
Vol.:(0123456789)

SN Computer Science (2024) 5:678
https://doi.org/10.1007/s42979-024-03022-w

SN Computer Science

ORIGINAL RESEARCH

Self‑Provisioning Infrastructures for the Next Generation Serverless
Computing

Stefan Nastic1

Received: 21 October 2023 / Accepted: 31 May 2024
© The Author(s) 2024

Abstract
Serverless computing has ushered in a transformative paradigm, with a promise to alleviate developers from the intricacies
of infrastructure management. However, current serverless platforms predominantly offer only serverless compute capabili-
ties. As a consequence, the application developers are once again tasked to explicitly provision and manage the backend
services (BaaS), such as object stores or API gateways, the infrastructure, and the configuration models. This violates the
main promise of serverless computing and erases much of the practical benefits of the serverless paradigm. It also introduces
the challenges of managing the application execution environment, which includes maintaining provisioning and deployment
scripts, configuring and managing access permissions, and scaling the services during runtime. To address these challenges,
in this paper we introduce a novel paradigm for the next generation of serverless computing, called self-provisioning infra-
structure. The self-provisioning infrastructure is an infrastructure that is capable to automatically and autonomously (with
zero-configuration and zero-touch) provision serverless functions, their infrastructure, and their supporting BaaS services.
To achieve this vision, we introduce novel design principles, models, and mechanisms that are formalized via novel program-
ming, function, and system models. With this novel paradigm, we intend to fortify the core design principles of serverless
computing but also extend them to the entire application execution environment. By doing so, we aim to enable the next-
generation serverless computing in the Edge-Cloud continuum.

Keywords Self-provisioning · Serverless computing · Infrastructure provisioning · FaaS · Edge-cloud continuum

Introduction

Serverless computing enables a new way to build and scale
applications by allowing developers to decompose tradition-
ally monolithic applications into finer-grained “triggers”
(events) and “actions” (FaaS functions). Serverless plat-
forms typically provide a hosting and execution environ-
ment for such functions [1, 2]. Developers write the func-
tion business, logic while the serverless platform performs
the notoriously tedious and complex tasks of provisioning,
scaling, and managing the backend compute resources [3].

The emergence of serverless computing has ushered in a
transformative paradigm, with a promise to alleviate devel-
opers from the intricacies of infrastructure management [1,
4–6]. Current serverless platforms typically provide only

serverless compute capabilities and application developers
still need to explicitly deal with the supporting backend ser-
vices such as object store, API gateway, secrets manager, or
in-memory cache. These services are known as Backend-
as-a-Service or BaaS services [1] and they are increasingly
an integral part of many serverless applications [7–10]. By
being a part of the software stack, such services reimpose
the intricacies of backend service management to develop-
ers, who again need to explicitly worry about deploying and
managing application backend services. Consequently, we
face new challenges to fortify the core promise of serverless
computing, that is, writing FaaS functions without worrying
about the complexities of infrastructure provisioning and
management, while at the same time seamlessly extending
the serverless promise to encompass provisioning and man-
agement of the BaaS services but also the rest of the infra-
structure. The matter is further complicated by the increas-
ing need to run such services and applications across the
entire Edge-Cloud Continuum [11–13].

 * Stefan Nastic
 snastic@dsg.tuwien.ac.at

1 Distributed Systems Group, TU Wien, Argentinierstraße 8,
1040 Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03022-w&domain=pdf
http://orcid.org/0000-0003-0410-6315

 SN Computer Science (2024) 5:678 678 Page 2 of 15

SN Computer Science

Recently, federated serverless computing [14–19], sky
computing [20], hybrid serverless computing [21] and
serverless edge-cloud continuum [12] have been gaining in
popularity due to numerous benefits they can bring to the
next-generation serverless workflows and applications. Such
applications are typically deployed across multiple cloud
providers and edge devices to reduce cost [22], improve
scalability [18, 23, 24] or increase serverless application
resilience [25]. However, current serverless functions are
still largely dependent on the specific cloud provider con-
figurations and features, e.g., specific memory configuration,
specific event source integration, and frequently specific fea-
tures of the BaaS services. This inherent vendor lock-in,
combined with a large number of (vendor-specific) cloud
and edge BaaS services and their configuration options,
makes it very difficult in practice to reap the benefits of the
federated edge and cloud serverless infrastructures. Current
serverless computing models support only static configura-
tions per function, e.g., as memory and CPU. Once speci-
fied, these configurations remain the same for all subsequent
function invocations. Such static configuration and resource
allocation models do not yield optimal resource utilization
and typically lead to over- or under-provisioning of resources
[26–28]. There is still limited support for dynamic config-
uration models that are applied per function instance and
that can account for the variations in, e.g., input data size
and hardware heterogeneity. Consequently, this gives rise to
multiple challenges that impact provisioning and managing
infrastructures for the next-generation serverless applica-
tions in the Edge-Cloud continuum.

Provisioning execution environment for serverless functions
and applications State of the art and its limitations. Con-
temporary serverless platforms and approaches are focusing
mainly on offering serverless compute capabilities, meaning
that the users are relieved from explicitly provisioning the
compute resources (but some configuration is still required).
However, the rest of the application’s execution environ-
ment, including its infrastructure, BaaS services, and con-
figuration and resource allocation models still need to be
explicitly provisioned by the users.

Infrastructure as Code (IaC) is currently considered the
best practice for provisioning and managing application
infrastructure in the cloud. It relies on declarative configu-
ration languages [29–33] or more recently general purpose
programming languages [34, 35] to capture infrastructure
resources, their interdependencies, and configurations.
These approaches introduce numerous benefits to infrastruc-
ture management by facilitating process automation, guar-
anteeing consistency, and increasing resilience and cost sav-
ings. However, by design, they still require users to explicitly
and largely manually write the infrastructure provisioning
logic. This breaks the core promises and design principles

of serverless computing but also results in: (i) code dupli-
cation, since the same concepts, such as S3 bucket need to
be defined both as application code and IaC configuration,
(ii) vendor-specific limitations, since writing control-plane-
specific provisioning instructions is often required, and
(iii) a mismatch between declarative configurations and
dynamic infrastructures.

Faasifiers are special infrastructure management and
deployment solutions, which specifically target serverless
computing. Faasification is a process of converting mono-
lithic applications to run on serverless platform, either as
stand-alone serverless functions [36–38] or hybrid applica-
tions, which offload parts of the code as serverless functions
[25], while retaining the same interface to the user [23].
Despite the benefits they provide in terms of simplified pro-
visioning, deployment, and management of FaaS functions,
the faasifiers focus on facilitating the serverless functions
and they largely neglect the supporting BaaS services, the
infrastructure, and the configuration and resource allocation
models.

Clearly, there is still insufficient support to enable the
provisioning of infrastructure in a purely serverless fash-
ion. This leads us to four main research questions, which
motivate our research efforts toward self-provisioning
infrastructures:

1. Can we extend the core serverless principle to the entire
application’s execution environment in the next genera-
tion of serverless computing?

2. How can self-provisioning of BaaS services be enabled?
3. How can self-optimization of configuration and resource

allocation models be achieved?
4. Can we effectively account for non-functional concerns

and SLO awareness in the next generation of serverless
computing?

Contributions In this paper, we introduce a novel paradigm
called self-provisioning infrastructure (SPI) for the next
generation of serverless computing. The self-provisioning
infrastructure is an infrastructure that is capable of automati-
cally and autonomously provisioning the execution environ-
ment and application runtime for serverless functions. With
this novel paradigm, we intend to fortify the core design
principles of serverless computing and extend them beyond
the serverless compute to encompass the entire application
execution environment. By doing so, our vision is to enable
the next-generation serverless computing in the Edge-Cloud
continuum. To this end, we introduce novel approaches and
models of the self-provisioning infrastructure that are for-
malized via novel (i) Programming model, (ii) Function
model, and (iii) System model. The SPI models specify
novel abstractions, such as serverless primitives and runt-
ime mixins. The serverless primitives abstract the underlying

SN Computer Science (2024) 5:678 Page 3 of 15 678

SN Computer Science

infrastructure capabilities (such as storage attachments) ena-
bling pure utility-based consumption of the infrastructure
resources at fine granularity. Together with the Function
and BaaS models they bring portability and interoperability
at multiple levels including business logic level, platform
level, and serverless workflow level, which are some of the
key preconditions to achieve the next-generation serverless
computing in federated infrastructures. The runtime mix-
ins introduce the SLO-awareness to the self-provisioning
infrastructures, by enabling self-provisioning of the non-
functional concerns such as reliability, but also self-instru-
mentation, self-auditing, self-updating, and self-governance.
The SPI introduces novel AI-based runtime mechanisms,
which enable self-optimization of infrastructure’s configura-
tion models. This warrants an infrastructure that is optimized
for performance and efficiency while also being cost-aware.

