
used more than 100 times, 0.7% are used more than 30 times
and less than 100 times and the remaining objects are used
less than 30 times.

Beside the normal data object’ access, the trace also con-
tains three DDOS attacks. Since we are only considering
normal usage of a cloud storage service, we did not include
data objects that are used during those attacks.

As SLAs for the data objects, we define for each of them
a durability of 99.9999999%, an availability of 99.99% and a
vendor lock-in factor of 0.5.

D. Cloud Service Upload and Download Times Measurement

To be able to evaluate the latency consideration function-
ality of our optimization approach together with the dataset
discussed above, we measured different download and upload
times upfront. During the evaluation we use these measured
times to simulate the required upload and download of the
chunks. For a better analysis of the approach, we measured the
upload and download times from two different geographically
distributed locations, Vienna and Tokyo, to different AWS
S3 cloud storage service regions around the world. For the
measurement, we issued several read and write requests of
differently sized data objects and measured the total execution
time for every request. Figure 1 shows the measured results
from Vienna and Tokyo to the different cloud storage services.
We repeated these measurements 12 times at different times
of the day and week. In the evaluation, we use the average
upload and download time for each storage region. For the
Google Cloud storage service, we use the measured times for
AWS S3 Frankfurt. The same is also used for the self-hosted
storage service except for the case when the evaluation is done
from Vienna. In this case we set the times to nearly 0.

E. Evaluation Process

In each evaluation, we iterate through the dataset and per-
form the recorded operations (upload, download, and update).

Furthermore, we use the entire 30 days for each evaluation
and the full storage service set presented in Section V-B.
The BTUs of the long-term storage services and the billing
period of all storage services are set to one week. The history
time step interval is set to 12 hours. Each history time step
contains the amount of access operations in this time period.
This setting already provided good results in our previous
works [10] and [23]. The variable timePeriodThreshold is
set to 10, since this value provided the best results in different
testing scenarios.

To analyze the performance of our optimization approach,
in terms of time and memory consumption, we log for each
optimization the required duration and the metadata size.

F. Baseline

For the baseline, we use the same dataset but disable the
optimization. Instead, a fixed storage service set that is equally
used to store the data objects, is utilized. This simulates the
usage of the cloud storage services without an optimization.
The fixed storage service set contains the cheapest three
standard storage services: AWS S3 US Northern Virginia,
AWS S3 EU Frankfurt and the self-hosted.

VI. EVALUATION SCENARIOS

In the following, we evaluate our approach by evaluating the
cost optimization approach in Section VI-A, and the latency
consideration optimization in Section VI-B.

A. Cost Optimization Evaluation

In this evaluation scenario, we evaluate the behavior of
our approach with a large amount of data objects against
the baseline. This evaluation scenario uses the dataset with
100,000 data objects. We evaluate the behavior with different
erasure coding configurations, namely (2,3), (2,4), and (3,4).

Evaluation Hypothesis: At the beginning of the evaluation,
the heuristic uploads all chunks of the data objects to the
best-ranked standard storage services and the best-ranked long-
term storage services, according to the ranking function from
Section IV-A. How many chunks are stored on standard
storage services and how many on long-term storage services
is defined by the erasure coding configuration, as described in
Section IV-B. The upload to long-term storage services will
immediately increase the cost, due to the accrued BTU cost.

After the initial upload, the cost of the heuristic optimization
rises slower than the baseline cost, due to the already charged
BTU cost, which has the consequence that no additional
storage cost are charged. After a while the heuristic optimiza-
tion will migrate unused chunks from standard to long-term
storage services. This will increase the cost due to the BTU
and the migration. However, as a consequence the heuristic
optimization cost will rise slower than the baseline. After some
time, the cost of the heuristic optimization will be lower than
the baseline and will stay lower.



0
50

0
10

00
15

00

Time in h

C
os

t i
n 

$

0 200 400 600

No Optimization
Heuristic (2,3)
Heuristic (2,4)
Heuristic (3,4)

(a) Cumulative cost
Time in h

D
at

a 
O

bj
ec

t C
hu

nk
 A

m
ou

nt
0

40
00

0
80

00
0

0 200 400 600

● ● ● ● ● ●
●

●

AWS S3 N. Virginia
AWS S3 N. Virginia IA
AWS S3 Frankfurt
AWS S3 Frankfurt IA
AWS S3 Tokyo
Self−Hosted Long−Term

(b) Data object chunk distribution

Fig. 2. Cost optimization evaluation results.

