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Abstract—Serverless computing promises to be a cost effective
form of on demand computing. To fully utilize its cost saving
potential, workflows must be configured with the appropriate
amount of resources to meet their response time Service Level
Objective (SLO), while keeping costs at a minimum. Since de-
termining and updating these configuration models manually is
a nontrivial and error prone task, researchers have developed
solutions for automatically finding configurations that meet the
aforementioned requirements. However, our initial experiments
show that even when following best practices and using state-of-
the-art configuration tools, resources may still be considerably
over- or underprovisioned, depending on the size of functions’
input payload. In this paper we present ChunkFunc, an SLO-
and input data-aware framework for tuning serverless workflows.
Our main contributions include: i) an SLO- and input size-aware
function performance model for optimized configurations in server-
less workflows, ii) ChunkFunc Profiler, an auto-tuned, Bayesian
Optimization-guided profiling mechanism for profiling serverless
functions with typical input data sizes to build a performance
model, and iii) ChunkFunc Workflow Optimizer, which uses these
models to determine an input size dependent configuration for each
serverless function in a workflow to meet the SLO, while keeping
costs to a minimum. We evaluate ChunkFunc on real-life serverless
workflows and compare it to two state-of-the-art solutions, show-
ing that it increases SLO adherence by a factor of 1.04 to 2.78,
depending on the workflow, and reduces costs by up to 61% .

Index Terms—Serverless workflows, serverless functions,
configuration tuning, SLOs, profiling.

I. INTRODUCTION

A LL major Cloud platforms provide serverless offerings [1],
[2], [3], [4] and their usage is continuously growing. In

a 2023 survey, Datadog reports that over 70% of its AWS
customers and 60% of its Google Cloud customers use at least
one serverless solution [5]. Serverless computing provides the
advantage that developers can focus on the business logic of their
functions and leave scaling and most infrastructure management
decisions to the Cloud provider. Typically, developers only
configure the amount of memory that should be allocated to
a function. The memory maps to a predefined resource profile,
which contains a fixed amount of virtual CPU cores (vCPUs) –
we adopt the same convention for our work. Despite the seeming
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simplicity of configuring serverless resources, tuning the amount
of memory, vCPUs, and configuration models to ensure that
Service Level Objectives (SLOs) are met, while minimizing the
costs still remains a challenge [6], [7].

A. Tuning of Serverless Workflow Configurations

Tuning resource configurations of serverless workflows to
meet SLOs is typically done using performance models for the
comprising functions. There are two main types of approaches:
1) a-priori profiling of functions to build a performance model
in an offline fashion and 2) monitoring of function executions at
runtime to build the performance model in an online fashion.

1) A-priori profiling systems normally execute functions un-
der varying resource configurations with typical input data
to build a performance profile.
This is used to configure the function’s resources in
production to meet the defined Service Level Objective
(SLO).
Most systems that tune entire workflows rely on graph
algorithms [8], [9], [10]. Another approach is the use
of a max-heap [11]. For a single function or job, linear,
binary, and gradient descent search [12], Bayesian Opti-
mization (BO) [13], and CPU time accounting [14] have
been used. Two common drawbacks of a-priori profiling
systems are that a “typical workload” needs to be defined
and the tedious profiling process itself. Finding a typical
workload might not be possible for functions that have
highly variable inputs, such as those used for log or video
processing. Profiling often needs to be done manually
and/or takes a long time if all resource profiles need to be
tested exhaustively. Some approaches reduce the number
of profiling runs, e.g., using BO, but they require manual
tuning of parameters to get accurate results.

2) Systems that build a performance model online rely on
historical or live monitoring data of function executions.
Some approaches passively monitor execution [12], [15],
[16]. Others assign different configurations until the per-
formance model is complete [17], [18], often relying
on statistical methods, such as Bayesian Optimization,
to reduce the number of configurations that need to be
explored. However, until the performance model is com-
plete, these approaches may violate the SLO. Thus, to
have good SLO adherence from the first day in produc-
tion, developers need to issue many requests to allow the
model to train, which is essentially similar to profiling.
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Fig. 1. Extract-successes response times under various input data sizes
and resource configurations.

Additionally, resources for collecting and processing mon-
itoring data during the entire application lifetime to update
the performance model may incur additional costs.

B. Motivation

Current approaches often overprovision resources [19], [20]
and do not account for input data size variations, which leads
to problems with highly heterogeneous workloads, because
different input sizes may result in different performance under
various resource configurations [21]. A common use case that
deals with varying input data sizes is logs processing, e.g.,
hourly logs processing of a bank gets more data during the day
than at night. Other examples include video processing (varying
lengths, resolutions, and bitrates), malware scanning (varying
file sizes), and continuous integration workflows in software
engineering (varying repository sizes).

To further explore the need for input data size awareness, we
run an experiment with a serverless function on Knative1. The
extract-successes function extracts success messages
from logs of a real distributed cluster scheduler [22]. We feed
three log sizes (2.4, 54.3, and 95.8 MiB) to the function under
four resource configurations (256, 512, 1024, and 2048 MiB)
and measure the response time within the function itself, i.e., it
is not affected by cold starts. Each combination is executed five
times, the results are shown in Fig. 1.

We define a maximum response time (MRT) SLO of 4,500 ms,
indicated by the black dashed line in Fig. 1. We observe that
the mean response time across all resource configurations (gray
line) increases with the input data size. Furthermore, we see
that for meeting the SLO, different resource configurations may
be used for different input data sizes. For the smallest input of
2.4 MiB, all four configurations meet the SLO, so the lowest
(and cheapest) resource configuration with 256 MiB memory is
sufficient. For the medium input of 54.3 MiB, only three config-
urations meet the SLO, with the lowest possible being 512 MiB
memory. For the large input of 95.8 MiB, only the 1024 MiB
configuration, meets the SLO, while the highest configura-
tion violates the SLO. In theory, however, the single-threaded
extract-successesNode.JS function should perform best
with at least one CPU core, i.e., the 2048 MiB configuration or

1https://knative.dev

higher. Further investigation with a single resource-constrained
Docker container showed that this behavior is specific to running
the function in our target Kubernetes cluster and is caused by an
interplay of the execution environment, the Node.JS IO thread
pool, and the function structure. The automatic profiling results
in our later experiments confirm that in the target cluster the
1024 MiB configuration is the fastest for the 95.8 MiB input.

Preliminary findings: The initial experiments show two im-
portant correlations for many serverless functions: i) when the
input data size increases, the response time increases too and
ii) for a given input data size, a different resource configuration
may increase or decrease the response time. Consequently, there
is usually not a single resource configuration that is ideal to meet
a function’s SLO and minimize its cost, but different resource
configurations, depending on the input data size of an invocation.
While there are exceptions, e.g., image labeling with almost
constant runtime, many applications, like the previous examples,
exhibit these correlations and, thus, benefit from input data
size-aware resource configuration.

Shortcomings of the state-of-the-art: Most existing systems
have at least one of two major shortcomings:

1) they do not consider the size of the input data when
choosing a resource profile for a function and/or

2) building the performance model for a function is a tedious,
long profiling process or requires observing the live system
for a long time.

Most systems disregard the input data size when assigning a
resource profile to a function, e.g., [8], [9], [10], [11], [17], [23].
This can result in SLO violations if a production input is substan-
tially larger than the one(s) used for building the performance
model and in excessive costs if the input is smaller than expected
by the model. Building the performance model through profiling
or by observing the live system requires time. Some approaches
try to shorten that time, e.g., using Bayesian Optimization [17],
[24] or regression [15] to reduce the amount of observations
needed to build the performance model. However, to the best of
our knowledge, none of these approaches account for different
input sizes. With the contributions of this paper, we address both
of these shortcomings.

C. Contributions

In this paper, we present ChunkFunc, a framework that dy-
namically adapts resource configurations of serverless functions,
based on their input data size (payload) and reduces costs,
while ensuring that the SLOs of the entire workflow are met.
ChunkFunc is part of Polaris SLO Cloud2, a SIG of the Linux
Foundation Centaurus project3, a platform for building unified
and highly scalable distributed Cloud and Edge systems. Specif-
ically, the main contributions include:

1) An SLO- and input data size-aware function perfor-
mance model for determining optimized configurations
in serverless workflows, depending on the input data size
(Section II).

