
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 1

BAASLESS: Backend-as-a-Service (BaaS)-Enabled
Workflows in Federated Serverless Infrastructures

Thomas Larcher, Philipp Gritsch, Stefan Nastic, Sashko Ristov

Abstract—Serverless is a popular paradigm for expressing
compute-intensive applications as serverless workflows. In prac-
tice, a significant portion of the computing is typically offloaded
to various Backend-as-a-Service (BaaS) cloud services. The recent
rise of federated serverless and Sky computing offers cost
and performance advantages for these BaaS-enabled serverless
workflows. However, due to vendor lock-in and lack of service
interoperability, many challenges remain that impact the devel-
opment, deployment, and scheduling of BaaS-enabled serverless
workflows in federated serverless infrastructures.

This paper introduces BAASLESS – a novel platform that de-
livers global and dynamic federated BaaS to serverless workflows.
BAASLESS provides: (i) a novel SDK for uniform and dynamic
access to federated BaaS services, reducing the complexity associ-
ated with the development of BaaS-enabled serverless workflows,
(ii) a novel globally-federated serverless BaaS framework that
delivers a suite of BaaS-less ML services, including text-to-speech,
speech-to-text, translation, and OCR, together with a globally-
federated storage infrastructure, comprising AWS and Google
cloud providers, and (iii) a novel model and an algorithm for
scheduling BaaS-enabled serverless workflows to improve their
performance. Experimental results using three complementary
BaaS-enabled serverless workflows show that BAASLESS im-
proves workflow execution time by up to 2.95× compared to
the state-of-the-art serverless schedulers, often at a lower cost.

Index Terms—BaaS, federation, optimization, SDK, serverless.

I. INTRODUCTION

The emergence of serverless computing has ushered in
a transformative paradigm, alleviating developers from the
intricacies of infrastructure management [1]–[4]. Particularly
popular for accommodating compute-intensive applications
through serverless workflows [5]–[11], serverless typically
offloads substantial computation to managed Backend-as-a-
Service (BaaS) offerings [12]–[15]. For instance, for the BaaS
service OCR (Optical Character Recognition), AWS Textract
and GCP Vision are the BaaS service deployments offered
by AWS and GCP, respectively. Other BaaS services that we
will use in this paper include speech-to-text (S2T), text-to-
speech (T2S), and translation (TRA). These AI-based BaaS
services are pre-trained, and users do not need to invest in
infrastructure and expensive training of AI models but can
use them with a serverless paradigm. Unfortunately, similar
to other serverless services, cloud providers restrict the size
of the input data, which requires the users to create fork-
join serverless workflows that split the input size into smaller

Sashko Ristov is the corresponding author.
T. Larcher, P. Gritsch, and S. Ristov are with the University of
Innsbruck, Austria. E-mail: {t.larcher}@student.uibk.ac.at, {philipp.gritsch,
sashko.ristov}@uibk.ac.at. S. Nastic is with the TU Wien, Austria. E-mail:
snastic@dsg.tuwien.ac.at

chunks, call multiple instances of the BaaS service, and merge
their results at the end. Other examples include bag-of-tasks,
such as processing multiple audio files from news or customer
support. Finally, due to the lack of support for complex BaaS
services, such as translating audio files or creating a translated
speech from a PDF file, users create composite BaaS services
with serverless workflows [16]. We use the term BaaS-enabled
serverless workflows to denote such serverless applications.

Recently, federated serverless computing [17]–[21] and Sky
Computing [22], [23] have been gaining in popularity due
to the numerous benefits they can bring to serverless work-
flows. Workflow functions are deployed across multiple cloud
providers to reduce cost [24], improve scalability [25], [26],
reduce workflow execution time (makespan) [17], [19], [27],
or increase serverless workflow resilience [28]. However, all
these methods are mainly applicable for serverless workflows
with isolated functions that do not use external BaaS services.
Instead, computing is performed within the functions, and
the intermediary results are often transferred through stor-
age [23], [29]. This inherent vendor lock-in, combined with
a huge number of (vendor-specific) BaaS services and their
configuration options, makes it difficult to reap the benefits of
the federated serverless infrastructure in practice for BaaS-
enabled serverless workflows. Consequently, the federated
serverless infrastructure raises three challenges that impact
the development, interoperability, scheduling, and optimal
execution of BaaS-enabled serverless workflows.

First, while various mature approaches exist to run portable
serverless functions with interoperable serverless workflow
management systems, there is a lack of methods for portable
and interoperable BaaS services. For instance, various executor
functions may load the function code from storage and run it as
a serverless function (FuncX [30] or Lithops [26]), or simply
achieve interoperability at the Function-as-a-Service (FaaS)
level by replacing function URLs in the workflow language,
such as xAFCL [17]. Unfortunately, these methods have not
been investigated for BaaS services because functions are seen
as black boxes. The existing interoperable infrastructure-based
SDKs (Apache Libcloud, jClouds, and pckcloud) are mainly
focused on storage infrastructure only. Still, they offer a partial
solution for interoperability and restrict the function of using
a single storage at a time. As a consequence, if the number of
providers is p, developers are required to code O(p2) functions
with different SDKs to be able to call different BaaS service
deployments for the same BaaS service to exploit the federated
serverless infrastructure. Secondly, providers’ vendor lock-in
often restricts their FaaS, BaaS, and storage systems to internal
communication and prevents cross-provider communications.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 2

Even with multiple function deployments, BaaS services that
read the input file by reference cannot access the storage of
other providers, although access to their buckets may be faster.
Unfortunately, the vendor lock-in increases the complexity to
O(p3) to code separate functions on each provider, which
access the BaaS service deployment on any provider and store
the output data in any storage. For example, let’s consider a
use case where the data input is stored in AWS S3, and the
user may deploy the function, BaaS service, and output storage
across AWS and GCP. In such case, the user may select to
colocate all three services on AWS. Another option is to keep
the function and BaaS service on AWS, but store the output in
GCP Storage. For example, if the subsequent function needs to
run a BaaS service supported by GCP only. Similar to binary
numbers, in the eighth option, the user selects to run all three
services on GCP. Finally, the existing schedulers in federated
serverless and Sky computing are either optimizing serverless
workflows in a single cloud region [8], [10], [11], [31]–[33]
or across multiple regions of various cloud providers [19],
[27], [34], [35]. Unfortunately, these methods federate only
the FaaS, thereby finding only a small subset of the solutions
for BaaS-enabled serverless workflows or requiring significant
costs to configure the schedulers with all parameters. We detail
all the aforementioned challenges in Section II.

To address the above challenges, this paper introduces
BAASLESS – a novel platform that delivers global and
dynamic federated serverless infrastructure to BaaS-enabled
serverless workflows, comprising federated FaaS, BaaS, and
storage. The main aim of the BAASLESS platform is to enable
a novel BaaS-less paradigm that builds on the serverless’
core principles, extending them to also shield developers from
scheduling, deployment, and management of supporting BaaS
services. We describe the BAASLESS approach and the high-
level system architecture in Section III. BAASLESS intro-
duces an interoperable SDK for four BaaS services T2S, S2T,
TRA, and OCR, that seamlessly call the respective BaaS ser-
vice deployments of AWS and GCP. With the SDK, developers
code BaaS-enabled serverless workflows with BaaS services
only once, and they can dynamically select the BaaS service
deployment. Afterwards, BAASLESS uses its mathematical
model and scheduling algorithm to select the specific BaaS
service deployment for each BaaS service during runtime, such
that the workflow makespan is minimized (Section IV). When
needed, BAASLESS transparently moves the intermediary in-
puts and outputs between workflow functions to the respective
storages to overcome vendor lock-in. To evaluate BAASLESS,
we conducted a series of experiments (Section V). We first
developed a fork-join and a bag-of-tasks BaaS-enabled server-
less workflow using the BAASLESS SDK. Using the set
of microbenchmarks, we configured the federated serverless
infrastructure for AWS and GCP. Further on, the BAASLESS
scheduler determined the fastest scheduled deployments of
both workflows when the input data was stored in AWS
or GCP (Section VI). Finally, we used a MapReduce-based
serverless workflow and evaluated BAASLESS framework’s
weak and strong scaling while increasing the number of
available regions (Section VII).

The main components of the BAASLESS platform, which

are also the main contributions of this paper, include:
• A novel globally-federated serverless BaaS frame-

work, which delivers (i) a suite of BaaS-less ML services, in-
cluding T2S, S2T, TRA, and OCR, with (ii) globally-federated
storage infrastructure, comprising AWS and GCP, and (iii) syn-
chronization mechanisms to overcome vendor lock-in.
• The novel SDK1, which provides uniform and dynamic

access to federated BaaS services (including federated stor-
age), enabling the development of BaaS-enabled serverless
workflows, i.e., writing FaaS functions without worrying about
the management and deployment of the supporting BaaS
service deployments.
• A novel model and algorithm for scheduling BaaS-

enabled serverless workflows, which reduces workflow
makespan by up to 2.95× compared to the state-of-the-art
serverless schedulers while keeping the costs comparable.

II. MOTIVATING STUDY

We first introduce BaaS services and motivate the need
to create BaaS-enabled serverless workflows and run them
on a federated serverless infrastructure. We also present the
BaaS service constraints due to vendor lock-in and BAASLESS
approach to overcome the state-of-the-art limitations.

A. Motivation for BaaS-enabled serverless workflows

Cloud providers offer many AI-based services that are
already trained to conduct various human-based recognitions.
For instance, the AI-based BaaS service for speech recognition
converts given audio into text (S2T). Other BaaS services
convert text into speech (T2S), recognize text from an image
(OCR), or translate one natural language into another (TRA).
These and other similar BaaS services are already trained, and
developers simply need to call them using SDKs from the
respective providers.

To minimize the invocation latency, developers may use
a single function to call multiple BaaS services. However,
including a new SDK would increase the size of the func-
tion deployment package [36]. Unfortunately, the number of
BaaS services a function may call is restricted because cloud
providers limit the size of the function deployment package
to several tens of megabytes. Therefore, developers are forced
to create pipelines of serverless functions that call individual
BaaS services to create composite BaaS services [16].

Regrettably, a pipeline of composite BaaS services does not
solve all issues. For instance, AWS OCR restricts the input to a
single-page PDF and 10MB. Similar limitations hold for other
BaaS service deployments (see Table I). Therefore, users must
split the large input files into smaller chunks before processing
them. Moreover, cloud providers do not offer a service to split
a large PDF or process multiple files in parallel. To overcome
this constraint, users need to use serverless workflows to
compose more complex BaaS services and use parallelism to
scale the problem size. In that case, users need to invoke the
BaaS service multiple times after splitting the input data into
smaller parts. We refer the reader to our recent paper [16],

1https://github.com/FaaSTools/CORE

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 3

TABLE I
LIMITATIONS AND CHARGES OF AWS’ AND GCP’S BAAS SERVICES.

