
PatRICIA – a Novel Programming Model for IoT
Applications on Cloud Platforms

Stefan Nastic, Sanjin Sehic, Michael Vögler, Hong-Linh Truong, and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology, Austria

Email: {lastname}@dsg.tuwien.ac.at

Abstract—Cloud computing technologies have recently been
intensively exploited for the development and management of
large-scale IoT systems, due to their capability to integrate diverse
types of IoT devices and to support big IoT data analytics in
an elastic manner. However, due to the diversity, complexity
and scale of IoT systems, the need to handle large volumes of
IoT data in a nontrivial manner, and the plethora of domain-
dependent IoT controls, programming IoT applications on cloud
platforms still remains a great challenge. To date, existing work
neglects high-level programming models and focuses on low-
level IoT data and device integration. In this paper, we outline
PatRICIA, which aims at providing an end-to-end solution for
high-level programming and provisioning of IoT applications
on cloud platforms. We present a novel programming model,
based on the concept of intent and intent scope. Further, we
introduce its runtime for dealing with the complexity, diversity
and scale of IoT systems in the cloud. Our programming model
defines abstractions to enable easier, efficient and more intuitive
development of cloud-scale IoT applications. To illustrate our
programming model, we present a case study with real-world
applications for controlling and managing electric vehicles.

I. INTRODUCTION

Advances in the Internet of Things (IoT) have provided
a global infrastructure of networked physical entities, able
to monitor and control their physical status and surrounding
environment, as well as to expose themselves via data streams
and services over the network [10], [17], [19]. Various enter-
prise systems, e.g., smart building management system [6] and
smart healthcare[14], utilize IoT applications to optimize key
tasks of their business processes. Recently, cloud computing
has become the key enabler for large-scale IoT systems.
Researchers (e.g., [21], [16], [23]) recognize the benefits of
exploiting cloud computing for IoT systems, as it could offer
better solutions to support IoT applications in terms of device
virtualization, provisioning of virtual sensors and actuators,
and providing suitable execution infrastructure for resource-
intensive IoT applications.

However, to enable the development of cloud-scale IoT
applications, we need high-level abstractions and mechanisms,
which support scalable and efficient programming with diverse
device services and raw data streams on cloud platforms.
There are several approaches, which rely on service-oriented
computing (SOC) principles to abstract device data- and
actuation-points, e.g., [15]. They deal with heterogeneous
devices by enabling direct, service-based access to devices and
provide mechanisms for service discovery, provisioning and
management. However, their support is usually restricted to the
device-level services. Recently, several interesting attempts to
apply cloud computing technologies in large-scale IoT systems
have emerged, e.g., [23], [21]. They mostly focus on data
and device integration by utilizing cloud infrastructure and
virtualizing individual sensors and actuators as services in the

cloud. Although these approaches help simplify the develop-
ment of the IoT applications, the development process mostly
involves composing these device-level services into admissible
control sequences or data processing schemes, which makes
the development of IoT applications highly complex, and po-
tentially limits the programming scale of such applications on
cloud platforms. Concrete abstractions and mechanisms, which
enable efficient, more intuitive and scalable development of
cloud-based IoT applications still remain underdeveloped.

In this paper we present a novel programming model for
IoT applications on cloud platforms. It is one of the funda-
mental elements of our PatRICIA framework. PatRICIA aims
to provide an ecosystem for development and provisioning
of cloud-scale IoT applications. The programming model de-
fines high-level programming constructs and operators, which
encapsulate domain-specific knowledge (domain model and
behavior) and raise the level of programming abstraction,
enabling developers to implement cloud-scale IoT applications
without worrying about the complexity of low-level device
services and raw sensory data streams. This paper contributes
our programming model, which enables easier, efficient and
more intuitive development of cloud-scale IoT applications.

The remainder of the paper is organized as follows. In
Section II, we present the motivating scenario and the key
research challenges. Section III outlines the PatRICIA frame-
work and Section IV presents the programming model. Section
V describes the implementation and evaluation of our system.
Section VI compares our approach with the related research.
Finally, Section VII concludes the paper and provides an
outlook on future research.

II. MOTIVATION AND RESEARCH CHALLENGES

A. Motivating Scenario
Our work is motivated by a real-world scenario in remote

fleet vehicles management in environments, such as golf
courses, university campuses and airports. The scenario is
based on a case study we conducted in the Pacific Controls
Cloud Computing Lab1 (PC3L). In the case study we have
identified three stakeholders: vehicle manufacturer, distributors
and environment managers. To optimize tasks, crucial for their
business processes, the stakeholders can utilize IoT applica-
tions and services, which remotely, in near real-time monitor
and control the underlying physical assets, in this case the fleet.
To enable remote access to vehicles’ data and control points
each vehicle has an on-board device, acting as a gateway to
various sensors and actuators installed in the vehicle.

The IoT applications are characterized by a reactive be-
havior. They receive some (monitoring) information, e.g., a
change in vehicles’ operation and, as a response, perform
(control) actions on the vehicles. Typically, these applications

1http://pcccl.infosys.tuwien.ac.at/

2013 IEEE 6th International Conference on Service-Oriented Computing and Applications

978-1-4799-2701-2/13 $31.00 © 2013 IEEE

DOI 10.1109/SOCA.2013.48

53

2013 IEEE 6th International Conference on Service-Oriented Computing and Applications

978-1-4799-2701-2/13 $31.00 © 2013 IEEE

DOI 10.1109/SOCA.2013.48

53

monitor vehicle’s status like maintenance and fault history,
battery health, engine status, location, tire pressure and so
forth. For example, an application needs to determine if a
vehicle is consuming more energy compared to other vehicles
in the fleet, i.e., to detect high energy fault. To this end,
we can utilize power- and odometer from fleet vehicles and
correlate this information in order to detect the fault. Further,
our applications react to changes, e.g., in vehicle operation, by
taking appropriate actions. For example, if an energy fault is
detected the application can decide to notify the driver and the
golf course manager via available devices, e.g., a smartphone
or to put the vehicle in a reduced energy mode, by setting
speed, RPM and transmission limits, and wait for the vehicle
to return to the base where it can be further examined.