Paper structure The rest of the paper is structured as follows.
“Background and Related Work” section discusses the state-
of-the-art approaches in comparison with our approach. In
“Principles and Models of Self-Provisioning Infrastructure”
section , we present the main design principles, models, and
mechanisms of the self-provisioning infrastructure. “Design-
ing and Implementing Self-Provisioning Mechanisms” sec-
tion introduces the most important self-provisioning mecha-
nisms and discusses in detail their design. In “Discussion”
section, we discuss the main trade-offs and practical applica-
bility of the self-provisioning infrastructures. Finally, “Con-
clusion” section concludes the paper and gives an outlook
on future research.

Background and Related Work

Infrastructure as Code Approaches

There have been numerous research and commercial IaC
approaches and they can be broadly classified into first-
and second-generation IaC approaches. Examples of the
first-generation IaC approaches include: Terraform [29],
CloudFormation [30], TOSCA [31], Serverless framework
[32], and Ansible [33]. Such approaches typically enable
defining the infrastructure and its dependencies, by using
custom directives, definitions, or a declarative configura-
tion language, which are typically specified as YAML files.
The second-generation IaC approaches include AWS CDK
[34] and Pulumi [35]. Instead of using a custom configura-
tion language, as most of the first-generation IaC tools do,
these approaches leverage existing language ecosystems
to define, deploy, and manage cloud infrastructures. This
allows for more flexible and modular infrastructure code
while abstracting away the boilerplate functionality. All
of these approaches require the user to explicitly write the

provisioning logic in addition to the application business
logic. This is a significant limitation since it results in a lot
of code duplication as facets are expressed both as applica-
tion code and IaC configurations. The declarative nature of
IaC approaches, which are used to describe static infrastruc-
tures is not well suited for the dynamic nature of serverless
infrastructures and their configuration and resource alloca-
tion models. In relation to our self-provisioning infrastruc-
tures, these approaches are enablers, because they can be
used to capture the core infrastructure provisioning logic.

Several approaches that offer specialized frameworks for
provisioning and deploying serverless applications recently
emerged. These include Kotless [39], AWS Chalice [40],
Zappa [41], and Osiris [42], as well as various so-called
FaaSifiers [23, 43]. For example, AWS Chalice is a tool
for Python developed by AWS. The tool uses its own DSL
to define HTTP APIs and event handlers, which then get
automatically provisioned on AWS, making it easy to cre-
ate simple serverless applications. Osiris is a tool for Kotlin
which also provides a custom DSL for defining HTTP API
events. Osiris does not interact with AWS services directly,
instead, it generates CloudFormation definitions. While
such approaches share some conceptual similarities with
self-provisioning infrastructure, they mainly require using
their custom DSLs, which steepens the learning curve. Addi-
tionally, they usually target a single cloud provider and they
have limited interoperability and portability considerations.

There are also approaches to serverless object stores (e.g.,
S3), serverless rational databases such as Amazon Aurora1
and serverless key-value stores such as DynamoDB.2 While
these BaaS services are provided as serverless offerings,
they still need to be explicitly maintained (together with
their configuration models, access policies, etc.) by the users
as a part of the software stack that supports the application
execution environment. However, these are mature technolo-
gies and self-provisioning infrastructure can seamlessly inte-
grate with such approaches in a similar manner as they do
with traditional BaaS services.

Configuration Optimization and Tuning Approaches
for Serverless Functions

Various approaches attempt to tune the resource configu-
ration of serverless functions to ensure that the serverless
applications meet their SLOs while minimizing the costs.
The best practice is to build a performance model of the
application’s serverless functions and use that model to tune
the functions’ configuration models. These approaches can
be divided into two main categories: (i) approaches that

1 https:// aws. amazon. com/ rds/ aurora/.
2 https:// aws. amazon. com/ dynam odb/.

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/dynamodb/

 SN Computer Science (2024) 5:678 678 Page 4 of 15

SN Computer Science

require a-priori profiling of functions to build a performance
model in an offline fashion and (ii) approaches that monitor
function executions during runtime to build the performance
model in an online fashion.

Systems that rely on the a-priori profiling typically execute
individual functions under varying resource configurations
with typical input data to learn about their performance. The
resulting performance profile is used to configure the func-
tion’s resources in production in order to meet the response
time SLO and/or cost requirements. These approaches can
be further classified by the algorithm used to determine the
resource configurations. Most systems that find suitable func-
tion configurations for an entire workflow rely on graph algo-
rithms [44–46] or use a max-heap [10]. To optimize a single
function or job, linear, binary, and gradient descent search
[47], Bayesian Optimization [48], and CPU time accounting
[49] have been used. A common drawback of the a-priori pro-
filing systems is that a “typical workload” needs to be defined
for each function, which might not be possible for functions
that have highly variable inputs.

Systems that build the performance model in an online
fashion either rely on historical or live monitoring data. Some
approaches passively monitor execution [47, 50, 51], while
others assign different configurations to the function runs until
the performance model is complete [52, 53]. The latter com-
monly use statistical methods, such as Bayesian optimization,
to speed up this process and reduce the number of configu-
rations that need to be explored. However, by design, these
approaches require the allocation of additional resources for
collecting and processing the monitoring information during
the entire application lifetime. This usually leads to a subop-
timal total cost profile of serverless applications.

AI‑Based Approaches for the Next‑Generation
Serverless Computing

As the complexity of edge-cloud environments is growing
it becomes a great target to apply AI and ML techniques
to not only do various optimizations but also to provide
specialized tools to simplify the development and provi-
sioning of the next-generation serverless applications. For
example, recent trends that focus on building intelligent
tools that can help developers [54], help discover vulner-
abilities [55], assist with bug fixing [56], and optimizing
configurations [27], as well as provide easy-to-understand
recommendations based on monitoring data available.
These techniques can serve as building blocks to achieve
the next generation of severeness computing and naturally
complement our self-provisioning infrastructure. Other
approaches use AI and ML to gain a better understanding
of serverless application operations by extending existing
serverless observability solutions [57], AI for IT operations
(AIOps) [58–60] and related areas, which again naturally

complement the self-provisioning infrastructure. Therefore,
all of these approaches are enablers of the self-provisioning
infrastructures as they can help further advance the SPI’s
runtime support.

Principles and Models of Self‑Provisioning
Infrastructure

The main design principle behind our approach is the con-
cept of self provisioning. Self-provisioning denotes the abil-
ity of an infrastructure or a platform to automatically and
independently (with zero-configuration and zero-touch)
provision a complete execution environment for a serverless
function solely from its business logic. For example, if a func-
tion requires an object store, a serverless platform should be
capable of recognizing it, e.g., by detecting the use of ’boto-
core.s3.Bucket()’ in the function’s business logic. Moreover,
the platform needs to also provision a suitable bucket, access
policies, resource allocations, etc for the function.

It is generally accepted that serverless functions typi-
cally consist of a Function as a Service (FaaS) part and a
Backend as a Service (BaaS) part [1]. Moreover, the FaaS
part can typically be broken down into a trigger, a handler,
and a runtime [45, 61]. The trigger defines a condition that
causes an invocation event to be sent to the handler (e.g.,
the new file being uploaded to a bucket). The handler con-
tains the actual business logic to process such an event (and
platform-specific code, irrelevant to this discussion). Finally,
the runtime consists of a language runtime (e.g., Java Runt-
ime Environment) and any libraries specified as dependen-
cies via, e.g., requirements.txt for Python or package.json
for NodeJS functions. Even in this simplified FaaS model,
we notice that the contemporary serverless platforms only
self-provision the required runtime.3 The remaining triggers,
configuration models, BaaS services, etc need to be explic-
itly provisioned by the user.

The self-provisioning infrastructure (SPI) applies the
self-provisioning paradigm to the entire application execu-
tion environment, including the application runtime, BaaS
services, function resources, and so on. We argue that the
self-provisioning infrastructure is the next step in the evolu-
tion of serverless computing. Moreover, it is a crucial step
to enable extending serverless computing beyond a single
cloud provider toward multi-cloud serverless computing,
federated FaaS or so-called sky computing, but also beyond

3 Some platform providers also provide support for simplified pro-
visioning of ad-hoc features such as AWS Lambda’s function URLs,
but they still require the user to configure and provision them (https://
docs. aws. amazon. com/ lambda/ latest/ dg/ lambda- urls. html).

https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html

SN Computer Science (2024) 5:678 Page 5 of 15 678

SN Computer Science

the Cloud and toward the Edge in the so-called Edge-Cloud
continuum [12].

Design Principles of Self‑Provisioning Infrastructure

Self-provisioning is the main design principle behind the
self-provisioning infrastructures. Other design principles
of the self-provisioning infrastructure include:

1. Self-optimization—In addition to the self-provisioning
principle, which requires automated and autonomous
provisioning of the infrastructure, self-optimization
states that the configuration models and resource allo-
cations need to be optimized for performance, efficiency,
and cost.

2. SLO-awareness—The self-provisioning infrastructure
needs to account for the non-functional requirements
of the application. It should be possible to specify such
requirements as high-level SLOs, such as availability,
rather than delving into low-level infrastructure provi-
sioning requirements, such as CPU capacity or memory
allocation.

