
A Deviceless Edge
Computing Approach
for Streaming
IoT Applications
Marjan Gusev, Bojana Koteska,

Magdalena Kostoska, and Boro Jakimovski

Ss. Cyril and Methodius University

Schahram Dustdar, Ognjen Scekic,

Thomas Rausch, and Stefan Nastic

TU Wien

Sasko Ristov, and Thomas Fahringer

University of Innsbruck

Abstract—In this paper, a deviceless edge computing solution is analysed in contrast to the

“traditional” edge server solution.Wecompare centralizedwith thedistributeddeviceless

approaches for horizontal offloadingof data andcomputations, andanalyze the

requirements of protocols to realize such solutions. Theproposeddeviceless solutionsare

moreenergy-efficient (IoTandedgedevicesmaywork for a longer periodwithout

recharging), providea scalable andelastic environment andextended fault tolerance.

& CLOUD COMPUTING IS a paradigm that has

transformed the vision of computing as a utility

into reality.1 However, even the exascale compu-

tational potential of cloud resources cannot be

efficiently utilized for applications and data sour-

ces that are distributed across geographically

distant locations.2 Transferring large amounts of

data to a centralized cloud over WAN networks

generates latencies that are higher than the

expected response for real-time distributed app-

lications. Apart from the large quantities of data,

a further challenge is that the Internet of Things

(IoT) devices, such as sensors, actuators, and

controllers,3 generate fast data. For example, an

ECG sensor streams data with sampling rates

higher than 100 samples per second, and each

sample is at least 2-byte integer number.4 The

streams of these massively distributed devices

can be processed into valuable information.

However, a huge amount of this data usually
Digital Object Identifier 10.1109/MIC.2019.2892219

Date of current version 6 March 2019.

January/February 2019 Published by the IEEE Computer Society 1089-7801 � 2019 IEEE 37

remains underused for data analytics applica-

tions as they cannot be transferred to the

cloud.

The emergence of edge computing allowed

moving the processing closer to data sources

instead of another way around. Intermediate

edge devices take responsibility for processing

and data storage instead of cloud servers,

which diminishes intensive data transfers,

thereby extending the life of IoT devices. Cloud

servers can be exploited only for services

and additional tasks not provided by the edge

devices.5 However, although the edge is an

appropriate paradigm for processing data near

its source, a surge in a number of available

data sources poses challenges to hosting suffi-

cient processing services on a single edge

device, due to its energy, computing, storage,

and communication limitations. Edge devices,

therefore, need to offload data or specific proc-

essing functions (computations) to other edge

devices or edge servers.6

In this paper, we continue our line of res-

earch towards realizing deviceless edge comput-

ing paradigm.6,7 We analyze a streaming IoT

device that needs to process data incoming at

high rate and volume. In addition, we assume

that a mobile edge device is wirelessly connected

to the IoT device on one side and to a cloud

server on the other side. As such a mobile edge

device is equipped with a limited energy source,

the challenge is to relieve it from complex proc-

essing and data storage duties as much as possi-

ble. This paper discusses the architectures of

edge computing solutions for streaming IoT,

where the edge device needs to horizontally off-

load data and processing. In particular, we will

address the deviceless architectures where the

offload is realized among various edge devices.

STATE OF THE ART
Various models of computation for scalable

IoT data processing have been proposed in

research. In particular, cloud-based data stream

processing (DSP) systems have been extended to

deal with IoT and the edge. Pu et al.8 developed a

system that scales DSP across multiple cloud

regions to enable low-latency geo-distributed

data analytics. Cardellini et al.9 have tackled

operational challenges of DSP over heteroge-

neous infrastructures, such as the QoS-aware

deployment of DSP operators onto decentralized

resources and have also discussed this in the con-

text of Fog computing architecture.10 To deal with

the challenges of IoT, Nardelli et al.11 later fused

these ideas with the computational paradigm of

Osmotic Computing12 into the Osmotic Flow

model. While these approaches provide solid

models of computation in the context of IoT

and edge computing, they do not address the

architectural challenges of scaling such systems

to the edge.

Another related field of research, which

underpins our approach presented in this paper,

is deviceless edge computing paradigm.7 Device-

less edge computing extends the serverless para-

digm to the edge of the network, enabling IoT and

edge devices to be seamlessly integrated as appli-

cation execution infrastructure. Recently, similar

approaches attempting to enable function execu-

tion (FaaS) at the edge have emerged.6,13,14 Com-

pared to such approaches, which deal with

fundamental aspects of the deviceless paradigm,

our approach deals with a particular problem of

supporting the IoT streaming applications form

the architecture perspective.