To perform the above-mentioned tasks, among other things,
the IoT applications require complex and expensive analytics
and have high demand on storage and communication re-
sources. Because these applications connect to and deal with a
large number of vehicles, which are distributed across different
golf courses, they must be able to handle vast amounts of data
efficiently and need to have a global view of the distributed
fleet. To support these requirements, it is natural to execute
these applications in the cloud, as it has capabilities to connect,
provide access, and a unified global view of the geographi-
cally distributed fleet. The applications are envisioned to run
continuously, but they can be elasticaly scaled down in off-
peek times, e.g., during the night, when most of the vehicles
remain dormant. In this case, the elastic nature of the cloud
can provide advantages in terms of cost reductions and greener
IoT computing, e.g., because of reduced energy consumption.
Due to the multiplicity of the involved stakeholders with
diverse requirements and business models, cloud-scale IoT
applications need to support different and customizable usage
experiences. Also here the cloud computing is essential, as
it potentially offers new, possibly cross-domain, application
opportunities and enables flexible business and usage models.
Therefore, in this context, the cloud plays a crucial role, as
existing enterprise-specific platforms are hardly capable to
meet all of these requirements.

B. Research Challenges
We identify several challenges regarding the development

of the cloud-scale IoT applications, as a developer needs to:
(RC1) Work with raw sensory data streams and write com-
plex queries and event processing schemes (monitor tasks).
(RC2)A developer needs a good knowledge about diverse low-
level device services and implications of invoking these atomic
services, to be able to establish correct dependencies between
them and compose them into admissible control sequences
(control tasks). (RC3) The cloud-scale IoT applications exe-
cute in very dynamic environments and interact with hundreds
or thousands of physical entities. Therefore, monitoring and
controlling these entities in a scalable manner is another chal-
lenge for developers of IoT applications on cloud platforms,
because applications need to dynamically identify the scope
of their actions, depending on the task-at-hand. (RC4) Finally,
due to dynamicity of environments, diversity of devices, ad
hoc requirements of diverse stakeholders, and hardware or
network failures, developing security-, privacy-, safety-, cost-
and quality-aware IoT applications is a very challenging task
without adequate runtime mechanisms to support it.

Figure 1 visualizes the structure of a cloud-scale IoT

���������	
�

������
���	

��
	

��
��
��
�	
��

�	��	�
��
�����������
���	

�	��	�
�	
��	

�	���
�����	
��������	������ 		��!"�#�$���	�%&

�'���������	

�	��	�
�	
��	

�	��% $�%

�	
��	������

�(�	
���
�	
��	

�	��%

�	��	�
�	
��	

�	��	�
�	
��	

$�%

��	��
)	'��	�*+)	'��	�,

)	'��	�-.

��	��
)	'��	�*+

)	'��	�-.

���������	

���
����
�	���

�	
��	������

/�01�	(�
�	��	

Fig. 1: Example of a cloud-scale IoT application.

application. We notice that applications define custom business
logic, but can utilize similar monitor and control tasks and
need to apply them on dynamically defined scopes to manage
the entities in a scalable manner. Therefore, these tasks can
be modeled and represented, in such a manner to enable their
reuse across different cloud-scale IoT applications. We show
that most of the current approaches (see Section VI) that sup-
port the development of IoT applications deal with device and
data integration and focus mostly on the Device virtualization
layer or the layers below (see Figure 1), thus, application
developers have to deal with much of the complexity, diversity
and scale of IoT applications executed on cloud platforms.

III. PATRICIA – A PROGRAMMING FRAMEWORK FOR

IOT APPLICATIONS

A. Requirements
Contemporary cloud techniques, e.g., virtualization, elastic

scaling, resource and tenant management play a crucial role
in highly dynamic and heterogeneous IoT systems. Although,
they enable us to virtualize and connect vast amounts of
devices, provide a unified view on IoT infrastructure and offer
theoretically unlimited processing and storage capabilities,
we still need to reduce the complexity and enable scalable
development of IoT applications. Therefore, this requires us
to rethink the existing development, deployment, execution
and provisioning models for IoT applications and infrastructure
resources.

The main aim of the PatRICIA (PRogramming Intent-
based Cloud-scale IoT Applications) framework is to define an
ecosystem, which provides an end-to-end solution for cloud-
scale IoT applications. This includes providing a programming
model and development tools, application execution platform,
big IoT data management techniques, and mechanisms to
provision, operate and manage IoT infrastructure resources.
The core idea of the PatRICIA is to enable the development
of value-added IoT applications, which are executed and
provisioned on cloud platforms but leverage data from different
sensor devices and enable timely propagation of decisions,
crucial for business operation, to the edge of the infrastructure.

Programming cloud-scale IoT applications requires differ-
ent skills and backgrounds, e.g., working with low-level hard-
ware, developing enterprise applications and having knowledge
about the domain of interest. Therefore, our framework needs
to provide different logical views on the development process
and enable different developer roles to coherently encapsulate
their expertise and focus their development effort. We noticed

5454

that most of the tasks performed by the applications are
generic, in the sense, they capture knowledge and industrial
best practices in the domain. Therefore, they need to be
represented as generic components that can be easily reused.
To enable working with these generic tasks in a cloud-scale
manner, we need to enable automatic task instantiation for
developer-defined scopes, e.g., a golf course or the fleet. To
keep our programming model stable and easily extensible, we
need to enable late runtime binding of the tasks, i.e., decouple
task representation from the implementation of its behavior.

