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ABSTRACT
Serverless Computing is a computing paradigm that provides ef-

ficient infrastructure management and elastic scalability. Server-

less functions scale up or down based on demand, which means

that functions are not directly addressable and rely on platform-

managed invocation. Serverless stateless nature requires functions

to leverage external services, such as object storage and KVS, to

exchange data. Serverless actors have emerged as a solution to

these issues. However, the state-of-the-art serverless lifecycle and

event-trigger invocation force actors to leverage remote services

to manage their state and exchange data which impacts the perfor-

mance, incurs additional cost and dependency on third-part services.

To address these issues, in this paper, we introduce a novel server-

less lifecycle model that allows short-term stateful actors, enabling

actors to maintain their state between executions. Additionally, we

propose a novel serverless Invocation Model that enables serverless

actors to influence the processing of future messages. We present

GoldFish, a lightweightWebAssembly short-term stateful serverless

actor platform which provides a novel serverless actor lifecycle and

invocation model. GoldFish leverages WebAssembly to provide the

actors with lightweight sandbox isolation, making them suitable

for the Edge-Cloud Continuum, where computational resources

are limited. Experimental results show that GoldFish optimizes the

data exchange latency by up to 92% and increases the throughput

by up to 10x compared to OpenFaaS and Spin.
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1 INTRODUCTION
Serverless Computing is a paradigm that offers automated infras-

tructure management, scale to zero, and elastic scaling. Typically, a

Serverless application consists of a series of interconnected func-

tions, also known as a ServerlessWorkflow, that exchange ephemeral

data, which can be discarded after function processing. Due to the

Serverless stateless design, functions in a workflow leverage exter-

nal services such as object storage, message brokers, and Key-Value

stores (KVS) to exchange ephemeral data and manage their state.

Although external services provide benefits such as computing and

IO separation, they add significant latency overhead [1, 2, 3, 4].

Moreover, functions are not directly accessible; they are accessible

via platform ingresses such as API Gateway and Load Balancer [5,

6, 7], thus making direct communication more challenging. Server-

less actors [8, 9, 10, 11, 12, 13, 14] have emerged addressing these

issues, thus enabling direct communication, state persistence, and

concurrency management, which is crucial for Serverless functions.

Actors [15, 16] are isolated entities that can 1○ create other actors,

2○ directly communicate with other actors and 3○ influence the

processing or state for the next received message [9, 10, 16, 17, 18].

Serverless functions are 1○ stateless, 2○ non-addressable, and 3○
event-triggered [3, 5, 6, 7].

Existing Serverless actor approaches [8, 10, 12, 14, 13] leverage

the state-of-the-art Serverless design characteristics such as life-

cycle [19] and event-trigger invocation [1, 6, 20] to enable stateful

and addressable actors. However, in the current Serverless function

lifecycle [19], Serverless functions are stateless. Therefore, existing

actor-like Serverless approaches leverage remote services, incurring

network overhead and costs with additional services.

Existing approaches that enable persistent stateful functions

include: (a) Programming Models [10, 9, 21, 22] that abstract the
function state handling from the developer and leverage external

services to store it. Such Programming Models provide frameworks

and libraries that automatically manage state persistence. While

Programming Models simplify state management, they might in-

troduce latency overhead as they rely on external services. (b) Side-
cars [8, 23] systems that act as proxies andmanage state interactions

transparently, thus ensuring that state consistency and storage are

handled outside the serverless function lifecycle, thereby reduc-

ing the function’s overhead. Despite their benefits, sidecars run

alongside the function, consuming additional CPU and memory

resources, which impacts the overall resource usage and might

become a challenge at Edge-Cloud Continuum. (c) Custom Sand-
boxes [14, 24] ensure that functions can access and modify shared

states in a controlled manner, providing isolation and, at the same

time, enabling efficient state management. Although custom sand-

boxes might be lightweight, they are not interoperable with the
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current state-of-the-art platforms, limiting their usage on different

serverless platforms such as Knative, OpenFaas, and OpenWhisk.

Although these approaches offer state preservation, allowing Server-

less functions to execute as actors, they still rely on external ser-

vices for state management, causing up to 95% of the function la-

tency [25, 26]. To fully utilize actor potential, the Serverless lifecycle

must ensure actors can process multiple requests while preserving

their state for a short period. Consequently, actors maintain states

between executions, avoiding unnecessary state propagation of

ephemeral data for interconnected events.

