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Abstract—Serverless computing promises a scalable, reliable,
and cost-effective solution for running data-intensive applications
and workflows in the heterogeneous and limited-resource en-
vironment of the Edge-Cloud Continuum. However, building
and running data-intensive serverless workflows also brings
new challenges that can significantly degrade the application
performance. Cold start remains one of the main challenges
that impact the total function execution time. Further, since
the serverless functions are not directly addressable, Serverless
workflows need to rely on external (storage) services to pass the
input data to the downstream functions. Empirical evidence from
our experiments shows that the cold start and the function data
passing take up the most time in the function execution lifecycle.

In this paper, we introduce Truffle – a novel model and
architecture that enables efficient inter-function data passing in the
Edge-Cloud Continuum by introducing mechanisms that separate
computation and I/O, allowing serverless functions to leverage
the cold starts to their advantage. Truffle introduces Smart Data
Prefetch (SDP) mechanism that abstracts the retrieval of input
data for the serverless functions by triggering the data retrieval
from the external storage during the function’s startup. Truffle’s
Cold Start Pass (CSP) mechanism optimizes inter-function data
passing and data exchange within serverless workflows in the
Edge-Cloud Continuum by hooking into the functions’ scheduling
lifecycle to trigger early data passing during the function’s cold
start. Experimental results show that by leveraging the data
prefetching and cold-start data passing, Truffle reduces the IO
latency impact on the total function execution time by up to 77%,
improving the function execution time by up to 46% compared
to the state-of-the-art data passing approaches.

Index Terms—Serverless, Cold start, Inter-function, Data-
Intensive, Workflows

I. INTRODUCTION

Serverless computing is a paradigm where short-lived
functions are executed in response to an external triggering
event. Once the trigger event is received, the Serverless platform
provisions the necessary environment infrastructure for the
function to execute. The function provisioning at the startup of
the function lifecycle is also known as cold start [1, 2]. Despite
efforts in minimizing it [3, 4], cold starts represent a significant
proportion of the function’s total execution time, reaching up
to 80% [5, 6]. In Serverless computing, where functions are
short-lived, over 50% have execution times under 100ms. Thus,
leveraging the longest tasks of the serverless function lifecycle,
such as cold starts, becomes crucial for improving the overall
function execution time [7, 8].

The stateless design of Serverless Computing pushes func-
tions to rely on external systems for data exchange, with storage

services representing over 60%, and messaging services com-
prising 38%. Furthermore, 30% of the functions process data
over 10 MB, whereas 26% are over 100MB [8, 9]. Nevertheless,
using external services to pass data adds significant network
and latency overhead and consequently increases the function
end-to-end execution [10, 11, 12]. Moreover, external services
introduce additional development effort as applications must
explicitly fetch their ephemeral input data [13, 14]. Therefore,
constant efforts are necessary to improve the data passing
between serverless functions.

The most common approaches for data passing in server-
less functions include: (a) Remote storage services, such as
object storage [15], Key-Value Store (KVS) [13, 12] and
cache [16, 17] are the most common mechanism for data
passing. Nevertheless, it increases network overhead and
latency up to 95% [18]; (b) Local storage: approaches such
as disk storage [10, 19], shared memory [20, 21] and local
cache [22, 12] shift the data storage to local workers. It
enables serverless platforms to exploit function and data locality
to improve latency and throughput for co-located functions.
Thus, decreasing remote communication. Unfortunately, these
approaches do not consider the function cold start in the data
passing mechanisms.

Furthermore, cold starts remain a challenge in Serverless
computing. The Serverless platform provisions the full infras-
tructure for function execution. During the cold start phase, the
infrastructure is not fully operational, leading to idle waiting
time for both the function and the host. Consequently, the
cold start influences the overall duration of end-to-end function
execution [23, 24].

Common approaches that address cold start include:
(a) Caching solutions propose to store full or partial function
sandbox snapshots in memory for a certain time. Serverless
platforms create a snapshot of the function sandbox to reuse
it in new requests. Thus, Serverless platforms only provision
the language runtime instead of the language runtime and
infrastructure [5, 25]. Although caching decreases the cold
start latency significantly, it increases resource usage [26];
(b) Sandbox sharing approach relies on multiple functions
running in one sandbox. As functions run in a shared sandbox,
platforms profit from a single cold start for multiple functions,
reducing cold start latency and optimizing function execution
time [11, 27, 28]. (c) Sandbox techniques such as tiny VM
and Web Assembly VM propose minimal sandboxes with
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only the necessary components and features required by the
function. Additionally, it offers an additional layer of security.
Thus, sandbox techniques decrease the resource provisioning
overhead while increasing security [20, 29].