3. Utility-based consumption—The infrastructure should
present itself as a transparent utility, letting developers
focus only on application business logic. The develop-
ers should be shielded from having to explicitly deal
with the infrastructure details. The infrastructure must
deliver its capabilities transparently and it must pos-
sess the capability to adapt to the changing needs of the
applications.

4. Cost-awareness—All self-provisioning mechanisms
within the SPI should possess an intrinsic cost sensi-
tivity. Decisions enacted by these mechanisms, rang-
ing from service provisioning to configuration tuning,
should be implemented with an optimization goal of
minimizing the costs.

5. Fine-grained configuration and consumption—Infra-
structure components need to be accessible at various
granularity levels. This requires precise calibration in
how resources are provisioned, guaranteeing allocations
that well align with application needs, while considering
overall resource consumption. It also requires shifting
from current per-function-type configuration models
toward fine-grained per-function-invocation configura-
tion models.

6. Multi-level portability & interoperability—To enable the
next-gen serverless computing, in addition to the above
design principles, the SPI needs to enable portability
and interoperability at several levels: (i) business logic,
i.e., function handler level, (ii) (virtual) platform, i.e.,
BaaS level, and (iii) application, i.e., serverless work-
flow level.

Models of Self‑Provisioning Infrastructure

After providing a general overview and the main design
principles of self-provisioning infrastructures, we next intro-
duce the main concepts, techniques, and the formal model of
self-provisioning infrastructures. Figure 1 gives a high-level
overview of the SPI model. In the continuation, we mainly
focus on discussing three main aspects of the SPI that are
formalized via: (i) Programming model, (ii) Function model,
and (iii) System model. To unlock the full potential of the
SPI all of the models are required. However, it is also pos-
sible to adopt only a subset of the models and still receive
benefits from the self-provisioning infrastructure paradigm.

Programming model The Serverless primitives provide the core
APIs and protocols to the serverless functions to interact with
its execution environment, including the BaaS services and
the infrastructure. These primitives are represented by well-
defined interfaces that enable the functions to interact with
the underlying capabilities in an implementation-independent
manner. An example of the serverless primitive is shown in
Listing 1. The listing shows a partial interface for a key-value
BaaS service, which exposes four functions, that can be used
by a serverless function to manipulate the key-value pairs and
to interact with the underlying key-value store. The exposed
functions are get, set, delete, and exists. It is worth noting at
this point, that we do not attempt to define an exhaustive list
of the Serverless primitives, nor do we try to define standard
interfaces for the primitives. There are already several attempts
to achieve that including for example, [62, 63].

The Serverless primitives are platform- and vendor-inde-
pendent and provide a high-level description of services that
can be invoked by the serverless functions, similar to the
operating system system calls. A set of such Serverless prim-
itives can be seen as a virtual platform (or a virtual OS) on
top of which we run the serverless functions. As discussed
subsequently, the SPI “instantiates such a virtual platform”
by provisioning concrete capabilities and capability provid-
ers. By enabling the developers to write serverless functions
by using well-defined, generic serverless primitives instead
of control-plain-specific or vendor-specific instructions, we
can enable the SPI to “understand” the function’s code or
even the developer’s intents.

This approach has an obvious drawback because in order
to be general enough, it captures the least common denomi-
nator in terms of the functionality of the BaaS services. Its
drawback is that the default SPI primitives can fail to capture
all the features of various BaaS service implementations,
e.g., Redis vs. Memcached. To remedy this, in addition to
the default Serverless primitives, the SPI offers the possi-
bility to the users to provide custom definitions of a server-
less primitive and register it (together with its capability
implementation) with the SPI. Consequently, the SPI also

 SN Computer Science (2024) 5:678 678 Page 6 of 15

SN Computer Science

considers such custom definitions while performing infra-
structure self-provisioning.

As shown in Fig. 1, the SPI also provides abstractions
Runtime mixins and Function annotations. Mixins are
abstractions that enable creating specific units of function-
ality in isolation, which can be transparently mixed into
some other functionality [64]. They are mainly used in

object-oriented programming but can be useful as a conveni-
ent approach to provide additional lifecycle hooks for man-
aged services or components. In SPI, the runtime mixins are
used to enable the self-provisioning of mechanisms, which
mainly address non-functional concerns, such as reliability,
but also for self-instrumenting, self-auditing, self-updating,
and self-governing.

Listing 1 An example of a serverless primitive interface for key-value BaaS service (partial view)

An example of a runtime mixin is adding a retry mecha-
nism to a serverless primitive or a more elaborate circuit
breaker for improved reliability. When a function invokes
a primitive the mixin acts as a form of a lifecycle hook,
which is automatically invoked by the SPI. For example,
the retry mixin is typically associated with the request post-
processing phase, i.e., it is triggered if a serverless primitive
returns an error instead of a result.

The function annotations enable the user to specify addi-
tional information that is useful or required by the SPI. For
example, the annotations can be used to specify additional
configurations for function triggers that cannot be automati-
cally inferred from the SPI. The annotations can be applied
on the function handlers or on the Serverless primitives.

We discuss annotation usage in more detail in the following
section.

System model Next, we discuss the most important com-
ponents of the SPI’s internal system model. Generally, the
system model components are used to support other compo-
nents in the SPI or to enable execution of the self-provision-
ing mechanisms. The main components of the SPI’s system
model are shown in Fig. 1 (right).

As we briefly mentioned earlier, the Infrastructure capa-
bilities and the Capability providers are required to enable
the Serverless primitives. The Infrastructure capabilities
provide an abstract implementation of the Serverless primi-
tives and they can be seen as a SPI internal representation

SN Computer Science (2024) 5:678 Page 7 of 15 678

SN Computer Science

of the Serverless primitives and their execution lifecycle.
More specifically, each primitive has exactly one capability
associated with it, in any given version of a self-provisioning
infrastructure, at any given time.

Figure 2, show a simplified UML model of the Capabil-
ity. The Infrastructure capabilities act as adapters between
the Serverless primitives and the underlying Capability
providers. This means, that their main role is to provide
the boilerplate code needed to map the serverless primi-
tive calls to the underlying Capability provider API call.
The Capability providers are the actual services or com-
ponents that expose the APIs and provide concrete imple-
mentations. Examples of the Capability providers are Redis,
Memcached, and Dynamo DB. In addition to the request
mapping, the Infrastructure capabilities also provide several
Lifecycle hooks for extending the primitive invocation life-
cycle. Most notably these include preprocessor () and post-
processor() hooks, which enable the SPI to inject custom
logic into the request pre- and post-processing phases. The
Infrastructure capabilities also allow for registering Runt-
ime mixins that enable adding custom lifestyle hooks. The
capabilities also contain specific Infrastructure provisioning
code. Such provisioning code can be created by a capability
provider (similar to Kubernetes operators or Helm charts)

or it can be auto-generated provisioning code using genera-
tive AI approaches such as problem-specific large language
models [65].

The SPI relies on the Binding configuration to maintain
the relationships between the primitives and the Infrastruc-
ture capabilities/Capability providers. This decoupling of
the primitives from the supporting capabilities enables
the self-provisioning infrastructure to completely sepa-
rate the serverless functions (more precisely their busi-
ness logic) from the underlying infrastructure. By doing
so it also eliminates any business logic dependence on the
underlying infrastructure, but also the dependence of the
infrastructure on the function’s business logic. This is one
of the key preconditions for the SPI to perform the infra-
structure provisioning fully by itself. With this approach,
in addition to provisioning the infrastructure, the SPI also
needs to make sure that there are infrastructure capabili-
ties available that can adequately fulfill the referenced
Serverless primitives. To achieve this, the SPI relies on
an interface-based auto-wiring mechanism, which can
automatically discover and “wire together” the primitives
with their capabilities, based on the interfaces they expose/
expect. It stores all the relevant information in the Bind-
ing configurations, but if needed those configurations can

Fig. 1 Model of the self-provisioning infrastructures (partial view) [62]

 SN Computer Science (2024) 5:678 678 Page 8 of 15

SN Computer Science

also be customized explicitly by the user. Eliminating the
dependencies between the functions and the infrastructure
also brings benefits in terms of reduced vendor lock-in,
increased portability, provider hot-swapping, and so on.

The remaining system components shown in Fig. 1
include Infrastructure global state mapping and Meta-
data-based profiles. They are best understood as helper
modules, which are required to support self-provisioning
mechanisms, as discussed in “Designing and Implement-
ing Self-Provisioning Mechanisms” section.

Function model The self-provisioning infrastructure defines
the Function model, based on the principle of the least com-
mon denominator of the available FaaS models and plat-
forms [1, 4–6]. This is a deliberate design decision since we
want the SPI to be compatible with the existing state-of-the-
art serverless platforms and approaches. The SPI’s function
model is shown in Fig. 1 (bottom), and its main components
include Trigger, Handler, Runtime, Metadata, Configura-
tion model and resource-allocation model. Some of these
components were already discussed at the beginning of this
section. In short, the Trigger defines a condition that causes
an invocation event to be sent to the handler. The Handler
contains the function’s business logic. The Runtime consists
of a language runtime and function’s dependencies. Provi-
sioning and management of the Runtime can completely be
delegated to the existing serverless platforms, as discussed
earlier in the text.