2https://polaris-slo-cloud.github.io
3https://www.centaurusinfra.io
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2) ChunkFunc Profiler, which automatically builds per-
formance models for serverless functions and work-
flows based on typical input data sizes. Profiling is auto-
matic, users only deploy a function and specify typical
input data. A novel, auto-tuned BO approach reduces
the profiling costs by up to 90% compared to exhaustive
profiling and ensures high accuracy of the results. Contrary
to state-of-the-art BO approaches we reuse the Gaussian
Process (GP) of the BO to infer missing parts of our
performance model (Section III).

3) ChunkFunc Workflow Optimizer, which leverages var-
ious heuristics to dynamically adapt the resource
configuration of functions in a workflow to meet a
performance-based SLO (e.g., response time), while
minimizing cost. Unlike existing systems, the ChunkFunc
Workflow Optimizer considers the size of a function’s
input when selecting a resource profile, which, depending
on the workflow, increases SLO adherence by a factor of
1.04 to 2.78 and reduces costs by up to 61% The Workflow
Optimizer is extensible with arbitrary performance-based
SLOs (Section IV).

II. CHUNKFUNC SYSTEM MODEL & OPTIMIZATION PROBLEM

A. ChunkFunc System Model

A serverless workflow consists of functions chained together
in sequence, in parallel, or in a combination of both, can be
represented as a directed acyclic graph (DAG) W = G(F,E).
The set of nodes consists of the functions of the workflow, i.e.,
F = {f0, f1, . . . , fn}, and the set of edges E = {(fi, fj), . . .}
consists of the invocation relationships among those functions.
A directed edge (fi, fj) indicates that fj is invoked with the
output of fi. The input to a function fi is denoted as xi and
its size as |xi|. The size of the output fi(xi) depends on the
particular function and, typically, it cannot be determined from
the input data size without executing the function. The same
input data size may yield different output sizes, e.g., the output
size of a function that extracts error messages from a 1 GB log
file depends on how many error messages the file contains.

Each function instance is assigned a set of resources, such
as CPU and memory, which are defined in a resource profile p.
The set RP contains all resource profiles that are available on
the underlying serverless platform. Typically, commercial Cloud
providers, allow users to only choose the amount of memory
that should be assigned – each memory size is associated with a
predefined number of CPU cores or fraction of CPU cores [25],
[26]. We denote an instance of function f deployed with resource
profilep asfp. As noted in Section I-B, serverless functions often
exhibit a different performance for different resource profiles.
Thus, we denote the SLO metric of fp, when executed with input
x as MSLO(f

p, x). This metric can be the response time or an-
other metric that corresponds to the desired SLO. Each resource
profile has a cost associated per unit of execution time. C(fp, x)
expresses the cost incurred by executing f with input x, when
it is deployed with resource profile p. We observe that, given a
function f to be invoked with input x, the SLO metric value and
cost of this invocation depend on the chosen resource profile p.

TABLE I
SYMBOLS USED IN THE SYSTEM MODEL

The pair (MSLO(f
p, x), C(fp, x)) constitutes a performance

profile for f under the resource profile p. The performance
profiles for all typical inputs for f are collected in the set PPf .

In addition to functions, a complex workflow may contain
branch statements or loops. For the sake of simplicity, we con-
sider these constructs also as functions within our optimization
problem, albeit with special properties. Branch functions always
have an SLO metric and cost of zero and loop functions wrap
another function. The SLO metric value and cost of the loop
function is equal to that of the wrapped function, multiplied by
the number of loop iterations, which is known only at runtime.
We denote the SLO of the entire workflow W as sW .

For clarity, all symbols used in the system model and the
optimization problem are summarized in Table I.

B. Optimization Problem

The ChunkFunc optimization problem aims to find a set of
resource profiles to deploy the functions of a workflow, given a
particular input, while ensuring that the SLO is met and the cost
of the workflow execution is minimized.

We use RPW = {(f0, p0), (f1, p1), . . . , (fn, pn)} to denote
the set of resource profiles that have been chosen to spawn the
function instances in a particular execution of W , such that pi
is used to spawn fi.

Let XW = {|x0|, |x1|, . . . , |xn|} be the set of input sizes to
the functions of an execution of W , such that xi is the input to
fi. The only element of XW that is known at the beginning of
the workflow is the input to the first function x0; the remaining
elements are added as the workflow progresses.

To enforce the SLO for a workflow W , we need the SLO
metric value of a particular workflow execution, given the set
of chosen resource profiles RPW and function inputs XW . It is
calculated by aggregating all function SLO metric values:

MSLO (W,RPW , XW ) = Δ
fi∈W

MSLO (fpi

i , xi) (1)

Based on the type of SLO metric the semantics of the aggre-
gation operator Δ change. There are two types of SLO metrics:
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Fig. 2. Overview of the ChunkFunc System and Lifecycle of a Serverless Workflow.

i) additive metrics, such as response time, which are summed
along a path in the workflow (Δ =

∑
) and ii) min-metrics, such

as throughput, where the minimum of all edges in a path is taken
(Δ = min).

We compute the total cost of the workflow execution, by
summing the costs of its function executions:

C (W,RPW , XW ) =
∑

fi∈W
C (fpi

i , xi) (2)

The optimization problem consists in finding a set RPW ⊂
F ×RP for an input set XW that fulfills constraints (3) and
(4). The former is a hard constraint and establishes the relation
between the SLO metric value of the workflow and the SLO sW .
Depending on the type of SLO, � is typically either ≤ (e.g., for
response time) or ≥ (e.g., for throughput). The latter is a soft
constraint that seeks to minimize the total cost of the workflow
execution.

M (W,RPW , XW )� sW (3)

min C (W,RPW , XW ) (4)

This optimization problem is NP-hard and the fact that only
the first input size is known at the beginning of the workflow
execution further complicates finding a solution. Any function’s
input, other than f0’s, is only known once all of its immediate
predecessors have executed.

For example, consider a simple, sequential workflow with two
functions, f0 and f1, and an MRT SLO of sW = 80 ms. For the
input data size |x0| the function f0 takes 50 ms when deployed
with the cheap resource profile p0 and 25 ms when deployed with
the expensive resource profile p′0. The output of f0 will either be
small (xs) or large (xl). For a small inputxs the function f1 takes
at most 20 ms, while for a large input xl, it takes at least 40 ms.
Thus, when selecting a resource profile for f0, the circumstance
that we do not know the size of its output does not allow us to
select the cheap resource profile with an execution time of 50 ms,
because if the output happens to be large, f1 will run for at least
40 ms, leading to a total response time of 90 ms, which violates
the SLO. Since elements ofXW , are missing when the workflow
is invoked, we cannot find an exact solution to the optimization

problem at this point. However, we can approximate a solution
using a heuristic, which we describe in Section IV.

III. CHUNKFUNC FRAMEWORK OVERVIEW & PROFILER

The ChunkFunc framework consists of two major compo-
nents: the Profiler and the Workflow Optimizer. In this section,
we first present an overview of the system and then describe the
Profiler.

A. Framework Overview

Fig. 2 presents an overview of ChunkFunc and the lifecycle
of a serverless workflow within the system. Upon their deploy-
ment, serverless functions are automatically picked up by the
ChunkFunc Profiler. It deploys function instances using vari-
ous resource configurations to execute profiling runs with their
typical input data sizes, without any user interaction. To reduce
the number of profiling runs, while maintaining a high accuracy
of the results, the choice of resource configurations is guided
by Bayesian Optimization. Our BO Dynamic Hyperparameter
Selection picks the hyperparameter that yields the most accurate
results for a particular function type and input size combination.
Finally, the input-specific performance profiles are leveraged by
the ChunkFunc Workflow Optimizer, which provides a suitable
resource profile, to meet the workflow’s SLO and minimize cost,
to the serverless orchestrator prior to invoking a function.