Evaluation Execution: Figure 2a shows the cumulative cost
of the heuristic optimizations and the baseline. Figure 2b
shows the chunk distribution on the different storage services
during the (2,3) erasure coding configuration evaluation.

As shown in Figure 2a, at the beginning of the evaluation
all three heuristic optimization evaluations have higher cost
than the baseline due to the additional BTU cost of the long-
term storage services. Furthermore, it can be observed that
the erasure coding configuration (2,4) has the highest cost
and the configuration (3,4) the lowest cost at the beginning.
This is due to the fact that the (2,4) configuration uploads
two chunks to long-term storage services, which charge twice
as many on BTU cost than for the (3,4) configuration where
only one chunk is uploaded to a long-term storage service.
Besides, it can be observed that the evaluation with a (2,3)
configuration has a higher initial cost than the one with a (3,4)
configuration. This is because the (2,3) configuration results
in bigger chunks than the (3,4) configuration and, therefore,
higher BTU cost are charged. This chunk distribution can also
be seen in Figure 2b where the chunks are stored on standard
storage services (e.g., AWS S3 Frankfurt) as well as on long-
term storage services (e.g., AWS S3 Northern Virginia IA).

After the initial upload, it can be seen in Figure 2a that the
cost of the heuristic optimization evaluations rise slower than
the baseline, since no additional cost for the long-term storage
services are charged as long as the BTU is not over. It can also
be seen that after some time the (3,4) and (2,3) configuration
already achieve a cost saving in comparison to the baseline.

After 100 h, the heuristic approach migrates all unused data
objects from standard to long-term storage services. This again
increases the cost for the heuristic optimization evaluations due
to the additional BTU cost. However, this results in a slower
rise of the cost in comparison to the baseline. The migration
can also be observed in Figure 2b.

Finally, in Figure 2a it can be seen that after 210 h all three
heuristic evaluations have lower cost than the baseline and stay
lower for the rest of the evaluation.

In summary, we are able to save 25% of cumulative cost
with a (2,3) erasure coding configuration, 14% with a (2,4)
configuration, and 30% with a (3,4) configuration.

B. Latency Optimization Evaluation

In this evaluation, we analyze the latency consideration
behavior of our optimization approach. For this, we execute
three different evaluations and compare them to the baseline.

0 100 200 300 400 500 600 700

0
50

10
0

15
0

Time in h

C
os

t i
n 

$

●

●

●

●

●

●

●

●

No Optimization
Heuristic Approach
Latency Consideration (Vienna)
Latency Consideration (Tokyo)

(a) Data object chunk distribution (location Vienna).

0
50

0
10

00
15

00

Time in h

D
at

a 
O

bj
ec

t C
hu

nk
 A

m
ou

nt

0 200 400 600

AWS S3 Frankfurt
AWS S3 Frankfurt IA
Google
Self−Hosted
Self−Hosted Long−Term

(b) Data object chunk distribution
(location Vienna).

0
50

0
10

00
15

00

Time in h

D
at

a 
O

bj
ec

t C
hu

nk
 A

m
ou

nt

0 200 400 600

●

●
●

●
●

●
●

●

AWS S3 N. Virginia
AWS S3 N. Virginia IA
AWS S3 N. California
AWS S3 Tokyo

(c) Data object chunk distribution
(location Tokyo).

Fig. 3. Latency optimization evaluation results.

In the first evaluation, we evaluate our approach based on
the location of Vienna and in the second we evaluate the
approach based on the location of Tokyo. Furthermore, the
third evaluation run is done with only cost optimization and
deactivated latency optimization. This evaluation uses the
smaller dataset and as an erasure coding configuration we use
a (2,3) configuration for all evaluations.

Evaluation Hypothesis: Similar to the cost optimization
evaluation (Section VI-A), at the beginning of the evaluation
the cost will be higher than for the baseline due to the storage
of chunks on long-term storage services. However, due to the
different locations of the evaluation (Vienna and Tokyo) the
optimization chooses different storage locations, e.g., for the
evaluation from Vienna it is expected that the self-hosted, the
AWS S3 Frankfurt and the Google storage service are chosen
since those storage services are all near Vienna.

Similar to the cost optimization evaluation, after some
time the heuristic optimization evaluation will migrate unused
chunks to long-term storage services, which will result in a
cost saving in comparison to the baseline after some time.

Evaluation Execution: Figure 3a shows the cumulative cost
of the heuristic optimization evaluation with latency consider-
ation, of the heuristic optimization evaluation without latency
consideration and of the baseline. Figure 3b shows the chunk
distribution on the different storage services during the latency
consideration evaluation from Vienna and Figure 3c shows the
chunk distribution during the evaluation from Tokyo.