Different runtime mechanisms are needed to enable the
applications to adapt to changes in quality and costs but also to
guarantee safety and security for both users and devices. Fur-
ther, we need to provide code-distribution techniques, which
will allow cloud-scale IoT applications to utilize the edge of
the infrastructure (e.g., gateways) as the additional resources,
e.g., processing and storage. Application deployment and in-
frastructure administration need to become fully automated,
due to the scale of IoT systems and because domain-specific
verticals are increasingly becoming refactored, enabling devel-
opment of cross-domain cloud-scale IoT applications.

Finally, the cloud-scale IoT applications utilize big IoT
data, thus developers require high-level programming tech-
niques that enable scalable and flexible access and analytics
of the big IoT data. Therefore, the major requirements for our
framework include:

1) Providing a programming model to raise the level of pro-
gramming abstraction by decoupling domain knowledge
implementation from its representation and usage.

2) Providing a cloud-based application execution environ-
ment and the supporting runtime mechanisms.

3) Providing development tools, such as testing and staging
environments to fully support application development
lifecycle.

4) Policy-based automation to enable development of
security-, privacy-, safety-, cost- and quality-aware ap-
plications.

5) Enabling cloud-scale IoT applications to define and adapt
their execution environment, by enabling dynamical, on
demand provisioning of IoT infrastructure resources.

6) Providing high-level programming techniques and run-
time mechanisms for big IoT data management and
analytics.

In this paper we focus primarily on the requirements 1 and
2 and present the design and evaluation of the components to
support them.

B. PatRICIA overview
Figure 2 gives an overview of PatRICIA’s architecture. Our

framework architecture is based on SOA design principles
which enable flexible, adaptable and evolvable architecture.
The modularity of the framework enables extending the current
prototype with future concepts and allows flexible configuring
and scaling of individual components atop cloud infrastructure.

Development support layer contains development tools,
which are needed to support application development lifecycle
and enable provisioning of cloud-scale IoT applications. The
programming model is the most important component of this
layer as it enables development of cloud-scale IoT applications.
ApplicationManager is responsible for application configura-
tion, deployment and licensing. Also, this layer integrates a
testing environment for the cloud-scale IoT applications.

2����0	�����	0�

�
�����	
���
��
$�����11�
��0	'����0�

��
��
�

0
��
��
	0

	�
�

��3���
	
��	����	���

����	�����	��

��0�������
�
�

�	��	��00������������	

4���
�	�	��

�	���

������/�

0
0
��
�
��
��
��
�3

�
��

�
�
�

	

"��
�
�
5����	

4���
5����	

$1
1�
�
��
��
��

5
��
��
	

/�
��
��
�	

�

5
��
��
	

�	����������

��������
���
�� ��

������!����������� ��
�	
��	��
5�11���

�	��	�
5����	

�	
��	�
�����	
�

"�����	

��
����

��
��

�	
��

�

��

�
��

	�
���
�

��

�����
��
�����
�

���������	

�
��
�

�	3��	

��1	5����	

4
��������
5���	

/�

��	�����������	
�
�����	���

�	
��	�#���

�	
��	�#���

�
��
��
$
��
��

��
�

�

��
��
���
�

��
��
	

��
�

�
��

��
�
��
��

���
�

��

#���
�������

2	������%��

�%
 �
��
��

��
 �

�

�����������
	
	��

��	�����	��
����	�	�

//4) �0�
�1'��	

���6"��

Fig. 2: PatRICIA architecture overview.

Cloud runtime systems layer includes the RuntimeCon-
tainer, which implements supporting mechanisms for our
programming model and provides an execution environment
for the applications. The ExecutionManager is responsible to
monitor applications and the RuntimeContainer, and provide
mechanisms to elastically scale them during runtime. The
CoreServices contain a variety of runtime mechanisms and
services which are needed by the PatRICIA framework. For
example, the ContainerManager is used to configure the Run-
timeContainer and deploy different policies. Further, the Policy
management component provides mechanisms to specify and
enforce these policies, e.g., costs, privacy, security and safety.
The TaskRegistry is used to store task templates and their
metadata. The Data management component provides storage,
manipulation and analytics mechanisms for the sensory data.
It also provides a data quality assurance service, accessible to
the runtime container to perform data quality checks.

Data and device integration layer includes Device-services
layer, which is the IoT device virtualization and management
layer of the PatRICIA framework and it underpins monitor
and control tasks. It contains Device communication layer that
implements different connectors, which encapsulate device-
specific APIs, communication protocol and enable device-
cloud connectivity. The ServiceMapping component wraps a
physical device and exposes it as a service which defines
push, poll, pub and sub methods, providing a communication
interface with the devices. DeviceManager is responsible for
device management, e.g., to detect newly connected devices.
The ServiceDiscovery component enables discovering and
registering device-services. Finally, Persistence layer contains
NoSQL and relational database, which are used to store the
sensory data and other information, needed by the PatRICIA
framework.

The PatRICIA framework defines two logical views on the
application development process and provides support for the

5555

domain expert and application developer roles. Domain experts
(Figure 2 right-hand side) use device-services provided by the
PatRICIA framework to define domain model and common
monitor and control tasks, which form domain libraries. In
the rest of the paper, however, we mostly focus on the support
provided to the application developer role (Figure 2 top-left),
by providing the programming model, runtime container
and a prototype implementation of a vehicle management
domain library.

IV. INTENT-BASED PROGRAMING MODEL FOR

CLOUD-SCALE IOT APPLICATIONS

A. Basic programming constructs and operators
Our programming model defines constructs and operators,

used by developers, to write cloud-scale IoT applications. They
enable the developers to work with predefined control and
monitor tasks that are provided in the domain library. A control
task is any permissible sequence of actuating steps which
can be used to control physical devices. Further, a monitor
task includes processing, correlation and analysis of sensory
data streams to provide meaningful information about the state
changes of the underlying environment.