The presented approaches optimize serverless functions cold
starts by addressing the function preparation and setup during
the function initialization. Nevertheless, cold start solutions
typically overlook the crucial phases of the function lifecycle,
such as data transfer which along with the cold start have a
significant impact on the Serverless function execution time.

In this paper we introduce Truffle, a modular architecture
that enables input data fetching and passing. Truffle’s com-
munication technique leverages cold starts to transfer input
data to another function efficiently. We can summarize our
contributions as follows:

• Truffle, a novel model and architecture that separates
computation and I/O to enable functions to execute tasks
in parallel to the functions’ cold starts for optimized end-
to-end function execution.

• The Smart Data Prefetch (SDP) mechanism, a function
input data fetching mechanism that abstracts the retrieval
of input data for individual functions. Truffle seamlessly
identifies the input data storage type and triggers the data
retrieval at cold start, i.e., before function execution.

• The Cold Start Pass (CSP) mechanism, an inter-
function data passing mechanism that optimizes data
exchange between serverless functions. It identifies the
function target host immediately after the scheduling
phase preceding function execution. Truffle utilizes the
cold start to transmit the data, optimizing inter-function
communication. Consequently, when the target function
executes, the input data is already stored in a buffer close
to the function.

Truffle reduces the IO latency impact on the function
execution time by up to 77%, achieving up to 46% reduction of
the overall function execution time by leveraging the cold start
to prefetch and pass the data to another function. Moreover,
applications with longer cold starts of up to 10s profit nearly
30% more from Truffle compared to applications with short
cold starts of up to 2s.

II. MOTIVATION & ILLUSTRATIVE SCENARIO

A. Motivation

Serverless Computing is typically characterized by stateless
and non-addressable functions deployed on entirely managed
platforms. In the Edge-Cloud Continuum, Serverless computing
enables efficient function execution on resource-limited edge
devices while leveraging the Cloud for computing intense
tasks, thus optimizing performance and reducing latency across
distributed environment of the Edge-Cloud Continuum. By
design, serverless functions lack direct addressability. Instead,
these functions are accessible to clients through platform
ingresses such as Load Balancers and API Gateways [30, 31].
Furthermore, Serverless platforms limit their function input data
size (AWS λ: 6MB, OpenFaas: 1MB, GCP: 10MB), pushing
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Fig. 1: Knative Serverless function lifecycle steps duration with
data passing approaches Direct (D), Key-Value Store (KVS),
and Object Storage (S3) for 128MB

functions to leverage external services such as object storage,
KVS and message queues to pass larger amount of data which
not only introduces complexity in the data handling process
but also adds significant latency due to the reliance on external
services [10, 32].

Fig. 1 shows the function latency of each step in the
Serverless function lifecycle with the most common storage
types, such as AWS S3, KVS, and Direct. Experimental
evidence indicates that cold start and data transfer constitute
a significant portion of the function execution time, and
combined, they contribute to up to 99% of the function latency.

Fig. 2: Serverless Function Lifecycle with 1MB Input Data
Transfer

Fig. 2 shows the four phases of function lifecycle: scheduling,
cold Start, I/O and computation. Moreover, Fig. 2 shows that
the function host is known immediately after the Scheduling
phase. Nevertheless, the Data Transfer (I/O) only initiates after
Fn Start when the Serverless function executes. In summary,
the function and host remain idle until the serverless function
provision has been completed. As shown in Fig. 2, the function
Cold Start and Data Transfer contribute significantly to the
function’s end-to-end execution time. Moreover, the function
is only available to process the request after Fn Start when
the infrastructure has finished and the language runtime is
fully running. However, the host is known after the Scheduling,
implying that I/O tasks such as data transfer may initiate
immediately after scheduling in parallel to the cold start.
Despite this parallelization potential, the delays caused by
cold starts and data transfers remain substantial, presenting
challenges for optimizing performance in latency-sensitive
applications such as data-intensive Serverless workflows in
the Edge-Cloud Continuum.
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B. Illustrative Scenario

To better motivate our challenges, we present an illustrative
scenario for real-time video analytics that focuses on detecting
fire emergencies in smart cities. To achieve this, cameras and
sensors are strategically positioned throughout the city to detect
fire patterns. A Serverless workflow is employed to identify
and respond to fire emergencies.

Our workflow utilizes five Serverless functions, partially
executed on the Edge and partially executed on the Cloud. To
reduce communication latency in our workflow, some tasks
are executed at the Edge, close to the data source. Edge tasks
are responsible for processing large real-time video streams,
extracting image frames, simple object detection, and triggering
immediate local alerts for emergencies. On the other hand, tasks
that require more powerful computing resources, such as more
complex object detection and model training, are carried out in
the Cloud. Our motivating scenario is inspired by a Serverless
Workflow for real-time environmental monitoring [33, 34, 35].