The SPI explicitly considers the resource and configura-
tion models, in order to enable their effective management.
We refer to this as self-optimization of configuration and
resource-allocation models a.k.a. configuration and resource
tuning.

The SPI relies on an approach that uses the Metadata
to determine the function’s profile, which is then used to
determine the baseline for the function’s configuration and
resource allocation. To this end, we build on our previous
work on AI-based configuration tuning and metadata-based
profiling [66]. The main idea of metadata profiling is to use
apriori known information about a function to predict its
dynamic runtime behavior. We refer to such information as
static, apriori metadata and it is available at the provisioning
time. Examples of such metadata include tags, user data, OS
parameters, and so forth. Profile classifier (cf. Fig. 3 left)
uses this metadata as input features to assign a suitable pro-
file to a to-be-provisioned function. These profiles capture
the dynamic characteristics and behaviors of the function
and they are computed by the Profile generator (cf. Fig. 3
right). The details of this process are beyond the scope of
this paper and we address them elsewhere [66].

The SPI uses metadata profiling and extends the pro-
files to include the function resource and configuration

models. This effectively enables the SPI to derive a suitable
resource and configuration model (e.g., function memory
limits, its timeout, etc.) for a function, by only considering
the function’s metadata. This approach helps us address the
so-called bootstrapping problem, inherent to many optimi-
zation techniques. This is the problem when the optimiza-
tion technique cannot be applied until enough information
is collected about a workload, such as function. Having long
bootstrapping delays can lead to sub-optimal configurations
and resource allocations.

After using the metadata-based profiling to establish an
intelligent baseline for the configuration and resource-allo-
cation models, the SPI can exploit state-of-the-art techniques
to further optimize those models, such as reinforcement
learning [67], linear, binary, and gradient descent search
[47], Bayesian Optimization [48], and CPU time account-
ing [49]. Naturally, the SPI also allows the users to provide
custom configuration models, in case they need to override
the self-optimized values.

The BaaS model is the FaaS model’s counterpart that rep-
resents the main abstractions and concepts of the BaaS ser-
vices that are self-provisioned by the SPI, but due to space
limitations, we refrain from further discussing it.

Designing and Implementing
Self‑Provisioning Mechanisms

Next, we look at the main classes of self-provisioning mech-
anisms and how such mechanisms are implemented. These
mechanisms can be broadly classified into three groups:
(i) self-provisioning FaaS, (ii) self-provisioning BaaS and
(iii) self-provisioning non-functional aspects, and iv) Self-
optimization of configuration and resource-allocation mod-
els. Main examples of self-provisioning FaaS mechanisms
include self-provisioning of FaaS triggers, self-provision-
ing of FaaS programming models, and self-provisioning
of application runtime. Self-provisioning BaaS includes,
self-provisioning of storage attachments, key-value stores,
ingress controllers, and persistent objects. Self-provision-
ing non-functional aspects is the broadest category and it
includes mechanisms responsible for managing application
reliability, elasticity, governance, performance, auditing,
instrumentation, and so forth. Self-optimization of configu-
ration and resource-allocation models (a.k.a. configuration
and resource tuning) include self-provisioning of function
or service resources such as memory, availability zones, IO
throughput, min/max concurrency, pool size. Next, we dis-
cuss some of the most important examples in more detail.

SN Computer Science (2024) 5:678 Page 9 of 15 678

SN Computer Science

Self‑Provisioning FaaS Triggers

Triggers are one of the key parts of the serverless application
model. They help define when and how a specific serverless
function is to be invoked. Examples of trigger events include
an upload to an S3 bucket, an HTTP request from an API
gateway, or a message added to a queue. However, configur-
ing triggers can be a tedious and time-consuming task. More
importantly, if done incorrectly, it can have detrimental con-
sequences, e.g., due to a phenomenon known as a “runa-
way function”. In such a situation an output produced as a
result of a function is falsely recognized as a trigger event
and an input for the same functions, resulting in an endless
recursive loop of function invocations, potentially incurring
significant costs [68]. This is a great example of a task that
should be delegated to the self-provisioning infrastructure.
Typically to configure a simple trigger, such as “invoke a
function when a new file with an extension ‘.png’ is added
to bucket ‘uploads’ ” one needs to interact with an object
storage service, such as S3, create a new bucket and define
its configuration model, including the access management.
After that appropriate suffixes and prefixes need to be added,
together with the event for adding the file to the bucket such
as an HTTP verb (e.g., ’PUT’). Further, one has to config-
ure the appropriate identity and access permissions to allow
communication between the function and the bucket. Finally,
an output bucket for storing the results such as a rescaled
output image needs to be created. An alternative to the last
step is to create a custom business logic, which makes sure

that the recursive invocation is detected and prevented in
order to prevent the runaway function.

The next generation of serverless computing should
relieve users from such mundane and error-prone tasks. With
the self-provisioning infrastructures, this issue is mitigated
by taking advantage of the Function annotations, which
can provide the necessary hints to the infrastructure (e.g., the
file extension and the bucket name) on how it should self-
provision the trigger. Other information such as the access
policies and the need for an additional output bucket can be
easily inferred by the infrastructure from the function’s busi-
ness logic and its interaction patterns with the storage. For
example, if a function wants to store the same file type, the
self-provisioning infrastructure can decide to self-provision
another bucket for the results instead of storing them in the
source bucket. With the SPI, instead of worrying about the
numerous infrastructure details the users simply enrich their
function’s business logic with the function annotations to
instruct the self-provisioning infrastructure with the addi-
tional information that is required to provision the complete
function’s execution environment.

Self‑Provisioning Storage Attachments

One of the main design decisions of serverless computing
is the complete desegregation of compute and storage [69].
Such disaggregation offers benefits such as flexible scaling
of compute resources, but at the same time, it requires the
user to provision storage attachments for the non-trivial

contains

implements

references

Capability

Mixin

LIfecycleHook
CapabilityProvider

contains

ProvisioningCode

ServerlessPrimitive
<<Interface>>

contains

Filter

Config

Mapping

Attribute
BindingConfiguration

Fig. 2 Simplified UML diagram of capability structure

 SN Computer Science (2024) 5:678 678 Page 10 of 15

SN Computer Science

serverless applications [8]. Serverless applications typically
use object stores to persist their results [70], but also to transfer
the intermediary, ephemeral data between the steps in server-
less workflows. In practice, this means that the users typically
have to provision and manage a large number of object store
buckets (together with their access policies and configuration
model), many of which have only a very limited lifespan. This
makes the provisioning and management of the storage attach-
ments the “low-hanging fruit” that needs to be handled by the
next generation of serverless computing.

The self-provisioning infrastructures address this chal-
lenge by offering the self-provisioning of serverless storage
attachments. In this example, we focus on the object stores,
but a similar approach can be applied to other storage types
such as key-value stores [71]. To provision an adequate stor-
age attachment the infrastructure first needs to know that
a specific function needs to write to or read from a stor-
age attachment. This is relatively straightforward to obtain
from the application’s business logic. For example, this can
be done based on the used primitives or even proprietary
SDK calls such as S3.putObject(). Please note that the spe-
cial case where the function is triggered by a change in a
storage attachment is discussed in the previous example on
Self-provisioning FaaS triggers. Next, the infrastructure
needs to determine how to “wire” the access to the storage
attachments, because multiple functions can share the same
storage attachment, e.g., in the case of passing intermediary
data between two functions in a serverless workflow. The

shared storage attachments can be identified by looking at
the function triggers, direct function invocations, and inter-
nal state mapping. The internal state mapping stores all the
provisioned resources and configuration is maintained by
the SPI. The SPI can use this internal representation of the
infrastructure state to infer the bucket (or table) references
in situations such as serverless workflow, where there are no
explicit connections between the functions. At this stage, it
is trivial to extrapolate access policies with suitable access
rights. Regarding the storage attachment configuration mod-
els, they can be self-provisioned following an approach simi-
lar to the one presented next.

Self‑Provisioning of Function Resources
and Configurations

The contemporary serverless computing paradigm says
nothing about the management of the configuration model.
This is true not only for the BaaS services but also for the
configurations of the FaaS functions. Most of the FaaS plat-
forms provide elaborate configuration options. For example,
besides the well-known memory/CPU configuration, one
can also usually specify maximum and minimum container
instances (containers warm pool), snap start - cached con-
tainer image, maximal concurrent requests per container
instance, ephemeral storage size (e.g., “/tm” directory),
and so forth. This is not only complex for the users, but
due to the current approach to the serverless configuration

Fig. 3 Overview of the metadata-based profiling

SN Computer Science (2024) 5:678 Page 11 of 15 678

SN Computer Science

options, we often end up with sub-optimal configurations
for the serverless functions. This can lead to, for example,
significantly over-provisioned memory [26].

