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Abstract— Traffic Accident Detection (TAD) in surveillance
videos is a critical task in Intelligent Transportation Systems
(ITS). However, current TAD does not analyze the fine-grained
information of the specific accident, only identifies the existence
or occurrence time of traffic accidents in a video. This study
presents a novel Dataset named STTAD that covers fine-grained
information such as multiple categories and their Spatial
Temporal Occurrence Regions in surveillance videos. Moreover,
a tailored deep learning algorithm named STFN is proposed
for the implementation of Event-Level TAD. Experimental
results demonstrate that STFN could effectively extract the
video features and detect the Spatial Temporal Occurrence
Regions of multiple accident categories, but further efforts are
indeed needed in Event-Level TAD. The STTAD dataset and
the tailored algorithm will be open-sourced for research use
available through https://github.com/ZTR02/STTAD.git.

I. INTRODUCTION
With the increase of traffic accidents, more precise and

reliable traffic accident detection (TAD) is required for In-
telligent Transportation Systems (ITS) to enable timely emer-
gency response and efficient incident management strategies,
thereby minimizing secondary casualties, attenuating eco-
nomic implications and alleviating traffic congestion.

Traffic accidents constitute extreme traffic anomalies char-
acterized by events such as vehicular collisions or rollovers,
typically resulting in property damage, injuries, or fatalities
[1]. The proliferation of monitoring equipment and the
growth of accident-related video datasets have enabled the
implementation of automated TAD utilizing advanced Com-
puter Vision methodologies [2]. Existing accident-related
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video datasets predominantly focus on identifying the mo-
ment of accident occurrence, documented via surveillance
cameras or vehicle-mounted cameras. Given the comprehen-
sive view and temporal coverage provided by surveillance
cameras, this study focuses on surveillance cameras for TAD.

Traditional TAD focuses mainly on detecting the exis-
tence, conceptualizing accidents as a subset of anomaly
detection, and employing binary (0/1) classification to denote
the occurrence of accidents [3], [4]. Although this binary
labeling offers simplicity, it provides insufficient granularity
and omits critical information of different occurrence pat-
terns for various traffic accidents. In addition, recent studies
emphasize temporal analysis, which identify the initiation
and termination frames of accidents [5], [6]. However, the oc-
currence region of traffic accidents (i.e., events), which refers
to the sequence of frames where a traffic accident happens
and the spatial region within each frame where it occurs,
remains underdeveloped and is effectively limited to rudi-
mentary object detection (e.g., pedestrian, bike) [7], [8], [9].

To enhance the precision and reliability of TAD, this
study constructs a novel accident-related video datasets
STTAD, which performs multiple types of accidents and
precise spatial temporal occurrence region via bounding
box annotations on each video frame from surveillance
cameras. The collected videos are classified into 12 dis-
tinct categories, thereby expanding the conventional binary
(0/1) classification paradigm to multiple classification tasks.
STTAD includes 1,189 accident videos that comprise 64,554
frames in total. The annotation protocol incorporates se-
quential frame indexing to preserve temporal coherence,
followed by precise accident region delineation through
bounding box coordinates (centroid x-y coordinates, width,
and height dimensions) for each video frame. This spatial
demarcation facilitates model attention to salient accident
features. Furthermore, we develop a tailored algorithm for
event-level TAD, and conduct continuous spatial temporal
analysis of accident occurrence regions. The STTAD dataset
and corresponding algorithm will be publicly accessible for
research purposes via https://github.com/ZTR02/STTAD.git.
The principal contributions of this study are as follows.

• A novel dataset STTAD is proposed for fine-grained
analysis in spatial temporal TAD.

• A tailored algorithm is proposed for the implementation
of spatial temporal TAD.

• Various experiments are presented, verifying the effec-
tiveness of proposed Algorithm and demonstrating the
challenge of dataset STTAD.



