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Abstract— Emergency Vehicle Priority (EVP) is a crucial
component in Intelligent Transportation Systems (ITS). To
improve the efficiency of emergency vehicles (EVs) at isolated
intersections in mixed traffic environments comprising human-
driven vehicles (HVs) and connected vehicles (CVs), this study
proposed a novel EVP method named Emergency Priority
Model Predictive Control (EP-MPC). Firstly, a trajectory re-
construction model based on limited CV data is developed
to estimate lane-level traffic states at an isolated intersection.
Secondly, spatial-temporal priority strategies are introduced to
ensure the right-of-way of EVs, and an algorithm based on
the Model Predictive Control (MPC) framework is designed
for optimizing EV’s trajectory. Finally, the proposed EP-MPC
method is compared with two baseline scenarios (i.e., passive
EVP, and no EVP) using the Simulation of Urban MObility
(SUMO) software. Experimental results demonstrate that the
proposed EP-MPC method can significantly reduce the delay
of EVs while maintaining the efficiency of social vehicles.
Furthermore, sensitivity analysis reveal that increasing the
CV penetration rate and traffic volume further enhances the
performance of EP-MPC.

I. INTRODUCTION

Emergency Vehicle Priority (EVP) represents a critical
component of modern Intelligent Transportation Systems
(ITS), enabling improvements in emergency rescue through
strategic traffic management. Although Emergency vehicles
(EV) are special in ITS with a series of priority rules,
reducing the response time of emergency rescue (i.e., the
temporal interval spanning from initial alarm receipt to on-
scene arrival of EVs) is still a great challenge [1], [2].
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Fig. 1. The flow chart of this research

Conventional EVP methods were proposed based on fixed
detectors (e.g., RFID), which were able to respond to the
presence of emergency vehicles upstream of the roadway
and provide appropriate priority phase at the downstream
intersection [3], [4]. These methods have been validated to
increase the emergency response efficiency to some extent.
However, their inherent dependence on reactive response
paradigms substantially diminishes their operational reliabil-
ity when EVs encounter unanticipated perturbations in traffic
flow dynamics, such as traffic congestion.

With the advancement of connected vehicle (CV) tech-
nologies, fine-grained, multi-source traffic data offer great
potential for improving the reliability and efficiency of
emergency vehicle preemption (EVP) methods [5]. Agarwal
et al. proposed a lane-level dynamics model based on V2V
communication to enhance EV performance under complex
conditions [6], while Vı́t Obrusnı́k et al. introduced a queue
discharge-based EVP strategy using V2I to improve rescue
efficiency and reduce social disruption [7]. In addition to
such temporal priority strategies, spatial strategies (e.g., lane
pre-cleaning) have also proven effective by enabling cooper-
ation with surrounding CVs [1], [8]. However, most existing
studies presume full CV penetration. Given the gradual de-
ployment of CVs and intelligent infrastructure, mixed traffic
involving both CVs and human-driven vehicles (HVs) will
persist [9]. As HVs lack connectivity and cooperation, there
is an urgent need for proactive, robust EVP strategies tailored



for mixed connected environments [10], [11], [12], [13].
To address existing research gaps, this study proposes

a novel Emergency Priority Model Predictive Control (EP-
MPC) method to enhance emergency response efficiency in
mixed connected environments. Firstly, a trajectory recon-
struction approach is developed to estimate lane-level traffic
states under varying CV penetration rates. Secondly, a com-
bination of temporal priority strategies (e.g., red truncation
and green extension) and spatial strategies (e.g., dynamic pre-
cleaning distance) is introduced to ensure EV right-of-way
at isolated intersections. Finally, an MPC-based framework
is proposed to optimize EV trajectories through signal phase
adjustments, thereby enhancing rescue efficiency while min-
imizing delays for social vehicles. The main contributions
are three-fold:

• A novel EVP method at isolated intersections named
EP-MPC is proposed for mixed traffic flow scenarios,
which is characterized by limited CV trajectories.

• A spatial temporal priority strategy is proposed and
integrated into the EP-MPC, which can make full use
of the limited road capacity.

• Compared with other baseline methods, EP-MPC can
improve the efficiency of EVs and reduce the delay of
social vehicles.