Existing Serverless actors enable direct communication and per-

sistent statefulness by leveraging the existing Serverless lifecycle

and event-triggered invocation. As a result, a series of intercon-

nected events lead to multiple actor instances that still rely on

external services to exchange ephemeral data and store their state,

impacting the performance significantly. To address these issues,

in this paper, we propose novel Serverless lifecycle and invocation

models that enable actors to process multiple interconnected re-

quests and facilitate serverless actors to influence the processing

of future messages. Finally, we present GoldFish, a lightweight

actor-based Serverless platform that executes serverless functions

as actors. The main contributions of this paper include:

• LCM: A novel Serverless Lifecycle Model that natively executes
serverless functions as actors. It allows serverless actors to

preserve a short-term state between the executions, thereby

reducing multiple actor instantiating for multiple requests.

• SIM: A novel Serverless Invocation Model that allows actors to
influence the processing of futuremessages, enabling them to

handle multiple messages. Busy actors can reject future mes-

sages or queue them for processing when available. Hence,

SIM facilitates the processing of a set of connected events,

such as in Serverless Workflows, and thus, it maintains the

context and continuity of event processing.

• GoldFish: AWebAssembly Serverless Actor Platform that lever-

ages Wasm to provide a lightweight isolation. GoldFish ar-

chitecture leverages the LCM model to enable serverless

functions to execute as actors. Furthermore, GoldFish intro-

duces its dedicated message middleware that enables direct

communication and leverages SIM to enable actors to in-

fluence the processing of future messages, thus processing

multiple messages.

This paper has eight sections. Section 2 presents the illustra-

tive scenario and research questions. Section 3 describes GoldFish

Serverless lifecycle and invocation model as well as architecture

overview. Section 4 describes the lifecycle management and the

event-triggered message invocation introduced by GoldFish and

their usage. Section 5 shows the prototype implementation de-

tails. Section 6 discusses the experiments and evaluation, Section 7

presents related work. Section 8 concludes with a final discussion

and future work.

2 MOTIVATION
2.1 Illustrative Scenario
To better motivate our research, we present a use case for real-

time field monitoring and disease detection in smart agriculture.

To achieve this, IoT devices are strategically positioned throughout

Figure 1: Simplified Serverless Workflow for Disease Control
for Smart Agriculture

the fields to detect crop properties such as soil moisture, tempera-

ture, humidity, and sunlight. A Serverless workflow is employed to

identify and respond to these agricultural needs.

Our workflow utilizes four Serverless functions, partially exe-

cuted on the Edge close to the data source to reduce communication

latency and partially executed on the Cloud. Edge tasks are respon-

sible for processing large real-time data streams, sensor data, and

simple disease detection. On the other hand, tasks that require

more powerful computing resources, such as model training and

inference, are carried out in the Cloud. Our motivating scenario

is inspired by a Serverless Workflow for real-time environmental

monitoring [27].

In Fig. 1, in Ingest stage, real-time data captured by IoT devices

are transmitted to edge nodes via a streaming framework, where

serverless functions responsible for Data Processing are activated

to execute tasks such as filtering, labeling and join the sensor data

close to the source, thus reducing latency. Then Disease Detection
function processes part of the data, identifying specific patterns

such as temperature and soil moisture. Then, Disease Detection
functions send data to Data Aggregation functions, which combines

current and historical data to enhance accuracy and reliability of

the results. Finally, the processed data is transmitted to the cloud,

where more resource-intensive tasks are performed, such as AI

model inference to enhance disease analysis.

GoldFish decreases this workflow latency by enabling actors to

process connected message events within a single actor. By soft-

ening some Serverless properties, such as statelessness, actors can

keep a short-term state between executions, avoiding the need for

remote services to exchange data. Additionally, actors can influ-

ence the processing of the next message, choosing to keep it in

the queue for processing or reject it completely, allowing another

actor to process the message. Thus, GoldFish enhances performance

while maintaining the serverless nature of the function, as it still

scales down to zero when not in use. On the other hand, it avoids

the network overhead associated with external remote services

for state persistence and data exchange. This tradeoff enhances

performance without compromising the fundamental benefits of

Serverless Computing.

2.2 Research Challenges
We identify the following research challenges to enable Serverless

actors to maximize their performance in the Edge-Cloud Contin-

uum.

RC-1: How to enable short-term stateful Serverless actors in the
Edge-Cloud Continuum while preserving Serverless characteristics
such as scale-to-zero?
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The current Serverless function lifecycle supports either suc-

ceeded or failed states, which leads to platforms creating multiple

function instances for handling multiple function executions. Cur-

rent approaches for Serverless actors preserve their state in remote

storage and load the previous state in the new instance. Virtually,

the new actor instance has the previous state, but physically, it is

a new process on the host. Due to the current Serverless lifecycle

design limitation, every request is a new actor, which requires ac-

tors to leverage external services to maintain their state [9, 13, 19].

