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Abstract
Serverless computing has ushered in a transformative paradigm, with a promise to alleviate developers from the intricacies 
of infrastructure management. However, current serverless platforms predominantly offer only serverless compute capabili-
ties. As a consequence, the application developers are once again tasked to explicitly provision and manage the backend 
services (BaaS), such as object stores or API gateways, the infrastructure, and the configuration models. This violates the 
main promise of serverless computing and erases much of the practical benefits of the serverless paradigm. It also introduces 
the challenges of managing the application execution environment, which includes maintaining provisioning and deployment 
scripts, configuring and managing access permissions, and scaling the services during runtime. To address these challenges, 
in this paper we introduce a novel paradigm for the next generation of serverless computing, called self-provisioning infra-
structure. The self-provisioning infrastructure is an infrastructure that is capable to automatically and autonomously (with 
zero-configuration and zero-touch) provision serverless functions, their infrastructure, and their supporting BaaS services. 
To achieve this vision, we introduce novel design principles, models, and mechanisms that are formalized via novel program-
ming, function, and system models. With this novel paradigm, we intend to fortify the core design principles of serverless 
computing but also extend them to the entire application execution environment. By doing so, we aim to enable the next-
generation serverless computing in the Edge-Cloud continuum.
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Introduction

Serverless computing enables a new way to build and scale 
applications by allowing developers to decompose tradition-
ally monolithic applications into finer-grained “triggers” 
(events) and “actions” (FaaS functions). Serverless plat-
forms typically provide a hosting and execution environ-
ment for such functions [1, 2]. Developers write the func-
tion business, logic while the serverless platform performs 
the notoriously tedious and complex tasks of provisioning, 
scaling, and managing the backend compute resources [3].

The emergence of serverless computing has ushered in a 
transformative paradigm, with a promise to alleviate devel-
opers from the intricacies of infrastructure management [1, 
4–6]. Current serverless platforms typically provide only 

serverless compute capabilities and application developers 
still need to explicitly deal with the supporting backend ser-
vices such as object store, API gateway, secrets manager, or 
in-memory cache. These services are known as Backend-
as-a-Service or BaaS services [1] and they are increasingly 
an integral part of many serverless applications [7–10]. By 
being a part of the software stack, such services reimpose 
the intricacies of backend service management to develop-
ers, who again need to explicitly worry about deploying and 
managing application backend services. Consequently, we 
face new challenges to fortify the core promise of serverless 
computing, that is, writing FaaS functions without worrying 
about the complexities of infrastructure provisioning and 
management, while at the same time seamlessly extending 
the serverless promise to encompass provisioning and man-
agement of the BaaS services but also the rest of the infra-
structure. The matter is further complicated by the increas-
ing need to run such services and applications across the 
entire Edge-Cloud Continuum [11–13].
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Recently, federated serverless computing [14–19], sky 
computing [20], hybrid serverless computing [21] and 
serverless edge-cloud continuum [12] have been gaining in 
popularity due to numerous benefits they can bring to the 
next-generation serverless workflows and applications. Such 
applications are typically deployed across multiple cloud 
providers and edge devices to reduce cost [22], improve 
scalability [18, 23, 24] or increase serverless application 
resilience [25]. However, current serverless functions are 
still largely dependent on the specific cloud provider con-
figurations and features, e.g., specific memory configuration, 
specific event source integration, and frequently specific fea-
tures of the BaaS services. This inherent vendor lock-in, 
combined with a large number of (vendor-specific) cloud 
and edge BaaS services and their configuration options, 
makes it very difficult in practice to reap the benefits of the 
federated edge and cloud serverless infrastructures. Current 
serverless computing models support only static configura-
tions per function, e.g., as memory and CPU. Once speci-
fied, these configurations remain the same for all subsequent 
function invocations. Such static configuration and resource 
allocation models do not yield optimal resource utilization 
and typically lead to over- or under-provisioning of resources 
[26–28]. There is still limited support for dynamic config-
uration models that are applied per function instance and 
that can account for the variations in, e.g., input data size 
and hardware heterogeneity. Consequently, this gives rise to 
multiple challenges that impact provisioning and managing 
infrastructures for the next-generation serverless applica-
tions in the Edge-Cloud continuum.

Provisioning execution environment for serverless functions 
and applications State of the art and its limitations. Con-
temporary serverless platforms and approaches are focusing 
mainly on offering serverless compute capabilities, meaning 
that the users are relieved from explicitly provisioning the 
compute resources (but some configuration is still required). 
However, the rest of the application’s execution environ-
ment, including its infrastructure, BaaS services, and con-
figuration and resource allocation models still need to be 
explicitly provisioned by the users.

Infrastructure as Code (IaC) is currently considered the 
best practice for provisioning and managing application 
infrastructure in the cloud. It relies on declarative configu-
ration languages [29–33] or more recently general purpose 
programming languages [34, 35] to capture infrastructure 
resources, their interdependencies, and configurations. 
These approaches introduce numerous benefits to infrastruc-
ture management by facilitating process automation, guar-
anteeing consistency, and increasing resilience and cost sav-
ings. However, by design, they still require users to explicitly 
and largely manually write the infrastructure provisioning 
logic. This breaks the core promises and design principles 

of serverless computing but also results in: (i) code dupli-
cation, since the same concepts, such as S3 bucket need to 
be defined both as application code and IaC configuration, 
(ii) vendor-specific limitations, since writing control-plane-
specific provisioning instructions is often required, and 
(iii) a mismatch between declarative configurations and 
dynamic infrastructures.