In Fig. 3, in Ingest stage, real-time videos captured by cam-
eras are transmitted to edge nodes via a streaming framework,
where serverless functions responsible for Extract Frames are
activated to process the video data in small chunks, effectively
reducing latency. Each Extract Frames function processes a
video segment, ensuring swift data handling. Upon completing
their tasks, these functions directly pass the processed frames
to the Object Detection functions, who analyze them to identify
specific fire patterns such as smoke and flames. Following the
detection process, the Object Detection functions communicate
directly with the Alarm Trigger functions, who evaluate the
data to decide whether to trigger local emergency responses.
Concurrently, Object Detection functions send data to Prepare
Dataset functions for data preprocessing. Finally, the processed
data is transmitted to the cloud, where more resource-intensive
tasks are performed, such as training machine learning models
to enhance fire detection.

Truffle enhances Serverless workflows by separating compu-
tation and I/O, which allows Truffle to prefetch and transfer
the input data during cold starts. Decreasing function latency
enables quick data processing, which is crucial for real-time
applications like fire detection and emergency response in the
Edge-Cloud Continuum. Truffle optimizes data transfer between
edge devices and cloud servers, ensuring data is available for
computation as soon as the functions are initialized. By sepa-
rating I/O from computation, Truffle can incorporate the input

Fig. 3: Simplified Serverless Workflow for Fire Detection for
Smart Cities

data transfer into the function startup phase, facilitating faster
and more efficient data handling, essential for maintaining data-
intensive Serverless workflows in the Edge-Cloud Continuum.

III. TRUFFLE MODEL & ARCHITECTURE OVERVIEW

A. Truffle Model

The execution time τ of a Serverless function can be modeled
by the sum of its individual tasks. Given a Set of functions
λ with function index i, where i ∈ N. Thus, the cold start βi

can be defined as:

βi = υi + ηi (1)

Where υ represents the function infrastructure setup and η
the function startup. Cold starts introduce additional steps
such as scheduling, infrastructure setup, and language runtime
startup, resulting in increased latency. Consequently, cold starts
directly influence the overall latency of end-to-end functions.
Additionally, in the state-of-the-art platforms, every step of
the Serverless functions cold starts are executed in sequence.
Truffle proposes to execute the cold and the data transfer in
parallel to optimize the function latency. Thus, the improvement
φi is defined as follows:

φi = max(βi, δi) (2)

Where βi is the function cold start and δi is the data transfer
time. Since Truffle executes the cold start and data transfer
simultaneously, φ is defined by the longest task between these
two tasks, i.e., cold start and data transfer.

Therefore, the end-to-end execution time τ of a Set of
functions λ can be described as follows:

τ(λi) =
∑
i=1

αi +max((υi + ηi), δi) + γi (3)

Here, the total execution time of a function λi is equal to
the scheduling αi plus the maximum value between the sum of
function infrastructure setup υi + function startup ηi and data
transfer δi. Thus, γi represents the function execution time
[10, 36, 37, 38]. Therefore, we can define truffle improvement
∆i in the end-to-end execution time as follows:

∆i = (βi + δi)−max(βi, δi) (4)

Finally, the Truffle optimization model aims to minimize
the end-to-end execution of a Serverless workflow composed
of a Set of serverless functions λ. To achieve that, Truffle
considers three main phases for each function: the scheduling
time αi, the longer time between the cold start and data transfer
max(βi, δi), and the function execution time (γi) as follows:

min
n∑

i=1

(αi +max(βi, δi) + γi) (5)

Hence, Truffle improvements are directly connected to the
cold start latency and data input size. Longer cold starts
associated with longer data transfer have more profit than
shorter data transfer and cold starts.
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B. Truffle Architecture Overview

In the state-of-the-art platforms, I/O tasks such as data
transfer initiates after fully provisioned function. Furthermore,
as Serverless functions are sensitive to network latency, the
function execution time grows proportionally to the network
data transfer [10, 11, 39].

Truffle is designed to optimize the data input handling
for serverless functions. It introduces a novel architecture
to identify, retrieve, and transfer the data input based on
function properties such as storage type, event type, serverless
platform, and orchestration tools. Truffle proposes to separate
the computation and I/O so that the network data input transfer
can start simultaneously with the cold start process right after
scheduling. This means that the functions that are currently
running, also known as hot functions, may not benefit from
Truffle. In such cases, Truffle works as a proxy and only pass
the data through it.

Despite extensive efforts to mitigate cold starts in serverless
architectures, the issue persists and can significantly impact
the total function execution. By enabling functions to transfer
data during cold starts, typically an idle time for the serverless
function, Truffle reduces the function latency while alleviating
serverless functions’ burden of fetching input data. Truffle is
located on each computing node to intercept local requests to
improve inter-function communication latency. Additionally, it
uses orchestration tools like Kubernetes for better scalability
and throughput.