In Figure 3a, a cost increase can be observed already at
the beginning of the evaluation due to the BTU of the used
long-term storage services. However, as long as the BTU is
not over, no additional cost for those chunks are charged and,
therefore, the cost of the heuristic approaches rise slower than
for the baseline. This chunk upload can also be observed in
Figure 3b and Figure 3c.



0 100 300 500 700

0
1

2
3

4

Time in h

A
ve

ra
ge

 U
pl

oa
d 

T
im

e 
in

 s
Heuristic Approach
Latency Consideration (Vienna)

(a) Upload times location Vienna

0 100 300 500 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time in h

A
ve

ra
ge

 D
ow

nl
oa

d 
T

im
e 

in
 s Heuristic Approach

Latency Consideration (Vienna)

(b) Download times location Vienna

0 100 300 500 700

0
1

2
3

4

Time in h

A
ve

ra
ge

 U
pl

oa
d 

T
im

e 
in

 s

Heuristic Approach
Latency Consideration (Tokyo)

(c) Upload times location Tokyo

0 100 300 500 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time in h

A
ve

ra
ge

 D
ow

nl
oa

d 
T

im
e 

in
 s Heuristic Approach

Latency Consideration (Tokyo)

(d) Download times location Tokyo

Fig. 4. Upload and download times of the latency consideration approach
based on the location of Vienna and Tokyo.

After 100 h, it can be observed in Figure 3a and in
Figure 3b that a migration of unused chunks from standard
to long-term storage services, in case of the evaluation from
Vienna, takes place. Also during the evaluation without latency
consideration, a migration of unused chunks can be observed
in Figure 3a. However, as can be seen in Figure 3c, during
the evaluation from Tokyo no chunks are migrated. This is
due to the combination of cost and latency consideration of
the optimization approach. The best-ranked long-term storage
service in respect of cost and latency is AWS S3 Northern
Virginia IA. All other long-term storage services have a higher
latency and the cost saving is not big enough to compensate
this. Since all data objects already have a chunk stored on
AWS S3 Northern Virginia IA, no more chunks are migrated
to this storage service to not violate the vendor lock-in factor
defined in the SLAs.

After 150 h, it can be seen in Figure 3a that from this
point in time all heuristic evaluations have a lower cost than
the baseline. In Figure 3b, it can be further observed that a
second migration of unused chunks from standard to long-term
storage services takes place after 220 h.

In summary, we are able to save 12% of the cumulative
cost with the latency consideration evaluation based on Tokyo,
in comparison to the baseline, and 20% with the latency
consideration evaluation based on Vienna. Compared to the
heuristic without latency consideration, the latency consider-
ation evaluation based on Vienna has a cost increase of 11%
and the one based on Tokyo an increase of 19%.

Figure 4 shows the upload and download times of the
data objects for the latency consideration evaluations based
on Vienna and Tokyo in comparison to the execution with-
out latency consideration. As can be seen in both graphs,
the upload and download times of the latency consideration
evaluations are lower than for the heuristic evaluation without

latency consideration. In case of the execution from location
Vienna, the average upload time is 48% faster and the average
download time is 69% faster than for the evaluation without
latency consideration. For the evaluation with location in
Tokyo, the average upload time is 26% faster and the average
download time is 46% faster in comparison to the execution
without latency consideration.

C. Performance Assessment

Duration: Table III shows the average optimization dura-
tions of all evaluations. As can be seen, our heuristic approach
needs on average 4.8ms for the optimization of the data object
placement during the cost optimization evaluation from Sec-
tion VI-A. In case of the latency consideration evaluation from
Section VI-B, it can be seen that without latency consideration
the duration is not noticeable. For the evaluation with latency
consideration a slight increase can be observed. However, with
an average duration of 0.41ms it is negligible.

Metadata: Our heuristic approach uses the monitored access
information of the last BTU of each chunk. For the cost
optimization evaluation from Section VI-A with the (2,3)
configuration the size of this metadata aggregates to 865MB
and for the (2,4) and (3,4) configuration to 1.18GB. The
additional size in the latter case is due to the additional chunk
for each data object. For the latency consideration evaluation
the metadata aggregates to 16MB.

VII. RELATED WORK

In our previous work, we formulated the data object place-
ment problem for a local optimization [10] and a global opti-
mization approach [23]. In addition, we present a global opti-
mization heuristic based on data object classification in [23].
In comparison to our previous work, the heuristic approach
presented in this work aims at a high scalability with short
optimization durations that can be used for a large amount
of data objects. Furthermore, the optimization approaches
in [10] and [23] do not include latency considerations.