BaaS AWS GCP AWS GCP
limit charge

S2T 4h 1min ¢2.4 per 1min
T2S 3,000 chars 5,000 chars $4 per 1M chars
OCR 10MB 20MB $1.5 per 1000 units

Translation 10 kB 100 kB $15 / $20 per 1M chars

where we detail how to develop composite and scalable BaaS
services as serverless workflows.

B. BaaS service challenges due to vendor lock-in

While building BaaS-enabled serverless workflows may
overcome the limitations of individual BaaS services and
allow scalability, it opens another challenge that is initiated
by the vendor lock-in. Namely, since providers restrict direct
communication between serverless functions, developers must
build workflows that exchange intermediary results through
storage [29]. Unfortunately, developers are restricted to calling
BaaS services by reference that points to a file stored in the
storage from the same provider. Otherwise, developers must
code their functions to download the file to the file system
of the function and then call the BaaS service by value. Still,
some BaaS service deployments, such as AWS S2T, must be
invoked by reference from AWS S3. In general, there are two
approaches. The first approach is simpler and it ”colocates” the
BaaS service with the storage where the input data is stored.
The second approach requires considerable development effort
to move the input data to the provider whose BaaS service
deployment is executed. After the BaaS service finishes, it
returns the output to the function by value, which later requires
developers to code the function to store the output in storage
so that it is accessible by the successor functions.

C. Performance analysis of BaaS-enabled serverless functions

In line with the challenges, we conducted a set of bench-
marks that investigate the effect of a provider on BaaS
service execution time. Surprisingly, the measurements identi-
fied many cases where cross-provider federated deployments
of serverless workflows are faster than colocating workflow
functions and BaaS services within a single provider. We
use the notation < XXXX > for a given deployment of the
BaaS-enabled function, which denotes the locations of the
input storage, the function, the BaaS service, and the output
storage, respectively from left to right. The marks X may have
a value of the region initials (V , L, B, and F for North
Virginia, London, Belgium, and Frankfurt, respectively). Since
we use the regions located in London and North Virginia of
both AWS and GCP, we use orange (lighter in black and white
print) and blue color (darker) to distinguish between AWS
and GCP, respectively. We also use ”-” if the function does
not use a BaaS service or storage. For easier memorization,
we recommend remembering the abbreviation IFBO (Input
storage, FaaS, BaaS service, Output storage). We denote the
BaaS service with an italic abbreviation, e.g., (S2T) and the
respective function with S2T, which calls S2T.

VVVV VVVV VVVV VVVV

0

20

40

60

speech2text

ro
u
n
d
tr
ip

ti
m
e
(s
)

(a) S2T
VVVV VVVV VVVV VVVV

0

2

4

text2speech

ro
u
n
d
tr
ip

ti
m
e
(s
)

(b) T2S

Fig. 1. Significantly lower BaaS service time by migrating BaaS service and
data for (a) S2T and (b) T2S.

We deployed and ran the function S2T with 128MB RAM
in the North Virginia regions of AWS and GCP, which converts
an audio file (3.8MB) into text (2.2 kB). S2T can run the
respective AWS and GCP S2T BaaS service deployments with
the input file stored in AWS S3. Fig. 1 shows that the BaaS
service on another provider than the input data storage runs
faster than the colocated one. Fig. 1a shows that the S2T
function in AWS finishes in 51.04 s with the colocated AWS
S2T (VVVV). However, the VVVV setup, i.e., calling GCP’s
BaaS service, finishes in 25.9 s, or 1.97× faster.

We also deployed the complementary function T2S, this
time in GCP, which uses the input data from GCP storage. We
observe in Fig 1b that there is no dominating BaaS provider
in terms of execution time. The VVVV setup of T2S finishes
in 3.49 s. However, although we expected that the colocated
BaaS service would run faster than the cross-region one, we
observed that the VVVV setup runs 1.65× faster. Notably, this
setup is faster than the other two setups VVVV and VVVV.
All these three setups can run with the BAASLESS’ SDK
introduced in this paper.

Summary of observations. The initial performance anal-
ysis led us to several crucial observations that motivated our
work. First, there is no dominant provider for all BaaS services
in terms of performance. Second, the general heuristics that
running all cloud services colocated in a single cloud region
would improve communication efficiency does not always
hold for BaaS-enabled workflows. Finally, there may be a
cost-performance trade-off with this approach. However, the
potential increase in the monetary costs is negligible compared
to the significant performance improvement (as discussed in
Section VIII-B). These observations lead to the need for
a scheduler that distributes cloud services and data across
federated serverless infrastructures. This may significantly
improve performance for a negligible increase in costs.

D. Problem statement and limitations of the state-of-the-art

Let’s consider a BaaS-enabled serverless workflow (Fig. 2)
that runs a sequence of two functions, f1 and f2, which
call the BaaS services OCR and TRA, respectively. The top
of Fig. 2 shows the workflow function processing steps, their
expected inputs and outputs, and invoked BaaS services. The
bottom of Fig. 2 shows the state-of-the-art approaches for
workflow deployment with the fastest makespan across the or-
ange (lighter in black and white print) AWS and blue (darker)

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 4

f1 f2F1in F1out

Colocated

Federated FaaS

BaaSLess

F2out

DEEN
Text

AWS GCP

Fig. 2. Example of workflow deployment with federated infrastructure, when
input data is stored in AWS S3. The colocated approach minimizes data access
time by deploying everything in a single provider region. Federated FaaS
selects functions from different providers (f2 on GCP). Finally, BAASLESS
can run the functions and BaaS services and store data in any provider.

GCP regions. Due to the data flow, there is an additional
complexity that should be evaluated, i.e., the output location
of f1 directly affects the deployment and performance of f2.

We found two approaches that utilize serverless federated
infrastructures. FaDO [27] colocates the functions in the same
cloud region where the input data is stored. By colocating,
FaDO uses network proximity to minimize the latency of data
access between the functions and storage. With this approach,
if the input data is stored in AWS, both functions will run on
AWS Lambda and use AWS S3. Moreover, AWS BaaS ser-
vices must be used due to vendor lock-in. Another approach,
FaaSt [19], federates FaaS and schedules the functions across
different providers using the earliest finish time. Unfortunately,
due to the vendor lock-in, it can neither store the data in GCP
storage nor dynamically select the BaaS service that loads
or stores data from the storage of another provider. With the
measured data, we show in Fig. 2 that FaaSt is able to select
running the function f2 on GCP, thereby providing a faster
solution than the colocated one.

III. BAASLESS PLATFORM OVERVIEW

To overcome the limitations of state-of-the-art approaches,
we introduce BAASLESS, a platform that determines the
deployments of functions and attached BaaS services and
storages in order to minimize the workflow makespan. Our
evaluation shows that although the input data is stored in
AWS, BAASLESS decides to deploy the function f1 from
Fig. 2 in GCP, which calls the GCP OCR and also stores the
output data in GCP storage. Furthermore, the function f2 also
runs on GCP, but it calls the faster BaaS service deployment
AWS TRA, which stores the result in GCP storage. Note that
BAASLESS solves the vendor lock-in by transparently moving
the data from S3 to GCP storage (see Section IV-B3).

Figure 3 illustrates the BAASLESS high-level architecture
consisting of two main components: (i) BAASLESS BaaS
and storage attachment SDKs for federating serverless BaaS
and storage infrastructure, and (ii) BAASLESS scheduler for
specifying the workflow deployment, including the specific
BaaS service and storage deployments for each BaaS-enabled
function, such that the workflow makespan is minimized.

A. Composing BaaS-enabled serverless workflows

The BAASLESS platform has two internal representations
of BaaS-enabled serverless workflows:

1) Abstract serverless workflow (Fig. 3 left), which contains
all functions, BaaS services, and data flow dependencies but
attaches them to no BaaS deployments and storage backends;

2) Deployed serverless workflow (Fig. 3 right), which en-
hances the abstract serverless workflow with the BaaS and
storage attachments configured to each function deployed on
a cloud provider by the BAASLESS scheduling algorithm.

A developer creates an abstract serverless workflow in
two steps: function development and workflow composition.
Initially, a developer codes serverless functions and uses the
BAASLESS BaaS and storage attachment SDK to attach an
abstract BaaS and storage to each function. For example, the
function in Fig. 3 (left-hand side) is coded to call the abstract
BaaS service S2T, which receives data from the attached input
storage and stores the result in the abstract output storage.
While coding, the developer does not need to know about the
underlying BaaS service deployment and storage attachment
details, such as the storage provider or provider SDK, as
BAASLESS provides abstractions and provisions them during
runtime. In the second step, the developer composes the
functions into a serverless workflow through control and data
flow dependencies. BAASLESS uses the Abstract Function
Choreography Language [6] (AFCL) because it composes
workflows at a high level of abstraction. After composing
the abstract serverless workflow with abstract BaaS services,
the developer forwards it to the BAASLESS scheduler for the
deployment of functions onto concrete computational provider
regions, along with BaaS service and storage attachments.

B. BAASLESS scheduler

To bootstrap the scheduling algorithm in practice,
BAASLESS performs a set of initial microbenchmarks to map
the state of its federated infrastructure, including federated
FaaS, BaaS, and storage. It runs all deployments of the
workflow functions with all possible BaaS deployments. To
minimize the microbenchmark, BAASLESS derives a regres-
sion function for all the collected data transfer times and file
sizes for determining the unidirectional latency and bandwidth
between all regions of functions and storage attachments.
Further on, BAASLESS decides which storages to attach to
each function deployment based on the file size.

Figure 3 (right-hand side) shows the BAASLESS scheduler
downloading the input file from AWS S3 storage, which was
stored by some of the predecessor functions. While the input
files always have a given known location, the BAASLESS
scheduler decides the deployment provider of each function,
the BaaS service S2T and the storage of the generated inter-
mediary results based on its round-trip time estimation and
the storage of its predecessors. In our example, the function is
deployed in GCP, the BaaS service (S2T) is deployed on AWS,
and the GCP storage is attached. The result of this process
is the deployed serverless workflow, ready for execution,
comprising function deployments, along with deployed BaaS
service and attached storage.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 5

Fed. storage
infrastructure

output
abstract
storage

input
abstract
storage

xAFCL:
 federated FaaS

SDK

BaaSLess scheduler
scheduling
model ST, RTT, ct, M

federation
BaaS
BT

FaaS
IT, CT

storage
DT, UT

output
storage

input
storage

SDK

Fed. BaaS
infrastructure

Fig. 3. Overview of BAASLESS architecture.