Fig. 4 shows Truffle’s interaction with the function and the
serverless and orchestration platform. Truffle has a modular
architecture that allows each component to be extended and
eventually replaced. Truffle components enable two main
mechanisms: Smart Data Prefetch and Cold Start Data Pass.

Fig. 4: Truffle Architecture Overview

Smart Data Prefetch, detailed in Section IV-A, is triggered at
every function start and retrieves the function input data from
the respective storage such as direct, object storage, and KVS
in parallel to the cold start. Whereas Cold Start Data Pass,
described in Section IV-B, facilitates and optimizes the data
passing between Serverless functions.

1) Truffle Components: Truffle is composed of five compo-
nents: Listener, Data Engine, Ingress, Watcher, and Buffer.

a) Listener: It connects to the Serverless functions
invoking events. The goal of the listener is to intercept the
function request trigger and notify Truffle of an incoming
request. It supports multiple serverless functions invoking
events such as HTTP requests, streams, queues, and jobs.

b) Ingress: It concurrently triggers the Serverless platform
and Truffle’s Data Engine to initiate the function input data
fetching. More specifically, the ingress accepts requests from
the source client functions. Then, it sends an event to the
Serverless platform with a key reference to the function
input data stored in Truffle’s local buffer. Subsequently, the
serverless platform is responsible for forwarding the request and
implementing the function’s scaling procedures if necessary.

c) Data Engine: It identifies the storage type of incoming
function data, retrieves it, and stores it in the buffer. This
component enables functions to seamlessly receive input data,
regardless of their input data storage type, such as KVS and
object storage. Truffle’s architecture design with adapters facili-
tates the extension of the data engine, supporting various storage
types and multiple cloud providers. Consequently, it increases
flexibility and facilitates serverless function development.

d) Watcher: It connects to the underlying orchestration
tool, such as Kubernetes via the control API and listens for live
events, such as scheduling events and function host assignments.
Its primary task is identifying the assigned host for a target
function, allowing Truffle to pass data between functions. The
watcher recognizes the data input source and notifies Truffle
ingress once the target function has been assigned to a worker
or if the function already has an assigned worker, indicating
that the function is already running. In cases of hot function,
Truffle does not interfere and forwards the request without
any modification. Moreover, the watcher employs an adapter
to communicate with multiple orchestration tools, such as
Kubernetes and Nomad.

e) Buffer: It stores the data until the target function is
fully provisioned. The buffer can be placed on each node
locally or remotely via external services. A local buffer keeps
the data closer to the function and enables high-speed access
to the data via local storage, such as in-memory storage. The
buffer can also leverage remote services, such as databases and
KVS, to provide flexibility and scalability. In cases where local
computing resources are limited, the remote buffer enables
functions to leverage the cold start for data passing with on-
demand auto-scaling without local resource overhead.
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IV. TRUFFLE RUNTIME MECHANISMS

A. The Smart Data Prefetch

Truffle Smart Data Prefetch (SDP) abstracts and optimizes
the data fetching from the serverless function. Fig. 5 shows how
Truffle fetches the function input data. 1⃝ First, Truffle ingress
receives the client request with all the required information to
retrieve the input data as arguments to the function handler,
such as the bucket name, object ID, and credentials. 2⃝ Truffle
ingress sends two simultaneous requests. One request to the
platform Activator & Auto Scaler and one request to the Data
Engine. 2a⃝ At this point, Truffle initiates an asynchronous
request path parallel to the original request flow, e.g., requests
via serverless platforms. Truffle triggers the Data Engine
component to identify and start the data fetching. 3⃝ The
Auto Scaler scales up if necessary, and the scheduler gets then
notified about new scheduling. 3a⃝ Truffle initiates the input
data fetching from the respective storage, i.e., direct, object
storage, or KVS. For specific cases where special access and
roles are requested, such as AWS S3 credentials and keys, the
function must specify and give Truffle the right access via
specific function properties. 4⃝ After scheduling, The Activator
& Auto Scaler get notified the scheduling has finished and
the request may resume. 4a⃝ Once the data fetching is finished
in the Data Engine, Truffle stores the input data size in the
Buffer. 5⃝ The Activator resumes the request and forwards it
to the Serverless Platform Queue Proxy. 6⃝ The Queue Proxy
forwards the request to the Serverless function handler during
Fn Execution. 7⃝ Once the function executes in Fn Execution,
it retrieves its input data from the Truffle Buffer.