USE-CASE SCENARIOS AND
RESEARCH CHALLENGES

A wearable ECG sensor acting as a streaming

IoT device and smartphone as an edge device is

an example of a typical use-case scenario. The

sensor, equipped with two ECG electrodes, is

worn on the patient’s chest. In order to save the

battery on the sensor, all data are transmitted

via a Bluetooth low energy protocol to the

patient’s smartphone. Data is received by the

smartphone application, analyzed and results

presented to the patient. In addition, data are

transmitted to the server for permanent storage

and extended analysis.

Data analytics functions on the smartphone

application include temporary storage, interpre-

tation of data samples, alerting in a case of inter-

rupted monitoring, and identified arrhythmia.

The most challenging problems in this use

case occur if the smartphone detects insufficient

resources, such as the inability to calculate all

Edge Computing

38 IEEE Internet Computing

functions and respond in real-time, low battery

level, or small storage capacity. This prompts an

offloading of certain functions to other comput-

ing devices. Either storage or processing capa-

bilities may be offloaded in this scenario.

The identified offloading problem may be

resolved by a 1:N mapping, where a certain num-

ber of edge devices (smartphones) or edge serv-

ers located nearby may take the responsibility

to calculate a different function specified in the

application.

The next scenario shows an N:1 mapping,

where a number of IoT devices (ECG sensors)

contact a single edge device (tablet). In case of a

disaster, such as an earthquake or a fire, an

emergency medical team has to examine numer-

ous patients on the spot, assess in real time the

seriousness of injuries and determine priorities

for administering medical assistance and trans-

porting patients. A set of sensors are attached to

the patients at the disaster location to monitor

vital functions. The members of the medical

team use a tablet to inspect the processed data

and make critical decisions on the spot.

Again, a problem might arise if the tablet is

not able to process the streaming data of all con-

nected sensors and needs to offload certain func-

tions to another tablet, or to the edge server at

the ambulance vehicle using the same WiFi or

LAN connection.

The problems identified in these two use-

case scenarios can be summarized to offloading

a system function and/or data to another edge

device or edge server. The associated research

challenges include at least the following:

� architecture How to design the data flow in

the edge computing solution?

� availability How to detect insufficient

resources?

� collaboration How to contact neighboring

edge devices?

� compatibility How to find if an edge device is

capable of taking over a system function?

� delegating How to transfer a certain function

to another edge device?

Most of these challenges may be solved by a

scheduling algorithm in the edge computing

architecture, i.e., by finding an edge device and

rescheduling a certain system function to it.

Although one may find that a simple round

robin principle will provide an uncomplicated

and yet efficient solution to this problem, it

still remains far from trivial. For example, dur-

ing the runtime procedure of one edge device

taking over a processing function from

another edge device, what if the pairing (con-

nection) to the IoT source is not successful,

or the function cannot be realized due to the

inability of the new edge device to success-

fully execute the corresponding algorithm? In

this paper, we elaborate concept ideas on

architecture and protocols needed to estab-

lish such a solution.

OVERVIEW OF EDGE COMPUTING
ARCHITECTURES

In this section, we first discuss the conven-

tional cloud-based IoT architectures and then

present several approaches for realizing device-

less computing solutions. The corresponding

protocols and scenarios are designed for use

with streaming IoT devices.

Traditional Cloud-Based IoT Solution

A typical cloud-based architecture is based

on two layers, the lower layer with end-user devi-

ces (IoT devices) and the upper layer with the

cloud servers.

Note that the IoT devices need to communi-

cate to the cloud server via local area network

(LAN), radio area network (RAN) including 3G/

4G/5G mobile network, and wide area network

(WAN). The energy consumption needs to be rel-

atively high to enable uninterrupted perfor-

mance. Thus, these IoT devices are mostly

stationary and equipped with a continuous

power supply.

In the case of a static IoT sensor that pro-

vides and/or consumes data occasionally, such

as measuring temperature, or controlling an

access to a door, a very small quantity of data is

exchanged between the cloud and the IoT de-

vice. However, a problem arises in the case of a

streaming IoT device, such as a sensor that gen-

erates large quantities of data at a high rate that

need to be transferred to the cloud.