At the application level, we provide explicit representation
of these tasks via Intents, i.e., developers write Intents to
configure and invoke the tasks. When a task is invoked,
it is automatically instantiated for the supplied IntentScope.
Developers use IntentScope to delimit the range of an Intent.
For example, a developer might want to code the expression:
”stop all vehicles on hole 1”. In this case, ”stop” is the
desired Intent, which needs to be applied on a IntentScope
that encompasses all vehicles with the location property ”hole
1”. In our programming model Intent and IntentScope are first-
class entities. This means that they can be stored in variables,
used in expressions and passed as parameters to functions.

1) IntentScope: IntentScope is an abstraction, which rep-
resents a group of physical entities (e.g., vehicles), which
share some common properties, e.g., context. More precisely,
it is a set of software entities on the cloud platform, which
virtualize corresponding physical entities. Thus, IntentScopes
are determined on the cloud platform, but they enable de-
velopers to dynamically delimit physical entities on which
an Intent will have an effect. In reality there are infinitely
many scopes, which can be defined by the applications and
can include hundreds of diverse, geographically distributed
vehicles. Therefore, we provide mechanisms to dynamically
define and work with IntentScopes on the cloud platform.

To define an IntentScope developers specify properties,
which need to be satisfied by the physical entities to be in-
cluded in the scope. For example, IntentScopes can be defined
based on a behavior, e.g., ”all vehicles exceeding speed limit”,
a state (”all vehicles with low battery”) or a static feature
(”all vehicles with a price over ...”). To enable IntentScope
bootstrapping, we provide a special type of IntentScope, which
is called GlobalScope. It defines the maximal scope for an
application and usually contains all physical entities admin-
istered by a stakeholder at the given time. Therefore, it is
reasonable to assume that the GlobalScope is slow-changing
over time and it can be configured by a user, e.g., a golf
course manager. In PatRICIA the GlobalScope is represented
as a global variable, which can be directly referenced by an
application. Contrary, the minimal IntentScope, which can be
referenced by an application is a single entity. Our program-

�
��
�

���

���

��

��� ���

�	
�����������
�� �	��

������
�	��

&����
������
'���
(�)�����

��������

����

���	
���

�
��
���	��#���

����������

Fig. 3: Intent structure.

ming model allows IntentScopes to be defined explicitly and
implicitly. To explicitly define an IntentScope, a developer can
manually add the entities to the scope by specifying their
Ids. Implicit definition of the scope is usually performed by
recursively pruning the GobalScope and/or combining two or
more IntentScopes.

Formally, we use the well-known set theory to define
IntentScope as a finite, countable set of entities (set elements).
The GlobalScope represents the universal set, denoted as
Smax, therefore, ∀S(S ⊆ Smax), where S is an IntentScope,
must hold. Further, for each entity E in the system general
membership relation ∀E(E ∈ S|S ⊆ Smax), must hold.
Therefore, an entity is the unit set, denoted as Smin. Further,
empty set ∅ is not defined, thus, applying an Intent on it results
with an error. Finally, a necessary condition for an IntentScope
to be valid is: IntentScope is valid iff it is a set S, such that
S ⊆ Smax ∧ S �≡ ∅ holds. Equation 1 shows operations used
to define or refine an IntentScope.

S = Smin|Smax| ⊆cond S | S ∪ S | S ∩ S | S \ S (1)

The most interesting operation is ⊆cond S. It is used to
find a subset (Ŝ) of a set S, which satisfies some condition,
i.e., E ∈ Ŝ | E ∈ S ∧ cond(E) = True. In this context
cond can be True or False depending if an entity satisfies
specified property, e.g., if it displays ”EnergyFault”. To define
the cond developers can use any monitor task defined in our
domain library and need to provide a parametrized condition
expression, e.g, ”EnergyFault==True”. Further, we provide the
common operations on sets, i.e., ∪,∩ and \, which have their
traditional meaning.

By introducing IntentSopes at the application level, we
enable development of IoT applications in a scalable manner
by shielding the developers from directly referencing the vast
number of diverse physical entities and enabling them to
dynamically delimit the range of Intents. With this, we address
the (RC3) from Section II-B.

2) Intent: Intent is a data structure describing a specific
task which can be performed in a physical environment.
In reality, Intents are processed and executed on the cloud
platform, but enable monitoring and controlling of the physi-
cal environments. Based on the information contained in an
Intent, a suitable task is dynamically selected, instantiated
and executed on the cloud platform. Our framework translates
the Intent into a sequence of actuation or data processing
steps and maps them on the underlying physical devices
(see Section IV-C2). Depending on the task’s nature, we
distinguish two different types of Intents: ControlIntent and
MonitorIntent. ControlIntents enable applications to provision,
operate and manage the low-level components. They abstract

5656

the underlying devices and provide a high-level representation
of their functionality. MonitorIntents are used by applications
to subscribe for events from the underlying environment and
to obtain and provision devices’ context.

Figure 3 shows the Intent structure and its most relevant
parts. Each Intent contains an id, used to correlate invocation
response with it or apply additional actions on it. Additionally,
it contains a set of headers, which specify meta information
needed to process the Intent and bind it with a suitable task
during the runtime. Among other things, headers carry intent’s
name and a reference to an IntentScope. Further, an Intent can
contain a set of attributes, which provide information, such as
costs, quality, privacy or security requirements. They describe
the Intent to more detail and are used by the runtime to select
the best matching task instance in case there are multiple
implementations supporting the Intent. Finally, Intent can
contain data, which is used to configure the tasks and devices
or supply additional payload, e.g., a notification message.