B. ChunkFunc Bayesian Optimization-based Profiler

The ChunkFunc Profiler automatically creates input data
size-specific performance profiles for every deployed serverless
function. The user only needs to specify several typical input
data payloads (normally two or three) of different sizes for
the function as ChunkFunc-specific metadata. For each defined
typical input data size, a distinct performance profile is computed
fully automatically by ChunkFunc.

While exhaustively profiling the function under every re-
source profile is supported, it can incur high costs. Thus, we
leverage Bayesian Optimization (BO) to reduce the number of
profiling runs. BO is a technique that is normally used to find
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the maximum of an unknown objective function, based on a
limited set of samples [27]. It builds a surrogate model, typically
using a GP, to approximate the objective function using known
samples and uses an acquisition function to guide the exploration
of further samples.

BO is deeply integrated into the ChunkFunc profiler in two
ways. First, we use the acquisition function to determine the
most promising input data sizes to profile, similar to [17], [24].
Second, we leverage the surrogate model to infer the SLO metric
for those input data sizes that were not profiled. This use of BO to
infer the missing parts of the performance profile has, to the best
of our knowledge, not been attempted by the state-of-the-art. Our
BO-based profiler allows for an up to 90% reduction of profiling
costs.

Common choices for the acquisition function of BO include
Probability of Improvement (POI) [27] and Expected Improve-
ment (EI) [28], [29]. POI returns the probability that sampling
a certain point will yield an improvement, but it may easily
result in focusing only on a specific region of the objective
function (exploitation) or jump around too much (exploration).
EI aims to quantify the improvement and is less prone to the
aforementioned issues [30]. In ChunkFunc we rely on both: we
use EI to determine which point, i.e., resource profile p, to profile
next and POI to define the stopping criterion. Since EI yields an
absolute value and POI a percentage, the latter is more suitable
as a stopping criterion.

Our aim is to achieve a relative root mean square error (RMSE)
of 10% or less when comparing the BO-guided profiling results
for an input data size to exhaustive profiling results to ensure
that the inferred profiling results adequately reflect the actual
performance. We use two stopping criteria for BO: i) the POI
for sampling the next resource profile is below 2%, provided that
we have sampled at least 10% of the available resource profiles,
or ii) we have sampled 40% of the available resource profiles.
Based on our experience it is necessary to sample at least 10%
of all resource profiles, because for some functions the POI is
already below 2% after the initial samples, but the relative RMSE
would be above 10% . The second stopping criterion is necessary,
because for some functions the POI does not drop below 2%,
even though the RMSE is already sufficiently low.

Each input data size |x|, resulting from the user-defined
discrete set of typical inputs, is profiled independently with a
distinct BO model. Once a stopping criterion is fulfilled, the
performance profile of the function with the input data size |x|
is built. For each resource profile the profiler takes either the
mean SLO metric that was measured, if the resource profile
has been evaluated, or uses the BO’s surrogate model (GP) to
infer the SLO metric. The number of inputs needed for profiling
varies depending on the function. Determining this number is
beyond the scope of this paper, but we will outline a solution in
Section VI-C.

C. Bayesian Optimization Hyperparameter Selection

The key to make the ChunkFunc Profiler converge quickly
to an accurate solution is to pick the acquisition function’s
hyperparameters correctly – for EI this is the ξ hyperparameter.

Algorithm 1. Bayesian Optimization Dynamic Hyperpa-
rameter Selection.

ξ determines whether the Profiler’s acquisition function will
favor exploring unknown ranges of the input domain to find this
maximum (higher ξ values) or focus on finding the maximum
in an already known range (lower ξ values). Since we could not
observe any correlation pattern between function type, input data
size, and the ξ value that yields the lowest RMSE, we devised a
dynamic hyperparameter selection approach, which we describe
in Algorithm 1.

We start by selecting a fixed number of resource profiles
RPinit, evenly distributed from the set of all resource profiles,
and profiling the serverless function with each of them. For
each resource profile a function instance is deployed, executed
once to avoid cold starts, and then executed five times to obtain
mean measurements for the SLO metric and the cost. These
measurements are used to initialize one BO model for each of
the candidate hyperparameter ξ values.

Next, we pick another set of evenly distributed profiles
RPtest, which will be used to test the accuracy of the BO models.
We profile the function with these to get SLO metric measure-
ments Mtest to compare the predictions against. For each BO



1242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 6, JUNE 2025

model we infer the SLO metric values for the profiles in RPtest

and, then, compute the RMSE to the actual measurementsMtest.
Finally, we pick the BO model that yields the lowest RMSE,

add Mtest to it, and continue profiling with it until one of the
stopping criteria is fulfilled. This allows us to select the most
suitable ξ hyperparameter without additional profiling runs in
the average case. In the worst case, if a stopping criterion would
be met after 10% of the resource profiles, obtainingMtest results
results in a negligible number of additional profiling runs.

IV. CHUNKFUNC WORKFLOW OPTIMIZER

ChunkFunc Workflow Optimizer leverages the performance
profiles to assign resource profiles to each individual function
instance in a workflow, based on the input data sizes, while
fulfilling the SLO and minimizing cost. The SLO serves as an
upper or lower bound for the aggregated SLO metric of the entire
workflow, while the total cost should be minimized. Since the
set of function inputs XW is filled step by step as the workflow
executes, we need a heuristic to approximate the solution of the
ChunkFunc optimization problem as the workflow progresses.

Before executing a function, the workflow orchestrator
queries the Workflow Optimizer for the resource profile. Akin
to the optimization problem, the Workflow Optimizer models
the workflow as a DAG. To determine the resource profile for a
function, the Workflow Optimizer needs its input data size. The
heuristic receives as input the workflow graph, the SLO, the input
data size for the current function, and the SLO metric value for
the current execution path. Since the heuristic is invoked for each
node, while the workflow is executing, it can react if previous
functions affected the SLO metric differently than expected, e.g.,
they took more time than expected.

The Proportional Critical Path heuristic can use any perfor-
mance metric as SLO metric. This heuristic derives a sub-SLO
for the current function and chooses the cheapest resource profile
that allows meeting the sub-SLO, based on the function’s per-
formance profiles. Adapting the heuristic for cost-based SLOs
is possible and planned as future work.

Since metrics of functions may vary between workflow invo-
cations, for any function, other than the first one, the remaining
SLO metric until a violation of the workflow SLO may differ. For
example, for an MRT SLO suppose sW = 100 ms, if f0 takes
10 ms, the remaining time for f1 and its successors is 90 ms. If
f0 took 15 ms, the remaining time would be 85 ms. Thus, the
each function’s sub-SLO must be calculated dynamically before
selecting a resource profile.

To compute the sub-SLO of a function fi, we need to know
how much it contributes to the overall SLO metric of the re-
maining workflow. The latter is the length of the critical path
from (including) fi until the end of the workflow. We define the
critical path as the longest path between two nodes [31], with
an edge’s weight being the SLO metric of its target node. Since
many metrics vary depending on input data sizes, finding the
critical path is not trivial. We compute the mean SLO metric
value of every function across all resource profiles and input
data sizes and use these values as weights for the critical path. If
the SLO metric is an additive metric, we now add the mean SLO
metric value of fi to the critical path to allow us to calculate

Algorithm 2. Proportional Critical Path Heuristic.

fi’s proportional contribution to it. This proportion used on the
remaining workflow SLO yields the sub-SLO. For a min-metric,
we take the minimum of the fi’s SLO metric value and the
aggregated SLO metric value of the critical path. Algorithm 2
outlines the Proportional Critical Path heuristic:

Step 1: Line 1 computes the sub-SLO of function f using
ComputeSubSLO(). For additive SLO metrics we use Di-
jkstra’s shortest path algorithm to find the critical path. The
weight of each edge (fi, fj) is the negative mean SLO metric
of fj . All weights are negative, so Dijkstra’s algorithm works
normally and we get the longest path. For an additive metric
we compute the sub-SLO using f ’s proportional contribution to
the critical path, while for a min-metric we use the minimum
of f ’s and the critical path’s SLO metric values. After returning
the sub-SLO we multiply it with a safety margin (line 3) if the
performance profiles contain inferences from BO. This ensures
that imprecisions resulting from the inferences do not affect SLO
adherence.