Algorithm 1 details the smart data prefetch. Let R be the
incoming request, BN the buffer name, ST the storage type,
and content reference CR the input. Lines 1 and 2 create an
empty buffer B and storage client SC respectively. Let BT

be the buffer type in supported buffer collection BC. If buffer
type BT is not empty and equals the buffer name BN . Then
assign buffer type BT to buffer instance B. Let SE be storage
in supported storage collection SC. If SE is not empty and

Fig. 5: Truffle Smart Data Prefetch

Algorithm 1 Truffle Smart Data Prefetch

Require: R: incoming request
Require: BN : buffer name
Require: ST : storage type
Require: CR: content reference

1: B ← buffer
2: SC ← storage
3: for all BT ∈ BC do
4: if BT ̸= ∅ ∧BT = BN then
5: B ← BT

6: end if
7: end for
8: for all SE ∈ SC do
9: if SE ̸= ∅ ∧ SE = ST then

10: SC ← getclient(ST )
11: end if
12: end for
13: C ← SC.get(CR))
14: B.set(C)

SE equals the storage type ST , then assign the specific storage
client for storage type ST to SC. In line 13, Truffle calls
storage client SC to get the data based on content reference
CR input and assigns it to content C. Finally, set content C
in buffer B.

B. Cold Start Pass Mechanism

For data passing between two functions, Truffle first identifies
where the source functions want to send the data. Then, once
the target receives the data, Truffle stores it in a local buffer.

Fig. 6 shows the communication between two serverless
functions with its multiple platforms integration. Fig. 6 shows
a simplified interaction between the orchestration and serverless
platform for synchronous requests.

First, 1⃝ the source function fires a request to the Local
truffle on the source. Then, 2⃝ Truffle accepts the request and
identifies the target function based on information provided
to the function. Then Truffle sends a request with an input
data reference key to the serverless platforms such as Knative
Activator. In 2a⃝, simultaneously to 2⃝, Truffle starts to listen
for the target function host address. The function address
is available after the scheduling phase. 3⃝ The platform
activator receives the request and scales the function up via
the orchestration tools mechanisms. 4⃝ Scheduling is finished
and stored in the orchestration storage, e.g., Kubernetes etcd.
5⃝ Notifies the serverless platform. 6⃝ Resumes the request to

the target Host Proxy. 6⃝ At this point, the Local Truffle
on the source is aware of the target host reported by 5⃝,
then simultaneously to 6⃝, it starts transferring the outgoing
input data to the Truffle buffer on the target host worker. In
7⃝, the Host Proxy forwards the request to the serverless

platform ingress, such as Queue Proxy. In 8⃝, the Queue Proxy
forwards the request to the serverless function handler during
Fn Execution. 9⃝ The function handler retrieves its input data
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Fig. 6: Truffle Cold Start Pass

Algorithm 2 Truffle Cold Start Pass Request

Require: TF : target function
Require: TC : target content

1: HA ← ∅
2: W ← resource watcher
3: for all F (F ∈ FE ,∀FE ∈W ) do
4: if FH ̸= ∅ ∧ TF = FN then
5: HA ← FH

6: end if
7: end for
8: call target host truffle(HA,TC)

from the Local truffle buffer with the input data reference key
existent in the request from 2⃝.

Truffle Cold Start Data Pass relies on a data-passing
request, Algorithm 2 executed on the truffle instance on the
source function host. Once the an incoming request, is executed
in the target function host, the function retrieves the data from
the buffer. Let the target function TF and target content TC be
the input. Let F be function information in a function event
FE , where all function events belong to the watcher W . If
function host information FH is not empty and target function
TF equals the function event name FN . Then, assign function
host FH to target host address HA. Once HA is known, stop
listening for new events. Finally, call target host truffle with
host address HA and target content TC .

V. TRUFFLE PROTOTYPE IMPLEMENTATION

Truffle is published as an open-source framework part of
the Polaris SLO CLoud. Polaris itself is part of the Linux
Foundation Centaurus project. Truffle source code is available
on GitHub1. It is implemented in Go and currently supports
Kubernetes as the orchestration tool and Knative as the
Serverless Platform.

Truffle runs as a DaemonSet on Kubernetes to ensure every
node has an active instance and supports high availability
with multiple instances per node, managed by a load balancer.
Functions connect to Truffle through the HostIP and defined

1https://github.com/polaris-slo-cloud/truffle

port. To improve latency, Truffle uses goroutines for parallel
task execution, listening for events, and leveraging httputil
Golang libraries to create a reverse proxy. Its data engine fetches
data from remote services using external libraries, such as
golang aws-sdk-go for AWS S3 and go-redis for KVS, and reads
directly from the HTTP request body for direct communication.
The Ingress component handles incoming requests, initiates
parallel tasks with goroutines, creates a reference key, and
forwards this to the Serverless platform, allowing the Serverless
function to retrieve data from the local Truffle instance
buffer. The Watcher monitors orchestration tools, specifically
Kubernetes pod events via Kube API, enabling data transfer
between functions immediately after a function is assigned to
a node.