II. RELATED WORKS

A. Surveillance View Datasets for TAD

As presented in Table I, a systematic review of current
surveillance view datasets is provided for TAD tasks. Most
of the traffic accident videos are acquired from the website
based on real-world surveillance cameras, whereas a minority
consist of synthetic datasets generated via gaming environ-
ments or traffic simulation systems.

Several datasets (e.g., MP-RAD [16], CTAD [15], Iowa
DOT [12], IITH [11], and UCF Crime [10]) exclusively
provide temporal annotations, demarcating the initiation and
termination frames of traffic accidents. These datasets fa-
cilitate binary (0/1) classification of accident occurrences,
which can differentiate accident videos from non-accident
videos. Such annotation is conducive to real-time traffic
accident alert systems (i.e., require expeditious detection and
notification) with subsequent analytical processes executed
manually by human operators. However, the absence of
fine-grained information regarding accident categories or
occurrence regions renders these datasets insufficient for
sophisticated analytical tasks like directly locating the event
in each frame.

Recently, several datasets offer fine-grained annotations,
encompassing accident locations, accident categories and
weathers. The TADS classifies traffic accidents into 12
distinct categories based on participant involvement patterns.
It furnishes multidimensional annotations, incorporating spa-
tial temporal information, accident categories, weathers, etc.
However, it provides spatial annotations using gaze areas
formed by eye-tracking, rather than precise bounding boxes
or segmentation regions [17]. The FAD dataset demonstrates
enhanced granularity, delineating accidents into 26 categories
and annotating each instance with event-level spatial tem-
poral information, accident categories, severity stratification,
and weathers [13]. SO-TAD classifies accidents into four
principal categories (i.e., vehicle–pedestrian, inter-vehicle,
vehicle–two-wheeler, and single-agent accidents) [18]. TAD-
2 categorizes accidents into four labels (i.e., collision, crash,
rollover and victim) with object-level annotations [14]. These
datasets with fine-grained annotation paradigms are promis-
ing to facilitate sophisticated TAD tasks such as spatial
temporal occurrence region detection, thereby mitigating
manual interventions (e.g., encompassing automatic liability
determination and incident report generation). Nevertheless,
there is still a lack of available datasets that encode fine-
grained contextual information, thereby constricts the capac-
ity to capture the temporal evolution and infer the causal
relationships in event sequences.

As such, we propose a novel fine-grained dataset (STTAD)
refining the categories of traffic accident, and introducing
spatial temporal occurrence region of each event.

B. Vision-Based TAD Methods

1) Frame-Level TAD: The objective of frame-level TAD
involves identifying accident temporal windows within video
sequences. You and Han introduced the novel paradigm of

causality recognition in traffic accidents [19]. They adopted
the Temporal Segment Network (TSN) [20] as a baseline for
action classification and evaluated three models for action
localization. Srinivasan et al. employed DETR for salient
object detection in video sequences, including vehicles and
bicycles, and subsequently utilized Random Forest classifi-
cation methodologies to differentiate between accident and
non-accident frames [21], [22]. Vijay et al. proposed a dual-
branch CNN to extract spatiotemporal features from videos
and used softmax for binary accident classification [16].

2) Object-Level TAD: Many object-level TAD methods
identify and track traffic participants’ motion trajectories
to determine whether an accident has occurred. Basheer
et al. used YOLOv5 and DeepSORT as vehicle detection
and tracking models, assigning a unique ID to each vehicle
to track and monitor its movement [23], [24]. Chand et
al. utilized the Mask R-CNN framework for vehicle de-
tection and applied a centroid tracking algorithm to follow
the detected vehicles [25], [26]. Santhosh et al. generated
pseudo-labels for normal and accident trajectories during the
training phase, and then used Convolutional Neural Networks
(CNNs) and Variational Autoencoders (VAEs) to classify
trajectory features [27]. Despite Object-Level TAD exhibiting
measurable efficacy to some extent, the lack of Event-
Level TAD circumscribes the capacity of current models for
sophisticated inference and interpretation.