Step 2: Lines 5–8 initialize the selected resource profile p
to nil and f ’s SLO metric and cost to infinity. Then, f ’s per-
formance profiles for the current input data size are retrieved.
Performance profiles are stored in buckets, according to the input
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data size they were computed for. Input x matches the bucket
with the smallest input data size that is greater than or equal to
the size of x. For inputs that are greater than the largest bucket
input data size, that greatest bucket is taken.

Step 3: Lines 9–19 iterate over f ’s performance profiles for
the current input data size. For each performance profile ppi we
check if its SLO metric value allows meeting the sub-SLO (line
12). If that is the case, the cost of ppi is examined (line 13). If ppi
is cheaper than the currently selected profile p or, if their costs
are equal, but ppi has a better SLO metric value, the selected
profile is updated to the resource profile in ppi.

Step 4: If no resource profile meets the sub-SLO, we fall back
to the fastest profile for the input size, irrespective of its metrics,
hoping that subsequent functions meet their SLOs. Finally, the
selected resource profile is returned.

V. IMPLEMENTATION & EXPERIMENTS DESIGN

To evaluate ChunkFunc we focus on the quality of the Work-
flow Optimizer results, i.e., whether its resource profile selection
meets the workflows’ response time SLOs and how much the
total cost is. We compare ChunkFunc to two state-of-the-art
approaches. All code and data needed to run the experiments, as
well as, additional results can be found in our repository.4

A. Implementation

We implement ChunkFunc Profiler in Go as an open source5

Kubernetes controller and target serverless functions realized
with Knative. Without loss of generality, the Profiler currently
triggers functions via HTTP requests, since this is a common
and flexible invocation method. Our trigger mechanism ab-
straction allows for adding other trigger types, e.g., storage
events, in the future. ChunkFunc-specific function metadata is
passed to the Profiler, using a Kubernetes Custom Resource
Definition (CRD), i.e., a custom type of object that can be
stored in the cluster. Each such FunctionDescription
object contains a reference to the Knative function definition
object and a list of typical inputs. Once the Profiler detects
a new FunctionDescription it automatically starts pro-
filing the referenced Knative function and, upon completion,
adds the performance profiles to the status subresource of
the Function -Description. To evaluate the Workflow
Optimizer we design various workflows and for each we replay
real-life function traces from our performance profiles in our
custom simulator. Our simulation with real-life traces is deter-
ministic, so it needs to be executed only once for each con-
figuration, which enables faster exploration of a large range of
SLOs.

B. Experiments Setup

To evaluate ChunkFunc we use three real-world and six
synthetic serverless workflows. The real-world workflows are

4https://polaris-slo-cloud.github.io/chunk-func/experiments/
5https://github.com/polaris-slo-cloud/chunk-func and https://doi.org/10.

5281/zenodo.14174081

written for our research, but are similar to production use cases.
They are

1) a log processing workflow (LogPro),
2) a video processing workflow (VidPro), and
3) an ML-based face detection workflow (FaceDet).
They represent typical examples of serverless workflows with

variable input data size, while exhibiting different response
time characteristics. LogPro takes a log file from a distributed
cluster scheduler [22] from an S3-compatible storage bucket as
input. The workflow consists of a sequence of four serverless
functions that validate the log and extract various statistics.
VidPro cuts out an unwanted segment of a video from S3, and
encodes the rest in a predefined format for social media. The
workflow consists of four functions that validate the video, cut
and encode the two segments (two parallel instances of the same
function), and merge the encoded segments. FaceDet detects
and marks faces in a video from S3. It consists of a sequence
of four functions: validation, transformation of the video to a
standardized resolution, face detection, and marking of all faces
in an output video.

Additionally, we use six synthetic workflows, which are as-
sembled using profiling results from the real-world workflows.
Like the real-world functions, the response time of the functions
in the synthetic workflows is dependent on the input size, as
determined by the profiling results. During generation of the
workflows, each function’s output is chosen from the set of sup-
ported input sizes of the successor function. For each workflow
there are three input size configurations: small, medium, and
large. The synthetic workflows are: i) homogeneous, a sequence
of functions with the same (medium) resource requirements,
ii) LoHiRes, a sequence of functions with low resource require-
ments, followed by a sequence of functions with high resource
requirements, iii) HiLoRes, high resource functions, followed
by low resource functions, iv) random, a random sequence of
functions with low, medium, and high resource requirements,
v) cyclic, a low resource function, followed by a medium re-
source, followed by a high resource function, repeated in cycles,
and vi) staircase, a sequence of low resource functions, followed
by a sequence of medium resource functions, followed by a
sequence of high resource functions. The first four workflows
consist of 40 functions each, while the last two consist of
42 functions.

Two sets of workflows allow us to demonstrate how Chunk-
Func behaves with real-life applications and to use the longer
and more complex synthetic workflows to evaluate Chunk-
Func’s scalability. Our workflows are mostly sequential, because
ChunkFunc relies on the critical path in a workflow and even in a
massively parallel workflow, the critical path is always sequen-
tial. The response times of our functions is within the range of
the current state-of-the-art, e.g., AWS imposes a default function
timeout of 3 seconds, which can be changed to a maximum of
15 minutes [32]. The average end-to-end durations (base SLOs)
of our workflows cover a wide range, starting at 12 seconds for
LogPro, approx. one minute for VidPro, 5 minutes for FaceDet,
extending to 75 minutes for the synthetic HiLoRes workflow.
The number of functions per workflow is representative of most
serverless workflows currently in use. A large scale study [33]

https://polaris-slo-cloud.github.io/chunk-func/experiments/
https://github.com/polaris-slo-cloud/chunk-func
https://doi.org/10.5281/zenodo.14174081
https://doi.org/10.5281/zenodo.14174081
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showed that 59% of workflows consisted of 2–10 functions, 19%
of 10–1000 functions, and 3% more than that (19% could not
be categorized).

We implement all real-world functions in TypeScript, except
for face detection and marking, for which we use Python. We
deploy them using Knative v1.10 on a Kubernetes v1.27 cluster.
For video processing we wrap ffmpeg6 v6.0 and use the x2647

and AAC codecs. Face detection and marking relies on the
OpenCV8 library.

We run the experiments with two sets of resource profiles. The
first set of profiles and their costs per 100 ms is coarse-grained
and resembles the 128 MB – 16384 MB profiles available on
Google Cloud Functions (GCF) [25] (Tier 2 prices). Since for
GCF there are eight profiles in this memory range, we use
exhaustive profiling for this set of resource profiles. The second
set of resources profiles and their costs per 1 ms is fine-grained
and resembles the 128 MB – 10240 MB range available on AWS
Lambda [34]. Every memory size maps to the CPU core count
defined by AWS [26]. AWS uses a continuous memory range,
which we divide into 64 MB steps, which results in 159 resource
profiles, for which we use BO-guided profiling.

We implement six heuristics:
1) Fastest configuration,
2) Cheapest configuration,
3) ChunkFunc Proportional Critical Path heuristic (Chunk-

Func),
4) ChunkFunc with known function output sizes (CF-

Oracle),
5) SLAM [11], and
6) StepConf [10].
CF-Oracle is identical to ChunkFunc, except that the for-

mer knows all function output sizes from an “oracle” when
computing the critical path – this is only used in comparison
to ChunkFunc to assess the effectiveness of function output
size estimates compared to the actual output sizes when deter-
mining the critical path. Both heuristics compute an average
across all resource profiles for the critical path. SLAM and
StepConf both rely on offline profiling to build a performance
model of the functions. We execute all experiments using the
exhaustive profiling results and using the BO predicted profiling
results.

SLAM precomputes all function configurations prior to exe-
cuting the workflow. It inserts all functions using their response
times under the lowest resource configuration into a max-heap.
SLAM pops the slowest function off the heap, increases its
resources to the next higher profile, and reinserts it into the
heap. If the resources cannot be increased further, the function’s
configuration is frozen, and it is not reinserted into the heap.
SLAM continues until an SLO-compliant configuration is found
or the heap is empty. A second version of the algorithm checks
if the percentage of decrease in response time is greater than the
percentage of cost increase before returning a function to the
heap. We use the cheaper of the two results.