The SPI addresses these challenges, by providing self-
optimized configuration models and resource allocations.
For example, to deploy a function one needs to specify
its configuration model. This at least requires configuring
the function’s memory/CPU resources. Even for this sim-
ple case, the users have to conduct custom experiments to
determine the right configuration, rely on their intuition, or
decide to over-provision “just in case”. The SPI can easily
self-optimize the memory/CPU configuration in a two-stage
approach. Firstly, the SPI uses Metadata-based profiling to
determine the function’s profile. More specifically, it looks
at the function’s metadata, which is known also before func-
tion deployment. Based on the metadata it selects the most
suitable profile that contains the optimal memory/CPU
configuration. After this, the function can already be self-
provisioned by the SPI. Secondly, the SPI can rely on a range
of optimizations to perform further configuration tuning if
necessary. Examples include statistical learning methods
such as Gaussian Process Bayesian Optimization [27, 48],
analytical models such as Probability Refined Critical Path
Greedy algorithm [45] or Tree-structured Parzen Estimator
[28], and AI-based approaches such as Deep Neural Net-
works [72] and Reinforcement Learning [73–75].

By following a similar approach the SPI can also self-opti-
mize resource and configuration models for the BaaS services.

Self‑Updating Mechanism

Next, we analyze mechanisms for self-provisioning of non-
functional aspects. Naturally, there are many non-functional
concerns and we cannot address them all in a single paper.
Instead, we focus on a well-known concern and mechanisms
for performing software updates.

One of the advantages of the current serverless comput-
ing paradigm and of using managed BaaS is that the appli-
cation developers do not have to worry about the software
updates both of the managed BaaS services and the applica-
tion runtime. For example, a serverless database or a key-
value store is typically delivered as managed services that
are continuously updated (and patched) to their latest ver-
sion by the platform provider. However, at the moment if a
function needs to utilize or simply can benefit from a new
feature or patch that was delivered with the latest update,
the function’s dependencies need to be updated, the func-
tion’s source code potentially needs to be changed and a
new version of the function needs to be rolled out, as well.
Contrary to this, the self-provisioning infrastructure can
utilize its knowledge of the application’s source code and
the registered Infrastructure capabilities to provide a suit-
able implementation of the Serverless primitives, which is

able to utilize the latest infrastructure features seamlessly,
without changing the function’s source code and having to
roll out a new version. More concretely, since the serverless
function only depends on the Serverless primitives and not
on the specific Infrastructure capabilities of the serverless
infrastructure nor on the concrete Capability Providers such
as Redis for the key-value store (cf. Fig. 1), the SPI can
transparently provide a new Capability implementation and
switch the function from an old version of the Capability to
a new one without the function even noticing it. With this
technique, the SPI enables delivering true self-upgrading
capabilities. Similarly, we can also transparently change the
capability providers or even core infrastructure components,
but this is out of the scope of this paper.

Discussion

The SPIs introduce abstractions and techniques to enable
enhanced portability, interoperability, and utility-based con-
sumption of the infrastructure resources. These elements are
typically absent in contemporary serverless models. We also
showed that by leveraging AI-driven metadata-based profil-
ing, self-provisioning infrastructure autonomously refines
infrastructure configuration and resource allocation, ensur-
ing optimized performance, efficiency, and cost-effective-
ness. The SPIs introduce runtime mixins to introduce SLO
awareness [76] to the self-provisioning infrastructure and set
foundations toward achieving further non-functional proper-
ties such as self-reliability, self-auditing, and self-govern-
ance. Next, we discuss some of the trade-offs and the prac-
tical applicability of the self-provisioning infrastructures.

Learning curve The self-provisioning infrastructure requires
the usage of custom programming abstractions, so-called
serverless primitives. Despite being well-aligned with exist-
ing serverless programming models, they still put an addi-
tional burden on the developers, because the developers need
to learn how to work with the new API and interfaces. This
can be seen as a limiting factor in terms of its practical appli-
cability. Fortunately, as a consequence of their design, the
self-provisioning infrastructure can be gradually adopted. It
is possible to adopt only a subset of the proposed models and
still receive benefits from the self-provisioning infrastructure
paradigm. Such gradual adaption can lead to the flattening of
the learning curve, hence mitigating most of the drawbacks
that accompany the introduction of new abstractions. Intro-
ducing the serverless primitives as a novel abstraction was a
deliberate design decision since we believe that the benefits
they bring outweigh their potential drawbacks.

Adoption of infrastructure capabilities Some of the core
enablers of the self-provisioning infrastructures are the

 SN Computer Science (2024) 5:678 678 Page 12 of 15

SN Computer Science

so-called infrastructure capabilities. The proposed capabili-
ties need to be created and maintained manually, including
their provisioning logic. This can be a time-consuming task,
especially considering that the underlying BaaS services can
add new features (frequent), change their APIs (infrequent),
and add new provisioning options (relatively frequent).
Additionally, there needs to be a certain critical mass of
the implemented infrastructure capabilities before the self-
provisioning infrastructure can transition from the research
prototype to being production-ready. All these drawbacks
can lead to a reduced practical application of the SPIs.
However, there are several options to mitigate most of the
mentioned drawbacks. Firstly, as previously mentioned, the
self-provisioning infrastructures can be adopted gradually.
Consequently, the same is true for their rollout. This means
that not all the functionality has to be provided and delivered
at once, reducing the burden on the capability providers.
Secondly, the self-provisioning infrastructure can utilize the
power of the open-source community to deliver and maintain
the infrastructure capabilities. The large cloud providers are
particularly incentivized to include their capability providers
to ensure their services can be consumed by the next-gener-
ation serverless application. Finally, large language models
(LLMs) are poised to play a more prominent role in future
code generation, hence potentially leading to solutions for
auto-generating the infrastructure capabilities.

Portability and interoperability The serverless primitives,
together with the infrastructure capabilities are designed
based on the least common denominator of the cloud BaaS
services. This leads to a drawback since the default primi-
tives and capabilities can fail to capture all the features
available in various implementations of BaaS services. As
described in “Principles and Models of Self-Provisioning
Infrastructure” section, this can be partly mitigated by pro-
viding a custom implementation of the primitives and capa-
bilities. However, as a consequence, there is a decrease in
portability and interoperability that also leads to a vendor
lock-in. Therefore, designing the capabilities based on the
principle of the least common denominator was a deliberate
design decision because the self-provisioning infrastructure
aims to increase interoperability and enable next-generation
serverless computing to support federated FaaS, sky comput-
ing, and edge-cloud deployments.

Conclusion

In this paper, we introduced self-provisioning infrastructure
as a novel paradigm that enables next-generation serverless
computing. We showed how the self-provisioning infrastruc-
ture fortifies the core principles of serverless computing and

extends the serverless paradigm holistically across the entire
application execution environment and infrastructure. We
presented and analyzed the design principles, models, and
mechanisms of the self-provisioning infrastructure.

In the future, we intend to continue the research in the
self-provisioning infrastructures. In particular, we will aim
to extend the self-provisioning infrastructure in several
directions. Firstly, we intend to focus on applications’ life-
cycle beyond the provisioning phase to support the next-gen-
eration serverless applications during their runtime. Specifi-
cally, we intend to address the performance, reliability, and
AI/edge-intelligence-specific challenges in the Edge-Cloud
continuum. Secondly, we plan to extend the self-provision-
ing infrastructure to facilitate a paradigm shift from tradi-
tional services and platforms computing to fabric-centric
computing where digital resources, infrastructures, and sys-
tems become true utilities, that permeate the entire compu-
tational and data continuum [12]. Finally, we plan to extend
the self-provisioning infrastructure’s runtime mechanisms to
offer structured support for self-auditing, self-compliance,
and self-governance.

Acknowledgements This work is sponsored by the Austrian Research
Promotion Agency (FFG), under project No. 903884.

Author Contributions The author confirms sole responsibility for con-
ception and design, material preparation, data collection and analysis.

Funding Open access funding provided by TU Wien (TUW). This
work is sponsored by the Austrian Research Promotion Agency (FFG),
under project No. 903884.

Data Availability Not applicable.

Declarations

Conflict of interest The author has no Conflict of interest to declare
that are relevant to the content of this article.

Informed Consent Not applicable.

Research Involving Human and /or Animals No/Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

SN Computer Science (2024) 5:678 Page 13 of 15 678

SN Computer Science

References

 1. Jonas E, Schleier-Smith J, Sreekanti V, Tsai C, Khandelwal A, Pu
Q, Shankar V, Carreira J, Krauth K, Yadwadkar NJ, Gonzalez JE,
Popa RA, Stoica I, Patterson DA. Cloud programming simplified:
a Berkeley view on serverless computing. CoRR; 2019. arXiv:
1902. 03383

 2. Nastic S, Rausch T, Scekic O, Dustdar S, Gusev M, Koteska B,
Kostoska M, Jakimovski B, Ristov S, Prodan R. A serverless real-
time data analytics platform for edge computing. IEEE Internet
Comput. 2017;21(4):64–71. https:// doi. org/ 10. 1109/ MIC. 2017.
29114 30.