To perform an IoT control or to subscribe for relevant
events, developers only need to define and configure Intents.
This allow them to communicate to the system what needs to
be done, instead of worrying how the underlying devices will
perform the specific task. Additionally, by supporting dynamic
binding of the tasks, we enable development of loosely coupled
applications that are independent of the specific task imple-
mentation and guaranty stability (e.g., backward compatibility)
and enable extensibility of our programming model. Therefore,
Intents shield the developers from the complexity of IoT
controls and complex data processing, as well as from the
diversity of IoT devices and physical environments, addressing
research challenges (RC1& RC2) .

3) Coupling Intents with IntentScopes: To enable runtime
coupling of Intents and IntentScopes we need to fully define
a validity of IntentScopes. First, we examine applicability
of an Intent on Smin (see Section IV-A1). Obviously, this
comes down to applying the Intent on an entity. Therefore,
apply(I, Smin) = apply(I, E)|E ∈ Smin, where I is an
Intent. Further, apply(I, E) is true if an Intent can be in-
stantiated for the entity and it is determined by the system at
runtime, by examining the mapping and filter conditions (see
Section IV-C3). Therefore, we can apply an Intent on Smin iff
we can apply it on the entity E. Further, because each set Sn

can be defined as union of unit sets (Si
min), Sn =

⋃n
1 S

i
min,

we observe applying an Intent can be defined recursively, i.e,
apply(I, Sn) ≡

∧n
1 apply(I, S

i
min). Therefore, we can apply

an Intent on an IntentScope if we can apply it on its all subsets.

Intent eFault = Intent.newMIntent("EnergyFault");
//monitor whole fleet
eFault.setScope(IntentScope.getGlobal());
notify(energyFault,this);//invoke task
//callback function called on event arrival
public void onEvent(Event e){//perform some action}

Listing 1: Example usage of MonitorIntent and GlobalScope.

IntentScope cs = delimit(IntentScope.getGlobal(),
Cond.isTrue(eFault)); //eFault defined in Listing1

//Define and configure Intent
Intent eCons = Intent.newCIntent("ReduceEnergy");
eCons.setScope(cs);//set intent scope
eCons.set("speed").value("5");
eCons.set("RPM").value("1100");
send(eCons); //invoke task

Listing 2: Example usage of ControlIntent and custom In-
tentScope.

Now we can show concrete examples of Intent and In-
tentScope. Listing 1 depicts a MonitorIntent used to monitor
energy consumption and detect potential ”EnergyFault” for
each vehicle in the fleet. Listing 2 gives an example of Con-
trolIntent usage. It shows how to define an IntentScope for all
vehicles displaying ”EnergyFault” and sends ”ReduceEnergy”
ControlIntent to all of them to set the speed limit to 5km/h
and to limit engine to 1100rpm.

4) Intent operators: Intent is a passive data structure.
Therefore, we need to provide developers with operators to
work with the Intents. These operators encapsulate mecha-
nisms to select, instantiate and execute tasks, based on the
input Intent. Consequently, instead of dealing with the indi-
vidual tasks, a developer is presented with a unified interface
to communicate with the runtime systems.

PatRICIA APIs are divided into three categories: core,
system and utility operators. Due to limited space, we only
present the core operators. We define four core operators:

1) send(in ci:ControlIntent, out r:Result)
2) notify(in mi:MonitorIntent, in o:CallBackObj)
3) poll(in mi:MonitorIntent, out e:Event)
4) delimit(in s:IntentScope, in c:Cond, out so:IntentScope)

The send primitive is used to communicate and execute a
ControlIntent. It accepts the ControlIntent as an argument and
returns done if the ControlIntent was executed successfully,
failed if it is currently impossible to execute the ControlIntent
and buffered if the underlying device is currently busy. When
the send operator is invoked the container first selects suitable
tasks to execute the ControlIntent by using intent headers.
The task list is further filtered, based on intent attributes,
e.g., quality requirements. Here, we use best-effort to find
the best matching task implementation. Further, the selected
task is configured with Intent’s configuration parameters and a
payload. Subsequently, the task is instantiated for each entity
and finally executed (see Section IV-C4).

The core operators notify and poll are used to support
working with the MonitorIntents. The operator notify is
used by an application to subscribe for events, which are
asynchronously delivered to the application. It requires two
arguments: a MonitorIntent, used to match the appropriate
monitor task and a reference to a callback object, which gets
notified when a new instance of an event becomes available.
The poll is used to synchronously check the status of the
environment, i.e., it will block application’s main thread if
the required event is currently unavailable. It also requires a
MonitorIntent as an argument and returns an event (or null) as
a result.

The delimit operator is API equivalent of ⊆cond, defined
in Section IV-A1. It is used to define an IntentScope with
entities, which satisfy a certain condition. Usually, when an
application wants to determine the IntentScope, it will start by
invoking delimit on the GlobalScope and further refine it by
recursively applying this operator and/or using other operators
defined in Section IV-A1.

B. Application structure and lifecycle
Figure 4 depicts a simplified UML diagram showing the

structure of our applications. Application structure is defined
via onCreate, onAppStart and onAppExit methods,
which represent hooks used by the runtime to manage applica-
tions lifecycle. The onCreate method represents application
entry point. It provides the application with runtime Context,

5757

which provides global information about the application envi-
ronment. After initialization completion, the container invokes
onAppStart, which contains application’s business logic
and from this point on the application is ready to use program-
ing model constructs. Finally, before the application ends, the
container invokes onAppExit method. This method is used
to perform ”house keeping”, e.g., close any open connections
and release any direct references to tasks.