The conventional cloud-based architecture

cannot cope with the increased demand for data

January/February 2019 39

transfer. In addition, if the IoT device is a mobile

device wirelessly connected, then it does not

have a sufficient power supply and this architec-

ture will not be able to support an energy effi-

cient, sustainable solution.

Edge Computing Architecture

A potential solution to the previously ana-

lyzed problem is an edge-centric solution. An

edge computing architecture is a cloud-based

computing architecture, where the computing

and data storage are located closer to the user/

data source.

Practically, another intermediate layer (edge

layer) is introduced between the cloud and IoT

layers. The IoT device offloads data to an edge

device (in the upper layer) in order to cope

with the storage and processing requirements.

Therefore, the IoT device does not perform any

computations and saves energy for extended

performance. The edge device performs the co-

mputations and returns results to the IoT device.

Although most of the services are performed by

the edge device and results are transferred back

to the IoT device, the edge device still needs

to transfer data to the cloud server for exten-

ded processing and exchange in a collaborative

environment.

Extended Edge Computing Architecture

for Streaming IoT

The previously presented architectural solu-

tion cannot cope with the situation when the

edge device cannot perform the required serv-

ices, e.g., in the case of mobile edge devices with

limited resources and wireless connectivity. In

order to preserve energy, the edge device will

want to distribute the processing task to other

devices. The first architectural solution that sup-

ports such offloading is the vertical edge comput-

ing architecture presented in Figure 1.

A more powerful edge server is located above

the edge device and takes responsibility for per-

forming the bulk data storage and complex oper-

ations so that the edge device is relieved and

performs only (basic) essential processing serv-

ices and acting mostly as a data transfer hub

between the IoT devices and the edge server.

The edge device communicates with the IoT

devices using Bluetooth, ZigBee, ultrasound, or

similar PAN communication technology. On the

other side, it communicates with the edge server

via WiFi, 3G/4G, or other LAN/RAN technology.

This enables the IoT device to spend only a small

portion of its stored energy to transfer data to a

nearby edge device, which is taking care to

transfer data to a more distant edge server.

Figure 1. Vertical edge computing architecture for a streaming IoT solution.

Edge Computing

40 IEEE Internet Computing

A more promising solution is based on our

deviceless edge architecture.6,7 This architecture

does not require explicit management of edge

devices and/or servers, and offloading is realized

horizontally to nearby edge devices (Figure 2).

MODELING A DEVICELESS
SOLUTIONS FOR STREAMING
IOT APPLICATIONS

In this section, we describe and discuss

the communication and horizontal offloading

models for IoT and edge devices in a deviceless

edge computing architecture.

Functional Model

An abstract model of the IoT device includes

just the streaming data output at a specific sam-

pling frequency (that determines the data veloc-

ity) where each data sample has a predefined bit

resolution (that defines the streaming data vol-

ume). One can assume that this fits in the Big

Data definition, assuming that the other V prop-

erties (Value, Variety, and Veracity) are not rele-

vant for this abstract model. Actually, we

consider only fast-moving data, where all data

items are of the same type (no variety), and

trustworthiness to data (veracity) is high,

assuming that the noise is eliminated. Value

property refers to a high ability to extract infor-

mation out of data.

An edge device abstract model includes

connectivity to an IoT device and

transferability to another edge device, both

with certain data velocities and volumes. The

ability of an edge device to receive and send

data as input and output depends on the net-

work delay and throughput of the correspond-

ing PAN or LAN networks.

Coordination Protocols for Offloading

and Scheduling

In the deviceless paradigm, one of the re-

quirements is that the edge device needs to

communicate with other edge devices and

decide whether to offload data and computa-

tions to them. This was not required in the ver-

tical edge computing solution since the

transfer is directly realized from the edge

device to the edge server.

Every edge device can play different roles

in this model: gateway, processor, or both. A gate-

way terminates one or more IoT devices and

plays the role of data acquisition and retransmis-

sion. The processors represent nodes that are

capable of data processing. Both roles are sub-

ject to horizontal offloading but can be managed

by integrated or separate scheduling processes.

A number of protocols/algorithms are critical

to the establishment and functioning of the

deviceless edge solution, including the following:

� Discovery – used to establish the distribu-

ted system of edge devices (eg., mDNS,15

uPNP16);

Figure 2. Horizontal edge computing (serverless) architecture of a streaming IoT solution.