Faasifiers are special infrastructure management and 
deployment solutions, which specifically target serverless 
computing. Faasification is a process of converting mono-
lithic applications to run on serverless platform, either as 
stand-alone serverless functions [36–38] or hybrid applica-
tions, which offload parts of the code as serverless functions 
[25], while retaining the same interface to the user [23]. 
Despite the benefits they provide in terms of simplified pro-
visioning, deployment, and management of FaaS functions, 
the faasifiers focus on facilitating the serverless functions 
and they largely neglect the supporting BaaS services, the 
infrastructure, and the configuration and resource allocation 
models.

Clearly, there is still insufficient support to enable the 
provisioning of infrastructure in a purely serverless fash-
ion. This leads us to four main research questions, which 
motivate our research efforts toward self-provisioning 
infrastructures: 

1. Can we extend the core serverless principle to the entire 
application’s execution environment in the next genera-
tion of serverless computing?

2. How can self-provisioning of BaaS services be enabled?
3. How can self-optimization of configuration and resource 

allocation models be achieved?
4. Can we effectively account for non-functional concerns 

and SLO awareness in the next generation of serverless 
computing?

Contributions In this paper, we introduce a novel paradigm 
called self-provisioning infrastructure (SPI) for the next 
generation of serverless computing. The self-provisioning 
infrastructure is an infrastructure that is capable of automati-
cally and autonomously provisioning the execution environ-
ment and application runtime for serverless functions. With 
this novel paradigm, we intend to fortify the core design 
principles of serverless computing and extend them beyond 
the serverless compute to encompass the entire application 
execution environment. By doing so, our vision is to enable 
the next-generation serverless computing in the Edge-Cloud 
continuum. To this end, we introduce novel approaches and 
models of the self-provisioning infrastructure that are for-
malized via novel (i) Programming model, (ii) Function 
model, and (iii) System model. The SPI models specify 
novel abstractions, such as serverless primitives and runt-
ime mixins. The serverless primitives abstract the underlying 
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infrastructure capabilities (such as storage attachments) ena-
bling pure utility-based consumption of the infrastructure 
resources at fine granularity. Together with the Function 
and BaaS models they bring portability and interoperability 
at multiple levels including business logic level, platform 
level, and serverless workflow level, which are some of the 
key preconditions to achieve the next-generation serverless 
computing in federated infrastructures. The runtime mix-
ins introduce the SLO-awareness to the self-provisioning 
infrastructures, by enabling self-provisioning of the non-
functional concerns such as reliability, but also self-instru-
mentation, self-auditing, self-updating, and self-governance. 
The SPI introduces novel AI-based runtime mechanisms, 
which enable self-optimization of infrastructure’s configura-
tion models. This warrants an infrastructure that is optimized 
for performance and efficiency while also being cost-aware.

Paper structure The rest of the paper is structured as follows. 
“Background and Related Work” section  discusses the state-
of-the-art approaches in comparison with our approach. In 
“Principles and Models of Self-Provisioning Infrastructure” 
section , we present the main design principles, models, and 
mechanisms of the self-provisioning infrastructure. “Design-
ing and Implementing Self-Provisioning Mechanisms” sec-
tion  introduces the most important self-provisioning mecha-
nisms and discusses in detail their design. In “Discussion” 
section, we discuss the main trade-offs and practical applica-
bility of the self-provisioning infrastructures. Finally, “Con-
clusion” section  concludes the paper and gives an outlook 
on future research.

Background and Related Work

Infrastructure as Code Approaches

There have been numerous research and commercial IaC 
approaches and they can be broadly classified into first- 
and second-generation IaC approaches. Examples of the 
first-generation IaC approaches include: Terraform [29], 
CloudFormation [30], TOSCA [31], Serverless framework 
[32], and Ansible [33]. Such approaches typically enable 
defining the infrastructure and its dependencies, by using 
custom directives, definitions, or a declarative configura-
tion language, which are typically specified as YAML files. 
The second-generation IaC approaches include AWS CDK 
[34] and Pulumi [35]. Instead of using a custom configura-
tion language, as most of the first-generation IaC tools do, 
these approaches leverage existing language ecosystems 
to define, deploy, and manage cloud infrastructures. This 
allows for more flexible and modular infrastructure code 
while abstracting away the boilerplate functionality. All 
of these approaches require the user to explicitly write the 

provisioning logic in addition to the application business 
logic. This is a significant limitation since it results in a lot 
of code duplication as facets are expressed both as applica-
tion code and IaC configurations. The declarative nature of 
IaC approaches, which are used to describe static infrastruc-
tures is not well suited for the dynamic nature of serverless 
infrastructures and their configuration and resource alloca-
tion models. In relation to our self-provisioning infrastruc-
tures, these approaches are enablers, because they can be 
used to capture the core infrastructure provisioning logic.

Several approaches that offer specialized frameworks for 
provisioning and deploying serverless applications recently 
emerged. These include Kotless [39], AWS Chalice [40], 
Zappa [41], and Osiris [42], as well as various so-called 
FaaSifiers [23, 43]. For example, AWS Chalice is a tool 
for Python developed by AWS. The tool uses its own DSL 
to define HTTP APIs and event handlers, which then get 
automatically provisioned on AWS, making it easy to cre-
ate simple serverless applications. Osiris is a tool for Kotlin 
which also provides a custom DSL for defining HTTP API 
events. Osiris does not interact with AWS services directly, 
instead, it generates CloudFormation definitions. While 
such approaches share some conceptual similarities with 
self-provisioning infrastructure, they mainly require using 
their custom DSLs, which steepens the learning curve. Addi-
tionally, they usually target a single cloud provider and they 
have limited interoperability and portability considerations.