Communication with external services causes the most function

latency and additional costs, significantly affecting the performance

and cost-efficiency of Serverless workflows. Relying on external

services for state management adds latency, complexity, potential

points of failure and costs due to frequent data retrieval [25, 26].

Short-term stateful actors allow for state preservation within the

actors themselves, eliminating the need for external services for

state persistence. This minimizes the number of created instances,

decreases latency and costs, and preserves resources at the edge.

Hence, actors can scale to zero in the absence of invocations while

still providing the advantages of stateful functions.

RC-2: How can we enable direct communication between actors
while allowing them to influence the processing of future messages?

Direct communication among serverless actors requires address-

ability. By enabling direct message exchanges between actors, they

avoid using external services to exchange data, thus reducing la-

tency and network overhead. Nevertheless, the state-of-the-art

event-triggered Serverless function invocation enables single mes-

sage delivery, which means the platform cannot decide which func-

tion executes the message. To enable actors to influence future

messages, the event-triggering middleware must 1○ forward to

the actor for processing, 2○ enable actors to keep the message in

the middleware until the actor becomes available again, or 3○ for-

ward to another actor in case of rejection by the existing actor. By

enabling actors to influence the processing of the message, users

can decide to process connected message events in same actors,

thus decreasing latency and network traffic overhead, crucial for

enhancing performance in sensitive edge environments [3, 26, 28].

RC-3: How to provide lightweight isolation while enabling the full
potential of Serverless actors in the Edge-Cloud Continuum?

Isolation is critical to ensure that failures in one actor do not

impact others. WebAssembly (Wasm) provides a secure sandboxed

environment that reduces the overhead associated with traditional

container-based isolation methods. Wasm lightweight isolation

allows serverless actors to execute with reduced cold start, latency

and resource consumption, which is crucial for the Edge-Cloud

Continuum. Furthermore, actors can profit from the reduced cold

starts Wasm, decreasing the actors startup time [28, 29, 30].

3 GOLDFISH SERVERLESS MODELS AND
ARCHITECTURE OVERVIEW

3.1 GoldFish Serverless Lifecycle Model
Golfish Serverless Lifecycle Model (LCM) provides an enhanced

Serverless lifecycle specifically tailored for serverless actors to pre-

serve their state between multiple executions while they are still

alive. LCM still maintains Serverless characteristics such as elastic

scaling and scale-to-zero while enabling actors short-term state

Figure 2: GoldFish Serverless Lifecycle Model

memory. Thus, LCM optimizes resource usage, reduces latency,

and improves performance and scalability across the dynamic envi-

ronments of the Edge-Cloud Continuum by ensuring that existing

actors are efficiently utilized and consequently minimizing the over-

head associated with creating new actors.

3.1.1 GoldFish Actor. Fig. 2 shows GoldFish Actor and LCM Server-

less Lifecycle. GoldFish actor is one entity composed of Channel,
Wasm Host Interface, and Handler.

Channel. It is identifiable by a unique ID and serves as a dedicated

communication channel for the actor. It enables actors to carry their

previous state to the next one. Proactive message blocking ensures

that each actor processes only one message at a time, preventing

data races and maintaining the integrity of the execution process.

Wasm Host Interface (WHI). It is a sidecar process that creates
the Wasm VM, allowing for secure, isolated execution of the Wasm

binary. It acts as a mediator between the Wasm binary and the

channel, forwarding the input and output from the binary to the

message channel. Upon receiving a message, WHI sends a signal to

the Middleware to temporarily block any new incoming messages,

ensuring actors process only a single message at a time.

Handler. It encapsulates the user-defined code compiled into a

Wasm binary file. Functions execute in a Wasm sandbox, which

means a controlled environment that limits access to the host sys-

tem, receiving inputs and producing outputs through the Wasm
Host Interface.

3.1.2 GoldFish Serverless Lifecycle Phases. Fig. 2 shows LCM actor

phases from the initialization to the termination. LCM phases are

designed to ensure actor isolation and enable the (short-term) state

management, key properties of actor model [17, 9, 18]. Each phase

is responsible for specific tasks described below.

CREATED. This initial phase prepares the actor for operation
and reserves the resources necessary. In addition, the actor receives

a unique ID, which is later used for actor communication.