Besides our own work [10], [23], the work of Papaioannou
et al. [14], Abu-Libdeh et al. [9], Zhang et al. [4] and
Bermbach et al. [25] are worth mentioning. For a detailed
description of them, we refer to [10] and [23].

Despite the importance of latency for cloud storage services,
relatively little research has been done in this field. In this
respect the work of Wu et al. [26] has to be mentioned. The
authors present a storage system, called SPANStore that offers
a cost-efficient storage solution on multiple cloud storage
services that also considers latencies. In comparison to our
own work, SPANStore uses full replication instead of erasure
coding, which increases the needed storage drastically. Fur-
thermore, SPANStore does not take long-term storage services
and possible block rate pricing models into account.

VIII. CONCLUSION

Using multiple cloud storage services to store data objects in
a redundant way is an obvious choice in order to avoid vendor
lock-in and to get a high availability and durability of the



TABLE III
AVERAGE OPTIMIZATION DURATIONS IN MILLISECONDS (STANDARD DEVIATION)

Days Cost Optimization Evaluation Latency Optimization Evaluation
(2,3) (2,4) (3,4) Without Latency Vienna Tokyo

1 - 5 1.38 (σ = 1.74) 1.38 (σ = 1.91) 1.44 (σ = 1.73) 0.09 (σ = 1.50) 1.09 (σ = 5.04) 1.19 (σ = 5.78)
6 - 10 5.47 (σ = 149.21) 5.63 (σ = 153.35) 5.72 (σ = 176.21) 0.02 (σ = 0.83) 0.46 (σ = 46.77) 0.31 (σ = 32.76)
11 - 15 4.59 (σ = 23.46) 4.41 (σ = 2.15) 4.37 (σ = 2.75) 0.01 (σ = 0.29) 0.37 (σ = 41.77) 0.33 (σ = 47.23)
16 - 20 4.71 (σ = 2.08) 4.37 (σ = 2.17) 4.22 (σ = 2.29) 0.02 (σ = 0.38) 0.10 (σ = 3.12) 0.25 (σ = 42.22)
21 - 25 4.69 (σ = 4.35) 4.55 (σ = 2.52) 4.47 (σ = 2.44) 0.02 (σ = 0.40) 0.09 (σ = 4.02) 0.14 (σ = 30.62)
26 - 30 5.83 (σ = 27.41) 5.89 (σ = 22.22) 5.80 (σ = 7.54) 0.02 (σ = 0.45) 0.05 (σ = 3.47) 0.15 (σ = 30.74)

data. Within this work, we presented a heuristic optimization
approach offering a high-performance data object placement
optimization on multiple cloud storage services for a cost-
and latency-efficient redundant storage of the data. Moreover,
the approach guarantees the fulfillment of user-defined SLAs,
based on a ranking of the available storage services according
to their cost and upload and download latency.

We evaluated the presented optimization approach and
compared the result with a placement solution without an
optimization but a fixed cloud storage service set. We showed
that our solution decreases the storage cost by up to 30%, as
well as the upload and download times by up to 48% and
69%, in comparison to the baseline.

In our future work, we plan to extend our approach so that it
considers privacy aspects by using hybrid clouds. Furthermore,
to be able to react more dynamically to different scenarios,
we will extend our algorithm so that it can dynamically adapt
its configuration parameters during runtime. We plan also to
evaluate our approach in different real world scenarios, e.g.,
big data processing in the domain of smart factories.

ACKNOWLEDGMENT

This work is partially supported by the Commission of
the European Union within the CREMA H2020-RIA project
(Grant agreement no. 637066).

REFERENCES

[1] E. Allen and C. M. Morris, “Library of congress and duracloud launch
pilot program using cloud technologies to test perpetual access to digital
content,” in Library of Congress, News Release, July 14 2009.

[2] P. Gupta, A. Seetharaman, and J. R. Raj, “The usage and adoption
of cloud computing by small and medium businesses,” Int. Journal of
Information Management, vol. 33, no. 5, pp. 861–874, 2013.

[3] B. Butler, “Gartner: Top 10 cloud storage providers,”
http://www.networkworld.com/article/2162466/cloud-computing/
cloud-computing-gartner-top-10-cloud-storage-providers.html,
Accessed: Sep. 2017.

[4] Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai, “CHARM: A Cost-
Efficient Multi-Cloud Data Hosting Scheme with High Availability,”
IEEE Trans. on Cloud Comp., vol. 3, no. 3, pp. 372–386, 2015.