There are also approaches to serverless object stores (e.g., 
S3), serverless rational databases such as Amazon Aurora1 
and serverless key-value stores such as DynamoDB.2 While 
these BaaS services are provided as serverless offerings, 
they still need to be explicitly maintained (together with 
their configuration models, access policies, etc.) by the users 
as a part of the software stack that supports the application 
execution environment. However, these are mature technolo-
gies and self-provisioning infrastructure can seamlessly inte-
grate with such approaches in a similar manner as they do 
with traditional BaaS services.

Configuration Optimization and Tuning Approaches 
for Serverless Functions

Various approaches attempt to tune the resource configu-
ration of serverless functions to ensure that the serverless 
applications meet their SLOs while minimizing the costs. 
The best practice is to build a performance model of the 
application’s serverless functions and use that model to tune 
the functions’ configuration models. These approaches can 
be divided into two main categories: (i) approaches that 

1 https:// aws. amazon. com/ rds/ aurora/.
2 https:// aws. amazon. com/ dynam odb/.

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/dynamodb/
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require a-priori profiling of functions to build a performance 
model in an offline fashion and (ii) approaches that monitor 
function executions during runtime to build the performance 
model in an online fashion.

Systems that rely on the a-priori profiling typically execute 
individual functions under varying resource configurations 
with typical input data to learn about their performance. The 
resulting performance profile is used to configure the func-
tion’s resources in production in order to meet the response 
time SLO and/or cost requirements. These approaches can 
be further classified by the algorithm used to determine the 
resource configurations. Most systems that find suitable func-
tion configurations for an entire workflow rely on graph algo-
rithms [44–46] or use a max-heap [10]. To optimize a single 
function or job, linear, binary, and gradient descent search 
[47], Bayesian Optimization [48], and CPU time accounting 
[49] have been used. A common drawback of the a-priori pro-
filing systems is that a “typical workload” needs to be defined 
for each function, which might not be possible for functions 
that have highly variable inputs.

Systems that build the performance model in an online 
fashion either rely on historical or live monitoring data. Some 
approaches passively monitor execution [47, 50, 51], while 
others assign different configurations to the function runs until 
the performance model is complete [52, 53]. The latter com-
monly use statistical methods, such as Bayesian optimization, 
to speed up this process and reduce the number of configu-
rations that need to be explored. However, by design, these 
approaches require the allocation of additional resources for 
collecting and processing the monitoring information during 
the entire application lifetime. This usually leads to a subop-
timal total cost profile of serverless applications.

AI‑Based Approaches for the Next‑Generation 
Serverless Computing

As the complexity of edge-cloud environments is growing 
it becomes a great target to apply AI and ML techniques 
to not only do various optimizations but also to provide 
specialized tools to simplify the development and provi-
sioning of the next-generation serverless applications. For 
example, recent trends that focus on building intelligent 
tools that can help developers [54], help discover vulner-
abilities [55], assist with bug fixing [56], and optimizing 
configurations [27], as well as provide easy-to-understand 
recommendations based on monitoring data available. 
These techniques can serve as building blocks to achieve 
the next generation of severeness computing and naturally 
complement our self-provisioning infrastructure. Other 
approaches use AI and ML to gain a better understanding 
of serverless application operations by extending existing 
serverless observability solutions [57], AI for IT operations 
(AIOps) [58–60] and related areas, which again naturally 

complement the self-provisioning infrastructure. Therefore, 
all of these approaches are enablers of the self-provisioning 
infrastructures as they can help further advance the SPI’s 
runtime support.

Principles and Models of Self‑Provisioning 
Infrastructure

The main design principle behind our approach is the con-
cept of self provisioning. Self-provisioning denotes the abil-
ity of an infrastructure or a platform to automatically and 
independently (with zero-configuration and zero-touch) 
provision a complete execution environment for a serverless 
function solely from its business logic. For example, if a func-
tion requires an object store, a serverless platform should be 
capable of recognizing it, e.g., by detecting the use of ’boto-
core.s3.Bucket()’ in the function’s business logic. Moreover, 
the platform needs to also provision a suitable bucket, access 
policies, resource allocations, etc for the function.

It is generally accepted that serverless functions typi-
cally consist of a Function as a Service (FaaS) part and a 
Backend as a Service (BaaS) part [1]. Moreover, the FaaS 
part can typically be broken down into a trigger, a handler, 
and a runtime [45, 61]. The trigger defines a condition that 
causes an invocation event to be sent to the handler (e.g., 
the new file being uploaded to a bucket). The handler con-
tains the actual business logic to process such an event (and 
platform-specific code, irrelevant to this discussion). Finally, 
the runtime consists of a language runtime (e.g., Java Runt-
ime Environment) and any libraries specified as dependen-
cies via, e.g., requirements.txt for Python or package.json 
for NodeJS functions. Even in this simplified FaaS model, 
we notice that the contemporary serverless platforms only 
self-provision the required runtime.3 The remaining triggers, 
configuration models, BaaS services, etc need to be explic-
itly provisioned by the user.