TABLE II
NOTATION SUMMARY

Notation Definition
BW BaaS-enabled serverless workflow
n number of functions in a workflow
F =

⋃n
i=1 fi set of n workflow functions fi

D = {(fi, fj , dij)} a set of data-flow dependencies
dij megabytes of intermediary result
Nij the number of files in dij
SZij the size of all files in dij
R =

⋃R
j=1 rj a set of cloud regions

rf region of a function
rb region of the BaaS service
rs region of the output storage of a function
cr concurrency limit of a service in the region r
TT (rf , rs, dir) transfer time of the intermediary result dij
dir unidirectional upload or download
L(rf , rs, dir) latency between a function and storage
B(rf , rs, dir) bandwidth between a function and storage
RTT round trip time of a function
FDi function deployment with fixed, rf , rb, rs
FDi the union of all FDi of a function fi
STi sync time
ITi invocation time
DTi download time
UTi upload time
CTi computation time
BTi BaaS service time
ct(FDi) completion time of FDi

MBW makespan of a workflow BW

IV. SCHEDULING WORKFLOWS WITH BAASLESS

We further introduce the BAASLESS’ scheduler that dy-
namically selects, provisions, and configures suitable BaaS
and storage backends in a federated serverless infrastruc-
ture to minimize the workflow makespan. We first define
the abstract serverless workflow application and deployment
models, which underpin the BAASLESS scheduler. Table II
summarizes all notations and abbreviations used in the model.

A. BAASLESS application model

1) Abstract serverless workflow model: BAASLESS models
BaaS-enabled serverless workflow applications BW = (F,D)
as a composition of:
• n abstract serverless functions F =

⋃n
i=1 fi,

• interconnected in a directed acyclic graph through a set
of data-flow dependencies D = {(fi, fj , dij) ∈ F× F× R},
expressing that the function fj can start only after all its
predecessors fi completed and generate dij megabytes of
intermediary result.

FaaS
computing

input output

BaaS service

t2
t1 t3

t4

t5

Fig. 4. Abstract BaaS-enabled FaaS model. Dotted lines represent data
transfer by value, while the dashed lines by reference.

Functions exchange intermediary results implicitly through
references and transfer them during their runtime. The size of
intermediary results lies in various ranges. For instance, the
order of magnitude of audio files may be a few megabytes and
beyond, which requires temporary saving in external storage.

Each serverless workflow has two special no-op functions
with zero round-trip time: RTT = 0:
• start function fs with no predecessors: ̸ ∃ (fi, fs, dis) ∈ D
• end function fe with no successors: ̸ ∃ (fe, fi, dei) ∈ D.

Additionally, we define two special data flows:
• workflow input, representing all data flowing from the

start function: ∀dsi : (fs, fi, dsi) ∈ D;
• workflow output, representing all data flowing into the

end function: ∀die : (fi, fe, die) ∈ D;
2) Abstract BaaS-enabled FaaS model: Fig. 4 presents our

generic abstract BaaS-enabled FaaS model of a serverless
function. It comprises i) attached abstract input storage, ii)
function computation (e.g., to split large input file), iii) an
abstract BaaS service (e.g., S2T), and iv) attached abstract
output storage. Figure 4 shows various data transfer options
as defined by the BAASLESS model. We recognize five tasks
that need to be finished in general, marked in Fig. 4:

t1 invoke the function from the serverless workflow man-
agement system;

t2 load data from the storage to the function file system;
t3 run computation in the function;
t4 run the offloaded BaaS service;
t5 deliver the results to the output storage.

B. BAASLESS deployment model

1) Federated serverless infrastructure model: The fed-
erated serverless infrastructure comprises several providers
(e.g., AWS, GCP) offering multiple computational regions

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 6

R =
⋃R

j=1 rj . Each region has an associated storage backend
as a publicly available object store (e.g., AWS S3, GCP
Storage) for saving the intermediary result transferred between
workflow functions. Each region also offers a set of BaaS
service deployments. Finally, each region offers FaaS (e.g.,
AWS Lambda or GCP functions). Each region restricts the
number of service instances that are running at each point of
time. We refer to this metric as concurrency limit cr of a BaaS
service deployment in a given region r.

We model the BAASLESS globally federated serverless
infrastructure as a logical overlay FaaS, BaaS, and storage
layers of FaaS, BaaS, and storage backends deployed in
different providers and regions. The BAASLESS scheduler:
• deploys each abstract function in region rf ;
• selects BaaS service in region rb; and
• attaches output storage from region rs,

for each workflow function fi to minimize makespan.
2) Storage attachment model: We use a simplified version

of the model presented in [37] to estimate the transfer time
of intermediary result dij of Nij files between the function
deployment region rf and the region rs of the attached storage:

TT (rf , rs, dir) = Nij · L (rf , rs, dir) +
SZ (dij)

B (rf , rs, dir)
(1)

where L (rf , rs, dir) and B (rf , rs, dir) are the unidirectional
latency and bandwidth between the function deployment and
intermediary result storage regions, depending on the transfer
direction dir = {down, up} (download or upload).

We determine the latency and bandwidth between any pair
of regions by performing a set of micro-benchmarks using a
function that copies files with various files and use a linear
regression function to fit the measurement data.

3) BaaS services deployment model: Similar to serverless
functions, BaaS services are invoked with input data by
value (explicitly). However, for some BaaS services, only a
reference to the input or output data is submitted or received.
Accordingly, we introduce the BaaS service with input and
output ports by value (inVal and outVal) and by reference
(inRef and outRef), as presented in Fig. 5. Both by value
ports (inVal and outVal) are used to transfer data by value,
while inRef and outRef are used by the BaaS service to
load larger files during the service time from the colocated
storage in the region rb.

Due to vendor lock-in, BaaS services deployed on
one provider cannot use storages from another provider.
To overcome this constraint, BAASLESS introduces (i)
a syncRefInput (dashed line in Fig. 5) and (ii) a
syncRefOutput (dotted line in Fig. 5) to synchronize input
and output data with the colocated storage in rb.

In Eq. 2, we use the storage attachment model from Eq. 1
to model the sync time ST of the BaaS service deployed in
region rb, with colocated storage in rb, which is invoked by
the function fi from the region rf .

STi = xsin · TT (rf , rb, up) + xsout · TT (rf , rb, down) (2)

The coefficients xsin and xsout have value 1 if the respective
sync primitives are used and 0 otherwise.

no sync

no sync

BaaS
service

caller function colocated storage
with BaaS

inVal

outVal

inRef

outRef

syncRefInput

attached output
storage

attached input
storage

syncRefOutput

Fig. 5. BaaS service model with I/O data ports by value (inVal and
outVal) and by reference (inRef and outRef). BAASLESS introduces
syncRefInput and syncRefOutput primitives to synchronize the at-
tached I/O storage with the storage colocated with the BaaS service.

4) Function deployment model: We define a function de-
ployment as quintuple FDi = (fi, rf , rb, rs, RTTi) that asso-
ciates function fi with computation region rf , attached BaaS
service region rb, attached storage region rs and expected
round-trip time RTTi. We model RTTi based on the five tasks
presented in Fig. 4 and sync mechanisms in Fig. 5:

RTTi = ITi +DTi + CTi +BTi + STi + UTi, (3)

• invocation time ITi necessary to invoke the function using
the model presented in [38];
• download time DTi =

∑
(fp,fi,dpi)∈D TT (rp, rf , down)

to copy input data to the deployed function FDi;
• computation time CTi within the function;
• BaaS service time BTi to process the BaaS service;
• sync time STi for the sync primitives; and
• upload time UTi = TT (rf , rs, up) to copy output data

to the attached output storage region rs.
Note that not all BaaS-enabled functions need to conduct

all five tasks presented in Fig. 4. For instance, if a function
is invoked from a trigger within the region, then IT = 0. For
isolated functions, such as Monte Carlo simulation, DT =
BT = UT = 0. Finally, functions that only wrap the BaaS
services have negligible computation time, or CT = 0.

5) Workflow deployment model: We model the workflow
deployment based on the deployment of its functions, BaaS
service, and storage attachments. First, we model the earliest
start time est (fi) of a function fi as the latest completion
time of its predecessors pred (fi):

est (fi) = max
fp∈pred(fi)

[
ct (FDp)

]
, est (fs) = 0. (4)

Further on, we model the completion time ct (FDi) of a
function fi deployed in a region rf ∈ R as the earliest start
time est (fi) plus its round-trip time RTTi:

ct (FDi) = est (fi) +RTTi. (5)

Finally, we express makespan MBW of a BaaS-enabled
workflow through completion time of the end function fe :

MBW = ct (FDe) . (6)

C. BAASLESS scheduling algorithm

The BAASLESS scheduling aims to find the “optimal” func-
tion deployment, BaaS implementation, and intermediary re-
sult storage regions, for a BaaS-enabled workflow application

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 7

Algorithm 1: BAASLESS scheduling algorithm
Input : BW = (F,D), F =

⋃n
i=1 fi; // Serverless workflow

Input : R = ∪R
r=1r; // Federated infrastructure regions

Input : FDi =
⋃R

r=1 FDi, ∀fi ∈ F; // Function deployments
Output: DBW = ∪fi∈FFDir ; // Workflow deployment

1 Function BAASLESS (BW , R, FD):
2 F← B − Rank(F); // Reorder functions with B-rank
3 DBW ← ∅ ; // Initialize workflow deployment
4 for i← 1 to n do // Iterate functions
5 ctmin ←∞; // Initialization
6 RTT ← 0; // Initialization
7 estmax ← est(fi); // calculate est based on Eq. 4
8 for rf ← 1 to R do // Iterate func. deployment set
9 IT ← ITi ; // load invocation time

10 CT ← CTi ; // load computation time
11 DT ← TT (rf , rs, down) ; // Calculate download

time with Eq. 1
12 for rb ← 1 to R do // Iterate service regions
13 BT ← BTi ; // load BaaS service time
14 if xsin = 1 then
15 ST ← TT (rf , rb, down) ; // latency for

syncRefInput primitive based on
Eq. 2

16 end
17 for rs ← 1 to R do // Iterate out. regions
18 if xsout = 1 then
19 ST ← TT (rf , rb, up) ; // latency

for syncRefOutput primitive
based on Eq. 2

20 end
21 UT ← TT (rf , rs, up) ; // Calculate

upload time with Eq. 1
22 RTT ← RTTi ; // based on Eq. 3
23 ct(FD)← ct(FDi) ; // based on Eq. 5
24 if ct(FDi) < ctmin then
25 FDmin ← (fi, rf , rb, rs, RTT);

// Save fastest deployment
26 end
27 end
28 end
29 end
30 DBW ← DBW ∪ FDmin; // Add funct. deployment
31 end
32 return DBW ; // Return workflow deployment
33 return

BW = (F,D) with a given workflow input. BAASLESS as-
sumes the availability of a deployment set FDi =

⋃
rf∈R FDi

for each workflow function fi ∈ F, representing its deploy-
ments on all regions r ∈ R. BAASLESS uses the deployment
set to benchmark their round-trip time RTTi and uses Eqs. 1
and 3 to determine their invocation ITi, download DTi, com-
putation CTi, BaaS service BTi, sync STi, and upload UTi

times. The benchmarks also provides complete intermediary
result size information: SZ (dij) ,∀ (fi, fj , dij) ∈ D.