Task (see Figure 4) is defined as an abstract class, which
captures general concepts of MonitorTask/ControlTask and rep-
resents the main building block for domain libraries. The Task
contains metadata, used by the container to bind an Intent with
the Task at runtime. Metadata comprehends Filters, Mappings,
Config and Attributes. The Filter specifies a list of Intents,
supported by the task. The Mapping provides information
about supported entity types, e.g., vehicle family. The Config
contains a default configuration of the task. Finally, Attributes
provide additional information about the task, e.g., provided
data quality. Further, Tasks also have a lifecycle, which is
managed by the runtime container. To this end, Tasks provide
hooks which are used to initialize (onCreate), activate
(onStart) and stop (onStop) the task. The onCreate
contains custom code to initialize a Task. The onStart,
contains processing logic or a sequence of actuation steps.
This is the core part of each Task, as it contains the specific
domain logic, which is executed when an Intent invokes the
Task. We don’t define how Tasks implement the domain logic.
For example, monitoring tasks can utilize an event processing
framework to implement data processing, but conceptually
Tasks are technology independent. When onStart exits, one
of the communication methods (onProcessingDone or
onActuationDone) is invoked in order to send response
to the application. Finally, when a Task instance is no longer
needed the container invokes the onStop method.

C. Runtime support
The RuntimeContainer (see Figure 2) provides an execu-

tion environment for the cloud-scale IoT applications. To this
end, it implements mechanisms to manage Tasks and their
lifecycle and to dynamically bind Intents with Tasks. Further,
it provides interfaces to register new Tasks and mediates the
communication between the applications and domain libraries.

1) CommunicationInfrastructure: is a communication
backbone of our RuntimeContainer. It is used to transport
Intents and events between applications and the Tasks. To
enable loose coupling between the applications and the do-
main library tasks it follows pub/sub paradigm. Furthermore,
because Intents contain information needed to process and
route them, the CommunicationInfrastructure must be able to
understand Intent headers. Therefore, the communication is
performed via a partial content-based pub/sub model.

2) Intent implementation and device-mapping: Intents are
used to invoke Tasks. They are processed and executed on
the cloud platform, but interact with underlying devices. To
perform an Intent, PatRICIA instantiates the corresponding
Task for an entity. It is the responsibility of Tasks to map the
Intent to the low-level device services. To this end, they utilize
Devices-services layer and implement required monitor/control
logic.

For example, currently our domain library provides imple-
mentations of Tasks per vehicle family. Each vehicle has a
unique Id, which is used to define a messaging topic. All the

��	������
���	�����	
��������
��	�����	���*�������+

7��/
	��	�����8�/��3��&
7�����
��&
7�����1�&

9����
��:����

,�����

�����
�

�	
���

"��
�

�
��
�

-�����	�

	��� ��
� �	��

7��/
	��	�����8�/���	(�&
7��$11���
��&
7��$11�(���&

9����
��:����	
��	�

����

7���
�	��������	����	�8���	��&

�	
��	�#���

7��$����������	�&

�	
��	�#���

���
���

����
���

�	
���
�����
������	��	
�
��

��������

�������� �
��
���	��
���	
���

���
���

�������

��������

;

*%%;

*%%;

<%%;

<%%; ����
���

Fig. 4: Simplified UML diagram of application structure.

communication between our library’s Tasks and the vehicle
is performed via this topic. The ServiceMapping component
provides the communication interface and Device communica-
tion layer provides the required connector (a message broker)
to communicate with the physical environment. Naturally, as
our Tasks are technology independent, domain libraries can
use other mechanisms (connectors) to map the Tasks on the
underlying devices.

3) IntentScope and coupling with Intents: ScopeManager
implements the IntentScope API. It defines a global refer-
ence to the GlobalScope and implements operators to work
with scopes. GlobalScope is a singleton, which is initialized
with all devices found in the tenant’s database. For storing
device meta information PatRICIA uses relational databases
in the Persistence layer. To determine temporary changes in
the GlobalScope, e.g., devices gone offline, ScopeManager
communicates with the DeviceManager, which implements the
Last Will and Testament (LWT) pattern to detect device failure
and adapt the GlobalScope accordingly.

To support the delimit operator ScopeManager provides
functionality to evaluate the condition expressions and initiates
selection, instantiation and execution of a MonitorIntent, to
obtain the value of the specified property (see Section IV-A4).
Finally, it provides runtime checks to apply an Intent on
IntentScope. To do this, when an IntentScope is added to an
Intent, the ScopeManager resolves the scope and checks if
there are suitable Tasks to support this Intent for each entity
in the scope by comparing task filters and mappings, with
intent headers (name, Id, entities types, etc.).

4) Intent selection, instantiation and execution: When an
application submits a new Intent, the RuntimeContainer first
routes it to the TaskSelector, which matches intent headers
with Task’s filters and mappings to find Tasks which pro-
vide the Intent implementation. Afterwards, the TaskSelector
reads the required (Intent) and promised (Task) attributes and
compares them to find the best matching task. Attributes
are represented as feature vectors and a multi-dimensional
utility function, based on the Hamming distance, is used to
perform the matching. Further, TaskSelector requests a Task
instance, by providing its description to the ScopeManager,
which checks the validity of the coupling and if it is valid,
forwards it to the TaskManager or otherwise marks the Intent
as failed. The TaskManager instantiates the Task via reflections
and configures it with intent’s data. Finally, it triggers the

5858

onCreate method on all task instances, to execute any cus-
tom initialization code and onStart to trigger the execution
of the task logic.

V. IMPLEMENTATION & EVALUATION

The current prototype of our PatRICIA framework imple-
ments the components needed for development and execution
of the cloud-scale IoT applications. The same components
are framed with solid borderlines in Figure 2. Components
outlined with dotted lines will be the subject of our future
work.

The PatRICIA framework is implemented in the Java
programming language and it is based on WSO2 Stratos[7],
which is an open source, full-fledged PaaS solution stack
that provides many customizable services, such as identity
management, monitoring, logging and multi-tenancy support,
necessary for the PatRICIA implementation.