The self-provisioning infrastructure (SPI) applies the 
self-provisioning paradigm to the entire application execu-
tion environment, including the application runtime, BaaS 
services, function resources, and so on. We argue that the 
self-provisioning infrastructure is the next step in the evolu-
tion of serverless computing. Moreover, it is a crucial step 
to enable extending serverless computing beyond a single 
cloud provider toward multi-cloud serverless computing, 
federated FaaS or so-called sky computing, but also beyond 

3 Some platform providers also provide support for simplified pro-
visioning of ad-hoc features such as AWS Lambda’s function URLs, 
but they still require the user to configure and provision them (https:// 
docs. aws. amazon. com/ lambda/ latest/ dg/ lambda- urls. html).

https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
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the Cloud and toward the Edge in the so-called Edge-Cloud 
continuum [12].

Design Principles of Self‑Provisioning Infrastructure

Self-provisioning is the main design principle behind the 
self-provisioning infrastructures. Other design principles 
of the self-provisioning infrastructure include: 

1. Self-optimization—In addition to the self-provisioning 
principle, which requires automated and autonomous 
provisioning of the infrastructure, self-optimization 
states that the configuration models and resource allo-
cations need to be optimized for performance, efficiency, 
and cost.

2. SLO-awareness—The self-provisioning infrastructure 
needs to account for the non-functional requirements 
of the application. It should be possible to specify such 
requirements as high-level SLOs, such as availability, 
rather than delving into low-level infrastructure provi-
sioning requirements, such as CPU capacity or memory 
allocation.

3. Utility-based consumption—The infrastructure should 
present itself as a transparent utility, letting developers 
focus only on application business logic. The develop-
ers should be shielded from having to explicitly deal 
with the infrastructure details. The infrastructure must 
deliver its capabilities transparently and it must pos-
sess the capability to adapt to the changing needs of the 
applications.

4. Cost-awareness—All self-provisioning mechanisms 
within the SPI should possess an intrinsic cost sensi-
tivity. Decisions enacted by these mechanisms, rang-
ing from service provisioning to configuration tuning, 
should be implemented with an optimization goal of 
minimizing the costs.

5. Fine-grained configuration and consumption—Infra-
structure components need to be accessible at various 
granularity levels. This requires precise calibration in 
how resources are provisioned, guaranteeing allocations 
that well align with application needs, while considering 
overall resource consumption. It also requires shifting 
from current per-function-type configuration models 
toward fine-grained per-function-invocation configura-
tion models.

6. Multi-level portability & interoperability—To enable the 
next-gen serverless computing, in addition to the above 
design principles, the SPI needs to enable portability 
and interoperability at several levels: (i) business logic, 
i.e., function handler level, (ii) (virtual) platform, i.e., 
BaaS level, and (iii) application, i.e., serverless work-
flow level.

Models of Self‑Provisioning Infrastructure

After providing a general overview and the main design 
principles of self-provisioning infrastructures, we next intro-
duce the main concepts, techniques, and the formal model of 
self-provisioning infrastructures. Figure 1 gives a high-level 
overview of the SPI model. In the continuation, we mainly 
focus on discussing three main aspects of the SPI that are 
formalized via: (i) Programming model, (ii) Function model, 
and (iii) System model. To unlock the full potential of the 
SPI all of the models are required. However, it is also pos-
sible to adopt only a subset of the models and still receive 
benefits from the self-provisioning infrastructure paradigm.

Programming model The Serverless primitives provide the core 
APIs and protocols to the serverless functions to interact with 
its execution environment, including the BaaS services and 
the infrastructure. These primitives are represented by well-
defined interfaces that enable the functions to interact with 
the underlying capabilities in an implementation-independent 
manner. An example of the serverless primitive is shown in 
Listing 1. The listing shows a partial interface for a key-value 
BaaS service, which exposes four functions, that can be used 
by a serverless function to manipulate the key-value pairs and 
to interact with the underlying key-value store. The exposed 
functions are get, set, delete, and exists. It is worth noting at 
this point, that we do not attempt to define an exhaustive list 
of the Serverless primitives, nor do we try to define standard 
interfaces for the primitives. There are already several attempts 
to achieve that including for example, [62, 63].

The Serverless primitives are platform- and vendor-inde-
pendent and provide a high-level description of services that 
can be invoked by the serverless functions, similar to the 
operating system system calls. A set of such Serverless prim-
itives can be seen as a virtual platform (or a virtual OS) on 
top of which we run the serverless functions. As discussed 
subsequently, the SPI “instantiates such a virtual platform” 
by provisioning concrete capabilities and capability provid-
ers. By enabling the developers to write serverless functions 
by using well-defined, generic serverless primitives instead 
of control-plain-specific or vendor-specific instructions, we 
can enable the SPI to “understand” the function’s code or 
even the developer’s intents.

This approach has an obvious drawback because in order 
to be general enough, it captures the least common denomi-
nator in terms of the functionality of the BaaS services. Its 
drawback is that the default SPI primitives can fail to capture 
all the features of various BaaS service implementations, 
e.g., Redis vs. Memcached. To remedy this, in addition to 
the default Serverless primitives, the SPI offers the possi-
bility to the users to provide custom definitions of a server-
less primitive and register it (together with its capability 
implementation) with the SPI. Consequently, the SPI also 
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considers such custom definitions while performing infra-
structure self-provisioning.

As shown in Fig. 1, the SPI also provides abstractions 
Runtime mixins and Function annotations. Mixins are 
abstractions that enable creating specific units of function-
ality in isolation, which can be transparently mixed into 
some other functionality [64]. They are mainly used in 

object-oriented programming but can be useful as a conveni-
ent approach to provide additional lifecycle hooks for man-
aged services or components. In SPI, the runtime mixins are 
used to enable the self-provisioning of mechanisms, which 
mainly address non-functional concerns, such as reliability, 
but also for self-instrumenting, self-auditing, self-updating, 
and self-governing.