 3. Raith P, Nastic S, Dustdar S. Serverless edge computing-where we
are and what lies ahead. IEEE Internet Comput. 2023;27(3):50–
64. https:// doi. org/ 10. 1109/ MIC. 2023. 32609 39.

 4. Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V,
Mitchell N, Muthusamy V, Rabbah R, Slominski A, Suter P. In:
Chaudhary S, Somani G, Buyya R, editors. Serverless computing:
current trends and open problems. Singapore: Springer; 2017. p.
1–20. https:// doi. org/ 10. 1007/ 978- 981- 10- 5026-8_1.

 5. Du D, Liu Q, Jiang X, Xia Y, Zang B, Chen H. Serverless com-
puting on heterogeneous computers. In: ASPLOS ’22. Associa-
tion for Computing Machinery, New York, NY, USA; 2022. p.
797–813. https:// doi. org/ 10. 1145/ 35032 22. 35077 32

 6. Jia Z, Witchel E. Nightcore: efficient and scalable serverless com-
puting for latency-sensitive, interactive microservices. In: ASP-
LOS ’21. Association for Computing Machinery, New York, NY,
USA; 2021. p. 152–66. https:// doi. org/ 10. 1145/ 34458 14. 34467 01

 7. Castro P, Ishakian V, Muthusamy V, Slominski A. The rise of
serverless computing. Commun ACM. 2019;62(12):44–54.
https:// doi. org/ 10. 1145/ 33684 54.

 8. Eismann S, Scheuner J, Eyk E, Schwinger M, Grohmann J, Herbst
N, Abad C, Iosup A. Serverless applications: why, when, and
how? IEEE Softw. 2021;38(1):32–9. https:// doi. org/ 10. 1109/ MS.
2020. 30233 02.

 9. Li Z, Guo L, Cheng J, Chen Q, He B, Guo M. The serverless com-
puting survey: a technical primer for design architecture. ACM
Comput Surv. 2022;54(10s):1–34. https:// doi. org/ 10. 1145/ 35083
60.

 10. Safaryan G, Jindal A, Chadha M, Gerndt M. Slam: Slo-aware
memory optimization for serverless applications. In: 2022 IEEE
15th international conference on cloud computing (CLOUD);
2022. p. 30–9. https:// doi. org/ 10. 1109/ CLOUD 55607. 2022. 00019

 11. Milojicic D. The edge-to-cloud continuum. Computer.
2020;53(11):16–25. https:// doi. org/ 10. 1109/ MC. 2020. 30072 97.

 12. Nastic S, Dustdar S, Philipp R, Alireza F, Pusztai T. A serverless
computing fabric for edge & cloud. In: 4th IEEE international
conference on cognitive machine intelligence (CogMi); 2022.
https:// doi. org/ 10. 1109/ CogMI 56440. 2022. 00011

 13. Dustdar S, Pujol VC, Donta PK. On distributed computing con-
tinuum systems. IEEE Trans Knowl Data Eng. 2023;35(4):4092–
105. https:// doi. org/ 10. 1109/ TKDE. 2022. 31428 56.

 14. Babuji Y, Bryan J, Chard R, Chard K, Foster I, Galewsky B,
Katz DS, Li Z. Federated function as a service for escience. In:
2021 IEEE 17th international conference on eScience (eScience).
IEEE Computer Society, Los Alamitos, CA, USA; 2021. p. 251–2.
https:// doi. org/ 10. 1109/ eScie nce51 609. 2021. 00046

 15. Chard R, Babuji Y, Li Z, Skluzacek T, Woodard A, Blaiszik B,
Foster I, Chard K. Funcx: A federated function serving fabric
for science. In: Proceedings of the 29th international sympo-
sium on high-performance parallel and distributed computing.
HPDC ’20. Association for Computing Machinery, New York,
NY, USA; 2020. p. 65–76. https:// doi. org/ 10. 1145/ 33695 83.
33926 83

 16. Li Z, Chard R, Babuji Y, Galewsky B, Skluzacek TJ, Nagaitsev
K, Woodard A, Blaiszik B, Bryan J, Katz DS, Foster I, Chard K.
funcx: federated function as a service for science. IEEE Trans
Parallel Distrib Syst. 2022;33(12):4948–63. https:// doi. org/ 10.
1109/ TPDS. 2022. 32087 67.

 17. Ristov S, Gritsch P. FaaSt: optimize makespan of serverless work-
flows in federated commercial FaaS. In: 2022 IEEE international
conference on cluster computing. CLUSTER ’22. IEEE, Heidel-
berg, Germany; 2022. p. 182–94. https:// doi. org/ 10. 1109/ CLUST
ER514 13. 2022. 00032

 18. Ristov S, Pedratscher S, Fahringer T. xAFCL: run scalable func-
tion choreographies across multiple FaaS systems. IEEE Trans
Serv Comput. 2023;16(1):711–23. https:// doi. org/ 10. 1109/ TSC.
2021. 31281 37.

 19. Sampe J, Garcia-Lopez P, Sanchez-Artigas M, Vernik G, Roca-
Llaberia P, Arjona A. Toward multicloud access transparency in
serverless computing. IEEE Softw. 2021;38(1):68–74. https:// doi.
org/ 10. 1109/ MS. 2020. 30299 94.

 20. Stoica I, Shenker S. From cloud computing to sky computing. In:
Proceedings of the workshop on hot topics in operating systems.
HotOS ’21. Association for Computing Machinery, New York,
NY, USA; 2021. p. 26–32. https:// doi. org/ 10. 1145/ 34583 36. 34653
01

 21. Castro P, Isahagian V, Muthusamy V, Slominski A. In: Krishna-
murthi R, Kumar A, Gill SS, Buyya R, editors. Hybrid serverless
computing: opportunities and challenges. Cham: Springer; 2023.
p. 43–77. https:// doi. org/ 10. 1007/ 978-3- 031- 26633-1_3.

 22. Durillo JJ, Prodan R, Barbosa JG. Pareto tradeoff scheduling of
workflows on federated commercial clouds. Simul Model Pract
Theory. 2015;58:95–111. https:// doi. org/ 10. 1016/j. simpat. 2015.
07. 001.

 23. Jonas E, Pu Q, Venkataraman S, Stoica I, Recht B. Occupy the
cloud: distributed computing for the 99%. In: Proceedings of the
2017 symposium on cloud computing. SoCC ’17. Association for
Computing Machinery, New York, NY, USA; 2017. p. 445–51.
https:// doi. org/ 10. 1145/ 31274 79. 31286 01

 24. Sampe J, Sanchez-Artigas M, Vernik G, Yehekzel I, Garcia-Lopez
P. Outsourcing data processing jobs with lithops. IEEE Trans
Cloud Comput. 2021. https:// doi. org/ 10. 1109/ TCC. 2021. 31290
00.

 25. Pedratscher S, Ristov S, Fahringer T. M2FaaS: transparent and
fault tolerant FaaSification of node.js monolith code blocks. Fut
Gener Comput Syst. 2022;135:57–71. https:// doi. org/ 10. 1016/j.
future. 2022. 04. 021.

 26. Tian H, Li S, Wang A, Wang W, Wu T, Yang H. Owl: perfor-
mance-aware scheduling for resource-efficient function-as-a-
service cloud. In: Proceedings of the 13th symposium on cloud
computing. SoCC ’22. Association for Computing Machinery,
New York, NY, USA. p. 78–93. https:// doi. org/ 10. 1145/ 35429
29. 35634 70

 27. Akhtar N, Raza A, Ishakian V, Matta I. Cose: configuring server-
less functions using statistical learning. In: IEEE INFOCOM
2020—IEEE conference on computer communications; 2020. p.
129–38. https:// doi. org/ 10. 1109/ INFOC OM410 43. 2020. 91553 63

 28. Yu G, Chen P, Zheng Z, Zhang J, Li X, He Z. FaaSdeliver: cost-
efficient and QoS-aware function delivery in computing contin-
uum. IEEE Trans Serv Comput. 2023;16(5):3332–47. https:// doi.
org/ 10. 1109/ TSC. 2023. 32747 69.