6https://www.ffmpeg.org
7https://www.videolan.org/developers/x264.html
8https://opencv.org

TABLE II
REAL-WORLD WORKFLOW SCENARIOS

TABLE III
REAL-WORLD WORKFLOWS SLO COMPLIANCE FOR COARSE-GRAINED

RESOURCE PROFILES

StepConf chooses each function’s resource profile directly
prior to its execution using an NP-hard algorithm or a heuristic
on a DAG and is a representative for state-of-the-art graph-based
algorithms. The heuristic we implemented for our experiments,
computes a sub-SLO for each function step, based on its contri-
bution to the critical path until the end of the workflow and the
remaining time until SLO violation. For computing the critical
path, the response time of the most cost-effective resource profile
is used for every function.

Since SLAM and StepConf are unaware of different input data
sizes, we use the profiling results for each function’s median
input data size for these strategies.

VI. EXPERIMENTAL RESULTS

A. Real-World Workflows

For each real-world workflow we create and profile scenarios
with a small, a medium, and a large input size. To define
MRT SLOs we use the fastest and the cheapest configurations
as the lower and upper bounds. For example, for the largest
input data size for VidPro the lower and upper bounds for the
response time on the coarse-grained profiles are 44.788 seconds
and 110.089 seconds. We define the baseSlo = lowerBound+
upperBound−lowerBound

2 , e.g., 77.4 s for VidPro. We explore the
SLO interval of baseSlo±N% in one-percent steps, i.e.,N + 1
distinct SLOs. We chose N s.t. the interval does not exceed the
bounds given by the fastest and cheapest configurations. Since
the available resources in the lowest and the highest profiles
differ between the coarse-grained and the fine-grained resource
profile sets, also the lower and upper response time bounds
and, hence, the base SLOs differ. All workflow configuration
scenarios are shown in Table II .

https://www.ffmpeg.org
https://www.videolan.org/developers/x264.html
https://opencv.org
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Fig. 3. LogPro, VidPro, and FaceDet Maximum Response Time SLO compliance for large inputs for coarse-grained resource profiles.

Fig. 4. LogPro, VidPro, and FaceDet Costs per 10,000 invocations for large inputs for coarse-grained resource profiles.

1) Coarse-Grained Resource Profiles - Exhaustive Profiling:
Fig. 3 shows the SLO compliance results as response time graphs
for the large input data sizes (the other sizes are available in our
repository). The dashed black line denotes the MRT SLO, i.e.,
to fulfill the SLO, the workflow’s response time must be equal
to or below this line. Table III shows details for all input data
sizes.

All heuristics exhibit long periods of straight lines in the
response time graphs, because they use a certain set resource
configurations until the SLO relaxes enough to use a less pow-
erful resource profile on one function – this behavior causes a
straight line in the graph. Additionally, the relatively short work-
flows allow only few functions to be adapted, thus increasing the
length of the straight lines; the synthetic workflows exhibit many
more “steps” in the graphs.

ChunkFunc (standard and CF-Oracle version) is the only
heuristic that meets the SLO in all cases across all input sizes.
SLAM and StepConf work well for one or two input sizes, but
fail a substantial amount of SLOs in the rest. SLAM fulfills
two thirds of the LogPro SLOs, 69% of VidPro, and 68% of
FaceDet. SLO violations occur for medium and large inputs for
FaceDet and only for large inputs for the other two. Compared
to SLAM, ChunkFunc increases SLO adherence by 45% to
49% . StepConf fulfills 91% of the LogPro SLOs, 78% for
VidPro, and 75% for FaceDet. Most violations occur for large
input sizes, but for FaceDet StepConf also misses 27% of the
SLOs for medium inputs. Compared to StepConf, ChunkFunc
increases SLO adherence by 10% to 33% . Across all workflows,
SLAM fulfills 68% of the SLOs, while StepConf meets 81%, this
amounts to a mean increase in SLO adherence of 47% and 23%
respectively, when using ChunkFunc instead.

Fig. 4 shows the costs for 10,000 workflow invocations. If an
algorithm violates an SLO the respective cost bar is shown with
a hatch pattern, because if the SLO is not met, evaluating the cost
is pointless. To ensure comparability we show the costs for each
algorithm only where it meets the SLO. To avoid bias from SLO
violating configurations, when analyzing the costs, we conduct a
one-on-one comparison, where we consider only the cases where

Fig. 5. VidPro 500 MiB MRT SLO compliance for fine-grained profiles.

Fig. 6. FaceDet 73.5 MiB MRT SLO compliance for fine-grained profiles.

both strategies meet an SLO. We compare the mean costs of these
cases. When comparing ChunkFunc to SLAM, ChunkFunc is
4% cheaper for LogPro, 54% cheaper for VidPro, and 19%
cheaper for FaceDet. When comparing to StepConf, ChunkFunc
is 165% more expensive for LogPro, 29% cheaper for VidPro,
and 22% cheaper for FaceDet. For LogPro ChunkFunc is more
expensive than StepConf for almost all SLOs (for some they are
even). This is because ChunkFunc often picks faster resource
profiles, because it knows that it needs to fulfill every sub-SLO
for the large input, while StepConf assumes the medium input,
for which the sub-SLO can be fulfilled with cheaper resource
profiles. While this approach allows StepConf to save costs, it
also causes it to miss the tight SLOs for large inputs. In the
general case, ChunkFunc fulfills more SLOs than StepConf.
In workflows with long-running functions, such as VidPro and
FaceDet, ChunkFunc allows saving up to 48% of the costs over
StepConf.

2) Fine-Grained Resource Profiles - BO-Guided Profiling:
Figs. 5 and 6 show the SLO compliance results as response time
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TABLE IV
REAL-WORLD WORKFLOWS SLO COMPLIANCE FOR BO-INFERRED

FINE-GRAINED PROFILES

graphs for the large input data sizes. Table IV shows details for
all input data sizes. The straight lines in the graphs are caused
by the same reasons as for the coarse-grained resource profiles.
ChunkFunc is the only heuristic that meets the SLO in all cases
across all input sizes. Its SLO adherence is completely unaf-
fected by whether we use the exhaustive profiling results or the
BO-inferred profiling results. SLAM and StepConf work well
for one or two input sizes, but fail a substantial amount of SLOs in
the rest. SLAM fulfills two thirds of all VidPro SLOs and 74% of
FaceDet, with SLO violations occurring mostly for large inputs.
Compared to SLAM, ChunkFunc increases SLO adherence by
35% to 50% . StepConf fulfills 62% of the VidPro SLOs and 36%
for FaceDet. Only for small input sizes all the SLOs are met,
while as for medium input sizes there are already considerable
violations for VidPro and almost entirely violated for FaceDet.
Compared to StepConf, ChunkFunc increases SLO adherence
by 61% to 178% . Across all workflows, SLAM fulfills 71% of
the SLOs, while StepConf meets 49%, this amounts to a mean
increase in SLO adherence of 41% and 104% respectively, when
using ChunkFunc instead. We have excluded LogPro from the
experiment with fine-grained resources profiles. This is because
its functions are single-threaded (Node.JS) with low memory
requirements. Since the fine-grained resource profiles all contain
at least one vCPU, there is almost no performance difference
between the resource profiles, hence the omission of LogPro
from this experiment.

We do not show the cost graphs here, because SLAM and
StepConf fail to meet almost all of the SLOs for large inputs.
When comparing ChunkFunc to SLAM one-on-one across all
input sizes, where both heuristics meet the SLO, ChunkFunc is
48% cheaper for VidPro and 6% more expensive for FaceDet.
When comparing to StepConf, ChunkFunc is 36% more expen-
sive for VidPro and 42% more expensive for FaceDet. However,
ChunkFunc fulfills many more SLOs than SLAM and StepConf.
This justifies a slight increase in cost for one workflow with
respect to SLAM. With respect to StepConf, the cost increases
are more substantial. However, these increases cover less than
two thirds of the SLOs for VidPro and only slightly over one
third of the SLOs for FaceDet; for the remainder StepConf fails
to meet the SLO.