1) Scheduling algorithm: Algorithm 1 shows the
BAASLESS scheduling algorithm as an extension of the
heterogeneous earliest finish time (HEFT [39]) algorithm
that considers BaaS service location and temporary storage
of intermediary results. The algorithm has three input
parameters: (i) a BaaS-enabled workflow BW , (ii) a federated
infrastructure with R regions, and (iii) the deployment sets of
all functions FDi,∀fi ∈ F (with the corresponding invocation,
download, computation, service, and upload time benchmark
information). Firstly, line 2 sorts all workflow functions
according to their B-rank [39], representing the critical path
to the end of the workflow based on their benchmarked
round-trip time. Line 3 initializes the workflow deployment
plan with an empty set. Lines 4 to 31 iterate the functions
according to their B-rank order to deploy them on the

“best” region, select the best region of the BaaS service, and
dynamically attach storage.

For each function (line 4), the algorithm first initializes the
completion time, RTT , and calculates the earliest start time
of the function in lines 5 to 7, respectively. Further on, the
algorithm traverses the function deployments of the function
fi in lines 8 to 29. For each deployment, it loads invocation
time IT , computation time CT , and calculates the download
time with Eq. 1. These parameters are known since the regions
of the input files and the deployment is known at this step.

Further on, the algorithm iterates over each BaaS region
(lines 12 to 28). Inside the loop, the algorithm loads the
BaaS service time and computes synchronization time for
syncRefInput with Eq. 2, if interoperability is needed for
the input.

Finally, the algorithm iterates over each storage for the out-
put (lines 17 to 27). It first computes synchronization time for
syncRefOutput with Eq. 2, if the interoperability is needed
for the output. Furthermore, since the function deployment
and output storage regions are iterated (known), the algorithm
computes upload time UT with Eq. 1. Afterwards, it uses
all computed and loaded parameters and computes RTT with
Eq. 3. This value is then applied in Eq. 5 together with the
earliest start time that was already computed in line 7 for
this function. At each nested iteration, the algorithm saves the
deployments with the earliest completion time (lines 24 to 26)
and adds the fastest one to the workflow deployment in line
30. Line 32 returns the final workflow deployment, ready for
execution.

2) Complexity: The BAASLESS scheduling algorithm con-
ceptually iterates over four nested loops: once across all n
workflow functions and trice across all deployment, BaaS,
and storage regions R, leading to an acceptable polynomial
complexity of O

(
n ·R3

)
.

V. TESTING METHODOLOGY

We conduct a comprehensive evaluation to minimize exter-
nal threats to validity and to generalize BAASLESS evaluation.
We evaluate BAASLESS on six regions of AWS and GCP
hosted in the US and Europe. We are using three com-
plementary BaaS-enabled workflows (fork-join, bag-of-tasks,
and MapReduce). Further on, we validate our model with a
detailed analysis with low concurrency. Finally, we evaluate
BAASLESS for weak and strong scaling.

A. Diverse benchmark BaaS-enabled serverless workflows

Fig. 6 presents the BaaS-enabled workflows that tackle real-
life problems:

1) translate4Me solves a real-life problem of translating
a speech from one to another language, for which no BaaS
service exists. translate4Me is a bag-of-task workflow, which
implicitly translates audio files without explicit BaaS service
for that purpose. Each audio file is transcribed into plain text
by S2T, whose output is translated into target language by
TRA, which is converted to natural sounding speech by T2S.
With five audio files of 1min, translate4Me runs 15 functions
in total.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 8

parallel

S2T TRA T2SEnglish German
EN DE

(a) translate4me (bag-of-tasks).

parallelFor

split OCR TRA T2S merge
English GermanEN DE

(b) read4me (fork-join).

parallelFor

distribute
Workload

detect
Celebrities

cropFaces

parallelFor

distribute
Faces

create
Collage

Translate

(c) celebrityCollage (MapReduce).

Fig. 6. Experimental BaaS-enabled serverless workflows.

2) read4me is a fork-join workflow that creates natural-
sounding speech in multiple languages from a PDF document,
such that visually impaired people can ”hear” documents
instead of reading them. The function split cuts the input
PDF file into single-page PDFs. In parallel for each such
PDF, OCR extracts the text, which is translated into the target
language by TRA, and then converted into natural-sounding
speech by T2S. Finally, merge concatenates the audio files
into a single file and stores it in storage. The workflow input
contains a PDF with 5 pages stored in AWS or GCP storage,
leading to a total of 17 functions.

3) celebrityCollage analyzes images (e.g., screenshots of
a movie) and returns a collage of faces per each de-
tected celebrity (actor), including information about the ac-
tor. celebrityCollage is a MapReduce-based workflow which
identifies celebrities on various images. The map phase crops
and groups the faces per celebrity, while in the reduce phase,
the faces of the same celebrity are combined into a collage.
Additionally, the reduce phase retrieves a summary text in
English from Wikipedia for each celebrity, translates it in
German, and stores it in cloud storage. More details for
the workflow can be found in our recent paper [40]. For
BAASLESS’ evaluation, we used four values for the problem
size of the first parallel loop, represented as the number of
input images. The number of celebrities determines the size
of the reduce phase. The problem sizes of 10 and 20 input
images lead to 23 celebrities, while the problem sizes of 30
and 40 input images result in 34 celebrities for the second
parallel loop.

Workflow diversity. The selected three workflows com-
plement each other in many aspects. read4me represents a
fork-join class of workflows, translate4me is a bag-of-task
workflow, while celebrityCollage is a MapReduce-based work-
flow. Therefore, only translate4me is embarrassingly parallel
workflow, while read4me can scale up to some problem size,
after which merge will be much slower than the parallelism
with the parallel loops implemented with the parallelFor
construct of AFCL. Although both workflows run TRA and
T2S, translate4me’s functions consume by up to 52% larger
inputs than the read4me’s ones. Finally, the types of invo-

cations are also different. While all three BaaS services of
read4me are invoked synchronously, translate4me calls S2T
asynchronously, and the BAASLESS SDK uses busy waiting
to inform the function when the BaaS service finishes, so that
the workflow can continue with its execution immediately after
the BaaS service finishes. read4me calls OCR by reference for
the colocated BaaS service and storage to reduce the number
of data transfers and by value otherwise. On the other side,
translate4me calls the AWS S2T always by reference, even
when input data is stored in GCP when the sync mechanisms
are used to move data to AWS S3. While read4me and
translate4me scale up to the providers’ concurrency limit, for
celebrityCollage, both the Map and Reduce phase go beyond
the concurrency limit. We use the first two workflows to
evaluate BAASLESS with low concurrency (Section VI), while
celebrityCollage for high concurrency across multiple cloud
regions (Section VII).

B. Workflow deployments in federated infrastructures

Due to the high costs for BaaS services as they are managed,
we separated our evaluation into two parts, still retaining the
reliability of results. We executed the scheduled workflows
six times, similar to other recent related work [38], [41]. We
omitted the first execution to eliminate the cold start effect.
Despite running six repetitions, functions in parallel loops
are executed up to even 200 times for the celebrityCollage
workflow.

1) Deployment setup for low concurrency: We used a
federated FaaS, BaaS, and storage testbed comprising AWS
and GCP regions in North Virginia. We deployed all functions
of the read4me and translate4me with the minimum possible
memory of 128MB.

2) Deployment setup for high concurrency: For the exper-
iments with high concurrency, the evaluation setup comprised
four regions in Europe, i.e., AWS London and Frankfurt, along
with GCP London and Belgium. All functions of celebrityCol-
lage were deployed in all four regions and assigned with 2GB
to differ from the smaller memory and the continent of the
other two workflows. We selected memory larger than 1.5GB
in order to maximize bandwidth for the functions [42], [43].

C. Related work comparison with federated testbed

We compare BAASLESS with two state-of-the-art sched-
ulers in federated FaaS. FaDO [27] and Seti et al. [34]
move the code closer to data, i.e., colocate the function,
BaaS service and data in a single provider region, thereby
trying to minimize data access time. FaaSt [19], on the other
side, uses the earliest finish time approach and prefers the
function deployment that finishes earliest in federated FaaS.
Unfortunately, this approach roams only the functions while it
colocates the storage and BaaS services in the same provider
region as the input data. Related work supports colocation and
FaaS federation but not BaaS and storage federation across
providers. Contrary, BAASLESS federates FaaS, BaaS, and
storage, which increases the search space for optimal workflow
deployment.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 9

TABLE III
NETWORKING PARAMETERS FOR THE TESTBED FOR LOW CONCURRENCY.

Setup download upload
L (ms) B (MB/s) L (ms) B (MB/s)

VV-V 67 27.6 318 66.5
VV-V 125 58.5 253 45.6
VV-V 452 14.6 481 14.7
VV-V 296 17.3 366 15.9

TABLE IV
BAAS SERVICE EXECUTION TIME IN SECONDS

Setup translate4me read4me
S2T TRA T2S OCR TRA T2S

-VV- 42.47 0.29 0.48 2.46 0.29 0.59
-VV- 18.87 0.08 1.09 1.16 0.03 1.53
-VV- 43.02 0.84 1.03 3.01 0.84 1.14
-VV- 19.15 0.26 1.37 1.44 0.31 1.81

VI. EVALUATION FOR LOW SCALABILITY

This section evaluates BAASLESS scheduler for low scala-
bility with the translate4me and read4me workflows.

A. Microbenchmarks

We first conducted a set of microbenchmarks to determine
the federated testbed parameter setup. We ran the colocated
workflows in the regions of North Virginia of AWS and
GCP. We also measured BaaS service time (BT) from the
function by adding timestamps before and after the call of
the service. We also executed the same workflows but by
migrating the functions to the other provider to determine the
service time for those function deployments. Finally, we used
linear regression functions to determine networking parameters
L and B between the regions of both providers from all
functions from their upload and download times. Tables III
and IV show the determined parameter setup for the federated
testbed and both BaaS-enabled workflows.

GCP functions transfer files faster from and to GCP storage
instead of S3 since VV-V dominates VV-V for both directions
(lower latency, higher bandwidth). On the other hand, AWS
functions download faster from GCP storage but upload larger
files faster (Apply respective L and B for VV-V vs. VV-V in
Eq. 1). Another interesting observation is that BaaS services on
both providers are invoked faster from AWS functions (VV-V
vs VV-V in Table IV). The reason is the higher internal latency
and lower bandwidth for VV-V compared to VV-V (Table III).
Finally, by applying these values in Eq. 3, we determined the
compute time CT for all workflow functions.