[5] “Summary of the Amazon S3 Service Disruption in the Northern Vir-
ginia (US-EAST-1) Region,” https://aws.amazon.com/message/41926/,
Accessed: March 2017.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above
the clouds: A berkeley view of cloud computing,” Comm. of the ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[7] D. Bermbach, T. Kurze, and S. Tai, “Cloud federation: Effects of
federated compute resources on quality of service and cost,” in 2013
IEEE Int. Conf. on Cloud Engineering, 2013, pp. 31–37.

[8] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, and S. Dustdar, “Winds
of change: From vendor lock-in to the meta cloud,” IEEE Internet
Comp., no. 1, pp. 69–73, 2013.

[9] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: A case
for cloud storage diversity,” in 1st ACM Symp. on Cloud Comp., 2010,
pp. 229–240.

[10] P. Waibel, C. Hochreiner, and S. Schulte, “Cost-efficient data redun-
dancy in the cloud,” in 9th Int. Conf. on Service-Oriented Comp. and
Applications, 2016, pp. 1–9.

[11] G. Vernik, A. Shulman-Peleg, S. Dippl, C. Formisano, M. C. Jaeger,
E. K. Kolodner, and M. Villari, “Data on-boarding in federated storage
clouds,” in 6th Int. Conf. on Cloud Comp., 2013, pp. 244–251.

[12] Y. F. R. Chen, “The Growing Pains of Cloud Storage,” IEEE Internet
Comp., vol. 19, no. 1, pp. 4–7, Jan 2015.

[13] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A
quantitative comparison,” in Revised Papers from the First Int. Workshop
on P2P Systems, 2002, pp. 328–338.

[14] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: An adaptive
scheme for efficient multi-cloud storage,” in Int. Conf. on High Perfor-
mance Comp., Networking, Storage and Analysis, 2012, pp. 20:1–20:10.

[15] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
s3 for science grids: a viable solution?” in 2008 Int. Workshop on Data-
aware Distributed Computing, 2008, pp. 55–64.

[16] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA framework for
cloud computing,” in 4th IEEE Int. Conf. on Digital Ecosystems and
Technologies, 2010, pp. 606–610.

[17] C. Pei, Y. Zhao, G. Chen, R. Tang, Y. Meng, M. Ma, K. Ling, and D. Pei,
“Wifi can be the weakest link of round trip network latency in the wild,”
in The 35th Annual IEEE Int. Conf. on Comp. Communications, 2016,
pp. 1–9.

[18] J. S. Plank, “Erasure codes for storage systems: A brief primer,” Login:
The USENIX Magzine, pp. 44–50, 2013.

[19] M. Schnjakin, T. Metzke, and C. Meinel, “Applying erasure codes
for fault tolerance in cloud-raid,” in 2013 IEEE 16th Int. Conf. on
Computational Science and Engineering, 2013, pp. 66–75.

[20] R. Rodrigues and B. Liskov, “High availability in DHTs: Erasure coding
vs. replication,” in 4th Int. Conf. on P2P Systems, 2005, pp. 226–239.

[21] M. Naldi and L. Mastroeni, “Cloud storage pricing: a comparison of
current practices,” in 2013 Int. Workshop on Hot Topics in Cloud
Services, 2013, pp. 27–34.

[22] C.-W. Chang, P. Liu, and J.-J. Wu, “Probability-based cloud storage
providers selection algorithms with maximum availability,” in 2012 41st
Int. Conf. on Parallel Processing, 2012, pp. 199–208.

[23] P. Waibel, J. Matt, C. Hochreiner, O. Skarlat, R. Hans, and S. Schulte,
“Cost-optimized Redundant Data Storage in the Cloud,” Service Ori-
ented Comp. and Applications, vol. NN, pp. NN–NN, 2017.

[24] R. Gracia-Tinedo, Y. Tian, J. Sampé, H. Harkous, J. Lenton, P. Garcı́a-
López, M. Sánchez-Artigas, and M. Vukolic, “Dissecting UbuntuOne:
Autopsy of a Global-Scale Personal Cloud Back-end,” in 2015 Internet
Measurement Conference, 2015, pp. 155–168.

[25] D. Bermbach, M. Klems, S. Tai, and M. Menzel, “MetaStorage: A Feder-
ated Cloud Storage System to Manage Consistency-Latency Tradeoffs,”
in IEEE Int. Conf. on Cloud Comp., 2011, pp. 452–459.

[26] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha, “SPANStore: Cost-effective Geo-replicated Storage Spanning
Multiple Cloud Services,” in 24th ACM Symp. on Operating Systems
Principles, 2013, pp. 292–308.