B. Synthetic Workflows

1) Coarse-Grained Resource Profiles - Exhaustive Profiling:
The synthetic workflows are used to evaluate ChunkFunc’s

scalability in longer, more complex workflows. The homoge-
neous, LoHiRes, HiLoRes, and random workflows consist of 40
functions in sequence. The cyclic and staircase workflows use
a short-running, medium-running, and a long-running function,
each of which appears 14 times in the workflow, hence they
consist of a total of 42 functions. For all synthetic workflows we
simulate scenarios with a small, a medium, and a large input.

Fig. 7 shows the SLO adherence for the coarse-grained pro-
files for the large inputs to the cyclic, HiLoRes, and homoge-
neous workflows, which we use as a representative examples
(for other graphs please see our repository). The SLO adher-
ence of the heuristics shows three pattern categories: For the
cyclic, random, and staircase workflows the heuristics exhibit
the pattern exemplified in Fig. 7(a). The LoHiRes and HiLoRes
workflows show the pattern in Fig. 7(b). The SLO adherence
for homogeneous workflow has its own distinct pattern shown
in Fig. 7(c).

ChunkFunc’s pattern shows only minor differences between
the workflows. It is the only heuristic that meets all SLOs for
all input sizes. StepConf’s pattern remains consistent across all
workflows. For large inputs, it varies closely between fulfilling
and violating the SLOs. Across all six synthetic workflows and
three input sizes, it meets 79% of the SLOs, with the lowest value
being 60% for the homogeneous workflow and the highest being
96% for the cyclic workflow. SLAM exhibits the largest differ-
ences in its patterns. It violates all large input SLOs, but fulfills
all SLOs for the other inputs, yielding an average adherence of
67% . For the cyclic, random, and staircase workflows, SLAM’s
response times are first close to the SLO line and diverge at some
point from it. For HiLoRes and LoHiRes the response times are
always far from the SLO until they plateau out at some point.
For the homogeneous workflow, SLAM’s response times are
closer to the MRT SLO line. For ChunkFunc the results yield
an increase in SLO adherence of 27% over StepConf and 50%
over SLAM.

For costs we perform the same one-on-one comparison for
fulfilled SLOs that we did for the real-world workflows. For
the cyclic workflow ChunkFunc is 48% cheaper than SLAM
and 27% cheaper than StepConf. For the staircase workflow
ChunkFunc only requires 39% of the costs of SLAM, making
it 61% cheaper. On average ChunkFunc is 38% cheaper than
SLAM and 10% cheaper than StepConf.

2) Fine-Grained Resource Profiles - BO-Guided Profiling:
Fig. 8 shows the SLO adherence for the fine-grained resource
profiles with large inputs to the cyclic and homogeneous work-
flows, which we use as a representative examples (for other
graphs please see our repository). We omit the costs for the cyclic
workflow for these resource profiles, because only ChunkFunc
manages to fulfill all SLOs for large inputs. The SLO adherence
of all but one workflow follows the pattern shown in Fig. 8(a),
where ChunkFunc meets all SLOs, StepConf meets some, but
closely misses most SLOs, and SLAM misses all SLOs. The
exception is the homogeneous workflow, shown in Fig. 8(b),
where ChunkFunc fulfills all SLOs, StepConf misses all SLOs,
and SLAM fulfills a little less than a quarter of the SLOs.

ChunkFunc is the only heuristic that meets all SLOs for all
input sizes for the BO-predicted profiles. Across all six synthetic
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Fig. 7. Representative results of synthetic workflow experiments for coarse-grained resource profiles.

Fig. 8. Representative results of synthetic workflow experiments for fine-grained resource profiles.

workflows and three input sizes, StepConf meets 53% of the
SLOs, with the lowest value being 45% for the homogeneous
workflow and the highest being 59% for the random workflow.
SLAM meets 65% of all SLOs, with 62% and 74% being the
lowest and highest values respectively. For ChunkFunc this
yields an increase in SLO adherence of 89% over StepConf and
54% over SLAM.

For the costs of the cyclic workflow, ChunkFunc amounts
to only 49% of the costs of SLAM and 98% of the costs of
StepConf. For the homogeneous workflow ChunkFunc requires
77% more costs than StepConf, but in any other case, ChunkFunc
is cheaper. On average ChunkFunc reduces costs by 52% com-
pared to SLAM. Compared to StepConf ChunkFunc is 5% more
expensive overall, because of the homogeneous workflow. For
the other five workflows, ChunkFunc is on average 9% cheaper
than StepConf.

The cost difference between ChunkFunc and CF-Oracle,
which knows all function outputs when computing a critical
path, is negligible. Across all experiments with all workflows
and resource profiles ChunkFunc is only 1% more expensive on
average, which shows that its critical path estimation works well
for keeping costs low, while fulfilling the SLOs.

Fig. 8(c) examines the execution times of the three heuristics
for the cyclic workflow. We log the execution time for computing
each resource profile in a simulation and, then, compute the mean
time for determining a single resource profile. We accumulate
these values across all SLOs for an input size. Since SLAM
only performs max-heap operations it is the fastest. ChunkFunc
and StepConf both compute paths through a DAG and show
a similar performance, with median values close to 1 ms and
0.5 ms respectively. Since ChunkFunc fulfills all SLOs, the slight
increase in computation time over StepConf is justifiable and
since it is marginal, it does not affect the user experience when
invoking a workflow.

C. Takeaways

While automatic profiling causes some up front costs, work-
flows are typically executed for months or years in production.

For example, profiling the merge-videos function in the
VidPro workflow took 106 minutes, which on a GCP c2-
standard-30 VM with SSD amounts to a one time cost of
about $2.27, which amortizes quickly since ChunkFunc may
reduce function execution costs by up to 61% . New versions of
a function can reuse existing performance profiles. Reprofiling is
only necessary if the changes affect the function’s performance.
This can be revealed using a performance test in the continuous
integration pipeline.

The number of inputs that should be profiled for a particular
function to obtain the best resource optimization results depends
on the function and its typical uses. A suitable approach for a
production system is to monitor a function’s live usage for a
representative period, e.g., one week. A clustering of inputs can
be used to identify the ideal number of inputs for profiling and
to obtain sample input data as well. An automation of this step
is currently out of scope, but should be considered as a future
expansion.

State-of-the-art approaches for resource optimization do not
consider input sizes, causing them to underestimate function
response times, especially for large inputs. This leads to the
selection of too weak resource profiles, often violating the SLO.
ChunkFunc is the only heuristic that always meets the SLO
because its input size-aware heuristic provides more accurate
estimates for function response times. The analysis of all results
shows that the more accurate critical path estimation and input
data size awareness of ChunkFunc fulfills the SLOs in all test
cases, an increase of a factor of 1.04 to 2.78, with respect to
the state-of-the-art and a maximum cost saving of 61% . The
advantage of input data size awareness becomes more apparent
as the input data size-dependent response time of the functions
increase, i.e., ChunkFunc performs better in processing inten-
sive workflows, such as video encoding, where a badly chosen
resource profile has a large effect.

In some cases the input data size is not the most decisive factor
for function response time because other properties of the input
are more important. For example, a video’s file size is determined
by its length and bitrate. However, when encoding a video, as
we do in the VidPro workflow, the video’s resolution has a
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much greater effect on the encoding duration than its bitrate.
Another example is earth observation data from satellites: the
image resolution and raw data size are always the same, but
the processing complexity can change depending on whether
the image shows the ocean or an urban area. To encompass such
cases, ChunkFunc’s input size parameter can be generalized to
an abstraction that represents an arbitrary numeric property of
the input, which affects processing time the most. In many cases
this is the file size, but in some cases it may be another property.
For example, for VidPro and FaceDet we use the product of
resolution× length as the “input size.” For satellite imagery a
preprocessing function can be used to determine the complexity,
which will be used as the “input size” for the next function.

Our Workflow Optimizer uses bucketing for selecting a per-
formance profile for an input that does not exactly match one
of the pre-computed performance profiles. Doing this instead of
linear interpolation between profiles makes it easier to fulfill the
SLOs. In the future a Gaussian Process could be bootstrapped
with the pre-computed profiles and, then, used to infer the
resource profile for such unknown inputs.