SUSPENDED. In this phase, the actor is not currently processing

any tasks but is ready and waiting for new input or to terminate the

actor if it remains in this phase for a long time. The period the actor

remain in suspended phase is determine by the user. SUSPENDED
phase enables actors to keep the actor active but not running, it is

waiting for incoming events to become active. This phase is essential
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for managing the efficient allocation of resources, enabling GoldFish

to quickly respond to new messages without the overhead of the

initialization phase.

ERROR. In this phase, the actor has failed either during startup

or execution. To enable message reprocessing, the actor releases the

message and moves to TERMINATION as a self-destroy mechanism.

RUNNING. During this phase, GoldFish wakes up the actor from

the SUSPENDED phase and forwards the message to the actor. In

this phase, it is where the actual data processing or task execution

takes place. Additionally, in this phase, actors can create other

actors by sending an addressed message to GoldFish Middleware.

COMPLETED. Once the messaging process is completed, the

actor sends the results to the GoldFish middleware and signals its

availability for further tasks. Then the actor can transition back to

the SUSPENDED phase.

TERMINATION. The final phase of the lifecycle, where the ac-
tor stops receiving new messages, deregisters itself. In this phase,

GoldFish releases resources and updates the actor state to reflect

that the actor is no longer active.

3.2 GoldFish Serverless Invocation Model
The GoldFish Serverless Invocation Model (SIM) design ensures

actors only handle one message at a time, which means concurrent

requests is only possible with multiple actors, thereby avoiding

concurrency issues and maintaining state integrity during the mes-

sage delivery. Specifically, it enables processing multiple messages

within a single actor message rather than handling each in isolation.

Hence, SIM supports a set of connected events, facilitating more

efficient workflow execution. Moreover, SIM enables serverless ac-

tors to influence future messages by keeping the message waiting

to be executed, thus avoiding the use of remote services to store

state and exchange data. As a result, it optimizes resource usage and

reduces latency, which is crucial for improving the performance of

functions in the Edge-Cloud Continuum.

Fig. 3 shows how SIM introduces a new way of triggering server-

less actors in response to events such as incoming messages. The

GoldFish SIM model ensures that new actors are created only when

necessary while existing actors are reused by introducing a in-

vocation Middleware with three queues: waiting, ready and done.
GoldFish SIM model enables GoldFish Buffer to identify the avail-

ability and state of actors via the actor lifecycle phase. If the actor

is SUSPENDED, it transitions to the RUNNING phase to handle the

Figure 3: GoldFish Serverless Invocation Model

message. If the actor is busy, the Buffer keeps the message or for-

wards it to another available actor, ensuring seamless processing

without message loss. Thus, SIM invocation model enables Server-

less actors to process connected messages such as in a Serverless

Workflow. To avoid a long waiting time, the Buffer has a time and

message size limit defined by the user; once the time has reached,

a new actor instance is created instead of reusing an existing actor.

3.3 GoldFish Architecture Overview
GoldFish leverages actor model properties such as addressability,

isolation, and state to enhance serverless function execution by

transforming them into Serverless actors [16, 17, 18]. Each server-

less actor in GoldFish is uniquely identifiable, allowing for direct,

addressable communication, thereby facilitating efficient data and

message exchanges across the actors in the Edge-Cloud Continuum.

The GoldFish architecture, shown in Fig. 4, leverages Wasm to

provide an isolated and secure sandbox for each actor. Moreover,

GoldFish’s LCM manages the lifecycle of serverless actors from

initialization to termination. GoldFish LCM enables Serverless ac-

tors to retain and efficiently manage their state, thus facilitating

complex functions that require persistent state across sessions.

3.3.1 GoldFish Components. GoldFish is composed of main com-

ponents: GoldFish Middleware, Registry, GoldFish Buffer and Actor
Dispatcher.

GoldFish Middleware. It accepts messages and ensures the mes-

sages are routed to the buffer in the correct node. When a GoldFish

Buffer initiates, it registers itself in the GoldFish Middleware in the

control plane. This registration enables the middleware proxy to

route messages accurately to the designated actor dispatcher node.

Registry. It maintains a reference to the middleware across differ-

ent nodes. When a middleware initiates, it registers itself within the

registry. This registration enables the middleware proxy to route

messages accurately to the designated actor dispatcher.

GoldFish Buffer. It is a queue for the busy actors, keeping waiting
messages, thus allowing actors to influence the sequence of mes-

sages. When GoldFish Middleware receives a message, it passes it

to the GoldFish Buffer if there is enough processing capacity. The

Buffer then checks if the actors can handle new messages and sends

them to the Actor Dispatcher. If the actors are unable to process

Figure 4: GoldFish Architecture Overview
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new messages, the message is rejected. When a message is rejected,

it is either kept waiting in the buffer or sent to another Actor Dis-

patcher until it is accepted. The message processing is defined by

the actor, who can choose to receive the next message or reject it.