As such, this study constructs a tailored Algorithm (STFN)
for further event-level TAD and spatial temporal analysis
using the proposed STTAD.

Fig. 1. Twelve accident categories and frame examples in STTAD

III. DATASET

A. Data collection and Accident categories

We collected surveillance-view road traffic accident videos
of various categories from multiple video platforms. To
ensure data quality, we retained only the accident segments
and short time windows before and after the accidents,
making sure each video contains a complete accident event.
Our dataset comprises 12 categories of traffic accidents, with
a total of 1,189 accident videos. We define the abbreviations



TABLE I
SURVEILLANCE VIEW DATASETS FOR DETECTION TASKS AND THEIR CHARACTERISTICS, INCLUDING ANNOTATIONS, NUMBER OF ACCIDENT

CATEGORIES, NUMBER OF VIDEOS, NUMBER OF ACCIDENTS, OPEN SOURCE AVAILABILITY, SYNTHETIC (S) / REAL-WORLD (R), AND YEAR

Datasets Annotations* Space Classes Videos Accidents Open Source S/R Year
UCF Crime [10] T / 2 (0/1) 1900 150 ✓ R 2018

IITH [11] T / 2 (0/1) 7 7 ✗ R 2020
Iowa DOT [12] T / 2 (0/1) 200 50 ✗ R 2020

FAD [13] S, T, C events 26 3996 2393 ✗ R 2022
TAD-2 [14] S, T, C objects 4 333 261 ✓ R 2022
CTAD [15] T / 2 (0/1) 1100 1100 ✓ S 2023

MP-RAD [16] T / 2 (0/1) 2000 400 ✓ S 2023
TADS [17] S, T, C gaze areas 12 966 966 ✓ R 2024

SO-TAD [18] T, C / 4 2186 282 ✓ R 2024
STTAD (Ours) S, T, C events 12 1189 1189 ✓ R 2025

*S: Spatial — provides spatial information; T: Temporal — provides temporal information; C: Categories — distinguishes different accident types.

as follows: “B” represents electric bikes, “I” represents road
infrastructure, “P” represents bicycles and pedestrians, “T”
represents large vehicles like trucks, “V” represents small
vehicles. For example, “V-I” indicates a collision between
a small vehicle and a roadside barrier, or a single-vehicle
rollover. Frame examples corresponding to each accident
category are shown in Fig. 1.

B. Annotation attributes

Firstly, we formally define the concept of the Spatial
Temporal Occurrence Region. Spatial Temporal Occurrence
Region is our detection target, representing the sequence of
frames during which a traffic accident occurs and the corre-
sponding spatial region within each frame where the accident
takes place. In contrast to traditional object detection that
focuses on identifying traffic participants such as vehicles or
pedestrians, Spatial Temporal Occurrence Region is designed
to directly localize and characterize the accident event itself
in both time and space. We represent the Spatial Temporal
Occurrence Region using bounding boxes.

We perform the spatial temporal annotation of each traffic
accident video using the LabelImg tool. In STTAD dataset,
we have extensively annotated the attribute information of
each traffic accident contained in the videos. The annotated
attributes include Video number, Accident start frame, Acci-
dent end frame, Spatial Temporal Occurrence Region, and
Accident categories. Table II presents the detailed infor-
mation of these annotation attributes. Fig. 2 illustrates an
example of a V-V (A12) accident, with annotations for the
accident’s start and end points. Thereinto, T1 corresponds to
the first frame of the video, T2 represents the accident start
frame, and T3 indicates the accident end frame. The interval
from T2 to T3 constitutes the accident window.

C. Training and testing sets splitting

When splitting the training set and testing set, a stratified
random sampling strategy was adopted to ensure a balanced
distribution of accident categories across both subsets at
a ratio of 7:3. Then Fig. 3 illustrates the twelve accident
categories along with their corresponding quantities and the
quantitative proportion of each accident category within the
training and testing sets.