II. METHODOLOGY

The effectiveness of Emergency rescue is mainly related
to the accuracy and reliability of travel time estimation and
spatial or temporal EVP strategies. Therefore, the flow chart
of the proposed method is shown in Fig.1.

A. Trajectory Reconstruction

The social vehicles in the mixed connected environment
are mainly divided into two types: CVs and HVs. Thereinto,
the trajectories of HVs cannot be directly observed while
the trajectories of CVs can be exchanged among surrounding
CVs and infrastructures [4]. The schematic of mixed traffic
flow is elaborated in Fig.2.

Fig. 2. The schematic of mixed traffic flow

In this section, the intelligent driver model (IDM) is intro-
duced to depict the car-following behaviors of different CVs
and HVs [14]. Then, the process of trajectory reconstruction
is shown in Fig.3. Thereinto, xcv, xHV , vCV , vHV repre-
sent the matrix containing both the position and velocity data

of multiple social vehicles across different time instances.
NHV represents the number of possible trajectories in the
current spatial-temporal gaps among CVs. ã presents the
estimated acceleration. ∆x is the following distance between
two social vehicles.

As illustrated in Fig.3, after obtaining the estimated veloc-
ity and acceleration of the inserted HVs, we can compare the
estimated accelerations with those derived from kinematic
calculations. To estimate the speeds of HVs positioned
between two CVs at time interval t, the feasible region is par-
titioned into multiple independent sub-regions. Within each
feasible sub-region, the estimated speed for a potential HV
is based on an even distribution between the average speeds
of the leading CV and the following CV. Subsequently, the
speed of the ith HV among NHV is obtained by Eq. (1).

vHV,i = vn−1 (t)−
i

NHV,n + 1
(vn−1 (t)− vn (t)) (1)

Then, the number of reconstructed trajectories should
be estimated. Due to the limitation of vehicle length and
safe distance, the maximum number of inserted trajectories
between two CVs is shown in Eq. (2). Thereinto, the Nm

represents the maximum of the insertion number, xCV,n−1

represents the position of the (n− 1)th CV, which is the
leading vehicle for the nth CV.

If we obtain the estimated vehicle kinematic status of
social vehicles at each time step, the spatial distribution and
velocity profiles, which demonstrate uniform characteristics,
can be consequently inferred. As such, the velocity and the
position of the first HV following the (n−1)th CV are shown
in Eq. (3) and (4).

vHV,n,1 = vCV,n−1 −
vCV,n−1 − vCV,n

NHV,n + 1
(3)

xHV,n,1 = xCV,n−1 −
xCV,n−1 − xCV,n

NHV,n + 1
(4)

Based on the observed CV trajectories, the acceleration
of an HV (ãHV,n,1 (t)) can be calculated according to the
IDM model [14]. Simultaneously, the acceleration of an HV
can also be derived from the estimated velocity. As such,
the optimal number of inserted HVs at time interval t can
be obtained by solving the following optimization equation:

NHV,n (t) =
Argmin
NHV,n

(
ãHV,n,1 (t)− aHV,n,1 (t)

)2
(5)

On this basis, the optimal number of inserted HVs can be
obtained based on Eq. (6).

NHV,n = min [NHV,1 (t) , NHV,2 (t) , ..., NHV,n (t)] (6)

Moreover, the absolute error is used to find the best dis-
tance between the vehicles. Considering the safety condition
of HVs from surrounding vehicles, the ith HV in the nth

gap of CVs at time interval t should satisfy the following
constraints in Eq. (7):{

xn,i−1 + s0 + l ≤ xn,i ≤ xn,i+1 − s0 − l
xn,1 < xn−1 − s0 − l

,

i = 2, 3, · · ·NHV,n

(7)



Fig. 3. Data flow diagram for the algorithm

Nm = [min (
xCV,n−1 (0)− xCV,n (0)

s0 + l
,
xCV,n−1 (∆t)− xCV,n (∆t)

s0 + l
, · · · , xCV,n−1 (k∆t)− xCV,n(k∆t)

s0 + l
)] (2)

Thereinto, s0 denotes the safety gaps, l is the length of
vehicles. Then, the estimated acceleration of HVs ãn,i (t) is
derived based on the IDM, and the optimal trajectory (∆x)
can be obtained by solving the constrained nonlinear pro-
gramming problem considering the absolute error between
the estimated acceleration and the ground truth acceleration
an,1 (t) in Eq. (8).