 29. HasiCorp: Terraform: automate infrastructure on any cloud.
https:// github. com/ hashi corp/ terra form. Accessed 13 Oct 2023

 30. Services AW. CloudFormation: speed up cloud provisioning with
infrastructure as code. https:// github. com/ aws- cloud forma tion.
Accessed 13 Oct 2023

 31. Wurster M, Breitenbücher U, Képes K, Leymann F, Yussupov V.
Modeling and automated deployment of serverless applications
using TOSCA. In: 2018 IEEE 11th conference on service-oriented

http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MIC.2023.3260939
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3368454
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1145/3508360
https://doi.org/10.1145/3508360
https://doi.org/10.1109/CLOUD55607.2022.00019
https://doi.org/10.1109/MC.2020.3007297
https://doi.org/10.1109/CogMI56440.2022.00011
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/eScience51609.2021.00046
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1109/TPDS.2022.3208767
https://doi.org/10.1109/TPDS.2022.3208767
https://doi.org/10.1109/CLUSTER51413.2022.00032
https://doi.org/10.1109/CLUSTER51413.2022.00032
https://doi.org/10.1109/TSC.2021.3128137
https://doi.org/10.1109/TSC.2021.3128137
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1007/978-3-031-26633-1_3
https://doi.org/10.1016/j.simpat.2015.07.001
https://doi.org/10.1016/j.simpat.2015.07.001
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.1016/j.future.2022.04.021
https://doi.org/10.1016/j.future.2022.04.021
https://doi.org/10.1145/3542929.3563470
https://doi.org/10.1145/3542929.3563470
https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://doi.org/10.1109/TSC.2023.3274769
https://doi.org/10.1109/TSC.2023.3274769
https://github.com/hashicorp/terraform
https://github.com/aws-cloudformation

 SN Computer Science (2024) 5:678 678 Page 14 of 15

SN Computer Science

computing and applications (SOCA); 2018. p. 73–80. https:// doi.
org/ 10. 1109/ SOCA. 2018. 00017

 32. Inc., S.: Serverless: build web, mobile and IoT applications with
serverless architectures. https:// github. com/ serve rless/ serve rless.
Accessed 13 Oct 2023

 33. Hat R. Ansible: ansible is a radically simple IT automation system.
https:// github. com/ ansib le/ ansib le. Accessed 13 Oct 2023

 34. Services AW. AWS CDK: a framework for defining cloud infra-
structure in code. https:// github. com/ aws/ aws- cdk. Accessed 13
Oct 2023

 35. Corporation P. Pulumi—infrastructure as code in any program-
ming language. https:// github. com/ pulumi/ pulumi. Accessed:
2023-10-13

 36. Jonas E, Pu Q, Venkataraman S, Stoica I, Recht B. Occupy the
cloud: distributed computing for the 99%. In: Proceedings of the
2017 symposium on cloud computing. SoCC ’17. Association for
Computing Machinery, Santa Clara, CA; 2017. p. 445–51. https://
doi. org/ 10. 1145/ 31274 79. 31286 01

 37. Cordingly R, Shu W, Lloyd WJ. Predicting performance and cost
of serverless computing functions with SAAF. In: IEEE DASC/
PiCom/CBDCom/CyberSciTech; 2020. p. 640–9. https:// doi. org/
10. 1109/ DASC- PICom- CBDCom- Cyber SciTe ch491 42. 2020.
00111

 38. Chard R, Babuji Y, Li Z, Skluzacek T, Woodard A, Blaiszik B,
Foster I, Chard K. FuncX: a federated function serving fabric
for science. In: International symposium on high-performance on
parallel and distributed computing. HPDC ’20. ACM, Stockholm,
Sweden; 2020. p. 65–76. https:// doi. org/ 10. 1145/ 33695 83. 33926
83

 39. Tankov V, Valchuk D, Golubev Y, Bryksin T. Infrastructure in
code: towards developer-friendly cloud applications. In: 2021 36th
IEEE/ACM international conference on automated software engi-
neering (ASE); 2021. p. 1166–70. https:// doi. org/ 10. 1109/ ASE51
524. 2021. 96789 43

 40. Services AW. Aws Chalice: python serverless microframework for
AWS. https:// github. com/ aws/ chali ce/. Accessed 13 Oct 2023

 41. Developers Z. Zappa: serverless python. https:// github. com/ zappa/
Zappa/. Accessed 13 Oct 2023

 42. Developers O. Osiris: simple serverless web applications in Kot-
lin. https:// github. com/ cjkent/ osiris/. Accessed 13 Oct 2023

 43. Yussupov V, Breitenbücher U, Kaplan A, Leymann F. Seaport:
assessing the portability of serverless applications. In: CLOSER;
2020. p. 456–67

 44. Elgamal T, Sandur A, Nahrstedt K, Agha G. Costless: optimizing
cost of serverless computing through function fusion and place-
ment. In: 2018 IEEE/ACM symposium on edge computing (SEC);
2018. p. 300–12. https:// doi. org/ 10. 1109/ SEC. 2018. 00029

 45. Lin C, Khazaei H. Modeling and optimization of performance and
cost of serverless applications. IEEE Trans Parallel Distrib Syst.
2021;32(3):615–32. https:// doi. org/ 10. 1109/ TPDS. 2020. 30288 41.

 46. Wen Z, Wang Y, Liu F. Stepconf: Slo-aware dynamic resource
configuration for serverless function workflows. In: IEEE INFO-
COM 2022—IEEE conference on computer communications;
2022. p. 1868–77. https:// doi. org/ 10. 1109/ INFOC OM488 80. 2022.
97969 62

 47. Zubko T, Jindal A, Chadha M, Gerndt M. Maff: self-adaptive
memory optimization for serverless functions. In: Montesi F,
Papadopoulos GA, Zimmermann W, editors. Service-oriented
and cloud computing. Cham: Springer International Publishing;
2022. p. 137–54.

 48. Alipourfard O, Liu HH, Chen J, Venkataraman S, Yu M, Zhang
M. Cherrypick: adaptively unearthing the best cloud configu-
rations for big data analytics. In: 14th USENIX symposium
on networked systems design and implementation (NSDI 17).
USENIX Association, Boston, MA; 2017. p. 469–82. https://

www. usenix. org/ confe rence/ nsdi17/ techn ical- sessi ons/ prese
ntati on/ alipo urfard

 49. Cordingly R, Xu S, Lloyd W. Function memory optimization for
heterogeneous serverless platforms with CPU time accounting. In:
2022 IEEE international conference on cloud engineering (IC2E);
2022. p. 104–15. https:// doi. org/ 10. 1109/ IC2E5 5432. 2022. 00019

 50. Eismann S, Bui L, Grohmann J, Abad C, Herbst N, Kounev S.
Sizeless: predicting the optimal size of serverless functions. In:
Proceedings of the 22nd international middleware conference.
Middleware ’21. Association for Computing Machinery, New
York, NY, USA; 2021. p. 248–59. https:// doi. org/ 10. 1145/ 34642
98. 34933 98

 51. Amazon Web Services, Inc. AWS Compute Optimizer; 2023.
https:// aws. amazon. com/ compu te- optim izer/. Accessed 13 Oct
2023

 52. Raza A, Akhtar N, Isahagian V, Matta I, Huang L. Configuration
and placement of serverless applications using statistical learning.
IEEE Trans Netw Serv Manag. 2023;20(2):1065–77. https:// doi.
org/ 10. 1109/ TNSM. 2023. 32544 37.

 53. Yu G, Chen P, Zheng Z, Zhang J, Li X, He Z. FaaSdeliver: cost-
efficient and QoS-aware function delivery in computing contin-
uum. IEEE Trans Serv Comput. 2023. https:// doi. org/ 10. 1109/
TSC. 2023. 32747 69.

 54. Finnie-Ansley J, Denny P, Becker BA, Luxton-Reilly A, Prather
J. The robots are coming: exploring the implications of openAI
codex on introductory programming. In: Proceedings of the 24th
Australasian computing education conference. ACE ’22. Associa-
tion for Computing Machinery, New York, NY, USA; 2022. p.
10–9. https:// doi. org/ 10. 1145/ 35118 61. 35118 63

 55. Pearce H, Tan B, Ahmad B, Karri R, Dolan-Gavitt B. Can openAI
codex and other large language models help us fix security bugs?
CoRR; 2021. arXiv: 2112. 02125.

 56. Prenner JA, Robbes R. Automatic program repair with openAI’s
codex: evaluating quixbugs. CoRR; 2021. arXiv: 2111. 03922

 57. Thurner P. Seamless AI-powered observability for multicloud
serverless applications. Dynatrace News. https:// www. dynat race.
com/ news/ blog/ seaml ess- ai- power ed- obser vabil ity- for- serve rless/

 58. Masood A, Hashmi A. AIOps: predictive analytics & machine
learning in operations. Berkeley, CA: Apress; 2019. p. 359–82.
https:// doi. org/ 10. 1007/ 978-1- 4842- 4106-6_7.