B. Evaluation with the translate4me workflow

Using the federated testbed illustrated in Section V-B1 and
the results of the microbenchmarks, we first evaluate the three
schedulers with the translate4me workflow. Table V represents
the 4-tuple IFBO <Input storage, FaaS, BaaS service, Output
storage> for each function of translate4me achieved by the
three evaluated schedulers BAASLESS, FaaSt, and FaDO,
when workflow input is stored in AWS S3 and GCP storage.

Translate4Me schedules when workflow input is in AWS S3.
FaDO colocates the function S2T on AWS Virginia, to call the

TABLE V
TRANSLATE4ME SCHEDULE: <IFBO> (INPUT STORAGE, FAAS, BAAS,

OUT. STORAGE).

Function workflow input on AWS S3 workflow input on GCP
BaaSLess FaaSt FaDO BaaSLess FaaSt FaDO

S2T VVVV VVVV VVVV VVVV VVVV VVVV
TRA VVVV VVVV VVVV VVVV VVVV VVVV
T2S VVVV VVVV VVVV VVVV VVVV VVVV

AWS BaaS service S2T, and to store the output data in AWS
S3, i.e., IFBO is VVVV. FaDO also uses the same schedules
for the other two functions VVVV. Since the input data is in
AWS, FaaSt searches from two IFBO schedules, i.e., VVVV
and VVVV. FaaSt selects the former because VV-V dominates
VV-V in Table III and -VV- dominates -VV- in Table IV. It is
worth to note that FaaSt cannot find the faster schedule -VV-
from Table IV because of lack of interoperability. However,
FaaSt selects the schedule VVVV for the function TRA because
the advantage of VV-V over VV-V in Table III and -VV-
over -VV- in Table IV is smaller compared to faster function
compute time and lower IT on GCP compared to AWS [38].
For T2S, FaaSt selects the colocated schedule VVVV, similarly
to S2T. While FaaSt supports federated FaaS and finds a better
schedule than the colocated FaDO, BAASLESS can schedule
any of the three parts of FBO on any provider, selecting from
8 schedules (VVVV, VVVV, ..., VVVV). Although the input data
is in AWS S3, BAASLESS can find an even faster schedule
VVVV for the function S2T, using its interoperability SDK.
Furthermore, since the output data of S2T is scheduled on
GCP, BAASLESS searches for a schedule for TRA such that the
input data is stored in GCP. In this case, it is VVVV. Similarly,
BAASLESS schedules the last function, T2S, with the same
schedule as TRA.

Translate4Me schedules when workflow input is in GCP
storage. Using the same criteria as in the previous case, the
three schedulers select the presented schedules on the right-
hand side of Table V when the workflow input is in GCP.
FaDO schedules all parts of IFBO on GCP because it colocates
them with the storage. FaaSt selects the same colocated
schedules because the functions with colocated storage finish
faster on GCP. Once BAASLESS selects GCP storage for the
output data of S2T, the subsequent functions are scheduled
the same as when the workflow input is stored in S3.

Translate4Me’s distribution of completion time when work-
flow input is in AWS S3. Fig. 7a presents the completion time
of translate4Me functions scheduled by the three schedulers
BAASLESS, FaaSt, and FaDO when workflow input is in AWS
S3. We observe that all functions scheduled by BAASLESS
finish earlier than the other two schedules. A huge benefit of
the schedule VVVV for the function S2T can be seen compared
to the FaaSt’s and FaDO’s schedule VVVV, which are the first
twenty-five data points for BAASLESS. However, we observed
strange behavior of the colocated AWS schedules VVVV for
the function S2T. Although we measured a service time of
42.47 s, five calls to the AWS S2T BaaS service finished in
the interval of only [22.04 s, 28.98 s] for the FaaSt schedule
and even faster [19.68 s, 22.42 s] for FaDO, although they run
the same schedule VVVV. We believe that this paradoxical

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 10

BaaSLess FaaSt FaDO

20 40 60
0

0.5

1

10

completion time (s)

F
ra
ct
io
n
of

fi
n
is
h
ed

fu
n
ct
io
n
s

(a) Workflow input in AWS.

10 20 30
0

0.5

1

completion time (s)

F
ra
ct
io
n
o
f
fi
n
is
h
ed

fu
n
ct
io
n
s

(b) Workflow input in GCP.

Fig. 7. Distribution of completion times for translate4me.

behavior to run significantly faster is due to some caching and
internal scheduling within AWS due to the spawn start [44].
Nevertheless, since the parallel loops finish when the last
function finishes, these executions do not affect the overall
workflow makespan. We observe similar gradients of all three
curves for the next two functions because the functions run
in a few seconds, and the benefit of BAASLESS is smaller
compared to S2T. The BAASLESS scheduler achieved the
lowest makespan of 27.68 s, ahead of FaDO, which completed
within 55.79 s (2× slower), and FaaSt with 60.33 s (2.18×
slower) when the workflow input resides in AWS S3. Note that
although we expected FaaSt’s schedule to run faster, FaDO’s
paradoxical executions were faster than FaaSt’s, despite the
schedules being the same.

Translate4Me’s distribution of completion time when work-
flow input is in GCP storage. Similar conclusions can be
derived from Fig. 7b, which shows the completion time when
the workflow input is stored in GCP storage. While the first
25 executions have similar completion times since all three
schedulers run the same schedule VVVV, BAASLESS reported
earlier finish time for the remaining executions because it
found the better schedule VVVV compared to the colocated
schedules VVVV. BAASLESS reported the lowest makespan
of 27.64 s, which is comparable to the experiment with the
input data on AWS S3. FaDO and FaaSt were slower by
15.97% and 19.85%.

C. Evaluation with the read4Me workflow

Read4Me schedules when workflow input is in AWS S3. Ta-
ble VI presents the schedules of the three evaluated schedulers
when the workflow input of the read4me workflow is stored
in AWS S3 and GCP storage. Since read4me is a fork-join
workflow, it starts with the split function, which does not
run a BaaS service. FaDO again colocates the function and
the output storage. The same is true for FaaSt since GCP
functions have higher latency to AWS S3 compared to AWS
Lambdas. However, due to the lower latency for upload and
download, BAASLESS schedules the output storage on GCP to
achieve the earliest finish time. Furthermore, the schedules of
the remaining functions coincide with translate4me’s schedule.
Finally, similar to split, FaDO and FaaSt scheduled merge
colocated VV-V, as it also does not run any BaaS service.

TABLE VI
READ4ME SCHEDULE. <IFBO>: (INPUT STORAGE, FAAS, BAAS, OUTPUT

STORAGE).

Function workflow input on AWS S3 workflow input on GCP
BaaSLess FaaSt FaDO BaaSLess FaaSt FaDO

split VV–V VV–V VV–V VV–V VV–V VV–V
OCR VVVV VVVV VVVV VVVV VVVV VVVV
TRA VVVV VVVV VVVV VVVV VVVV VVVV
T2S VVVV VVVV VVVV VVVV VVVV VVVV
merge VV–V VV–V VV–V VV–V VV–V VV–V

Notably, BAASLESS scheduled the output to AWS S3 because
the latency may be more important than the bandwidth when
a function downloads five files, based on Eq. 1. This may be
emphasized even more if the workflow is executed for a larger
PDF file.

Read4Me schedules when workflow input is in GCP storage.
FaDO schedules all parts of IFBO on GCP. FaaSt can find
the faster schedule VV-V for the function split, which is
the fastest of all eight schedules that BAASLESS evaluates.
read4me’s functions that run BaaS services are scheduled
similar to translate4me’s functions. Finally, for merge, FaDO
colocates all parts of <IFBO> as for the other functions. FaaSt
schedules the faster schedule VV-V in front of VV-V, while
BAASLESS schedules the fastest schedule VV-V, which is
only possible using BAASLESS SDK.

Read4Me’s distribution of completion time when workflow
input is in AWS S3. Fig. 8a presents the completion time of all
functions of the read4me workflow, based on the schedules in
Table VI, when workflow input is stored in AWS S3. While
we do not observe a significant difference for the split
function, the next three functions that run BaaS services finish
earlier with the BAASLESS schedule. Overall, BAASLESS
achieved the lowest makespan of 10.88 s, in front of FaDO’s
14.24 s or 30.94% longer, and FaaSt’s 14.97 s, or 37.64%
slower. Notably, once again, FaaSt’s schedule leads to a longer
completion time. We analyzed the results in more detail and
determined a huge outlier for one instance of the function TRA,
whose download time was 5.9 s, or 13.66× longer than the
other instances of TRA of that execution. Without this outlier,
FaaSt achieves 13.24 s on average, which is faster than FaDO,
as expected, due to the better schedules on the function TRA.

Read4Me’s distribution of completion time when workflow
input is in GCP. BAASLESS reported the lowest makespan for
the experiments when the workflow input is in GCP, as well
(Fig. 8b). The main improvements are observed for TRA and
T2S. BAASLESS achieved similar makespan of 10.7 s as when
the workflow input is in AWS S3 due to the similar schedule.
FaDO was slower for 2.9%, while FaaSt 45.7%, on average.
We also observed several outliers, this time for the function
OCR for two executions with the FaaSt schedule. Note that
although BAASLESS and FaDO had the same schedule, we
did not observe outliers for either of them.

VII. EVALUATION FOR HIGH SCALABILITY

We analyze high concurrency based on the setup in Sec-
tion V-B2. Since we use up to R = 4 regions and the minimum
concurrency limitation of GCP’s TRA is 10, we vary the
problem size N ∈ {10, 20, 30, 40}. For both weak and strong

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 11

BaaSLess FaaSt FaDO

5 10 15 20
0

0.5

1

completion time (s)

F
ra
ct
io
n
of

fi
n
is
h
ed

fu
n
ct
io
n
s

(a) workflow input in AWS.

5 10 15 20
0

0.5

1

completion time (s)

F
ra
ct
io
n
o
f
fi
n
is
h
ed

fu
n
ct
io
n
s

(b) workflow input in GCP.

Fig. 8. Distribution of completion times for read4me.

TABLE VII
RELEVANT RTT DERIVED FROM THE MICROBENCHMARKS FOR THE

FUNCTIONS CROPFACES AND CREATECOLLAGE , WHICH ARE NEEDED
FOR HIGH CONCURRENCY.

Function FaDO +FaaSt +BaaSLess
LL-L LL-L LF-L LB-L LL-L LL-L LB-L LL-L LL-L LF-L LB-L

crop 6.05 19.37 11.81 23.55 8.67 3.22 4.07 - - - -
collage 2.58 7.46 7.26 13.46 - - - 6.93 2.44 6.11 2.87

scaling, we ordered the regions as follows: L, L, F, and F. L
is the colocated region in which the input data is stored. L is
geographically closest to L, followed by F, and F, which are
closer to Innsbruck, from where we run the experiments. For
easier readability, we will use the notation < N/R >.