Fig. 2. An example of a V-V accident

Fig. 3. Proportion of each accident category in training and testing set.

IV. ALGORITHM DESIGN

In Section IV-A, we introduce the 3D backbone utilized
for spatiotemporal feature extraction, as well as the 2D
backbone adopted by the tailored Spatial Temporal Fusion
Network (STFN). In Section IV-B, we describe our feature
fusion method, which integrates the spatiotemporal features
extracted in Section IV-A. The overall framework of our
proposed STFN is shown in Fig. 4.

A. 2D and 3D Backbone

Spatial feature extraction is the first step in STFN
framework. To capture multiple spatial features, we adopt
YOLOv8 as the 2D backbone. Furthermore, we only apply
up-sampling operations on the spatial features obtained by
the 2D backbone, without applying additional convolution
operations to accelerate the inference efficiency.

Upon the completion of both the backbone and enhanced
feature extraction networks, a 1×1 convolution is applied



TABLE II
ANNOTATION ATTRIBUTES OF TRAFFIC ACCIDENT VIDEOS

Attributes Details
Video number A unique number to each video contained in the STTAD.

Accident start frame The location of the frame from which the two entities involved in the accident began to make contact.
Accident end frame The location of the frame from which the two entities involved in the accident begin to cease relative motion after the

collision, or the last frame of the video.
Spatial Temporal

Occurrence Region
The bounding box of the traffic accident occurrence region, covering both involved parties, used to directly localize and
characterize the accident event itself in both time and space.

Accident categories Divided into 12 categories according to the type of the entities involved in the accident.

Fig. 4. Structure of the STFN framework. The input video frames are processed separately by the 2D backbone and the 3D backbone to extract multiple
features. The 2D backbone applies a feature pyramid to capture multi-level features. T represents the number of frames in the input video, which is 16 in
this study. Up-sampling is utilized to combine the spatiotemporal features and the spatial features.

to compress the channel dimensions of the spatial features
derived by YOLOv8, reducing the channel dimension of
each feature level Fstem i to 256. Next, we perform channel
decoupling and utilize two parallel 3×3 standard convo-
lutions, each applied twice, to extract decoupled features.
Subsequently, a standard 1×1 convolution is employed to
fuse the separated feature channels back into 64 dimensions,
which helps accelerate the convergence. The decoupling
process is illustrated in Eq. (1).

Fstem i = fconv1×1 (Flevel i)

Fhead i = fconv1×1 (fconv3×3 (fconv3×3 (Fstem i))) (1)

A pre-trained YOLOv8 model based on the COCO dataset
[28] is utilized for training the STFN framework. Specif-
ically, only the pre-trained weights of the 2D backbone
are loaded into the spatial feature detection branch of the
STFN. For the 3D backbone, we adopt efficient 3D CNN
architectures to capture temporal features without signifi-
cantly increasing model complexity. This is accomplished
by extending classical lightweight networks into 3D domain,
replacing 2D convolutions and pooling operations with their
3D counterparts. This design enables the 3D branch to

effectively capture spatiotemporal features. Finally, we apply
upsampling to the output feature layer to facilitate the fusion
of spatiotemporal features with the derived spatial features
through concatenation.

B. Channel Fusion and Attention Convolution Mix module

Feature fusion is a critical step in STFN framework,
aiming to effectively combine spatiotemporal features into
unified representations to enhance the detection capability. In
this study, we design a Channel Fusion and Attention Convo-
lution Mix (CFACM) module, which integrates convolutional
operations with a self-attention mechanism to achieve com-
prehensive feature fusion. The structure of CFACM module
is illustrated in Fig. 5. By incorporating both the standard
convolution and simulated Transformer branches, the model
is able to capture local receptive field information effectively
while simultaneously perceiving long-range dependencies,
achieving a balanced and enriched representation of spatial
temporal features.