January/February 2019 41

� Election – used to select the master sched-

uler device among all edge devices in a local

network (e.g.,17);

� Coverage – used to gather visibility and co-

mpatibility information across edge devi-

ces and sensors (e.g., based on LEACH,18

CCP19);

� Scheduling – used by devices for scheduling

and rescheduling operations, functions, and

responsibilities among edge devices, in order

to optimally distribute the workload (similar

to MLBS, STG, VSG, ILR20).

The scheduling task involves many subtasks,

where specific protocols can be used in the ho-

rizontal, deviceless edge computing solution,

including:

� Compatibility check, used by an edge device

to communicate with the neighbors to

exchange property information and check if

they are compatible to take over a specific or

complete functionality from the asking edge

device;

� Handover, when an edge device (gateway)

starts negotiation with another edge device

to take over operations;

� Migration, when an edge device (processor)

delegates another edge device to perform a

specific operation.

There are three approaches for the realization

of horizontal offloading used in such a deviceless

scenario, which are based on P2P approaches:

decentralized, distributed, and hybrid.

The decentralized solution is based on the

election of a master scheduler device that moni-

tors the performance of edge devices, as pre-

sented in the left part of Figure 3. One edge

device is assumed to be the master

(coordinator) and takes the role and responsibil-

ity of coordinating coverage and scheduling

tasks in the local network.

The distributed solution is also a kind of an

unstructured P2P overlay network, as presented

in the right part of Figure 3, where there is no

master scheduler device, and nodes distribute

the coverage information between each other in

order to consensually coordinate and implement

the scheduling task.

Both the centralized and decentralized solu-

tions have pros and cons. For example, themaster

node in a centralized solution has the full view of

the edge network and can thus employ the most

efficient scheduling algorithm. The decentralized

solution, on the other hand, provides high scal-

ability. The pros of both approaches can be

achieved by a hybrid solution.

Instead of having a single master node, the

nodes will choose an arbitrary number of master

nodes depending on the total number of edge

devices. Master nodes are connected to each

other through a high-speed LAN and each of

them will be responsible for a group of edge

devices. In this architecture, in case a consider-

able number of devices under one master node

require offloading, the supervising master node

can contact other master nodes for a list of edge

devices capable of accepting part of the load.

Advantages

Our deviceless solution for streaming IoT

applications offers a number of advantages over

the “traditional” architectures, including:

� Energy efficiency – Energy efficiency is

achieved on multiple levels. On the physical

architecture level, IoT devices consume

smaller amounts of energy and can perform

longer without recharging, since PAN

Figure 3. Centralized (left part) and distributed (right part) horizontal edge computing (serverless)

architecture for a streaming IoT scenario.

Edge Computing

42 IEEE Internet Computing

networking requires less power. Edge devi-

ces are also more energy efficient and can

perform longer without recharging, since

they principally act as a hub between the IoT

devices and cloud servers.

� Scalability and elasticity – The edge comp-

uting solutions can scale easily. Realizing

the negotiation protocol and assigning tasks

to other edge devices is the key prerequ-

isite to achieving elastically scalable dev-

iceless systems. For example, this can be

realized dynamically by using the proposed

solutions.

� Increased fault tolerance – Once the master

scheduler device finds an edge device that

does not perform the required functions, it

can delegate these functions to another edge

device. However, this is also a trait of the dis-

tributed approach.

CONCLUSION
In this paper, we described several typical

use cases of employing IoT devices in stream-

ing scenarios and discussed different archit-

ectural approaches to tackling the associated

challenges. We have analyzed two edge com-

puting architectural approaches: 1) our previ-

ously introduced deviceless approach, where

all edge devices collaborate on the same archi-

tectural level in order to provide extended

functionalities; and 2) a four-layer edge server

approach, where the edge servers are located

one architectural level above the edge devices

as intermediate computing devices to reach

the cloud server.

The main differences are found in data and

computation offloading. In our deviceless solu-

tion, the offloading is horizontal—to other

edge devices in the same architectural level.

In the edge server solution, the offloading is

always vertical—to a more powerful server

(or eventually the cloud) at a higher architec-

tural level.

Device abstraction modeling was introduced

and properties were specified both for the IoT

and edge devices. We discussed how the device-

less solution can offer several advantages, such

as energy efficiency, scalability, and elasticity

and increased fault tolerance.