VI. EVALUATION

A. Overview

We design experiments to evaluate our proposed solutions
with two Serverless workflows: Chained Functions and Video
Analytics. Our Chained functions workflow is composed of
two functions a and b that represents sequential execution
of data-intensive functions. It receives certain input data and
forwards it to the function. Our Video Analytics workflow is
composed of the functions: Video Streaming, Decoder, and
Image Recognition inspired by [40, 41] using most important
invocation patterns from serverless computing fan-out and fan-
in [31]. We compare Truffle to three different data-passing
storage types: Direct, Object Storage (S3), and Redis (KVS).
As Truffle focuses on data-passing communication, we measure
the time when the data is sent until the target functions receive
the data.

To verify the proposed solution in this paper, we evaluate
our framework by conducting experiments that measure data
passing latency during the cold start.

a) Metrics: Latency metric shows the time when a source
function sends a request with a message until the target function
receives it. This experiment includes also the entire target
function startup including scheduling, cold start, and data
transfer latency. Cold Start Delay metrics evaluate how cold
start delays can influence the function’s end-to-end execution
time and how truffle can improve these delays to transfer large
amounts of data. Therefore, we increase the function cold start
in seconds and collect the function data passing latency (sec)
for different input sizes.

B. Experiment Setup

We conduct experiments featuring the designed serverless
workflow with AWS S3 and Redis KVS as the baseline. We
use MicroK8s as the orchestration tool, and Knative as the
Serverless Platform. Our microk8s cluster contains multiple
nodes to ensure remote data passing experiments. For this
purpose, we leverage Kubernetes node affinity to ensure the
function scheduling on different nodes. Each cluster node is a
VM with 4-core Intel Xeon Processor 2GHz, 8GB RAM with
Ubuntu 22.04 LTS. To avoid misleading results, we repeated
the experiments and calculated the average result. Except for
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AWS S3, every tool was locally installed in the cluster with its
vanilla version without configuration modifications including
storage type Redis. For experiments with object object storage
type, we leverage AWS S3. The same experiment setup is used
to obtain the results for Fig. 1 and Fig. 2

C. Latency Results

In this experiment, we analyze how Truffle improves the
total workflow latency when compared to the baselines. Fig. 7
presents the total workflow execution latency for Chained
Functions while highlighting the function lifecycle phases. Due
to Truffle’s SDP that pre-fetches the data during the cold start,
Truffle reduces the IO latency impact and consequently de-
creases the total workflow execution latency. More specifically,
in Fig. 8, we show the IO latency impact on the total workflow
latency. Truffle demonstrates an IO latency impact reduction of
up to 77%, improving the overall workflow execution latency
by up to 46% compared to the baselines: Direct, KVS and S3.

Further in Fig. 9 and Fig. 10, we use http synchronous
serverless invocation trigger. We evaluate two applications:
Chained Functions and Video Analytics. We increase the
input size to validate the solution with different loads. Fig. 9
shows latency results for Chained Functions and Fig. 10 shows
latency results for Video Analytics workflow. Fig. 9 shows
three different data passing strategies: direct, KVS, and object
storage AWS S3. The function input size is represented on
axis x in MB and latency is shown on axis y in seconds.

Fig. 9a shows that Truffle has latency from 1.852 sec to
2.697 sec while Direct HTTP requests show from 2.329 sec to
4.353 sec. Fig. 9d shows an improvement of up to 46% on the
direct data passing via Truffle. In Fig. 9b, Truffle with KVS has
latency from 2.060 sec to 4.827 sec while vanilla KVS shows
from 2.121 sec to 5.073 sec. Truffle shows an improvement of
up to 5% on the KVS data passing compared to the baseline
(Fig. 9d). Fig. 9c indicates that Truffle with S3 shows latency
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between 1.838 sec and 6.210 sec, whereas S3 alone ranges
from 2.711 sec to 7.560 sec. This shows an improvement of
up to 18% in data passing via Truffle (Fig. 9d).

In the Video Analytics use case in Fig. 10, Fig. 10a reveals
that Truffle has latency from 4.208 sec to 5.163 sec, while
Direct HTTP requests range from 4.363 sec to 5.495 sec, an
improvement of up to 6% in direct data passing with Truffle
(Fig. 10d). In Fig. 10b, Truffle with KVS has latency between
3.954 sec and 8.631 sec, compared to KVS alone, which ranges
from 4.637 sec to 10.315 sec. This represents an improvement
of up to 16% in data passing with Truffle, shown in Fig. 10d.
While in Fig. 10c indicates that Truffle with S3 shows latency
from 3.958 sec to 5.712 sec, while S3 alone ranges from 5.568
sec to 7.536 sec. Truffle demonstrates an enhancement of up
to 24% (Fig. 10d).