Listing 1  An example of a serverless primitive interface for key-value BaaS service (partial view)

An example of a runtime mixin is adding a retry mecha-
nism to a serverless primitive or a more elaborate circuit 
breaker for improved reliability. When a function invokes 
a primitive the mixin acts as a form of a lifecycle hook, 
which is automatically invoked by the SPI. For example, 
the retry mixin is typically associated with the request post-
processing phase, i.e., it is triggered if a serverless primitive 
returns an error instead of a result.

The function annotations enable the user to specify addi-
tional information that is useful or required by the SPI. For 
example, the annotations can be used to specify additional 
configurations for function triggers that cannot be automati-
cally inferred from the SPI. The annotations can be applied 
on the function handlers or on the Serverless primitives. 

We discuss annotation usage in more detail in the following 
section.

System model Next, we discuss the most important com-
ponents of the SPI’s internal system model. Generally, the 
system model components are used to support other compo-
nents in the SPI or to enable execution of the self-provision-
ing mechanisms. The main components of the SPI’s system 
model are shown in Fig. 1 (right).

As we briefly mentioned earlier, the Infrastructure capa-
bilities and the Capability providers are required to enable 
the Serverless primitives. The Infrastructure capabilities 
provide an abstract implementation of the Serverless primi-
tives and they can be seen as a SPI internal representation 
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of the Serverless primitives and their execution lifecycle. 
More specifically, each primitive has exactly one capability 
associated with it, in any given version of a self-provisioning 
infrastructure, at any given time.

Figure 2, show a simplified UML model of the Capabil-
ity. The Infrastructure capabilities act as adapters between 
the Serverless primitives and the underlying Capability 
providers. This means, that their main role is to provide 
the boilerplate code needed to map the serverless primi-
tive calls to the underlying Capability provider API call. 
The Capability providers are the actual services or com-
ponents that expose the APIs and provide concrete imple-
mentations. Examples of the Capability providers are Redis, 
Memcached, and Dynamo DB. In addition to the request 
mapping, the Infrastructure capabilities also provide several 
Lifecycle hooks for extending the primitive invocation life-
cycle. Most notably these include preprocessor () and post-
processor() hooks, which enable the SPI to inject custom 
logic into the request pre- and post-processing phases. The 
Infrastructure capabilities also allow for registering Runt-
ime mixins that enable adding custom lifestyle hooks. The 
capabilities also contain specific Infrastructure provisioning 
code. Such provisioning code can be created by a capability 
provider (similar to Kubernetes operators or Helm charts) 

or it can be auto-generated provisioning code using genera-
tive AI approaches such as problem-specific large language 
models [65].

The SPI relies on the Binding configuration to maintain 
the relationships between the primitives and the Infrastruc-
ture capabilities/Capability providers. This decoupling of 
the primitives from the supporting capabilities enables 
the self-provisioning infrastructure to completely sepa-
rate the serverless functions (more precisely their busi-
ness logic) from the underlying infrastructure. By doing 
so it also eliminates any business logic dependence on the 
underlying infrastructure, but also the dependence of the 
infrastructure on the function’s business logic. This is one 
of the key preconditions for the SPI to perform the infra-
structure provisioning fully by itself. With this approach, 
in addition to provisioning the infrastructure, the SPI also 
needs to make sure that there are infrastructure capabili-
ties available that can adequately fulfill the referenced 
Serverless primitives. To achieve this, the SPI relies on 
an interface-based auto-wiring mechanism, which can 
automatically discover and “wire together” the primitives 
with their capabilities, based on the interfaces they expose/
expect. It stores all the relevant information in the Bind-
ing configurations, but if needed those configurations can 

Fig. 1  Model of the self-provisioning infrastructures (partial view) [62]



 SN Computer Science           (2024) 5:678   678  Page 8 of 15

SN Computer Science

also be customized explicitly by the user. Eliminating the 
dependencies between the functions and the infrastructure 
also brings benefits in terms of reduced vendor lock-in, 
increased portability, provider hot-swapping, and so on.

The remaining system components shown in Fig. 1 
include Infrastructure global state mapping and Meta-
data-based profiles. They are best understood as helper 
modules, which are required to support self-provisioning 
mechanisms, as discussed in “Designing and Implement-
ing Self-Provisioning Mechanisms” section.

Function model The self-provisioning infrastructure defines 
the Function model, based on the principle of the least com-
mon denominator of the available FaaS models and plat-
forms [1, 4–6]. This is a deliberate design decision since we 
want the SPI to be compatible with the existing state-of-the-
art serverless platforms and approaches. The SPI’s function 
model is shown in Fig. 1 (bottom), and its main components 
include Trigger, Handler, Runtime, Metadata, Configura-
tion model and resource-allocation model. Some of these 
components were already discussed at the beginning of this 
section. In short, the Trigger defines a condition that causes 
an invocation event to be sent to the handler. The Handler 
contains the function’s business logic. The Runtime consists 
of a language runtime and function’s dependencies. Provi-
sioning and management of the Runtime can completely be 
delegated to the existing serverless platforms, as discussed 
earlier in the text.

The SPI explicitly considers the resource and configura-
tion models, in order to enable their effective management. 
We refer to this as self-optimization of configuration and 
resource-allocation models a.k.a. configuration and resource 
tuning.