 59. Levin A, Garion S, Kolodner EK, Lorenz DH, Barabash K, Kugler
M, McShane N. Aiops for a cloud object storage service. In: 2019
IEEE international congress on big data (BigDataCongress);
2019. p. 165–9. https:// doi. org/ 10. 1109/ BigDa taCon gress. 2019.
00036

 60. Thurner P. Artificial intelligence for IT operations (AIOps).
https:// www. ibm. com/ cloud/ learn/ aiops. Accessed 13 Oct 2023

 61. Glikson A, Nastic S, Dustdar S. Deviceless edge computing:
extending serverless computing to the edge of the network. In:
Proceedings of the 10th ACM international systems and storage
conference. SYSTOR ’17. Association for Computing Machin-
ery, New York, NY, USA; 2017. https:// doi. org/ 10. 1145/ 30784
68. 30784 97

 62. Developers WCC. A generic way for WASI applications to
interact with cloud services. https:// github. com/ WebAs sembly/
wasi- cloud- core

 63. Developers O. Libcloud. https:// libcl oud. apache. org/. Accessed
13 Oct 2023

 64. Bracha G, Cook W. Mixin-based inheritance. In: Proceedings
of the European conference on object-oriented programming on
object-oriented programming systems, languages, and applica-
tions. OOPSLA/ECOOP ’90. Association for Computing Machin-
ery, New York, NY, USA; 1990. p. 303–11. https:// doi. org/ 10.
1145/ 97945. 97982

 65. Guo H, Yang J, Liu J, Yang L, Chai L, Bai J, Peng J, Hu X,
Chen C, Zhang D, Shi X, Zheng T, Zheng L, Zhang B, Xu K, Li

https://doi.org/10.1109/SOCA.2018.00017
https://doi.org/10.1109/SOCA.2018.00017
https://github.com/serverless/serverless
https://github.com/ansible/ansible
https://github.com/aws/aws-cdk
https://github.com/pulumi/pulumi
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1109/ASE51524.2021.9678943
https://doi.org/10.1109/ASE51524.2021.9678943
https://github.com/aws/chalice/
https://github.com/zappa/Zappa/
https://github.com/zappa/Zappa/
https://github.com/cjkent/osiris/
https://doi.org/10.1109/SEC.2018.00029
https://doi.org/10.1109/TPDS.2020.3028841
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://doi.org/10.1109/IC2E55432.2022.00019
https://doi.org/10.1145/3464298.3493398
https://doi.org/10.1145/3464298.3493398
https://aws.amazon.com/compute-optimizer/
https://doi.org/10.1109/TNSM.2023.3254437
https://doi.org/10.1109/TNSM.2023.3254437
https://doi.org/10.1109/TSC.2023.3274769
https://doi.org/10.1109/TSC.2023.3274769
https://doi.org/10.1145/3511861.3511863
http://arxiv.org/abs/2112.02125
http://arxiv.org/abs/2111.03922
https://www.dynatrace.com/news/blog/seamless-ai-powered-observability-for-serverless/
https://www.dynatrace.com/news/blog/seamless-ai-powered-observability-for-serverless/
https://doi.org/10.1007/978-1-4842-4106-6_7
https://doi.org/10.1109/BigDataCongress.2019.00036
https://doi.org/10.1109/BigDataCongress.2019.00036
https://www.ibm.com/cloud/learn/aiops
https://doi.org/10.1145/3078468.3078497
https://doi.org/10.1145/3078468.3078497
https://github.com/WebAssembly/wasi-cloud-core
https://github.com/WebAssembly/wasi-cloud-core
https://libcloud.apache.org/
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982

SN Computer Science (2024) 5:678 Page 15 of 15 678

SN Computer Science

Z. OWL: a large language model for IT operations. arXiv: 2309.
09298. https:// doi. org/ 10. 48550/ arXiv. 2309. 09298

 66. Morichetta A, Casamayor Pujol V, Nastic S, Dustdar S, Vij D,
Xiong Y, Zhang Z. Polarisprofiler: a novel metadata-based pro-
filing approach for optimizing resource management in the edge-
cloud continnum. In: The 18th IEEE international symposium on
service-oriented system engineering (SOSE 2023); 2023. https://
doi. org/ 10. 1109/ SOSE5 8276. 2023. 00010

 67. Li K, Nastic S. Attentionfunc: balancing FaaS compute across
edge-cloud continuum with reinforcement learning. In: The 13th
international conference on the internet of things (IoT 2023);
2023. (to appear)

 68. Losio R. Are recursive serverless functions the biggest billing
risk on the cloud? https:// www. infoq. com/ news/ 2022/ 08/ recur
sive- serve rless- funct ions/

 69. Mvondo D, Bacou M, Nguetchouang K, Ngale L, Pouget S,
Kouam J, Lachaize R, Hwang J, Wood T, Hagimont D, De Palma
N, Batchakui B, Tchana A. Ofc: an opportunistic caching system
for FaaS platforms. In: Proceedings of the sixteenth European
conference on computer systems. EuroSys ’21. Association for
Computing Machinery, New York, NY, USA; 2021. p. 228–44.
https:// doi. org/ 10. 1145/ 34477 86. 34562 39

 70. Sánchez-Artigas M, Eizaguirre GT. A seer knows best: optimized
object storage shuffling for serverless analytics. In: Proceedings of
the 23rd ACM/IFIP international middleware conference. Middle-
ware ’22. Association for Computing Machinery, New York, NY,
USA; 2022. p. 148–60. https:// doi. org/ 10. 1145/ 35285 35. 35652 41

 71. Klimovic A, Wang Y, Stuedi P, Trivedi A, Pfefferle J, Kozyrakis
C. Pocket: elastic ephemeral storage for serverless analytics. In:
13th USENIX symposium on operating systems design and imple-
mentation (OSDI 18). USENIX Association, Carlsbad, CA; 2018.
p. 427–44. https:// www. usenix. org/ confe rence/ osdi18/ prese ntati
on/ klimo vic

 72. Jindal A, Chadha M, Benedict S, Gerndt M. Estimating the capaci-
ties of function-as-a-service functions. In: Proceedings of the 14th
IEEE/ACM international conference on utility and cloud comput-
ing companion. UCC ’21. Association for Computing Machin-
ery, New York, NY, USA; 2022. https:// doi. org/ 10. 1145/ 34923
23. 34956 28

 73. Bitsakos C, Konstantinou I, Koziris N. Derp: a deep reinforcement
learning cloud system for elastic resource provisioning. In: 2018
IEEE international conference on cloud computing technology
and science (CloudCom); 2018. p. 21–9. https:// doi. org/ 10. 1109/
Cloud Com20 18. 2018. 00020

 74. Schuler L, Jamil S, Kuhl N. AI-based resource allocation: rein-
forcement learning for adaptive auto-scaling in serverless envi-
ronments. In: 2021 IEEE/ACM 21st international symposium on
cluster, cloud and internet computing (CCGrid). IEEE Computer
Society, Los Alamitos, CA, USA; 2021. p. 804–11. https:// doi.
org/ 10. 1109/ CCGri d51090. 2021. 00098

 75. Benedetti P, Femminella M, Reali G, Steenhaut K. Reinforcement
learning applicability for resource-based auto-scaling in server-
less edge applications. In: 2022 IEEE international conference on
pervasive computing and communications workshops and other
affiliated events (PerCom Workshops); 2022. p. 674–9. https:// doi.
org/ 10. 1109/ PerCo mWork shops 53856. 2022. 97674 37

 76. Nastic S, Morichetta A, Pusztai T, Dustdar S, Ding X, Vij D,
Xiong Y. Sloc: service level objectives for next generation cloud
computing. IEEE Internet Comput. 2020;24(3):39–50. https:// doi.
org/ 10. 1109/ MIC. 2020. 29877 39.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2309.09298
http://arxiv.org/abs/2309.09298
https://doi.org/10.48550/arXiv.2309.09298
https://doi.org/10.1109/SOSE58276.2023.00010
https://doi.org/10.1109/SOSE58276.2023.00010
https://www.infoq.com/news/2022/08/recursive-serverless-functions/
https://www.infoq.com/news/2022/08/recursive-serverless-functions/
https://doi.org/10.1145/3447786.3456239
https://doi.org/10.1145/3528535.3565241
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/3492323.3495628
https://doi.org/10.1145/3492323.3495628
https://doi.org/10.1109/CloudCom2018.2018.00020
https://doi.org/10.1109/CloudCom2018.2018.00020
https://doi.org/10.1109/CCGrid51090.2021.00098
https://doi.org/10.1109/CCGrid51090.2021.00098
https://doi.org/10.1109/PerComWorkshops53856.2022.9767437
https://doi.org/10.1109/PerComWorkshops53856.2022.9767437
https://doi.org/10.1109/MIC.2020.2987739
https://doi.org/10.1109/MIC.2020.2987739

	Self-Provisioning Infrastructures for the Next Generation Serverless Computing
	Abstract
	Introduction
	Background and Related Work
	Infrastructure as Code Approaches
	Configuration Optimization and Tuning Approaches for Serverless Functions
	AI-Based Approaches for the Next-Generation Serverless Computing

	Principles and Models of Self-Provisioning Infrastructure
	Design Principles of Self-Provisioning Infrastructure
	Models of Self-Provisioning Infrastructure

	Designing and Implementing Self-Provisioning Mechanisms
	Self-Provisioning FaaS Triggers
	Self-Provisioning Storage Attachments
	Self-Provisioning of Function Resources and Configurations
	Self-Updating Mechanism

	Discussion
	Conclusion
	Acknowledgements
	References