∆x =
argmin
∆x

|ãn,i (t; ∆x)− an,1 (t) | (8)

B. Spatial-Temporal Priority Strategies for EVs

After obtaining the estimated traffic status in front of the
EV, it is necessary to design specific priority strategies for
the EV to pass an isolated intersection efficiently.

(a) Red truncation strategy

(b) Green extension strategy

Fig. 4. Schematic diagram of Temporal Priority Strategies

Regarding temporal priority strategies, while appropriate
signal control schemes can enable EVs to traverse iso-
lated intersections without stopping, abrupt signal transitions
may increase delays for social vehicles and even trigger
congestion propagation across the network. Therefore, a
well-designed temporal strategy is essential to balance EV
efficiency with overall traffic performance. In this study,
two strategies, Red Truncation and Green Extension, are
proposed to ensure EV right-of-way. Specifically, the Red
Truncation strategy is applied when an EV approaches during
a red phase, allowing the red time to be shortened within the
constraint defined in Eq. (9).

g0 < rsi < ri+1 − ri+1 min (9)

Thereinto, g0 represents the time required for EVs to pass
the intersection, rsi represents the shortened red time for
phase i, ri+1 represents the red time for phase i + 1, and
ri+1 min represents the shortest red time for phase i+1. The
signal control scheme for red truncation strategy is shown in
Fig.4(a). Besides, Green Extension strategy can be triggered
when the remaining green time of the current phase is not
enough for EVs to pass through the stop line. The extended
green time should satisfy the constraint by Eq. (10).

g0 < gei < gi+1 − gi+1 min (10)

Thereinto, g0 represents the time required for EVs to pass
the intersection, gei represents the extended green time for
phase i, gi+1 min represents the shortest green time for phase
i+1, and gi+1 represents the green light duration for phase
i+1. The signal control scheme for green extension strategy
is shown in Fig.4(b).

As for Spatial Priority Strategies, though EVs can warn
surrounding vehicles to give way by sirens, they are al-
ways hindered by unexpected disturbances (e.g., the cut in
behavior of social vehicles) [1]. To solve this problem, a
dynamic lane pre-cleaning strategy is introduced. In specific,



this priority zone is utilized to avoid the cut in behavior of
social vehicles. Social vehicles in front of the EVs should
give way meet the following constraint.

xlast − xEV > sc (11)

As shown in Eq. (11), xlast represents the position of
the vehicle in the priority lane, xEV represents the position
of the EV, and sc represents the length of the dynamic
pre-cleaning zone. It is important to note that only CVs
can receive the information from EVs and infrastructures
(e.g., warning instruction) via V2V and V2I communication
respectively. It is also assumed that all social vehicles are
willing to give way to the EV as long as the target lanes
remain a safety clearance for lane changing. Only CVs can
receive the instructions sent by the EV or the infrastructures
through V2X technologies. The schematic diagram of the
proposed Spatial Priority Strategies is illustrated in Fig.5.

Fig. 5. Schematic diagram of emergency Spatial Priority Strategy

C. MPC Controller
In this section, EVP method in the connected environment

is designed based on model predictive control (MPC) frame-
work, which contains three main steps: model prediction,
feedback correction and rolling optimization. The core idea
of MPC is to make real-time prediction based on the rolling
of prediction steps so as to achieve the purpose of dynamic
adjustment and optimization [15]. The process of EVP
method considering the Spatial-temporal priority strategies
is shown in Fig.6.