A. Microbenchmarks

We ran the celebrityCollage workflow in the four evalu-
ated regions in Europe with colocated storage to evaluate
BAASLESS for weak scaling. Using our xAFCL serverless
workflow management system [17], we measured the overall
round trip time RTT of each function. With white-box testing,
we additionally measured the BaaS service time BT for the
functions detectCelebrities and Translate, as well
as the transfer times DT and UT for all functions. Further on,
we applied all these times in Eq. 3 and computed CT + IT .
Finally, we applied these values in our SimLess simulator [38]
to simulate the scheduled versions of all three workflows for
weak and strong scaling.

Table VII presents the calculated values of the relevant
values for RTT for the two functions cropFaces and
createCollage. Similar to low concurrency, FaDO colo-
cates the functions, BaaS services, and output storage, leading
to the single schedule LL-L. By utilizing federated FaaS,
FaaSt gains access to three additional regions to schedule
the functions, i.e., the schedules LL-L, LF-L, and LB-L.
Notably, due to the lack of storage interoperability, FaaSt
colocates the output storage as the input storage. As expected,
the colocated function achieves the lowest round trip time.
However, the second-best AWS Frankfurt is in front of GCP
London, which is geographically closer. The reason is the 2×
higher bandwidth for download and 1.67× lower latency to
upload of LF-L compared to LL-L.

Apart from the four options that FaaSt uses, BAASLESS
searches among up to O(44) schedules (four parameters with

10/1 20/2 30/3 40/4

0

20

40

weak scaling (varying problem size/resources)

m
ak
es
p
an

(s
)

BaaSLess

FaaSt

FaDO

Fig. 9. Makespan achieved with BAASLESS, FaaSt, and FaDO schedulers
for weak scaling experiments using celebrityCollage.

four regions each) for each function. For simplicity, Table VII
presents a selection of schedules that are relevant for the
evaluation. For the function cropFaces, BAASLESS calcu-
lates two schedules LL-L and LB-L, which are faster than
all four schedules that FaaSt can consider. The main reason
is the 1.78 × −2.12× higher latency of LL-L compared to
the other two cross-regional schedules. Similarly, BAASLESS
finds three cross-regional schedules LL-L, LF-L, and LB-
L, which achieve lower RTT than the respective colocated
storages for the createCollage function. Notably, these
three schedules are possible because the schedules LL-L and
LB-L stored data in GCP storage in London.

B. Evaluation for weak scaling

Fig. 9 illustrates the makespan of all three evaluated sched-
ulers for weak scaling. All three schedulers produce the
same schedule when they schedule within a single region
only, thereby they all achieve the same makespan of 19.79 s.
However, for the other three experiments for weak scaling,
BAASLESS’ schedules are up to 1.82× and even 2.95× faster
compared to FaaSt and FaDO, respectively. BAASLESS even
reduces makespan to 16.45 s for the weak scaling < 40/4 >
compared to < 10/1 >, which represents a superlinear
speedup [45]. The superlinear speedup is achieved because
of the reduced data access time for the scaled experiments,
which is supported by the interoperable BAASLESS’ SDK.
The main reason for the significantly higher makespan of
FaDO’s schedules is the lack of scalability. Namely, since the
problem size is 40 images, but the total number of concurrent
executions is restricted to 10, FaDO’s schedule runs both
parallel loops as a sequence of four parallel loops of ten
iterations. FaaSt, on the other side, can utilize all four regions
for the functions but not for the output storage.

The main advantage of BAASLESS is observed for the
functions cropFaces and createCollage, which down-
load images from and upload to the storage. Namely, starting
from < 20, 2 >, BAASLESS can find the faster schedule
LL-L to run the function and colocate the cropped faces
(output) in GCP London, despite that the input data is
stored in AWS London. This cross-regional setup needs 3.22 s
instead of colocated LL-L, which needs 6.05 s. With it’s
federated storage, BAASLESS’ < 40, 4 > schedule runs the
cropFaces function within RTT = 6.44 s, which is only
6.54% longer than the baseline experiment < 10, 1 >. On
the other side, FaaSt searches from four options only, all of

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 12

40/1 40/2 40/3 40/4

0

20

40

strong scaling (varying resources)

m
ak
es
p
an

(s
)

BaaSLess

FaaSt

FaDO

Fig. 10. Makespan achieved with BAASLESS, FaaSt, and FaDO schedulers
for strong scaling experiments using celebrityCollage.

which are scheduled to access the storage in AWS, thereby
reaching enormous RTT = 18.14 s for < 40, 4 >. Similarly,
for the createCollage function, FaaSt reduces RTT from
7.73 s to 7.46 s utilizing the federated FaaS aproach. How-
ever, BAASLESS finds an even faster schedule that achieves
5.74 s = 2 · 2.87 s.

C. Evaluation for strong scaling

Fig. 10 presents the evaluation of the three schedules
using the SimLess simulator. Given that strong scaling always
submits the maximum problem size of 40, FaDO always
generates the same schedule on the single colocated region LL-
L, which is the same as the other schedulers for the experiment
< 40, 1 >, thereby all achieving the highest makespan of
48.55 s. However, BAASLESS and FaaSt reduce makespan
for strong scaling, but BAASLESS overperforms FaaSt for all
three experiments. For the experiment < 40, 4 >, BAASLESS
reduces makespan by 2.95×, while FaaSt reduces makespan
1.63× compared to < 40, 1 >. The reasons for BAASLESS’s
better strong scaling are similar to weak scaling, i.e., running
the same two functions cropFaces and createCollage with the
BAASLESS’ interoperable SDK.

VIII. DISCUSSION

A. Related work

FaaS federation. FaaSt [19] is the state-of-the-art scheduler
that distributes workflow functions across federated FaaS.
While FaaSt leverages the computation resources of federated
FaaS, it ignores the network proximity of storage and per-
formance of BaaS services. XFaaS [46] and WISEFUSE [47]
re-group the workflow by fusing a sequence of functions in a
single function to reduce invocation latency. Additionally, both
works determine the optimal placement of the fused functions
in federated FaaS. While this approach may reduce data access
time to storage and invocation delay, it introduces many other
challenges, such as increased cost due to higher memory
requirements, or longer duration because of larger package
size. Moreover, many BaaS services use their inVal and
outVal data ports, which require that the function loads the
input data and stores the output data in storage. xAFCL [17]
considers network proximity between functions within a par-
allel loop and scatters entire iterations in federated FaaS while
FaDO [27] colocates functions with storages. Zion [48] creates
pipelines and runs them in a dataflow manner. However, the

evaluation showed that BaaS-enabled serverless workflows
benefit not only from FaaS federation, but also from BaaS
and storage federation.

Storage federation. Onedata [49] splits the files and places
them in various storages in a multi-cloud environment, using
improved block-based data transfer. Lithops [26] allows the
sharing of files among multiple functions of a parallel loop.
Locus [50] federates cheap but slow storage and fast but
expensive storage to achieve a cost-performance tradeoff.
While these systems allow global data access and benefit from
storage federation, they do not support FaaS and BaaS.

BaaS composition and federation. In general, BaaS services
are neglected by researchers. SLAM [15] profiles the call
graph of serverless applications, including BaaS services,
in order to determine the memory configuration. However,
SLAM only profiles without replacing the faster BaaS service
on another provider. The very recent paper ProPack [51]
determined a huge overhead while scaling the number of
functions that use compute-intensive BaaS services inside
functions. The authors determine the trade-off between pack-
aging and fewer functions, which reduces scalability but also
concurrency overhead. We believe that a mixture of offloading
the BaaS services or running locally inside the function will
improve the performance.

QoS-aware placement. Serverless workflows enable the
distribution of their functions across the edge and the cloud.
However, users are challenged to determine the optimal setup
that satisfies their requirements because the setup depends on
both application structure and runtime environment. Sigurleif-
sson et al. [52] used a modular fuzzy analytical approach
for multi-objective optimization, which considers data locality,
cost, and performance. However, the authors model a pipeline
(a sequence) of functions without considering a real DAG
and concurrency limitations, as required by BaaS-enabled
serverless workflows. Courier [53] is a platform that delivers
serverless functions across federated serverless infrastructures
to optimize their execution time. However, it mainly works
for isolated functions or functions that access to a single
storage, while BAASLESS supports BaaS-enabled serverless
workflows. Orthogonal to our work, Bocci et al. [54] intro-
duced a placement technique that prevents information leakage
through side channels for BaaS-enabled functions.

Dynamic scheduling. While BAASLESS scheduler uses an
offline (static) scheduling algorithm, several online schedulers
were recently introduced. StepConf [55] is a dynamic sched-
uler for serverless workflows, which utilizes intra- and inter-
function parallelism to speed up the execution and minimize
cost. Similar to BAASLESS, StepConf schedules the workflow
functions step by step. However, its model supports isolated
functions within a single cloud region without supporting
BaaS-enabled serverless workflows. AsyFunc [56] utilizes the
concept of lightweight shadow functions which take over
part of computing within a burstable period. O-RDC [57]
is an online scheduling algorithm that considers a trade-off
between startup latency and resource utilization in the edge-
cloud continuum, similar to a ski-rental problem. λDNN [58]
is a cost-efficient serverless resource provisioning framework,
which checkpoints the states of the functions in storage

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 13

and loads them to avoid the maximum duration constraint.
Unlike it, BAASLESS approach is to asynchronously offload
the computing to BaaS services. Finally, λGNN [59] is a
dynamic scheduler that builds a workflow from a Graph Neu-
ral Networks operations dynamically during runtime through
sharing the graph and allocating the resources in a fine-grained
manner. While all aforementioned approaches are appropriate
in open-source platforms such as Knative or OpenWhisk, they
are not applicable in public cloud providers as inter-function
communication is forbidden.

B. Monetary cost consideration for execution

While serverless computing introduces cloud resources that
are fully managed by the cloud providers, it still comes with
a higher cost per resource than the respective Infrastructure-
as-a-Service, such as EC2 [60]. Liu and Niu [61] introduce
a concept of future function, that is, an auction-based pricing
model that offers discounts to the users but at the same time
boosts profit for the providers. While this approach is suitable
for FaaS, whose pricing model is based on invocation and
duration price, the pricing model for BaaS service is based
on the problem size, which is two magnitudes larger than the
FaaS cost, and a magnitude higher than data transfers between
cloud regions. On the other side, the prices for the same BaaS
service offered by various providers do not significantly differ
between providers.