Actor Dispatcher. It manages the actors and their phases. The

Actor Dispatcher receives the messaging events, identifies whether

the actor exists by its unique ID, and forwards the message. The Ac-

tor Dispatcher updates Actor references in storage that are available

via the control plane.

4 GOLDFISH MECHANISMS
GoldFish leverages the LCM Serverless Lifecycle Model and SIM

Serverless Invocation Model to enable an actor native Serverless

platform. GoldFish platform relies on two key mechanisms: LCM

Serverless Lifecycle Phases Management and the GoldFish SIM

Serverless Event-triggered Message Invocation.

4.1 GoldFish LCM Lifecycle Phases
Management

To execute Serverless functions as actors, GoldFish leverages the

LCM to create and reuse actors. Fig. 5 shows each phase and which

services are necessary to enable the LCM.

In 1○, in Fig. 5, when the actor is CREATED, it subscribes to a

specified channel with its unique ID. Then, GoldFish Middleware

stores actor references for future usage. CREATED is the initial

phase where the platform executes tasks to prepare for the actor

run, such as physical resource reservation and deployments. In the

next phase in 2○, the actor enters the SUSPENDED phase, waiting

for incoming messages for a period of time defined by the user.

This is necessary to avoid actors to run constantly. In 3○, a mes-

sage is received, and the middleware retrieves information from

the storage to identify the actor and forwards the message to the

actor via the actor channel. Once the actor receives the message, it

sends an event to the GoldFish Middleware to block new incoming

messages. GoldFish middleware then updates the actor reference

to the storage, finalizing this actor is busy and cannot receive any

new message. In 4○, the actor completes the message processing

Figure 5: GoldFish Serverless Lifecycle Management

and sends a signal to GoldFish to unblock the actor. GoldFish Mid-

dleware updates the actor reference and removes the block. After

this phase, the actor returns to phase 2○ to receive new messages.

After a period defined by the user, the actor moves to the final

phase TERMINATION in 6○. Phase 5○ represents an error state in

the actor, the actor has either failed to startup or during execution.

After entering the ERROR phase, the actor unblocks the message

in GoldFish Middleware which updates the actor reference in the

storage. In 6○, the TERMINATION phase, the actor unsubscribes

to the channel. GoldFish Middleware deletes the specific channel

and removes the actor reference from the storage. In this phase, the

platform also releases reserved resources and removes any actor

reference.

4.2 GoldFish SIM Serverless Message Invocation
SIM is a novel Serverless Invocation Model that enables Serverless

actors to influence future messages. GoldFish Message Middleware

leverages the SIMmodel to trigger and exchange messages between

Serverless actors. GoldFish actors decide the processing of future

messages based on the actor input; the GoldFishmiddleware decides

whether to keep the message waiting in the buffer or forward it to

the next actor.

Fig. 6 shows how GoldFish Middleware distributes the message

from the event source to the user function code. In 1○, an event

arrives at the Middleware with the unique address of the actor.

In 2○ the Middleware fetches from the storage existing actors in-

formation such as address and lifecycle phase to find out if any

existing node contains such an actor already. In 3○, the middleware

forwards the message to either an existing actor that is suspended,

an existing actor that signaled that they want to process it as the

next message, or to the first free buffer that can potentially create

a new actor to process such message. In 4○ the buffer queries the

actor state to know whether it is immediately available if the actor

wants to process the message next or reject it. In 5○ the buffer

forwards the message to the Actor Dispatcher or keeps the mes-

sage in memory for future processing. To avoid multiple storage

Figure 6: GoldFish Distributed Messaging Middleware Flow
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queries, the buffer also forwards the actor information, which is

necessary for the decision-making in the Actor Dispatcher. In 6○,

the Actor Dispatcher creates an actor with its channel or forwards

the message to an existing actor channel. This decision is made

during the actor lifecycle phase. In 7○ the host interface receives

the message from the channel and creates the Wasm VM. In 8a○,

if the actor wants to create another actor, e.g., send a message to

another actor, the Wasm Host interface also communicates to the

middleware to send a specific message. In 9a○, the buffer forwards

the message to the middleware, which starts the process for the

new message receiving from in 1○. In 8○ the Host Interface starts
the Wasm VM with the user function code.