The SPI relies on an approach that uses the Metadata 
to determine the function’s profile, which is then used to 
determine the baseline for the function’s configuration and 
resource allocation. To this end, we build on our previous 
work on AI-based configuration tuning and metadata-based 
profiling [66]. The main idea of metadata profiling is to use 
apriori known information about a function to predict its 
dynamic runtime behavior. We refer to such information as 
static, apriori metadata and it is available at the provisioning 
time. Examples of such metadata include tags, user data, OS 
parameters, and so forth. Profile classifier (cf. Fig. 3 left) 
uses this metadata as input features to assign a suitable pro-
file to a to-be-provisioned function. These profiles capture 
the dynamic characteristics and behaviors of the function 
and they are computed by the Profile generator (cf. Fig. 3 
right). The details of this process are beyond the scope of 
this paper and we address them elsewhere [66].

The SPI uses metadata profiling and extends the pro-
files to include the function resource and configuration 

models. This effectively enables the SPI to derive a suitable 
resource and configuration model (e.g., function memory 
limits, its timeout, etc.) for a function, by only considering 
the function’s metadata. This approach helps us address the 
so-called bootstrapping problem, inherent to many optimi-
zation techniques. This is the problem when the optimiza-
tion technique cannot be applied until enough information 
is collected about a workload, such as function. Having long 
bootstrapping delays can lead to sub-optimal configurations 
and resource allocations.

After using the metadata-based profiling to establish an 
intelligent baseline for the configuration and resource-allo-
cation models, the SPI can exploit state-of-the-art techniques 
to further optimize those models, such as reinforcement 
learning [67], linear, binary, and gradient descent search 
[47], Bayesian Optimization [48], and CPU time account-
ing [49]. Naturally, the SPI also allows the users to provide 
custom configuration models, in case they need to override 
the self-optimized values.

The BaaS model is the FaaS model’s counterpart that rep-
resents the main abstractions and concepts of the BaaS ser-
vices that are self-provisioned by the SPI, but due to space 
limitations, we refrain from further discussing it.

Designing and Implementing 
Self‑Provisioning Mechanisms

Next, we look at the main classes of self-provisioning mech-
anisms and how such mechanisms are implemented. These 
mechanisms can be broadly classified into three groups: 
(i) self-provisioning FaaS, (ii) self-provisioning BaaS and 
(iii) self-provisioning non-functional aspects, and iv) Self-
optimization of configuration and resource-allocation mod-
els. Main examples of self-provisioning FaaS mechanisms 
include self-provisioning of FaaS triggers, self-provision-
ing of FaaS programming models, and self-provisioning 
of application runtime. Self-provisioning BaaS includes, 
self-provisioning of storage attachments, key-value stores, 
ingress controllers, and persistent objects. Self-provision-
ing non-functional aspects is the broadest category and it 
includes mechanisms responsible for managing application 
reliability, elasticity, governance, performance, auditing, 
instrumentation, and so forth. Self-optimization of configu-
ration and resource-allocation models (a.k.a. configuration 
and resource tuning) include self-provisioning of function 
or service resources such as memory, availability zones, IO 
throughput, min/max concurrency, pool size. Next, we dis-
cuss some of the most important examples in more detail.
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Self‑Provisioning FaaS Triggers

Triggers are one of the key parts of the serverless application 
model. They help define when and how a specific serverless 
function is to be invoked. Examples of trigger events include 
an upload to an S3 bucket, an HTTP request from an API 
gateway, or a message added to a queue. However, configur-
ing triggers can be a tedious and time-consuming task. More 
importantly, if done incorrectly, it can have detrimental con-
sequences, e.g., due to a phenomenon known as a “runa-
way function”. In such a situation an output produced as a 
result of a function is falsely recognized as a trigger event 
and an input for the same functions, resulting in an endless 
recursive loop of function invocations, potentially incurring 
significant costs [68]. This is a great example of a task that 
should be delegated to the self-provisioning infrastructure. 
Typically to configure a simple trigger, such as “invoke a 
function when a new file with an extension ‘.png’ is added 
to bucket ‘uploads’ ” one needs to interact with an object 
storage service, such as S3, create a new bucket and define 
its configuration model, including the access management. 
After that appropriate suffixes and prefixes need to be added, 
together with the event for adding the file to the bucket such 
as an HTTP verb (e.g., ’PUT’). Further, one has to config-
ure the appropriate identity and access permissions to allow 
communication between the function and the bucket. Finally, 
an output bucket for storing the results such as a rescaled 
output image needs to be created. An alternative to the last 
step is to create a custom business logic, which makes sure 

that the recursive invocation is detected and prevented in 
order to prevent the runaway function.

The next generation of serverless computing should 
relieve users from such mundane and error-prone tasks. With 
the self-provisioning infrastructures, this issue is mitigated 
by taking advantage of the Function annotations, which 
can provide the necessary hints to the infrastructure (e.g., the 
file extension and the bucket name) on how it should self-
provision the trigger. Other information such as the access 
policies and the need for an additional output bucket can be 
easily inferred by the infrastructure from the function’s busi-
ness logic and its interaction patterns with the storage. For 
example, if a function wants to store the same file type, the 
self-provisioning infrastructure can decide to self-provision 
another bucket for the results instead of storing them in the 
source bucket. With the SPI, instead of worrying about the 
numerous infrastructure details the users simply enrich their 
function’s business logic with the function annotations to 
instruct the self-provisioning infrastructure with the addi-
tional information that is required to provision the complete 
function’s execution environment.