D. Cold Start Delay Results

In this experiment, we compare the same storage approach in
its conventional usage, i.e., after the function startup, and with
Truffle, which leverages the cold start for fetching the input
data. As Truffle leverages the cold start to fetch and pass data,
the cold start latency directly impacts the function execution
time and truffle performance. Thus, in this experiment, we
increase the cold start latency for the different storage types,
object storage AWS S3 and KVS. Truffle still leverages the
same storage type as the given baseline. Furthermore, we add
additional delay to the existing cold start to simulate longer
cold start delays. Therefore, in Fig. 11, the baseline and truffle
never intercept at x = 0 because x represents the additional
cold start. For example, x = 0 in Section VI-D is similar to
Fig. 9c x = 100MB. Hence, we evaluate how Truffle benefits
applications with longer cold starts.

Fig. 11 shows the latency in seconds in axis y and the cold
start delay in axis x using object object storage type AWS S3
and KVS. Section VI-D shows the latency and cold start delay
for an input size of 100MB while The orange line represents
AWS S3 and KVS, and the blue line is Truffle + AWS S3. As
applications only fetch the input data after the function has fully
initialized, in Section VI-D, the function latency (axis y) grows
linear to the cold start delay x in orange. On the other hand,
in the blue line, Truffle delays the function latency increase.
Truffle uses the full cold start to transfer the input data from 0
to 4s in axis x. Only at the second 6s in axis x does the function
latency start growing linearly. Consequently, Truffle shows a
latency decrease of up to 30% in applications with longer cold
starts. While applications with short cold start might profit 3%.
In Section VI-D, KVS shows a latency from 3.7 seconds to
14 seconds in orange while Truffle shows from 1.6 seconds to
12 seconds in blue, which means Truffle decreases the latency
up to 43%. In Section VI-D, we observe that the input data
transfer is faster than any cold start delay, which means even
the shortest cold start delay is already sufficient to transfer the
input data completely, which means Truffle optimizes execution
time even when data transfer is fast enough to mask the cold
starts. Therefore, this experiment shows similar linear growth
regardless of the cold start delay.
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Fig. 9: Chained Functions Latency
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Fig. 10: Video Analytics Latency
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E. Discussion

Truffle enhances serverless function data transfer and reduces
latency up to 46% by effectively utilizing cold start delays
for data fetching. Therefore, it optimizes function initialization
times, which is especially beneficial for data-intensive applica-
tions. Additionally, Truffle can integrate with different storage
types and orchestrators via Truffle adapters. Furthermore,
Truffle proposes function data fetching from different storage
types, such as object storage, KVS, or direct passing. Truffle
model Section III-A shows that we can minimize function
execution time by taking the shortest path which is either data
transfer duration or cold start. Effectively, it enables us to
overlap communication with cold start. Truffle utilizes this
model and reduces the end-to-end latency by overlapping data
transfer with the cold start.

As discussed in Section III-A, functions with longer cold
starts profit more from Truffle than those with shorter cold
starts. Results in Section VI-D show that functions with longer
cold starts profit up to 30% more than functions with shorter
cold starts. Truffle leverages the cold start for data fetching and
transfer, which would otherwise be idle during the function

lifecycle. Thus, small input data sizes do not significantly
improve as functions with larger data input sizes.

Truffle’s data transfer optimization reduces latencies and
decreases function execution times for data-intensive tasks with
a cold start. Therefore, during hot function executions, i.e.,
functions already running, Truffle checks whether the functions
are running and forwards the data to the Serverless platform,
acting as a transparent proxy. In such cases, Truffle’s decision-
making process during runtime is a trade-off. In the future, we
plan to optimize Truffle’s proxy for hot function to address this
technical limitation. In our evaluation, discussed in Section VI,
we measure and analyze Truffle’s improvement, i.e., Latency for
a serverless function with a cold start and Cold Start duration,
which shows how functions with long cold starts benefit from
Truffle compared to those with short cold starts. We did not
conduct throughput experiments to measure the data volume
Truffle can handle, as it requires executing many requests
in parallel. Therefore, throughput experiments only measure
hot functions that do not contain any Truffle improvement.
Furthermore, we have conducted experiments with real-world
applications to demonstrate broad applicability. However, the
specific workflows we used in our experimental evaluation
(Chained Functions and Video Analytics) may only represent
some of the possible use cases for serverless computing.
Moreover, our experiments use default configurations for the
external systems such as Kubernetes and Knative which means
any customized configuration that affects the performance of
these systems might impact Truffle’s result. Additionally, we
compare Truffle with three different data-passing storage types:
Direct, Object Storage (S3), and Redis (KVS), using the default
configuration. The choice of these particular storage types and
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their default configurations may impact the results, as our
experiments rely on the performance of these external services.
Thus, any potential customized configuration affecting the
system, network latency, or performance issues with S3 or
Redis could affect our results.