5 PROTOTYPE IMPLEMENTATION
GoldFish is published as an open-source framework part of the

Polaris SLO CLoud. Polaris itself is part of the Linux Foundation

Centaurus project. GoldFish source code is available on GitHub
1
.

The actor in GoldFish comprises a message channel, aWasm host

interface, and a Wasm binary containing the user function code.

We utilize WasmEdge[31] as the runtime, along with WasmEdge

libraries, to create the Wasm VM. To ensure scalability, we use

Docker[32] to run GoldFish actors, and the Rust wasmedge-sdk[33]

facilitates interactionwithWasmEdge. Events are sent to themiddle-

ware using WasmEdge Host Functions, which enable WebAssembly

to call native Rust functions by passing them as imports to Wasm

modules. The middleware is responsible for receiving and forward-

ing events to dispatchers, registering itself in the middleware reg-

istry upon startup. It communicates with Redis[34] to verify actor

information such as phase and address and is implemented using

GRPC interfaces. The middleware registry collects references to

active middleware via GRPC and stores these references in Redis.

Actor dispatchers respond to events received by the middleware,

creating an OCI Bundle with Docker that encapsulates the actor,

ensuring interoperability with state-of-the-art platforms. Imple-

mented in Rust, the dispatchers use Rust libraries to create GRPC

interfaces that are available to the bus.

6 EVALUATION
We design our experiments to evaluate our GoldFish based on

our illustrative scenario, shown in Section 2.1, and on the most

common invocation patterns of Serverless Computing: Sequential

Executions and Fan-out execution, as discussed in [1]. The goal of

the evaluation is to measure the performance of the contributions

LCM, SIM and Goldfish platform presented in Section 1.

Baselines & Experimental Workflows. We compare GoldFish to

OpenFaas[35] and Spin[36]. We have chosen Openfaas to compare

GoldFish with a standard container Serverless Platform that has

wide support in the open-source community. As GoldFish, Spin

leverages WebAssembly, and therefore, it is important for GoldFish

to compare with a framework that leverages similar technologies.

We execute Chained Functions and Serverless Workflow, based on our
illustrative scenario in Section 2.1, for all three baselines (OpenFaaS,

Spin and GoldFish) with three functions to simulate real-wold data-

intensive Serverless use cases. In Chained Functions, we show the

1
https://github.com/polaris-slo-cloud/goldfish

use case when a serverless functionA calls a serverless functionB.

In Serverless Workflow, the next function is only executed once the

previous function has finished.

Metrics. Latency shows the execution time for the message pass-

ing between two actors. We use seconds and milliseconds for our

latency experiments for Sequential and Parallel execution, respec-

tively. Moreover, Throughput measures the number of executions

a framework can process in a specific timeframe. We measure the

performance of GoldFish under high load. The goal of Throughput

experiments is to identify how many requests can the function

process at a time and if there are bottlenecks in the proposed frame-

work once the function load increases.

6.1 Experiment Setup
To evaluate GoldFish, we execute the designed experiments on a

Ubuntu 22.04 LTS machine CPU ARM64 (AARCH64) with 8 GB of

RAM, 4 cores, and 39 GB of storage. The experimental functions

and workflow are written in Rust for all the baselines. The baseline

functions used for the evaluation expose REST API endpoints for

receiving and processing requests from external sources. For the

HTTP requests, we use Rust libraries for sending multiple parallel

requests concurrently. To ensure the consistency of the results and

avoid bias, we executed the experiments seven times and calculated

the average as the desired result.

6.2 Experiment: Sequential Executions
In this experiment, we perform sequential request executions for

our two experimental workflows: Chained Functions and Serverless

Workflow.
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Figure 7: Message Exchange Latency

In Fig. 7, we show the latency of multiple sequential message

requests processed by GoldFish Middleware, and the baseline Spin

and OpenFaas. In the 𝑥 axis, we display the number of messages

and, in 𝑦, the latency to process these messages. GoldFish Middle-

ware shows latencies from approximately 3.56 to 25.04 seconds,

while Spin displays an increase from about 28.06 to 196.25 seconds,

and OpenFaas shows latency growing from roughly 34.58 to 241.00

seconds. The results show that GoldFish reduces latency up to

89% when compared to the baseline. Fig. 8a shows the input data

size on the 𝑥 axis and the latency in seconds on the 𝑦 axis. Gold-

Fish displays response times ranging from 0.039 to 0.919 seconds,

OpenFaaS shows an increase from about 0.272 to 6.144 seconds, and

Spin’s response time grows from 0.218 to 4.362 seconds. The latency

analysis reveals that GoldFish decreases the latency by up to 85%

https://github.com/polaris-slo-cloud/goldfish
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Figure 8: Sequential Execution: Chained Functions
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Figure 9: Sequential Execution: Serverless Workflow