Compared to the red truncation strategy, the application of
green extension strategy will not change the absolute phase
difference corresponding to the green light starting position
at each intersection within the arterial signal coordination
control system [4]. Therefore, the green extension strategy
is preferred in the algorithm. ∆rb represents the compress-
ible red time. tq l represents the predicted time for queue
dissipation on the subjective lane l. After reconstructing the
trajectories of HVs in the road segment, IDM can be further
used to predict the trajectories of surrounding vehicles [16].
Assume that there are ni vehicles in lane i when the EV
enters the isolated intersection. Then, the travel time tni

for each social vehicle in lane i can be predicted by IDM
after obtaining their accelerations. In specific, if the leading
vehicle in lane i can pass through the intersection at free-flow
speed, its acceleration can be predicted by Eq. (12).

ai (t) = Ai

[
1−

(
vi
vf

)δ
]
. (12)

Then, dynamics equations are established to model the
driving behavior of EVs under the proposed MPC frame-
work. The vehicle dynamics equations of EVs are shown in

Eq. (13) and (14).

Vt+1 = Vt + at × b (13)

Xt+1 = Xt + Vt × b+
1

2
at × b2 (14)

Thereinto, b denotes the sampling interval, Xt denotes the
vehicle position at time t, Xt+1 denotes the vehicle position
at time t+1, at is the acceleration at time t, and Vt denotes
the vehicle velocity at time t. Then the operating state-space
equation is expressed as:[

Xt+1

Vt+1

]
=

[
1 b
0 1

] [
Xt

Vt

]
+

[
b2

2
b

]
at (15)

The acceleration at of the EV is the control variable,
and the position Xt and the velocity Vt are state variables,
respectively. Since the primary target of emergency rescue is
to improve the efficiency of EVs, the optimization function
and the safety constraints of EVs in MPC controller is shown
in Eq. (16) and (17).

F = min
∑

t=t0
(Vt − Vt+1)

2 (16)

s.t.

 amin ≤ at ≤ amax

amin = −4 m/s2, amax = 3 m/s2

s0 ≥ 5
(17)

Thereinto, t0 represents the initial moment, and the initial
velocity of the EV is close to the free-flow velocity Vfree,
which is 18 m/s in this study. amin and amax represent
the acceleration constraint of the EV, s0 ≥ 5 represents
the minimum safety gap of the EV. Furthermore, all state
variables in a pre-set time domain and the controlled variable
at are combined to construct the vector y

′
, and calculate the

expected priority time for the EV.
Moreover, define c as the control time, ∆T as the

maximum control time domain of EVs, pn as the last
predicted time domain before the emergency vehicle passes
the intersection stop line. Then the control time c can be
calculated by Eq. (19).

c =

[
pk
q

]
, q = 1, 2, ...,∆T ; k = 1, 2, ..., n (19)

Subsequently, Eq. (15), (16), and (17) can be transferred to
a quadratic programming type function and solved by Active
Set Method (ASM) [17].

III. RESULTS AND DISCUSSION

A. The description of Simulation scene

To verify the effectiveness of EP-MPC, Simulation of
Urban MObility (SUMO) software is used to simulate the
traffic flow in the isolated intersection with two-way four-
lane roads. Each inlet contains a straight-left turn lane and
a straight-right turn lane. All the simulated vehicles are
generated with random parameters and a certain percentage
of them are selected to represent CVs (i.e., the trajectories
can be output by SUMO). The length of experimental road
segment is 800m. A two-phase fixed signal scheme with a
cycle of 120s and an averaged green time (i.e. 60s) is applied.



Fig. 6. The process of EVP based on the MPC controller

y′ =
[
Xt0 Vt0 nXt0+b Vt0+b ... Xt0+b×c Vt0+b×c at0 ... at0+b×c−b

]
(18)

B. Results of the proposed method

The simulation step is set to 0.1 s. The parameters of the
Intelligent Driver Model (IDM), which are employed for
estimating and predicting microscopic traffic states, are pre-
calibrated based on empirical data. The specific values are as
follows: maximum acceleration Ai = 2.6, acceleration ex-
ponent δ = 4, comfortable deceleration bi = 4.5, minimum
gap to stationary objects s0e = 3, desired velocity vf = 15,
desired time headway Ti = 1, and minimum desired gap to
moving objects s0s = 2.5.