While BAASLESS allows dynamic BaaS-enabled serverless
workflow deployments during runtime to optimize execution
time, it does not consider the potential increase of the costs
due to external traffic between providers and potentially higher
costs for the faster BaaS services or faster functions. However,
we did not include the cost (See Table I) in our optimization
because the only BaaS service deployment with higher cost
(GCP TRA) is also slower than AWS TRA (see Tables V and
VI). The costs for one execution of read4me and translate4me
scheduled with BAASLESS are 55.7 ¢ and 26 ¢, respectively.
These costs are mainly due to the charges for the BaaS
services, from 99.1% for the read4me workflow with input
data in GCP up to 99.997% for the translate4me workflow
with input data in GCP. Compared to the other two schedulers,
BAASLESS reported up to 26% lower costs for input data in
GCP storage, but also up to 0.84% higher costs when input
data is stored in AWS S3. Still, these results may differ for
other BaaS services.

C. Threats to validity

To better identify BAASLESS limitations, we rely on the
methodology introduced by Wohlin et al [62], who classify
the validity tests in four categories: construct validity, internal
validity, external validity, and reliability.

Construct validity. We minimized this class of threat by
constructing our methodology with two widely-used cloud
providers, four cloud regions, three complementary workflows,
and we evaluated BAASLESS scheduler with two other ap-
proaches in federated serverless infrastructures.

Internal validity. We evaluated BAASLESS scheduler with
a given problem size, including a constant number of input

files with a constant file size within the range of megabytes.
However, we used the simplified model for networking transfer
time in Eq. 1, which ignores the TCP’s slow-start [37]. For
smaller files, TCP’s slow-start may increase latency 10 to 15
times and reduce bandwidth by 20%. Still, this threat evenly
affects all evaluated schedulers.

External validity. We evaluated the BAASLESS scheduler
with four regions of AWS and GCP. Due to different network
proximity, the results may differ if we used other regions.
However, we selected US regions to achieve higher network
delay between University of Innsbruck, across the sea. Addi-
tionally, workflows with more complex structures and other
BaaS services may not lead to the same conclusion.

Reliability. Our evaluation was conducted from the Uni-
versity of Innsbruck. However, experiments conducted from
other locations in the world will lead to different results and
therefore researchers must measure and adapt the parameters
in all schedulers. We repeated our experiments five times to
minimise the reliability threat, ignoring the cold start.

IX. CONCLUSION AND FUTURE WORK

This paper introduced BAASLESS, a novel platform that
minimizes the makespan of BaaS-enabled serverless work-
flows by providing and integrating a dynamic and globally
federated BaaS and storage infrastructure across multiple
cloud regions to workflow functions. To the best of our
knowledge, BAASLESS is the first platform that exposes
common APIs to the developer that hide the heterogeneity
of SDKs for BaaS services. BAASLESS alleviates the vendor
lock-in constraints with various sync primitives. Finally, the
BAASLESS scheduler dynamically configures the BAASLESS
SDK in each function to deploy the BaaS service and to attach
the storage backend that minimizes the overall makespan.

BAASLESS improves the makespan by up to 2.18× com-
pared to state-of-the-art schedulers, which are specifically
designed for federated serverless infrastructures. The speedup
is initiated mainly by selecting the optimal deployment of
BaaS services, attached storage locations and function deploy-
ments. Even higher speedup is achieved for strong and weak
scaling, where BAASLESS achieves speedup of 3× and 1.54×,
respectively, when scaled with four cloud regions compared to
the experiments with a single region. As a comparison, this
leads to an improvement of 2.45× compared to related work.

We will extend BAASLESS in four directions:
i) BaaS service time and cost models: We will investigate

how runtime and cost are affected by input and output location
and problem size (e.g., audio length), BaaS service implemen-
tation, and region, in order to create mathematical models that
estimate performance and cost for all different setups;

ii) Multi objective optimization: we will extend the
BAASLESS heuristics to automatically apply the mathematical
models for cost and runtime of other BaaS services;

iii) BaaS services composition: We will extend our notion
of BaaS-enabled workflows into BaaS-workflows by compos-
ing the BaaS services directly without FaaS latency; and

iv) Extend the BAASLESS SDK for other programming
languages (e.g., Python and Node.js), BaaS services (e.g.,
sentiment analysis), and providers (e.g., Azure).

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 14

ACKNOWLEDGEMENT

This work is supported by:
• Land Tirol, Austria, under contract F.35499, and
• the MATISSE project, funded by

– the European Union, under grant agreement No.
101140216 (KDT Joint Undertaking) and

– Österreichische Forschungsförderungsgesellschaft
mbH (FFG), under project number FO999909832.

The master student Mika Hautz, affiliated with the University
of Innsbruck, supported us in conducting the measurements
for the celebrityCollage workflow.

REFERENCES

[1] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
Serverless Computing: Current Trends and Open Problems. Singapore:
Springer Singapore, 2017, pp. 1–20.

[2] D. Du, Q. Liu, X. Jiang, Y. Xia, B. Zang, and H. Chen, “Serverless
computing on heterogeneous computers,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Lausanne, Switzerland: ACM, 2022, p. 797–813.

[3] Z. Jia and E. Witchel, “Nightcore: Efficient and scalable serverless
computing for latency-sensitive, interactive microservices,” ser. ASPLOS
’21. Virtual, USA: ACM, 2021, p. 152–166.

[4] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar, J. E. Gonzalez,
R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud programming
simplified: A Berkeley view on serverless computing,” CoRR, vol.
abs/1902.03383, 2019.

[5] E. Paraskevoulakou and D. Kyriazis, “Ml-faas: Toward exploiting the
serverless paradigm to facilitate machine learning functions as a service,”
IEEE Transactions on Network and Service Management, vol. 20, no. 3,
pp. 2110–2123, 2023.

[6] S. Ristov, S. Pedratscher, and T. Fahringer, “AFCL: An Abstract
Function Choreography Language for serverless workflow specification,”
Fut. Gen. Comp. Syst., vol. 114, pp. 368 – 382, 2021.

[7] A. Arjona, P. G. López, J. Sampé, A. Slominski, and L. Villard, “Trig-
gerflow: Trigger-based orchestration of serverless workflows,” Future
Generation Computer Systems, vol. 124, pp. 215–229, 2021.

[8] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: A scalable and locality-enhanced framework for serverless
parallel computing,” in Symp. on Cloud Comp. ACM, 2020, p. 1–15.

[9] J. R. Gunasekaran, P. Thinakaran, N. C. Nachiappan, M. T. Kandemir,
and C. R. Das, “Fifer: Tackling resource underutilization in the serverless
era,” in Middleware. Delft, Netherlands: ACM, 2020, p. 280–295.

[10] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia:
Enabling Quality-of-Service in serverless computing,” in Symposium on
Cloud Computing (SoCC ’20). Virtual Event: ACM, 2020, p. 311–327.

[11] M. Yu, T. Cao, W. Wang, and R. Chen, “Following the data, not the
function: Rethinking function orchestration in serverless computing,” in
20th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 23). Boston, MA: USENIX, apr 2023, pp. 1489–1504.

[12] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Comm. ACM, vol. 62, no. 12, p. 44–54, nov 2019.

[13] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. Abad, and A. Iosup, “Serverless applications: Why, when,
and how?” IEEE Software, vol. 38, no. 1, pp. 32–39, 2021.

[14] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The serverless
computing survey: A technical primer for design architecture,” ACM
Comput. Surv., vol. 54, no. 10s, sep 2022.

[15] G. Safaryan, A. Jindal, M. Chadha, and M. Gerndt, “Slam: Slo-
aware memory optimization for serverless applications,” in International
Conference on Cloud Computing (CLOUD). IEEE, 2022, pp. 30–39.

[16] T. Larcher and S. Ristov, “Scale composite baas services with afcl work-
flows,” in Proceedings of the SC ’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and
Analysis, ser. SC-W ’23. Denver, CO, USA: ACM, 2023, p. 2033–2041.

[17] S. Ristov, S. Pedratscher, and T. Fahringer, “xAFCL: Run scalable func-
tion choreographies across multiple FaaS systems,” IEEE Transactions
on Services Computing, vol. 16, no. 1, pp. 711–723, 2023.

[18] Y. Babuji, J. Bryan, R. Chard, K. Chard, I. Foster, B. Galewsky, D. S.
Katz, and Z. Li, “Federated function as a service for escience,” in
2021 IEEE 17th International Conference on eScience (eScience). Los
Alamitos, CA, USA: IEEE Computer Society, sep 2021, pp. 251–252.

[19] S. Ristov and P. Gritsch, “FaaSt: Optimize makespan of serverless
workflows in federated commercial FaaS,” in International Conference
on Cluster Computing, ser. CLUSTER ’22. Heidelberg, Germany:
IEEE, 2022, p. 182–194.

[20] J. Sampe, P. Garcia-Lopez, M. Sanchez-Artigas, G. Vernik, P. Roca-
Llaberia, and A. Arjona, “Toward multicloud access transparency in
serverless computing,” IEEE Soft., vol. 38, no. 1, pp. 68–74, 2021.

[21] Z. Li, R. Chard, Y. Babuji, B. Galewsky, T. J. Skluzacek, K. Nagaitsev,
A. Woodard, B. Blaiszik, J. Bryan, D. S. Katz, I. Foster, and K. Chard,
“funcx: Federated function as a service for science,” IEEE Trans. on
Parallel and Distributed Systems, vol. 33, no. 12, pp. 4948–4963, 2022.

[22] I. Stoica and S. Shenker, “From cloud computing to sky computing,” in
Workshop on Hot Topics in Operating Systems, ser. HotOS ’21. Ann
Arbor, Michigan: ACM, 2021, p. 26–32.

[23] Z. Yang, Z. Wu, M. Luo, W.-L. Chiang, R. Bhardwaj, W. Kwon,
S. Zhuang, F. S. Luan, G. Mittal, S. Shenker, and I. Stoica, “SkyPilot:
An intercloud broker for sky computing,” in Symposium on Networked
Systems Design and Implementation (NSDI 23). Boston, MA: USENIX,
Apr. 2023, pp. 437–455.

[24] J. J. Durillo, R. Prodan, and J. G. Barbosa, “Pareto tradeoff scheduling
of workflows on federated commercial clouds,” Simulation Modelling
Practice and Theory, vol. 58, pp. 95–111, 2015.

[25] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Symposium on Cloud
Computing, ser. SoCC ’17. Santa Clara, USA: ACM, 2017, p. 445–451.

[26] J. Sampe, M. Sanchez-Artigas, G. Vernik, I. Yehekzel, and P. Garcia-
Lopez, “Outsourcing data processing jobs with lithops,” IEEE Transac-
tions on Cloud Computing, pp. 1–1, Nov. 2021.

[27] C. P. Smith, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict, “Fado:
Faas functions and data orchestrator for multiple serverless edge-cloud
clusters,” in 2022 IEEE 6th International Conference on Fog and Edge
Computing (ICFEC), 2022, pp. 17–25.

[28] S. Ristov, D. Kimovski, and T. Fahringer, “Faascinating resilience for
serverless function choreographies in federated clouds,” IEEE Trans. on
Network and Service Management, vol. 19, no. 3, pp. 2440–2452, 2022.