VII. RELATED WORK

A. Resource Configuration Optimization

Solutions most similar ChunkFunc, which aim to optimize
the resource configurations of functions can be divided into
two categories: i) approaches that build a performance model
offline using a-priori profiling and ii) approaches that build the
performance model online using monitoring data. Each category
can be further subdivided depending on whether it supports
single functions or entire workflows and by the algorithm type
used to determine function configuration(s).

Offline Performance Modeling using A-priori Profiling: A-
priori profiling typically executes the serverless function or
workflow using a representative input or set of inputs under
different resource configurations to build a performance model
in an offline fashion, which is used to tune the function config-
uration(s) for production execution.

Approaches for single functions use a wide variety of al-
gorithms. AWS Lambda Power Tuning [35] executes profiling
runs and graphs the response times and costs to let users manu-
ally pick a configuration. CPU-TAMS [14] relies on regression
modeling to create a “vCPU-to-memory model” for a particular
platform. Subsequently, a single profiling run for a function
using the maximum resources configuration suffices to perform
optimization. CherryPick [13], albeit originally developed for
Big Data analytics jobs, uses BO to reduce the number of
profiling runs needed to find a configuration that matches, e.g.,
a response time SLO. MAFF [12] uses linear, binary, or gradi-
ent descent search to find a suitable configuration. It supports
an active mode (a-priori profiling) and a passive mode (using
monitoring data only).

Optimizing a workflow to meet an SLO is much harder,
because the performance of one function can affect the available
resource choices for subsequent functions. Most approaches for
serverless workflows use graph algorithms on the workflow’s
call graph, or on a graph derived form it, to find suitable

configurations. StepConf [10] estimates function execution
times using a piece-wise fitting model, based on results from an
“offline”, i.e., profiling, phase and a quantile regression model
for data transmission delays between functions. These estimates
are used in combination with a workflow graph in an NP-hard
algorithm and in a heuristic to find function configurations that
fulfill the SLO, while minimizing cost. Lin and Khazaei [9]
augment a workflow graph with information, such as profiling
results and probabilities of taking a certain edge after executing
a function node. After transformations, such as removing cycles,
they obtain a “probabilistic DAG”, on which they run a Probabil-
ity Refined Critical Path (PRCP) Algorithm that progressively
refines the transition probabilities, while determining function
configurations. Costless [8] assesses, in addition to resource
configurations, the possibility to fuse multiple functions into
a single function and whether to execute them in the Cloud or
on the Edge. It utilizes a “cost graph”, which contains paths
through all possible function fusion options, with each edge
weight containing the execution time and cost of running the
succeeding function node.

Some a-priori profiling approaches do not use graph algo-
rithms, such as SLAM [11], which places all functions with
their lowest resource configurations in a max-heap ordered by
response time. It pops off the top function from the heap,
increases its resources, and checks if the workflow’s SLO is
fulfilled now. If not, it reinserts the function into the heap (if
further resource increases are possible) and continues.

Contrary to ChunkFunc, these approaches use either a typical
input data size for profiling or an aggregation of profiling results
over multiple input data sizes, but they do not differentiate
between different input data sizes. While CherryPick can detect
a large gap between expected performance and actual perfor-
mance, e.g., due to changed input data sizes, and trigger a
reprofiling, the current performance profile does not support
multiple input data sizes. StepConf’s approach is similar to
ChunkFunc, however, it relies on piece-wise fitting to determine
function performance, while we use BO and its GP. StepConf
uses the number of requests to a function to determine inter-
function and intra-function parallelism. Through intra-function
parallelism the number of requests indirectly influences the
resources available to a function instance, however, the input
size or complexity of a request does not. In accordance with
pure serverless principles, ChunkFunc assumes each function
instance processes one request at at time. Thus, the number
of requests are only relevant to the autoscaler of the serverless
platform and do not influence the resource configuration. Instead
for ChunkFunc, the input size or complexity of each request
influences the resource configuration, which leads to superior
results, as shown in our evaluation. The approach of fusing
functions in addition to optimizing their resources, as done
by Costless, can serve as a complimentary strategy for find-
ing SLO-compliant resource configurations. However, it cannot
replace the awareness of input data sizes. The repercussions of
not being aware of different input data sizes are exemplified
by our evaluation of SLAM, which fails to meet the SLOs for
inputs that do not match the expected size. Additionally, SLAM
and PRCP precompute all configurations before executing the
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workflow, SLAM using a max-heap and PRCP on a graph. This
entails that they cannot adjust if some functions take longer
than expected. ChunkFunc executes its heuristic directly before
invoking each function, which allows it to leverage information
about the current status of the workflow and react if a previous
function was slower or faster than expected.

Some systems tackle the resource configuration problem
specifically for ML workflows and rely on the request fre-
quency to influence the optimization. AsyFunc [36] reduces
memory usage of Deep Learning (DL) inference workflows by
not loading the entire model into every function and tuning
intra-function parallelism. It uses the number of requests per
second to determine the number of CPU cores to be assigned to a
function to achieve efficient memory usage. HarmonyBatch [37]
reduces response time and costs for model inference operations.
It batches infrequent requests of different applications with the
same model together on the same function instance. The request
frequency and application SLOs are used to determine the re-
sources and the batching. λDNN [38] optimizes the resources
and number of serverless functions used for training a Deep Neu-
ral Networks (DNN) model, based on the model parameters and
a time SLO. It iterates over all possible memory profiles, similar
to ChunkFunc. However, even though λDNN tunes the entire
training workflow, all functions are the same and use the same
resource configuration in the end, which simplifies the problem.
λGrapher [39] computes the memory configuration of serverless
functions for Graph Neural Network (GNN) serving as the sum
of the memory required by the runtime, the graphs, and the
embeddings; CPU configuration is determined using Bayesian
Optimization to minimize costs. These systems, which work
well for ML workflows, can leverage a-priori knowledge about
the functions and/or assumptions that ChunkFunc cannot use,
cause it is designed for generic serverless workflows. AsyFunc
can decide to not not load the entire model into every function,
which is not possible for a generic system like ChunkFunc.
HarmonyBatch can batch requests that use the same model
on the same function instance. While ChunkFunc could do
this too if the same input data is used, it would depend on
the function type if this would provide a benefit, e.g., a video
encoding function will always encode the video even if it is
the same function instance. Contrary to ChunkFunc λGrapher
can leverage prior knowledge about the memory requirements
of the GNNs. While ChunkFunc uses BO to reduce profiling
time, λGrapher uses it to find the CPU configuration with the
minimal costs. This is possible, because λGrapher can leverage
more a-priori knowledge than ChunkFunc has available.

Online Performance Modeling: Approaches that do not use
a-priori profiling typically use historical or live monitoring data
to build performance models in an online fashion.

Solutions for single functions use various algorithms. AWS
Compute Optimizer [16] analyzes function invocations, their
duration, errors, and the number of throttled invocations and
uses ML (exact technique is unspecified) to make recommen-
dations for configurations, but does not optimize automatically.
Sizeless [15] uses a multi-target regression model trained on a
large dataset obtained from monitoring synthetically generated
functions. This allows it to predict the execution time of a

function with monitoring from a single memory configuration
only. Aquatope [24] relies on BO to learn the most suitable
configuration that fulfills an SLO more quickly and aims to re-
duce cold starts as well. FaasDeliver [18] applies a new resource
configuration to a function after every execution until its model
is complete. It uses a Tree-structured Parzen Estimator to reduce
the number of configurations that need to be explored. Libra [40]
harvests unused resources from function instances and assigns
them to other instances that require more resources. It uses the
first input to profile the function and to bootstrap multiple ML
models; subsequent monitoring data updates these models. For
every invocation, Libra predicts the required resources and the
execution time based on the input size and harvests or adds
resources based on these predictions.