As shown in Fig. 5, we combine convolution and self-
attention mechanisms to effectively fuse spatial and temporal
features while minimizing computational overhead and pa-
rameter complexity. Initially, two standard 3×3 convolutions



Fig. 5. Structure of the CFACM Module. The Decoupled Feature Fusion Header inputs FCls i and FReg i are fused with the derived features utilizing the
CFACM module. 2D spatial encoding is performed before the computation of the self-attention branch. Then, the self-attention and convolution branches
are concatenated by applying adaptive weights α and β.

(CBR) are applied to extract features from the concatenated
inputs. Then, three 1 × 1 convolutions map the spatial
temporal features, which are subsequently reshaped into N
segments, resulting in a set of intermediate features with
3 × N feature maps. These intermediate features are then
split into two branches, both sharing the outputs of the three
1× 1 convolutions. One branch carries out self-attention by
grouping intermediate features into N sets, with each set
comprising three features serving as query, key, and value,
adhering to the standard multi-head self-attention structure.

Shift and aggregation mechanisms are utilized to capture
information from the local receptive field in the self-attention
computation branch, similar to traditional convolution. Con-
volutional operations are performed in a parallel branch.
A fully connected layer first generates K2 feature maps,
followed by a 3×3 convolution to merge these K2 features.
The resulting output is then concatenated with the self-
attention branch. Additionally, to reduce computational cost,
we divide the window and apply a cross-sparse self-attention
mechanism. As shown in Fig. 6, based on window division,
the projected Q, K, and V are partitioned into PL groups,
where each group contains QL positions, resulting in PL

local groups {Xp}PL
p=1. The computations of the attention

weights Ap and enhanced features Zp are provided in Eq. (2).

Ap = Softmax

(
QT

p Kp√
d

)
∈ RQL×QL

Zp = ApVp ∈ RQL×C′
(2)

Here, Qp, Kp, and Vp denote the query, key, and value
features corresponding to the p-th divided window; d refers

to the dimensionality of Qp, and C ′ indicates the number of
feature channels following the projection. While the adoption
of window partitioning for local self-attention computation
effectively reduces computational complexity, it also restricts
the flow of global contextual information. To address this
limitation, the second stage introduces a feature mixing op-
eration across windows using the Permute method, followed
by another round of self-attention computation within each
window. This design enables the model to capture long-
range dependencies across different windows. The attention
mechanism computation in this second stage is formally
defined in Eq. (3).

Aq = Softmax

(
QT

q Kq√
d

)
Vq

∈
(
RQS×QS × RQS×C′

) (3)

Here, Qq , Kq , and Vq correspond to the query, key, and
value features of the segmented window; d signifies the
dimensionality of Qq; C ′ indicates the number of feature
channels following the projection; and Qs indicates the
spatial positions per group resulting from the second-stage
window partitioning.

V. EXPERIMENTS AND RESULTS

A. Evaluation Metrics

Mean Average Precision (mAP) is a commonly used
metric for evaluating object detection models. It measures
performance by averaging the precision across categories.
The overlap between predicted and ground truth boxes is
quantified by Intersection over Union (IoU). We focus on



Fig. 6. Self-attention computing branch of CFACM Module. The calculation process of the two attention mechanisms is consistent, but their inputs Q, K,
V come from different sources. In the first self-attention calculation, Q, K, V come from three different features. In the second self-attention calculation,
Q, K, V come from the same feature that has been integrated.

accident classification (mAP#12). For Spatial Temporal Oc-
currence Region detection, we report mAP at IoU thresholds
of 0.33, 0.5, 0.66, and 0.75 (mAP@33, mAP@50, mAP@66,
mAP@75). A region is considered positive if its IoU exceeds
the threshold; otherwise, it is negative.

B. Implementation Details

During the training process, we train the network using the
PyTorch framework on an NVIDIA RTX 4090 GPU (24GB).
On the proposed STTAD dataset, we use the AdamW opti-
mizer with an initial learning rate of 1×10-4 for 20 epochs,
10-5 for 40 epochs, 10-6 for 40 epochs as a total of 100
epochs with the batch size set to 32. For model input, we
evenly select 16 frames of each video clip as the initial Ni

images and resize each frame to 224 × 224 in width and
height. To alleviate model overfitting, we set Dropout to 0.5.