Self‑Provisioning Storage Attachments

One of the main design decisions of serverless computing 
is the complete desegregation of compute and storage [69]. 
Such disaggregation offers benefits such as flexible scaling 
of compute resources, but at the same time, it requires the 
user to provision storage attachments for the non-trivial 
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serverless applications [8]. Serverless applications typically 
use object stores to persist their results [70], but also to transfer 
the intermediary, ephemeral data between the steps in server-
less workflows. In practice, this means that the users typically 
have to provision and manage a large number of object store 
buckets (together with their access policies and configuration 
model), many of which have only a very limited lifespan. This 
makes the provisioning and management of the storage attach-
ments the “low-hanging fruit” that needs to be handled by the 
next generation of serverless computing.

The self-provisioning infrastructures address this chal-
lenge by offering the self-provisioning of serverless storage 
attachments. In this example, we focus on the object stores, 
but a similar approach can be applied to other storage types 
such as key-value stores [71]. To provision an adequate stor-
age attachment the infrastructure first needs to know that 
a specific function needs to write to or read from a stor-
age attachment. This is relatively straightforward to obtain 
from the application’s business logic. For example, this can 
be done based on the used primitives or even proprietary 
SDK calls such as S3.putObject(). Please note that the spe-
cial case where the function is triggered by a change in a 
storage attachment is discussed in the previous example on 
Self-provisioning FaaS triggers. Next, the infrastructure 
needs to determine how to “wire” the access to the storage 
attachments, because multiple functions can share the same 
storage attachment, e.g., in the case of passing intermediary 
data between two functions in a serverless workflow. The 

shared storage attachments can be identified by looking at 
the function triggers, direct function invocations, and inter-
nal state mapping. The internal state mapping stores all the 
provisioned resources and configuration is maintained by 
the SPI. The SPI can use this internal representation of the 
infrastructure state to infer the bucket (or table) references 
in situations such as serverless workflow, where there are no 
explicit connections between the functions. At this stage, it 
is trivial to extrapolate access policies with suitable access 
rights. Regarding the storage attachment configuration mod-
els, they can be self-provisioned following an approach simi-
lar to the one presented next.

Self‑Provisioning of Function Resources 
and Configurations

The contemporary serverless computing paradigm says 
nothing about the management of the configuration model. 
This is true not only for the BaaS services but also for the 
configurations of the FaaS functions. Most of the FaaS plat-
forms provide elaborate configuration options. For example, 
besides the well-known memory/CPU configuration, one 
can also usually specify maximum and minimum container 
instances (containers warm pool), snap start - cached con-
tainer image, maximal concurrent requests per container 
instance, ephemeral storage size (e.g., “/tm” directory), 
and so forth. This is not only complex for the users, but 
due to the current approach to the serverless configuration 

Fig. 3  Overview of the metadata-based profiling
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options, we often end up with sub-optimal configurations 
for the serverless functions. This can lead to, for example, 
significantly over-provisioned memory [26].

The SPI addresses these challenges, by providing self-
optimized configuration models and resource allocations. 
For example, to deploy a function one needs to specify 
its configuration model. This at least requires configuring 
the function’s memory/CPU resources. Even for this sim-
ple case, the users have to conduct custom experiments to 
determine the right configuration, rely on their intuition, or 
decide to over-provision “just in case”. The SPI can easily 
self-optimize the memory/CPU configuration in a two-stage 
approach. Firstly, the SPI uses Metadata-based profiling to 
determine the function’s profile. More specifically, it looks 
at the function’s metadata, which is known also before func-
tion deployment. Based on the metadata it selects the most 
suitable profile that contains the optimal memory/CPU 
configuration. After this, the function can already be self-
provisioned by the SPI. Secondly, the SPI can rely on a range 
of optimizations to perform further configuration tuning if 
necessary. Examples include statistical learning methods 
such as Gaussian Process Bayesian Optimization [27, 48], 
analytical models such as Probability Refined Critical Path 
Greedy algorithm [45] or Tree-structured Parzen Estimator 
[28], and AI-based approaches such as Deep Neural Net-
works [72] and Reinforcement Learning [73–75].

By following a similar approach the SPI can also self-opti-
mize resource and configuration models for the BaaS services.

Self‑Updating Mechanism

Next, we analyze mechanisms for self-provisioning of non-
functional aspects. Naturally, there are many non-functional 
concerns and we cannot address them all in a single paper. 
Instead, we focus on a well-known concern and mechanisms 
for performing software updates.

One of the advantages of the current serverless comput-
ing paradigm and of using managed BaaS is that the appli-
cation developers do not have to worry about the software 
updates both of the managed BaaS services and the applica-
tion runtime. For example, a serverless database or a key-
value store is typically delivered as managed services that 
are continuously updated (and patched) to their latest ver-
sion by the platform provider. However, at the moment if a 
function needs to utilize or simply can benefit from a new 
feature or patch that was delivered with the latest update, 
the function’s dependencies need to be updated, the func-
tion’s source code potentially needs to be changed and a 
new version of the function needs to be rolled out, as well. 
Contrary to this, the self-provisioning infrastructure can 
utilize its knowledge of the application’s source code and 
the registered Infrastructure capabilities to provide a suit-
able implementation of the Serverless primitives, which is 

able to utilize the latest infrastructure features seamlessly, 
without changing the function’s source code and having to 
roll out a new version. More concretely, since the serverless 
function only depends on the Serverless primitives and not 
on the specific Infrastructure capabilities of the serverless 
infrastructure nor on the concrete Capability Providers such 
as Redis for the key-value store (cf. Fig. 1), the SPI can 
transparently provide a new Capability implementation and 
switch the function from an old version of the Capability to 
a new one without the function even noticing it. With this 
technique, the SPI enables delivering true self-upgrading 
capabilities. Similarly, we can also transparently change the 
capability providers or even core infrastructure components, 
but this is out of the scope of this paper.