Systems for optimizing workflows also use very diverse ap-
proaches. Eismann et al. [41] use Mixture Density Networks
and Monte-Carlo simulations to predict costs of serverless
workflows, based on their input sizes, but they assume that the
functions’ resources are already assigned and do not propose
a solution to optimize them. COSE [17] relies on Bayesian
Optimization to pick the resource configuration to apply to the
next function execution, while it is building its performance
model. Once it has sufficient data, it computes configurations
and placements (Cloud or Edge) by solving an Integer Linear
Programming (ILP) problem. Orion [42] optimizes resource
profiles, function co-location, and cold starts. It models function
response times as distributions (one for each observed resource
profile) to account for variability and finds correlations between
the latencies of functions in a workflow. FireFace [23] initially
does not rely on monitoring data, but uses static code analysis
to extract internal features to allow it to estimate execution time
under various resource configurations using a prediction model.
Adaptive Particle Swarm Optimization using Genetic Algorithm
Operators is, then, used to find the function configurations
that harmonize SLO satisfaction and cost minimization. The
prediction model is regularly updated using monitoring data.
Jolteon [43] uses monitoring data to build its models and formu-
lates a chance constrained optimization problem, which is solved
by a convex optimizer after converting it using Monte Carlo
sampling. Astra [21], relies on graph algorithms to approximate
the solution to an optimization problem for analytics workflows.
Like FireFace, Astra also does not use monitoring data, but it
determines function execution times with a formula that uses the
input data size and the computation time on a “unit size object”
for a given resource configuration.

Online performance modeling does not require profiling or
configuration of typical inputs, because it monitors the running
system. However, while the performance model is incomplete,
the SLO will likely be violated. Statistical methods, such as
those employed by COSE, FaasDeliver, and Sizeless reduce
this time, but they cannot eliminate it. Except for Astra and
Libra, none of these solutions account for different input data
sizes. Libra reassigns unused resources, but it does not directly
support SLOs and it is limited to tuning a single function. While
ChunkFunc uses profiling results from different inputs, Astra
needs to determine the computation time on a “unit size object”.
This may be hard to do complex functions and its approach is
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limited to analytics workflows. The Mixture Density Networks
and Monte-Carlo employed by Eismann et al. [41] could be
an alternative to BO for creating performance profiles in the
ChunkFunc Profiler. However, their approach also requires a
collection of function monitoring data to train its model. The
required volume of monitoring data is not specified, but the
authors state that micro-benchmarks can be used to generate
the data. This suggests that the volume is likely more than what
BO needs during ChunkFunc profiling. Orion models response
times as distributions to account for variability, but, contrary
to ChunkFunc, Orion ignores that some variability may come
from different input data sizes. Similar to SLAM, the approaches
employed by COSE, FireFace, Orion, and Astra precompute the
set of resource configurations prior to executing the workflow.
Thus, unlike ChunkFunc, they cannot react to unexpectedly
slower or faster function executions.

B. Vertical Scaling Approaches

Vertical scaling can be seen as the counterpart to resource
configuration optimization for serverless functions, which is typ-
ically used in (micro)service-based applications. Many solutions
use machine learning on historical and/or live monitoring data
to predict scaling targets for combined vertical and horizon-
tal scaling [44], [45], [46]. Other techniques, such as control
theory [47] are also used. Approaches that focus solely on
vertical scaling also rely on a variety of techniques, such as rein-
forcement learning [48], [49], rule-based [50], fuzzy logic [51],
or regression [52], [53]. Vertical microservice autoscalers try
to predict a configuration to fulfill a demand consisting of
many user requests, whereas serverless configuration tuning,
such as ChunkFunc, is applied on a per-request basis. Thus,
traditional vertical scaling offers less flexibility since it can
update resources only at coarser grain. Since Libra [40] allows
harvesting unused resources from serverless function instances
and assigning them to instances in need, it can be seen as a
vertical scaler for serverless, albeit without direct support for
SLOs.

C. Scheduling & Miscellaneous

Proper placement/scheduling of serverless functions can also
play an important role in meeting SLOs. Many systems rely
on monolithic schedulers. Knative uses the default Kubernetes
scheduler [54], which uses a greedy multi-criteria decision
making approach to find suitable nodes for the pods, but it is
not SLO-aware. FnSched [55] relies on a greedy algorithm to
place function instances on as few nodes as possible to allow
unused nodes to be turned off. Skippy [56] is a scheduler
for data-intensive serverless applications at the Edge. FaaS-
Rank [57] uses reinforcement learning to automatically learn
scheduling policies to to optimize function completion time.
Owl [20] allows overcommitting physical resources with mul-
tiple serverless functions to improve resource utilization, while
carefully monitoring and preventing service degradation. Mono-
lithic schedulers have limited capacity, which means that the
high scheduling frequency in serverless systems necessitates at
some point a distributed scheduler to keep up with the load.

Hydra [58] uses a federation of 2-level schedulers to achieve up
to 40 K scheduling decisions per second. Hermod [59] supports
a distributed mode and uses early binding and hybrid load
balancing to reduce slowdown compared to vanilla OpenWhisk
scheduling. AuctionWhisk [60] adopts a distributed scheduling
approach based on an auctioning mechanism. YuanRong [61]
is a complete serverless platform that is used in production.
Its uses a highly-scalable multi-level hierarchical scheduler that
reduces cross-node communication. Scheduling is orthogonal to
the SLO-aware resource configuration provided by ChunkFunc.
ChunkFunc and other resource optimization frameworks rely on
schedulers to place new function instances on the most suitable
nodes to deliver the required performance.

Cold starts are known to affect the response times of serverless
functions [62]; mitigation of cold starts is another complimen-
tary approach to resource tuning to ensure SLO adherence of
serverless functions. Caching or keep-alive guided by proba-
bility distributions is a common strategy for cold start avoid-
ance and employed, e.g., by FaasCache [63] and O-RDC [64].
Pre-warming, as done by StepConf [10], IceBreaker [65], or
Orion [42], is a complimentary strategy that often uses workflow
context information to predict which functions will be called
next. Another approach is to reduce the function startup time
with alternative runtimes. Catalyzer [66] restores checkpoints of
previously running functions instead of starting completely new
instances. The Firecracker [67] microVM relies on a lightweight
Virtual Machine Monitor and a stripped down Linux kernel
that boots in 125 ms. WebAssembly runtimes allow multiple
functions to be hosted in the same container and, hence, allow
for faster startup than a container or VM [68].

Some works are dedicated to a detailed study of serverless
functions and platforms, such as [69], which deeply analyzes
compute and memory performance, scheduling, and the over-
head of containers. Jindal et al. [70] use profiling, statistical
methods, and Deep Neural Network methods to estimate how
many concurrent invocations a function can support without
violating an SLO – such information can be intergrated into the
profilers of resource configuration optimizers. Liu and Niu [71]
examine the current pricing practices of serverless providers and
formalize them into a model. As an alternative to the current
static pricing, they propose a dynamic auction-based pricing
model. If providers decide to adapt their pricing models, this
orthogonal research can be used to update the current pricing
models used by ChunkFunc and similar solutions.

VIII. CONCLUSION

We presented ChunkFunc, a framework for input data size-
aware resource configuration in serverless workflows. We for-
mulated an optimization problem to find function configurations
that meet performance-based SLOs, while minimizing cost.
The ChunkFunc Profiler executes functions to create input-size
dependent performance models for them, guided by BO and
partially inferred by a GP to reduce the number of profiling
runs. We also showed ChunkFunc Workflow Optimizer, which
adapts the configuration of functions in a workflow to meet
performance-based SLOs. We evaluated ChunkFunc against
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SLAM and StepConf and showed that it increases SLO adher-
ence by a factor of 1.04 to 2.78, while reducing costs in many
cases. This shows that input data size-aware resource configu-
ration provides a significant advantage in serverless workflows
with highly fluctuating input sizes.

In the future, we intend to
1) adapt ChunkFunc for cost-based SLOs,
2) investigate the use of a GP to infer more precise resource

profiles for input sizes that are not part of the performance
profile,

3) design a serverless-native framework for the development
of serverless applications, which supports the definition
and enforcement of SLOs, cold-start optimizations, and
optimizations for inter-function communication, and

4) extend our cluster scheduler [22] with input-size aware-
ness for serverless functions.
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