and 79% compared to OpenFaaS and Spin, respectively. These la-

tency experiments show a significant latency reduction of GoldFish,

with all three systems demonstrating a generally linear increase

in response times, indicative of stable performance across the in-

creasing load. Fig. 8b shows the throughput of GoldFish, OpenFaaS,

and Spin as increasing the input size. The 𝑥 axis represents the

input data size, while the 𝑦 axis shows requests per second. Over

axis 𝑥 , GoldFish’s throughput decreases from about 25.93 to 1.09

requests per second, OpenFaaS declines from 3.68 to 0.16 requests

per second, and Spin drops from 4.60 to 0.23 requests per second.

All systems experience a linear decrease in throughput as the input

size increases, indicating a linear throughput decrease with the

input size. Additionally, GoldFish maintains a throughput up to 6.8

times higher than OpenFaaS and up to 4.7 times higher than Spin.

Fig. 9a presents the input data size in megabytes on the 𝑥 axis

and the response latency on the𝑦 axis. As input size increases, Gold-

Fish shows latency improvements ranging from 40 milliseconds

to 1.71 seconds. OpenFaas displays latency from 363 milliseconds

to approximately 12.5 seconds, while Spin maintains an increase

from 299 milliseconds to 8.73 seconds. This experiment shows that

GoldFish reduces latency by up to 86% compared to OpenFaas and

80% relative to Spin.

Fig. 9b shows the throughput metrics, where the input data size is

in megabytes on the 𝑥 axis and the requests per second on the𝑦 axis.

GoldFish displays a throughput decrease from 24.65 to 0.59 requests

per second, while OpenFaas and Spin show reductions from 2.75 to

0.08 and from 3.34 to 0.11 requests per second, respectively. GoldFish

presents up to 7.4 times higher throughput than OpenFaas and up

to 5.4 times more than Spin.

6.3 Experiment: Fan-out Parallel Executions
In these experiments, we measure GoldFish scalability with fan-out

parallel request executions for Chained Functions and Serverless

Workflows.

Fig. 10a presents the latency from the parallel execution experi-

ments, where the 𝑥 axis represents the number of parallel execu-

tions and the 𝑦 axis reflects latency in milliseconds. Fig. 10a that

GoldFish maintains a relatively stable latency ranging from 6.9

milliseconds to around 5.75 milliseconds, even as the number of

parallel executions increases. In comparison, OpenFaas and Spin

exhibit slightly higher latency under higher loads, with OpenFaas

and Sping showing a latency of around 50 milliseconds. GoldFish

shows up to an 87% reduction in latency compared to OpenFaas

and Spin.

In Fig. 10b, GoldFish maintains higher throughput, ranging from

123.45 to about 173.91 requests per second, which aligns with its

efficient latency results under parallel operations in Fig. 10a. Open-

Faas and Spin also display consistent throughput, with OpenFaas

and Spin presenting around 50 requests per second even when the

function load increases in axis 𝑥 . Overall, GoldFish has up to 9x

higher throughput when compared to OpenFaas and Spin.

Fig. 11a showcases the latency from parallel execution for Server-

less Workflows, where the 𝑥 axis indicates the number of parallel

executions and the 𝑦 axis measures the latency in milliseconds.
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Figure 10: Parallel Execution: Chained Functions
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GoldFish demonstrates stability in latency, which ranges from 6.4

ms to 4.23 ms as the parallel execution count increases. In contrast,

OpenFaas and Spin display higher latency similar to the nested

functions, in Fig. 10a, around 50ms. Compared to the baselines,

GoldFish’s latency is lower, showing an improvement of approxi-

mately 92% for serverless workflows.

In Fig. 11b, GoldFish maintains a high throughput ranging from

156.25 to 236.41 requests per second. Both OpenFaas and Spin also

show consistent throughput; however, they show around 20 re-

quests per second, significantly lower than GoldFish. These results

show that GoldFish has up to 10x higher throughput compared to

the baselines, showing stability for high-load serverless workflows

while maintaining high throughput and low latency.