Discussion

The SPIs introduce abstractions and techniques to enable 
enhanced portability, interoperability, and utility-based con-
sumption of the infrastructure resources. These elements are 
typically absent in contemporary serverless models. We also 
showed that by leveraging AI-driven metadata-based profil-
ing, self-provisioning infrastructure autonomously refines 
infrastructure configuration and resource allocation, ensur-
ing optimized performance, efficiency, and cost-effective-
ness. The SPIs introduce runtime mixins to introduce SLO 
awareness [76] to the self-provisioning infrastructure and set 
foundations toward achieving further non-functional proper-
ties such as self-reliability, self-auditing, and self-govern-
ance. Next, we discuss some of the trade-offs and the prac-
tical applicability of the self-provisioning infrastructures.

Learning curve The self-provisioning infrastructure requires 
the usage of custom programming abstractions, so-called 
serverless primitives. Despite being well-aligned with exist-
ing serverless programming models, they still put an addi-
tional burden on the developers, because the developers need 
to learn how to work with the new API and interfaces. This 
can be seen as a limiting factor in terms of its practical appli-
cability. Fortunately, as a consequence of their design, the 
self-provisioning infrastructure can be gradually adopted. It 
is possible to adopt only a subset of the proposed models and 
still receive benefits from the self-provisioning infrastructure 
paradigm. Such gradual adaption can lead to the flattening of 
the learning curve, hence mitigating most of the drawbacks 
that accompany the introduction of new abstractions. Intro-
ducing the serverless primitives as a novel abstraction was a 
deliberate design decision since we believe that the benefits 
they bring outweigh their potential drawbacks.

Adoption of infrastructure capabilities Some of the core 
enablers of the self-provisioning infrastructures are the 
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so-called infrastructure capabilities. The proposed capabili-
ties need to be created and maintained manually, including 
their provisioning logic. This can be a time-consuming task, 
especially considering that the underlying BaaS services can 
add new features (frequent), change their APIs (infrequent), 
and add new provisioning options (relatively frequent). 
Additionally, there needs to be a certain critical mass of 
the implemented infrastructure capabilities before the self-
provisioning infrastructure can transition from the research 
prototype to being production-ready. All these drawbacks 
can lead to a reduced practical application of the SPIs. 
However, there are several options to mitigate most of the 
mentioned drawbacks. Firstly, as previously mentioned, the 
self-provisioning infrastructures can be adopted gradually. 
Consequently, the same is true for their rollout. This means 
that not all the functionality has to be provided and delivered 
at once, reducing the burden on the capability providers. 
Secondly, the self-provisioning infrastructure can utilize the 
power of the open-source community to deliver and maintain 
the infrastructure capabilities. The large cloud providers are 
particularly incentivized to include their capability providers 
to ensure their services can be consumed by the next-gener-
ation serverless application. Finally, large language models 
(LLMs) are poised to play a more prominent role in future 
code generation, hence potentially leading to solutions for 
auto-generating the infrastructure capabilities.

Portability and interoperability The serverless primitives, 
together with the infrastructure capabilities are designed 
based on the least common denominator of the cloud BaaS 
services. This leads to a drawback since the default primi-
tives and capabilities can fail to capture all the features 
available in various implementations of BaaS services. As 
described in “Principles and Models of Self-Provisioning 
Infrastructure” section, this can be partly mitigated by pro-
viding a custom implementation of the primitives and capa-
bilities. However, as a consequence, there is a decrease in 
portability and interoperability that also leads to a vendor 
lock-in. Therefore, designing the capabilities based on the 
principle of the least common denominator was a deliberate 
design decision because the self-provisioning infrastructure 
aims to increase interoperability and enable next-generation 
serverless computing to support federated FaaS, sky comput-
ing, and edge-cloud deployments.

Conclusion

In this paper, we introduced self-provisioning infrastructure 
as a novel paradigm that enables next-generation serverless 
computing. We showed how the self-provisioning infrastruc-
ture fortifies the core principles of serverless computing and 

extends the serverless paradigm holistically across the entire 
application execution environment and infrastructure. We 
presented and analyzed the design principles, models, and 
mechanisms of the self-provisioning infrastructure.

In the future, we intend to continue the research in the 
self-provisioning infrastructures. In particular, we will aim 
to extend the self-provisioning infrastructure in several 
directions. Firstly, we intend to focus on applications’ life-
cycle beyond the provisioning phase to support the next-gen-
eration serverless applications during their runtime. Specifi-
cally, we intend to address the performance, reliability, and 
AI/edge-intelligence-specific challenges in the Edge-Cloud 
continuum. Secondly, we plan to extend the self-provision-
ing infrastructure to facilitate a paradigm shift from tradi-
tional services and platforms computing to fabric-centric 
computing where digital resources, infrastructures, and sys-
tems become true utilities, that permeate the entire compu-
tational and data continuum [12]. Finally, we plan to extend 
the self-provisioning infrastructure’s runtime mechanisms to 
offer structured support for self-auditing, self-compliance, 
and self-governance.
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