Persistence layer provides a MySQL database to store
relational data, e.g., device meta information, and key/value
storage (Apache Cassandra [2]) for storing NoSQL sensory
data. The PatRICIA chooses how to store the data, depending
on its nature. For example, user data, device meta information,
etc. is relational and usually requires immediate consistency,
thus relational database is used. Contrary, our sensory data is
write-intensive and eventual consistency is sufficient most of
the times, because the analysis is mostly performed off-line,
e.g., by submitting map/reduce jobs.

The CommunicationInfrastructure in our RuntimeCon-
tainer is based on JMS broker (Apache ActiveMQ [1]) and it
is used to mediate the communication between the applications
and domain library Tasks. This allows PatRICIA to leverage
existing, proven technologies, which provide content-based
pub/sub communication between the components, decoupling
them and making our programming model higly extensible.
The communication is topic-based and the TaskSelector uses
JMS message selectors to route Intents/events between the
applications and the Tasks. Therefore, Intents are internally
modeled as JMS messages. We use message properties to
model Intent headers and realize the content-based commu-
nication. Currently, at the application level we support XML
and attribute/value representation of the Intents. To enable
IntentScope bootstrapping ScopeManager defines a global sin-
gleton reference to the GlobalScope. It is initialized by query-
ing MySQL database and updated when the DeviceManager
receives LWT message from the JMS broker.

Prototype implementation of the Domain library contains
a set of Tasks, which support Intents used to develop our
applications. Library tasks rely on the Device communication
layer to communicate with the vehicles. It contains its own
message broker and connectors (one per vehicle family) to
mediate the communication. Library tasks communicate with
the vehicles over MQTT topic, identified via the vehicle Id.
MQTT [5] is a lightweight M2M pub/sub messaging transport,
which is a standard for communication with the IoT devices.
To implement the connectors we used Protocol Buffers [4].
The communication protocol with the vehicles defines a set of
vehicle control and status messages, which are marshaled and
transported between the vehicles and the applications by the
Device-services layer. MonitorTasks event processing logic is
implemented with the Esper [3], a Complex Event Processing
framework, i.e., each MonitorTask has its own instance of
Esper engine and acts as a subscriber to the vehicle topic

to receive the low-level status events, e.g., battery voltage.
Our ControlTasks are implemented as a sequence of low-level
messages, which set individual control points in a vehicle and
ControlTask acts as a publisher of control messages. Therefore,
in our deployed scenario vehicle gateways and the cloud
behave as both message publisher and subscriber. To this end,
each vehicle is equipped with a gateway, which implements a
MQTT client and translates the protocol messages to specific
points. However, the gateway design is out-of-scope of this
paper.

We now demonstrate how PatRICIA can be used to im-
plement our real-world cloud-scale IoT application (see Sec-
tion II) and use traditional programming model evaluation cri-
teria to evaluate it. The complete source code of the application
is shown in Listing 3. Considering readability and simplicity,
we notice that a developer uses intuitive high-level abstractions
(Intent and IntentScope) to write IoT applications, instead
of dealing with low-level device-services. Further PatRICIA
also provides improvements regarding reusability and more
efficient development. For example, a developer can easily
code monitoring of specific fleet vehicles, which fulfill some
criteria (lines 7-11). Although, we limit the expressiveness to
a certain extent, a developer can still easily and intuitively
express many common behaviors of could-scale IoT applica-
tions (lines 16-19). Finally, extensibility of our programming
model is guaranteed by deferring the Intent-Task binding to
the runtime. This enables adding new concepts (Intents and
Tasks) to the model without modifying the existing ones and
at the same time guaranties the backward compatibility of the
applications. Therefore, PatRICIA reduces the complexity and
enables developers to cope with the diversity and the scale of
the cloud-scale IoT applications.

public class ExampleApplication extends Application{
private Container cont;
public void onCreate(Context c){
this.cont = c.getContainerRef();
}
public void onAppStart(){
IntentScope s = cont.delimit(IntentScope.getGlobal(),

Cond.greaterThan("price", "5000"));
Intent eFault = Intent.newMIntent("EnergyFault");
eFault.setScope(s);
cont.notify(eFault, this);//sub. to event
IntentScope controlS = cont.delimit(s,Cond.isTrue(eFault));
performIntent(controlS);
}
private void performIntent(IntentScope ts){
//define Intent and use default configuration
Intent eCons = Intent.newCIntent("ReduceEnergy");
eCons.setScope(ts);//set task scope
cont.send(eCons); //send to all vehicles in ts
}
public void onEvent(Event e){
performIntent(IntentScope.create(e.getEntityId()));
}
public void onAppExit(){//nothing to do here}
}

Listing 3: Example cloud-scale IoT application.

VI. RELATED WORK

Most of the current approaches supporting the development
of IoT applications deal with device and data integration.
Thus, application developers have to deal with the complexity,
diversity and scale of IoT applications on cloud platforms.

In [15] the authors focus on abstracting devices as service
and enabling two-way communication between enterprise ap-
plications and devices via Web Services. Also, approaches uti-

5959

lizing RESTful protocols, CoAP[13] and sMAP[11] exist. For
example, [18] focuses on defining a CoAP-based runtime to
enable composing IoT services. Most of these approaches fo-
cus on abstracting underlying hardware and providing service-
based access to a device. Although, they provide some key
elements, e.g., service discovery and resource management,
they implicitly assume developers have a good understand-
ing of the underlying domain, as raw sensory data streams
and low-level device services are directly exposed to them
and application development is envisioned by composing the
atomic services into admissible control sequences or process-
ing schemes. Compared to these approaches our programming
model defines high-level abstractions (Intent and IntentScope)
enabling development of cloud-scale IoT applications.