TABLE I
RESULTS OF EMERGENCY VEHICLE UNDER DIFFERENT VOLUME

Proposed Method Passive priority strategy No Priority
Travel time Delay Travel time Delay Travel time Delay

300 86 537.3 93 643.2 103 178.6
450 94 382.1 99 450.4 112 292.7
600 97 677.8 103 742.3 122 486.2
750 102 1150.9 105 1300.4 137 979
900 105 1819.7 111 2128.7 144 1705.9

Then, the proposed method is evaluated against two
baseline approaches: (1) Passive priority strategy, (2) No
priority strategy. Performance comparisons are conducted by
measuring travel time and intersection delay under various
traffic flow density scenarios, with a constant connected
vehicle (CV) penetration rate of 50%.The results of the
simulation experiment are shown in TABLE I, with all values
expressed in seconds. As the traffic volume increases, the
overall speed of the emergency vehicles decreases, the travel
time increases, and the intersection delay increases. Both the
traditional algorithm and the passive priority algorithm show
the phenomenon of queuing as well as driving at low speed.
However, the proposed method can effectively improve the
emergency rescue efficiency while better reducing the extra
delay caused by signal transition.

C. Sensitivity Analysis

In this study, the effects of CV penetrance rate and traffic
volume are further investigated by a sensitivity analysis.
The results of trajectory reconstruction under four typical
parameter combinations are shown in Fig.7.

Fig. 7. The results of trajectory reconstruction

It can be experientially seen that when traffic volume
and CV penetrance rate increase, the effect of trajectory
reconstruction improves consequently. The errors of trajec-
tory reconstruction in different traffic volume (i.e., 300, 450,
600, 750, 900 veh/h) and CV penetration rates (30%, 40%,
50%, 60%, 70%) are shown in TABLE II and TABLE III.
Evaluation criterias include Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Root Mean
Square Error (RMSE).

In TABLE II, it can be seen that the greater the traffic
volume, the better the effect of trajectory reconstruction (i.e.,
low number error and position error). In TABLE III, with the
increase of CV penetration rate, the estimated number error
and position error gradually decreased. Overall, the proposed
method can obtain a sound trajectory reconstruction effect,



even in low CV penetration rate (i.e., 20%).

TABLE II
MAE AND MAPE IN DIFFERENT TRAFFIC VOLUME

Number of Inserted HVs Position of Inserted HVs
MAE MAPE MAE RMSE

300 2.61 7.12 4.21 8.13
450 2.11 6.43 4.10 8.04
600 1.81 6.23 3.22 7.35
750 1.73 5.89 2.88 7.12
900 1.31 5.44 2.76 6.11

TABLE III
MAE AND MAPE IN IN DIFFERENT CV PENETRATION RATES

Number of Inserted HVs Position of Inserted HVs
MAE MAPE MAE RMSE

10% 2.13 7.12 3.44 8.13
20% 1.54 6.33 3.08 7.28
50% 0.97 5.27 2.18 6.14
60% 0.63 4.66 1.55 5.67
70% 0.42 3.22 1.03 5.03

Finally, the emergency rescue efficiency and intersection
delays in different CV penetration rates and traffic volume
are further obtained by 10-time repeating experiment, and
the heatmaps are shown in Fig. 8.

Fig. 8. Heat map of emergency rescue efficiency and intersection delays

Thereinto, Fig. 8(a) shows that as the volume of traffic
increases, so does the travel time for emergency vehicles.
This is consistent with the characteristics of the macroscopic
traffic flow. Besides, as the penetration rate increases, the
travel time of the EV decreases as expected. Then, The
effectiveness of EP-MPC on intersection delays is further
analyzed in Fig. 8(b). The difference between the simulated
delay value under proposed method minus that under base-
line method for different traffic volume and CV penetration
rates scenarios are illustrated in the heat map. With the
increase of traffic volume, the simulation results of the
proposed method show more superiority.

IV. CONCLUSIONS

The proposed EP-MPC effectively optimizes EV trajecto-
ries at isolated intersections in mixed connectivity environ-
ments. Simulations in SUMO, under simplified assumptions,
validate its superiority. Results show a significant reduction
in EV travel time, especially under high traffic volumes.

Additionally, the method offers dual benefits: improving EV
response time while minimizing impacts on social vehicles.
Future work will involve validation using real road networks
and traffic data, and extending the method to arterial and
network-level scenarios.