[29] V. Yussupov, J. Soldani, U. Breitenbücher, and F. Leymann, “Standards-
based modeling and deployment of serverless function orchestrations
using bpmn and tosca,” Software: Practice and Experience, vol. 52,
no. 6, pp. 1454–1495, 2022.

[30] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “Funcx: A federated function serving fabric for
science,” in Int. Symp. on High-Performance Parallel and Distributed
Computing (HPDC). Stockholm, Sweden: ACM, 2020, p. 65–76.

[31] S. Nastic, T. Pusztai, A. Morichetta, V. Casamayor Pujol, S. Dustdar,
D. Vij, and Y. Xiong, “Polaris scheduler: Edge sensitive and slo
aware workload scheduling in cloud-edge-iot clusters,” in International
Conference on Cloud Computing (CLOUD), 2021, pp. 206–216.

[32] T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, P. Raith,
S. Dustdar, D. Vij, Y. Xiong, and Z. Zhang, “Polaris scheduler: SLO-
and topology-aware microservices scheduling at the edge,” in IEEE/ACM
Int. Conf. on Utility and Cloud Computing, 2022, pp. 61–70.

[33] S. Risco, G. Moltó, D. M. Naranjo, and I. Blanquer, “Serverless work-
flows for containerised applications in the cloud continuum,” Journal of
Grid Computing, vol. 19, no. 3, pp. 1–18, 2021.

[34] B. Sethi, S. K. Addya, J. Bhutada, and S. K. Ghosh, “Shipping code
towards data in an inter-region serverless environment to leverage
latency,” J. Supercomput., vol. 79, no. 10, p. 11585–11610, mar 2023.

[35] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with HyperFlow, AWS
lambda and Google Cloud Functions,” Future Generation Computer
Systems, vol. 110, pp. 502–514, 2020.

[36] T. Larcher and S. Ristov, “Profiling java serverless functions package
size in federated faas,” in International Workshop on Algorithms, Models
and Tools for Parallel Computing on Heterogeneous Platforms, ser.
HeteroPar 2023. Limassol, Cyprus: Springer, Aug. 2023.

[37] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, 2014.

[38] S. Ristov, M. Hautz, C. Hollaus, and R. Prodan, “SimLess: Simulate
serverless workflows and their twins and siblings in federated FaaS,” in
ACM Symposium on Cloud Computing, ser. SoCC ’22. San Francisco,
CA, USA: ACM, Nov. 2022, p. 323–339.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, JANUARY 2024 15

[39] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. on Par. and Distrib. Systems, vol. 13, no. 3, pp. 260–274, 2002.

[40] S. Ristov, S. Brandacher, M. Hautz, M. Felderer, and R. Breu, “CODE:
Code once, deploy everywhere serverless functions in federated FaaS,”
Future Generation Computer Systems, vol. 160, pp. 442–456, 2024.

[41] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jethwani,
W. Koch, S. Albrecht, J. Oeth, and F. Suter, “Developing accurate and
scalable simulators of production workflow management systems with
WRENCH,” Fut. Gen. Comp. Syst., vol. 112, pp. 162 – 175, 2020.

[42] A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht, D. Skourtis,
V. Tarasov, F. Yan, and Y. Cheng, “InfiniCache: Exploiting ephemeral
serverless functions to build a Cost-Effective memory cache,” in 18th
USENIX Conference on File and Storage Technologies (FAST 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 267–281.

[43] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in USENIX Annual Technical
Conference, Boston, MA, USA, 2018, p. 133–145.

[44] S. Ristov, C. Hollaus, and M. Hautz, “Colder than the warm start
and warmer than the cold start! experience the spawn start in faas
providers,” in Workshop on Advanced Tools, Programming Languages,
and PLatforms for Implementing and Evaluating Algorithms for Dis-
tributed Systems (ApPLIED ’22). Salerno, Italy: ACM, 2022, p. 35–39.

[45] S. Ristov, R. Prodan, M. Gusev, and K. Skala, “Superlinear speedup in
HPC systems: why and when?” in Federated Conference on Computer
Science and Information Systems (FedCSIS), Gdansk, Poland, Sept.
2016, pp. 889–898.

[46] A. Khochare, T. Khare, V. Kulkarni, and Y. Simmhan, “Xfaas:
Cross-platform orchestration of faas workflows on hybrid clouds,” in
IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), 2023, pp. 498–512.

[47] A. Mahgoub, E. B. Yi, K. Shankar, E. Minocha, S. Elnikety, S. Bagchi,
and S. Chaterji, “WISEFUSE: Workload characterization and dag trans-
formation for serverless workflows,” Proc. ACM Meas. Anal. Comput.
Syst., vol. 6, no. 2, jun 2022.

[48] J. Sampé, M. Sánchez-Artigas, P. Garcı́a-López, and G. Parı́s, “Data-
driven serverless functions for object storage,” in Middleware Confer-
ence. Las Vegas, Nevada: ACM, 2017, p. 121–133.

[49] M. Orzechowski, M. Wrzeszcz, B. Kryza, Ł. Dutka, R. G. Słota, and
J. Kitowski, “Global access to legacy data-sets in multi-cloud applica-
tions with onedata,” in Parallel Processing and Applied Mathematics:
International Conference, PPAM 2022, Gdansk, Poland, September 11–
14, 2022, Revised Selected Papers, Part I. Springer, 2023, pp. 305–317.

[50] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable
analytics on serverless infrastructure,” in Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA: USENIX,
feb 2019, pp. 193–206.

[51] R. Basu Roy, T. Patel, R. Liew, Y. N. Babuji, R. Chard, and D. Ti-
wari, “Propack: Executing concurrent serverless functions faster and
cheaper,” in International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’23. Orlando, FL, USA: ACM,
2023, p. 211–224.

[52] B. Sigurleifsson, N. Ahmed, A. Verdet, M. Hamdaqa, M. Sabri, and
I. Pelletier, “An approach for modeling the operational requirements of
faas applications for optimal deployment,” Information and Software
Technology, vol. 161, p. 107242, 2023.

[53] A. Jindal, J. Frielinghaus, M. Chadha, and M. Gerndt, “Courier: deliv-
ering serverless functions within heterogeneous faas deployments,” in
Proceedings of the 14th IEEE/ACM International Conference on Utility
and Cloud Computing, ser. UCC ’21. Leicester, UK: ACM, 2021.

[54] A. Bocci, S. Forti, G.-L. Ferrari, and A. Brogi, “Declarative secure place-
ment of FaaS orchestrations in the cloud-edge continuum,” Electronics,
vol. 12, no. 6, p. 1332, 2023.

[55] Z. Wen, Y. Wang, and F. Liu, “StepConf: SLO-aware dynamic resource
configuration for serverless function workflows,” in INFOCOM 2022 -
IEEE Conference on Computer Communications, 2022, pp. 1868–1877.

[56] Q. Pei, Y. Yuan, H. Hu, Q. Chen, and F. Liu, “Asyfunc: A high-
performance and resource-efficient serverless inference system via asym-
metric functions,” in ACM Symposium on Cloud Computing, ser. SoCC
’23. Santa Cruz, CA, USA: ACM, 2023, p. 324–340.

[57] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container
caching for serverless edge computing,” in IEEE INFOCOM 2022 -
IEEE Conference on Computer Communications, 2022, pp. 1069–1078.

[58] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “dnn: Achieving predictable
distributed dnn training with serverless architectures,” IEEE Transac-
tions on Computers, vol. 71, no. 2, pp. 450–463, 2022.

[59] H. Hu, F. Liu, Q. Pei, Y. Yuan, Z. Xu, and L. Wang, “grapher:
A resource-efficient serverless system for gnn serving through graph
sharing,” in Proceedings of the ACM on Web Conference 2024, ser.
WWW ’24. Singapore, Singapore: ACM, 2024, p. 2826–2835.

[60] A. Eivy and J. Weinman, “Be wary of the economics of ”serverless”
cloud computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 6–12, 2017.

[61] F. Liu and Y. Niu, “Demystifying the cost of serverless computing:
Towards a win-win deal,” IEEE Transactions on Parallel and Distributed
Systems, vol. 35, no. 1, pp. 59–72, 2024.

[62] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

Thomas Larcher is a master’s student in Software
Engineering at the University of Innsbruck, Austria
and received his Bachelor in computer science in
2021 from the University of Innsbruck, Austria. His
main research interests include serverless comput-
ing, performance modeling, optimization, and cloud
federation.

Philipp Gritsch is a PhD student at the Univer-
sity of Innsbruck, Austria. His research interests
include performance modeling and optimization of
distributed systems, in particular workflow applica-
tions and serverless computing.

Stefan Nastic is an Assistant Professor at TU Wien,
Austria. He is also a founder and managing director
of IntelliEdge GmbH. His research interests include
serverless computing, edge-cloud continuum, AI and
edge AI, and reliability engineering. He has a track
record as a lead researcher, consultant, and technical
coordinator, working on various research and com-
mercial projects for over a decade. Nastic holds a
PhD in programming, provisioning, and governing
IoT cloud systems from TU Wien, Austria.

Sashko Ristov is an Assistant Professor at the
University of Innsbruck, Austria. His main research
interests include serverless computing, cloud en-
gineering, and cloud federation. He received the
IEEE Cloud Summit best paper award in 2022. Dr.
Ristov has a PhD degree in computer science from
Ss. Cyril and Methodius University, Skopje, North
Macedonia.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3439268

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Motivating study
	Motivation for BaaS-enabled serverless workflows
	BaaS service challenges due to vendor lock-in
	Performance analysis of BaaS-enabled serverless functions
	Problem statement and limitations of the state-of-the-art

	BaaSLess platform overview
	Composing BaaS-enabled serverless workflows
	BaaSLess scheduler

	Scheduling workflows with BaaSLess
	BaaSLess application model
	Abstract serverless workflow model
	Abstract BaaS-enabled FaaS model

	BaaSLess deployment model
	Federated serverless infrastructure model
	Storage attachment model
	BaaS services deployment model
	Function deployment model
	Workflow deployment model

	BaaSLess scheduling algorithm
	Scheduling algorithm
	Complexity

	Testing methodology
	Diverse benchmark BaaS-enabled serverless workflows
	Workflow deployments in federated infrastructures
	Deployment setup for low concurrency
	Deployment setup for high concurrency

	Related work comparison with federated testbed

	Evaluation for low scalability
	Microbenchmarks
	Evaluation with the translate4me workflow
	Evaluation with the read4Me workflow

	Evaluation for high scalability
	Microbenchmarks
	Evaluation for weak scaling
	Evaluation for strong scaling

	Discussion
	Related work
	Monetary cost consideration for execution
	Threats to validity

	Conclusion and future work
	References
	Biographies
	Thomas Larcher
	Philipp Gritsch
	Stefan Nastic
	Sashko Ristov