Some of the related approaches in ubiquitous computing
and context-awareness are [20] and [22]. In [22] authors adopt
a definition of task as representation of user’s everyday activ-
ities. They focus on assisting the users during these activities
and managing the resources in smart environments. Although,
we share some similarities, regarding task as a generic activity,
they don’t introduce abstractions with a generic view on
scopes, needed to enable development of IoT applications in a
scalable manner. Finally, non of the approaches, presented so
far are designed for cloud platforms.

In [23], [8], [21], [12] the authors examine applying cloud
computing in IoT systems. In [23] the authors focus on sensor-
cloud infrastructure, which manages groups of sensors via the
cloud, rather than providing sensory data on cloud platform.
SenaaS [8] also focuses on providing sensor management and
address the issue of combining event streams and services
in the cloud. Although, not specifically tailored for cloud,
in [9] the authors also examine similar problem and provide
a solution in form of event processing containers. OpenIoT
framework [21] enables pay-as-you-go sensing as a service and
linking sensory data. However, they regard sensor network as a
set of networked peripherals and don’t focus on a full-fledged
cloud platform capable to host third-party IoT applications
and services. In [12] the authors focus on implementing
virtualization infrastructure to enable sensing and actuating as
a service. Although, these approaches increase reusability and
fault tolerance of applications, by abstracting and virtualizing
individual sensors and actuators and enabling management
of these entities in the cloud, for developers the scope of
interaction mostly remains a device service.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced the PatRICIA framework
for programming cloud-scale IoT applications. We presented
programming abstractions: Intent, IntentScope, and a set of
runtime mechanisms to support developers in dealing with the
complexity and diversity of IoT systems and to enable devel-
opment of IoT applications in a cloud-scale manner. The set of
proposed concepts is not exhaustive, but is sufficient to express
many common behaviors of cloud-scale IoT applications. In
our programming model, we trade flexibility for a scalable,
more intuitive and efficient programming of the cloud-scale
IoT applications.

In the future, we will address the remaining requirements
elicitated in Section III-A. We plan to extend PatRICIA in
several directions: a) Enabling the cloud-scale IoT applications
to utilize the edge of the infrastructure, by providing suitable
code distribution mechanisms; b) Giving more control to

the applications, by enabling them to define and adapt the
execution environments dynamically and on demand. To this
end we need to expose the IoT infrastructure resources, e.g,
gateways to the cloud-scale applications, develop models to
associate costs with these resources, and define clear API to
enable the applications to control them; c) Enabling policy-
based automation of data-quality, security and safety aspects of
cloud-scale IoT applications; d) Supporting rapid prototyping
of cloud-scale IoT applications by utilizing MDD and provid-
ing testing environments and the supporting tools.

ACKNOWLEDGMENT

This work is sponsored by Pacific Controls Cloud Com-
puting Lab (PC3L).

REFERENCES

[1] Apache activemq. http://activemq.apache.org/. 2013.

[2] Apache cassandra. http://cassandra.apache.org/. 2013.

[3] Esper. http://esper.codehaus.org/. 2013.

[4] Google protocol buffers. http://code.google.com/p/protobuf/. 2013.

[5] Mqtt. http://mqtt.org/. 2013.

[6] Pacific controls galaxy. http://pacificcontrols.net/products/. 2013.

[7] Wso2 stratos. http://wso2.com/cloud/stratos/. 2013.

[8] S. Alam, M. M. Chowdhury, and J. Noll. Senaas: An event-driven
sensor virtualization approach for internet of things cloud. In NESEA,
2010.

[9] S. Appel, S. Frischbier, T. Freudenreich, and A. Buchmann. Eventlets:
Components for the integration of event streams with soa. In SOCA,
2012.

[10] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer Networks, 54(15):2787–2805, 2010.

[11] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler. smap:
a simple measurement and actuation profile for physical information.
In SenSys, pages 197–210, 2010.

[12] S. Distefano, G. Merlino, and A. Puliafito. Sensing and actuation as a
service: a new development for clouds. In NCA, pages 272–275, 2012.

[13] B. Frank, Z. Shelby, K. Hartke, and C. Bormann. Constrained applica-
tion protocol (coap). IETF draft, Jul, 2011.

[14] D. Gregorczyk, T. Bubhaus, and S. Fischer. A proof of concept for
medical device integration using web services. In SSD, 2012.

[15] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. Interacting
with the soa-based internet of things: Discovery, query, selection, and
on-demand provisioning of web services. Services Computing, IEEE
Transactions on, 3(3):223–235, 2010.

[16] M. M. Hassan, B. Song, and E.-N. Huh. A framework of sensor-cloud
integration opportunities and challenges. In ICUIMC, pages 618–626,
2009.

[17] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy. Smart objects
as building blocks for the internet of things. Internet Computing, IEEE,
14(1):44–51, 2010.

[18] M. Kovatsch, M. Lanter, and S. Duquennoy. Actinium: A restful runtime
container for scriptable internet of things applications. In Internet of
Things, pages 135–142, 2012.

[19] F. Mattern and C. Floerkemeier. From the internet of computers to
the internet of things. In From active data management to event-based
systems and more, pages 242–259. 2010.

[20] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, and M. D.
Mickunas. Olympus: A high-level programming model for pervasive
computing environments. In PerCom, 2005.

[21] J. Soldatos, M. Serrano, and M. Hauswirth. Convergence of utility
computing with the internet-of-things. In IMIS, pages 874–879, 2012.

[22] J. P. Sousa and D. Garlan. Aura: an architectural framework for user
mobility in ubiquitous computing environments. 2002.

[23] M. Yuriyama and T. Kushida. Sensor-cloud infrastructure-physical
sensor management with virtualized sensors on cloud computing. In
NBiS, pages 1–8, 2010.

6060