The introduced model will be used as a moti-

vation for future activities, such as defining a

more detailed specification of the presented pro-

tocols, in order to build a simulation model to

verify the expected performance advantages, as

well as to further advance our concept of device-

less edge paradigm.

ACKNOWLEDGMENT
This work was supported by the bilateral

MKD-AUT project 18779 (Scalability and Elastic-

ity Performance of Cloud Services), which was

financed equally by the Austrian Federal Minis-

try of Science, Research, and Economy and by

the Ministry of Education and Science of the

Republic of Macedonia.

& REFERENCES

1. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and

I. Brandic, “Cloud computing and emerging it

platforms: Vision, hype, and reality for delivering

computing as the 5th utility,” Future Gener. Comput.

Syst., vol. 25, no. 6, pp. 599–616, 2009. [Online].

Available at: http://www.sciencedirect.com/science/

article/pii/S0167739X08001957

2. B. Varghese and R. Buyya, “Next generation cloud

computing: New trends and research directions,” Future

Gener. Comput. Syst., vol. 79, Part 3, pp. 849–861, 2018.

3. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,

“Internet of things (IoT): A vision, architectural

elements, and future directions,” Future Gener.

Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

4. M. Gusev and S. Dustdar, “Going back to the roots: The

evolution of edge computing, an IoT perspective,” IEEE

Internet Comput., vol. 22, no. 2, pp. 5–15,Mar./Apr. 2018.

5. S. Nastic, H.-L. Truong, and S. Dustdar, “SDG-Pro: A

programming framework for software-defined IoT

cloud gateways,” J. Internet Serv. Appl., vol. 6, no. 1,

pp. 1–17, 2015.

6. S. Nastic et al., “A serverless real-time data analytics

platform for edge computing,” IEEE Internet Comput.,

vol. 21, no. 4, pp. 64–71, 2017.

7. A. Glikson, S. Nastic, and S. Dustdar, “Deviceless

edge computing: Extending serverless computing to

the edge of the network,” in Proc. 10th ACM Int. Syst.

Storage Conf., 2017, p. 28.

8. Q. Pu et al., “Low latency geo-distributed data

analytics,” SIGCOMMComput. Commun. Rev., vol. 45,

no. 4, pp. 421–434, Aug. 2015.

January/February 2019 43

http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957

9. V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli,

“Optimal operator placement for distributed stream

processing applications,” in Proc. 10th ACM Int. Conf.

Distrib. Event-Based Syst., 2016, pp. 69–80.

10. V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli,

“On QoS-aware scheduling of data stream

applications over fog computing infrastructures,” in

Proc. IEEE Symp. Comput. Commun., Jul. 2015,

pp. 271–276.

11. M. Nardelli, S. Nastic, S. Dustdar, M. Villari, and

R. Ranjan, “Osmotic flow:Osmotic computingþ IoT

workflow,” IEEECloudComput., vol. 4, no. 2, pp. 68–75,

Mar./Apr. 2017.

12. M. Villari, M. Fazio, S. Dustdar, O. Rana, and

R. Ranjan, “Osmotic computing: A new paradigm for

edge/cloud integration,” IEEE Cloud Comput., vol. 3,

no. 6, pp. 76–83, Nov./Dec. 2016.

13. E. D. Lara, C. S. Gomes, S. Langridge, S. H. Mortazavi,

andM. Roodi, “Poster abstract: Hierarchical serverless

computing for themobile edge,” inProc. IEEE/ACM

Symp. EdgeComput., Oct. 2016, pp. 109–110.

14. J. Gascon-Samson, M. Rafiuzzaman, and K.

Pattabiraman, “ThingsJS: Towards a flexible and self-

adaptablemiddleware for dynamic and heterogeneous

IoT environments,” in Proc. 4thWorkshopMiddleware

Appl. Internet Things, 2017, pp. 11–16.

15. S. Cheshire and M. Krochmal, “Multicast DNS,” RFC

6762, Feb. 2013. [Online]. Available at: https://rfc-

editor.org/rfc/rfc6762.txt

16. A. Presser, L. Farrell, D. Kemp, and W. Lupton, “UPnP

device architecture 1.1,” in UPnP Forum, vol. 22, 2008.

17. N. Malpani, J. L. Welch, and N. Vaidya, “Leader

election algorithms for mobile ad hoc networks,” in

Proc. 4th Int. Workshop Discrete Algorithms Methods

Mobile Comput. Commun., 2000, pp. 96–103.