VII. RELATED WORK

Cold Starts. SEUSS [3] suggests creating and caching locally
a snapshot to skip repetitive cold start steps, e.g., language
runtime download and setup. Xanadu [4] reduces cascading cold
start overheads by using speculative and just-in-time resource
provisioning in a workflow. However, Xanadu focuses only the
cold start mitigation which means functions are still responsible
for fetching its input data. Nevertheless, SEUSS does not
address the data passing which contributes to the function
latency significantly. Faasm [20], CWASI [28] and SAND [11]
follow a similar approach to sandbox sharing. These solutions
propose to reuse a single sandbox for highly trusted functions,
such as functions from the same workflow. As functions are
executed in a single sandbox, there is only a simple cold start.
Hence, reducing cold start from n functions in the workflow
to a single cold start process. Nevertheless, sandbox sharing
reduces the isolation and security provided by containerization.

Truffle does not reduce the cold start latency but instead
leverages it to optimize data transfer. It achieves this by
integrating SDP and CSP, reducing overall latency, and improv-
ing serverless applications’ efficiency. Cold start optimization
approaches are not seen as contenders but rather as approaches
that could be used in conjunction with Truffle.

Function Data Handling. Lambdata [14] enables Serverless
functions to create a cache of the function data so that
subsequent requests and scheduling are prioritized based on the
function and data locality. Although Lambdata has data locality
in its scheduling, it does not consider the cold start. Thus,
they do not implement input data fetching. SONIC [10] relies
on local storage and remote object storage to exchange data.
For co-located functions, it exchanges data via local storage.
For remote inter-function communication, Sonic leverages a
metadata manager to send function references e.g. IP and Path.
For persistent storage, Sonic also supports object storage such
as AWS S3.

Truffle improves the function of data handling by introducing
the Smart Data Prefetch (SDP) mechanism, which automatically
prefetches and transfers data. It reduces dependence on third-
party services and abstracts data handling from the developer.

Inter-function Communication. CloudBurst [12] relies on a
local cache on each function host to allow low latency access
to frequent data from a remote KVS. Although remote KVS is
low latency and highly scalable KVS, it proposes data exchange
via remote third-party service. Pocket [13] introduces elastic
ephemeral storage for intermediate data exchange for serverless
functions. Pocket in-memory storage offers scalability and
improves communication compared to traditional object storage
such as S3. Nevertheless, it still relies on an additional storage
solution. XDT [42] creates direct communication between the
functions by buffering the content on the sender and shipping

a content key and the sender address. However, XDT does
not consider the function cold start neither different storage
types for the function data fetching, limiting its approach to
inter-function communication.

Truffle improves inter-function communication by imple-
menting the Cold Start Pass (CSP) mechanism. This mechanism
leverages the cold start to transfer data between functions,
simplifying data transfer processes. Truffle integrates CSP with
components such as Ingress and Buffer components, enhancing
overall workflow efficiency and reducing latency in serverless
applications.

VIII. CONCLUSION & FUTURE WORK

In this paper, we present Truffle, a novel architecture that
enables serverless functions to execute parallel tasks to the
cold start and consequently optimize the overall function end-
to-end execution time. Our experimental evidence indicates
that the longest tasks during overall function execution are
cold start and data transfer. Moreover, our analysis reveals that
every task in the state-of-the-art serverless platform is executed
sequentially, even when not dependent on one another.

To address this issue, we have designed Truffle, which
facilitates efficient data passing among Serverless functions.
Truffle enables input data fetching and inter-function data
passing during the cold start, i.e., ahead of the function
execution. Furthermore, Truffle abstracts the function input
data fetching for multiple storage types and optimizes the
end-to-end function execution time.

We evaluated Truffle by running different real-world Server-
less applications, chained functions, and video analytics. Our
experiments show that Truffle improves latency up to 46% com-
pared to the vanilla state-of-the-art Serverless platforms. The
experiments also show that Serverless workflows with longer
cold start delays profit more from Truffle, emphasizing its
significance for applications that demand longer initialization,
such as machine learning or not optimized language runtimes.
Functions with longer cold starts of up to 10s profit nearly
30% more than functions with shorter cold starts of up to 2s.

In the current state-of-the-art sequential lifecycle phase
execution, important tasks to the function are rarely applied
due to increased function latency. We plan to leverage Truffle
to execute tasks important to the Serverless function, such as
serialization, deserialization, and argument validation. Server-
less functions can potentially leverage Truffle Buffer to store its
state handling and leverage the cold start to perform data-related
tasks such as serialization without increasing the latency.
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