REFERENCES

[1] J. Wu, B. Kulcsár, S. Ahn, and X. Qu, “Emergency vehicle lane pre-
clearing: From microscopic cooperation to routing decision making,”
Transportation Research Part B: Methodological, vol. 141, pp. 223–
239, 2020.

[2] H. Su, Y. D. Zhong, J. Y. Chow, B. Dey, and L. Jin, “Emvlight: A
multi-agent reinforcement learning framework for an emergency vehi-
cle decentralized routing and traffic signal control system,” Transporta-
tion Research Part C: Emerging Technologies, vol. 146, p. 103955,
2023.

[3] P. Rosayyan, J. Paul, S. Subramaniam, and S. I. Ganesan, “An optimal
control strategy for emergency vehicle priority system in smart cities
using edge computing and iot sensors,” Measurement: Sensors, vol. 26,
p. 100697, 2023.

[4] J. Yao, K. Zhang, Y. Yang, and J. Wang, “Emergency vehicle route ori-
ented signal coordinated control model with two-level programming,”
Soft Computing, vol. 22, pp. 4283–4294, 2018.

[5] Y. Chen, Y. Xie, C. Wang, S. Xu, and L. Wu, “Temporal dependency
of forward collision warning effectiveness: A functional framework
for speed profiles after receiving warnings,” in 2024 IEEE 27th In-
ternational Conference on Intelligent Transportation Systems (ITSC),
pp. 1793–1798, 2024.

[6] A. Agarwal and P. Paruchuri, “V2v communication for analysis of
lane level dynamics for better ev traversal,” in 2016 IEEE Intelligent
Vehicles Symposium (IV), pp. 368–375, 2016.

[7] V. Obrusnı́k, I. Herman, and Z. Hurák, “Queue discharge-based
emergency vehicle traffic signal preemption,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 14997–15002, 2020.

[8] J. Gao, M. Li, L. Zhao, and X. Shen, “Contention intensity based
distributed coordination for v2v safety message broadcast,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12288–
12301, 2018.

[9] Z. Zhang and X. T. Yang, “Analysis of highway performance under
mixed connected and regular vehicle environment,” Journal of Intel-
ligent and Connected Vehicles, vol. 4, no. 2, pp. 68–79, 2021.

[10] Y. Chen, C. Wang, and Y. Xie, “Modeling the risk of single-vehicle
run-off-road crashes on horizontal curves using connected vehicle
data,” Analytic Methods in Accident Research, vol. 43, p. 100333,
2024.

[11] S. Xu, M. Li, W. Zhou, J. Zhang, and C. Wang, “An evolutionary game
theory-based machine learning framework for predicting mandatory
lane change decision,” Digital Transportation and Safety, vol. 3, no. 3,
pp. 115–125, 2024.

[12] Y. Chen, Y. Xie, C. Wang, L. Yang, N. Zheng, and L. Wu, “Time-
dependent effect of advanced driver assistance systems on driver
behavior based on connected vehicle data,” Analytic Methods in
Accident Research, vol. 45, p. 100370, 2025.

[13] S. Xu, X. Xie, C. Wang, and J. Yan, “On the safety effects of
off-peak hour speed characteristics of urban arterials,” Multimodal
Transportation, vol. 4, no. 2, p. 100206, 2025.

[14] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” 2000.

[15] P. Scheffe, T. M. Henneken, M. Kloock, and B. Alrifaee, “Sequential
convex programming methods for real-time optimal trajectory plan-
ning in autonomous vehicle racing,” IEEE Transactions on Intelligent
Vehicles, vol. 8, no. 1, pp. 661–672, 2023.

[16] L. Zhao, W. Zhou, S. Xu, Y. Chen, and C. Wang, “Multi-agent trajec-
tory prediction at unsignalized intersections: An improved generative
adversarial network accounting for collision avoidance behaviors,”
Transportation Research Part C: Emerging Technologies, vol. 171,
p. 104974, 2025.

[17] C. Wang, Y. Dai, and J. Xia, “A cav platoon control method for
isolated intersections: Guaranteed feasible multi-objective approach
with priority,” Energies, vol. 13, no. 3, 2020.