7 RELATEDWORK
Serverless Actor Model. 𝜇Actor [13] introduces a lightweight

stateful serverless platform able to execute actors not only on the

cloud but also at the edge with limited resources such as microcon-

trollers. 𝜇Actor enables actors to send and receive messages from

another actor via publish/subscribe mechanisms. Furthermore, ac-

torsmay have access to additional devices such as sensors, actuators,

databases, and DSP chips. Nevertheless, the introduced platform

is not interoperable with the existing state-of-the-art platforms

such as Knative, OpenFaas, and OpenWhisk, while Goldfish imple-

ments the actor a standard container which can be used by most of

open source and comercial Serverless platforms. Microsoft Azure’s

Durable Functions (DF) [10] introduces programming model ab-

stractions to enable function state handling while ensuring reliable

task progression. DF combines task and actor parallelism to create a

fault-free function model. However, DF is specifically designed for

the Azure platform, limiting its usage across other Serverless Plat-

forms such as AWS Lambda, OpenFaaS, and OpenWhisk. Akka [8]

introduces a side-car container that intercepts the incoming and

outgoing traffic to manage the function state via external storage

and proxies the traffic to the user function container. Nevertheless,

Akka introduces an additional system that runs on an additional

container, leading to potential increased resource usage, thus limit-

ing its usage in the Edge-Cloud Continuum, where computational

resources are limited. Ray [12] introduces a fullymanaged serverless

platform tailored for AI that natively integrates the actor properties

in the serverless functions, ensuring fault recovery and at-least-

once message delivery mechanism. Ray preserves the state between

the serverless AI workflow, wrapping multiple functions into one

actor, such as extract and process frames, thus enabling low latency

as functions are embedded in one actor. Although these approaches

enable Serverless actors, they still rely on external services to per-

sist the actor state even for ephemeral and intermediate data, thus

increasing latency, costs, and digital waste. Goldfish keeps a short-

term memory state in the actor so that actors can leverage the state

to exchange ephemeral data exchange.

Stateful Serverless. Faasm [14] introduces a stateful Serverless

via faaslet and a two-tier state architecture for state and message

exchange via faabric [37]. Faaslet provides lightweight isolation for

each function, while the two-tier state architecture enables local

and global function state storage based on the function location.

Nevertheless, Faasm introduces customized isolation mechanisms

incompatible with the OCI specs [38] of the current state-of-the-art

serverless platforms. Cloudburst [39] proposes a stateful Serverless

platform that leverages Anna [40] Key-Value Store (KVS) for data

exchange. Cloudburst replicates part of the cache locally for each

function, allowing low-latency access, while remote data is accessed

via Anna KVS. Although Cloudburst offers low latency and a highly

scalable serverless platform, it might introduce duplicate cached

data, leading to network overhead and duplicate serialization, a

challenge for the limited resources of the Edge-Cloud Continuum.

Although the presented approaches enable stateful serverless, they

focus on a persistent state, leading to network overhead, depen-

dency on external systems, and additional costs. As Goldfish pro-

vides short-term state and multiple request executions, actors can

keep their state for a short period between executions, avoiding

the need for external service and thus improving performance sig-

nificantly.

8 CONCLUSION & FUTUREWORK
In this paper, we presented Goldfish, a short-term stateful Serverless

for the Edge-Cloud Continuum that provides a novel Serverless

Lifecycle Model (LCM) that allows actors keep a short-term state.

Goldfish provides also SIM, a novel Serverless Invocation Model

that enables actors to influence the processing of future messages,

thus enabling one actor to process multiple requests. GoldFish

leverages Wasm to provide a secure and isolated sandbox while

enabling efficient ephemeral-data communication among serverless

actors, thus optimizing performance and scalability in distributed

environments.

Our evaluation demonstrates that GoldFish decreases latency

and increases throughput, thereby enhancing performance in the

Edge-Cloud Continuum. Specifically, GoldFish reduces latency by

up to 92% and increases throughput by up to 10 times. GoldFish is

specifically designed to address the requirements of the Edge-Cloud

Continuum. Goldfish provides a lightweight Wasm sandbox, which

fits the limited resource environment of the Edge Cloud Continuum.

In the future, we plan to expand Goldfish into the 3D Edge

Cloud Space Continuum. To achieve this, we intend to integrate

Orbital Edge Computing (OEC) requirements, including satellite po-

sitioning, into the Goldfish platform requirements. This will enable

Goldfish to execute workflows within the 3D Continuum seam-

lessly. Moreover, we intend to expand GoldFish by implementing

a smart and serialization-free actor state. This enhancement will

allow the platform to identify if the actors necessitate a remote

state, thus preventing unnecessary state persistence. As a result,

resource usage will be optimized and latency reduced by skipping

the loading of actor states. Finally, we aim to integrate Goldfish

into ML pipelines in Edge-Cloud Continuum to facilitate statefull

data-intensive workloads such as [41].
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