18. W. R. Heinzelman, A. Chandrakasan, and H.

Balakrishnan, “Energy- efficient communication

protocol for wireless microsensor networks,” in Proc.

33rd Annu. Hawaii Int. Conf. Syst. Sci., 2000, p. 10.

19. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and

C. Gill, “Integrated coverage and connectivity

configuration in wireless sensor networks,” in Proc. 1st

Int. Conf. Embedded Netw. Sensor Syst., 2003,

pp. 28–39.

20. Y. Zhao, J. Wu, F. Li, and S. Lu, “On maximizing the life

time of wireless sensor networks using virtual

backbone scheduling,” IEEE Trans. Parallel Distrib.

Syst., vol. 23, no. 8, pp. 1528–1535, Aug. 2012.

Marjan Gusev is a Professor with the University Sts

Cyril and Methodius, Skopje, Macedonia. He received

the Ph.D. degree from University of Ljubljana, Ljubl-

jana, Slovenia, in 1992. His research interests include

Internet of Things, cloud computing, and eHealth solu-

tions. Contact him atmarjan.gushev@finki.ukim.mk.

Bojana Koteska is an Assistant Professor with the

University Sts Cyril and Methodius (UKIM), Skopje,

Macedonia. She received the Ph.D. degree fromUKIM

in 2018. Her research interests include scientific and

cloud computing, and software quality. Contact her at

bojana.koteska@finki.ukim.mk.

Magdalena Kostoska is an Assistant Professor

with the University Sts Cyril and Methodius (UKIM),

Skopje, Macedonia. She received the Ph.D. degree

from UKIM in 2014. Her research interests include

cloud computing and Internet of Things. Contact her

at magdalena.kostoska@finki.ukim.mk.

Boro Jakimovski is an Associate Professor with

the University Sts Cyril and Methodius (UKIM),

Skopje, Macedonia. He received the Ph.D. degree

from UKIM in 2010. His research interests include grid

computing, high-performance computing, parallel

and distributed processing, and genetic algorithms.

Contact him at boro.jakimovski@finki.ukim.mk.

Schahram Dustdar is a Full Professor of Computer

Science heading the Distributed Systems Group, TU

Wien, Vienna, Austria. His work focuses on Internet

technologies. He is an IEEE Fellow, a member of the

Academia Europaea, and an ACM Distinguished Sci-

entist. Contact him at dustdar@dsg.tuwien.ac.at.

Ognjen Scekic is a Postdoctoral University Assis-

tant at the Distributed Systems Group, TU Wien,

Vienna, Austria. His research interests include social

computing, cloud computing, and smart cities. He

received the Ph.D. degree from the TU Wien, in

2016. Contact him at oscekic@dsg.tuwien.ac.at.

Thomas Rausch is currently working toward the

Ph.D. degree at the Distributed Systems Group, TU

Wien, Vienna, Austria. His research interests include

Internet of Things, edge computing, and event-

based systems. He received the master’s degree

from TU Wien in 2016. Contact him at trausch@dsg.

tuwien.ac.at.

Edge Computing

44 IEEE Internet Computing

https://rfc-editor.org/rfc/rfc6762.txt
https://rfc-editor.org/rfc/rfc6762.txt
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

Stefan Nastic is a Postdoctoral Research Assis-

tant with the Distributed Systems Group (DSG), TU

Wien, Vienna, Austria. His research interests include

IoT, edge computing, cloud computing, big data

analytics, and smart cities. He received the Ph.D.

degree from TU Wien, in 2016. Contact him at

snastic@infosys.tuwien.ac.at.

Sasko Ristov is a Postdoctoral University Assistant

with the University of Innsbruck, Innsbruck, Austria,

and an Assistant Professor with the University Sts

Cyril and Methodius (UKIM), Skopje, Macedonia

(leave of absence). His research interests include

performance modeling, optimization, scheduling,

and resource management in distributed and parallel

systems. He received the Ph.D. degree from UKIM in

2012. Contact him at sashko@dps.uibk.ac.at.

Thomas Fahringer is a Full Professor of Com-

puter Science at the University of Innsbruck, Inns-

bruck, Austria. His research interests include

software architectures, programming paradigms,

compiler technology, performance analysis, and

prediction for parallel and distributed systems. Con-

tact him at tf@dps.uibk.ac.at.

January/February 2019 45

mailto:
mailto:
mailto:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