C. Spatial Temporal Occurrence Region Detection

We evaluate the performance of the proposed method
with various 3D backbone networks. The results indicate
that employing I3D [29] as the backbone enables our STFN
algorithm to achieve the highest performance across all eval-
uation metrics, including mAP@75, mAP@66, mAP@50,
and mAP@33. Subsequently, we compare STFN with base-
line models on the test set of the STTAD dataset for the
occurrence region detection task. The mAP#12 results under
different IoU thresholds, used to determine whether a region
detection is considered correct, are presented in Table III.

However, as shown in the table, the performance of occur-
rence region detection remains unsatisfactory, with the best
mAP@75 reaching only 23.6% using our model. Although
our model achieves 48.0% on mAP@33, this result is still
considerably lower compared to performance on the same
metric in conventional object detection tasks. These findings
highlight the inherent difficulty of event-level occurrence re-
gion detection, which requires comprehensive understanding
of the entire accident process. Furthermore, we compare the
AP of each accident category under different thresholds in
Fig.7, where the evaluation is restricted to the 12 accident
categories, i.e., A1∼A12. By contrasting Fig.3 and Fig. 7, it
is evident that categories with larger amounts of data tend
to achieve higher detection accuracy.

Fig. 7. AP of each accident category under different thresholds.

The reason for this decrease in performance is due to
the variety of accidents. Even with the refined definition
of the accident category, the fine-grained accident classi-
fication is quite challenging. The distribution of high and
low performance on specific accident categories is roughly
like the distribution of data quantity in the proposed dataset.
This indicates that further increasing the samples of each
fine-grained accident category could effectively learn the
occurrence mode of accidents discriminatively.

D. Model Visualization

To further demonstrate the effectiveness of the proposed
model, we visualize representative detection results of ac-
cident occurrence regions on the STTAD testing set. For
clearer comparison, we select the best-performing version
of each method. As shown in Fig. 8, while our model
can effectively localize the occurrence region, the predicted
bounding boxes may not tightly align with the actual accident
area. This indicates that accurate detection of occurrence
regions in video remains a challenging problem requiring
further investigation.

We further provide the temporal range of detected accident
window to demonstrate the accuracy of temporal boundary
judgment (see Fig. 9). Due to the strong temporal modeling
ability brought by STFN, it can accurately judge whether an
accident occurs in each video clip so that accident windows
with accurate temporal ranges can be obtained. As illustrated
in Fig. 9, the proposed STFN demonstrates a strong capacity



TABLE III
COMPARISON WITH THE METHODS ON VARIOUS AVERAGE PRECISION ON THE TESTING SET OF THE STTAD DATASET

Methods Backbone Params mAP@75 mAP@66 mAP@50 mAP@33
YOWO [30] YOLOv2 + RESNEXT101 121.04 M 0.135 0.157 0.201 0.273

YOWOv2-Medium [31] YOLO free large + shufflenetv2 2x 52.0 M 0.168 0.205 0.278 0.312
YOWOv2-Large [31] YOLO free large + RESNEXT101 109.7 M 0.198 0.287 0.353 0.387

STFN(Ours)
YOLOv8 + Mobilenet V2 1x [32] 89.69 M 0.231 0.317 0.371 0.402

YOLOv8 + ShuffleNet V2 1.5x [33] 89.49 M 0.217 0.298 0.349 0.393
YOLOv8 + I3D [29] 99.23 M 0.236 0.327 0.425 0.480

Fig. 8. Visualized comparisons of occurrence region detection on the testing set of the STTAD dataset. The sequence numbers are shown at the top. Each
row shows the beginning, peak, and happened state of the accident respectively. The magenta bold bounding boxes indicate the ground truth. The colored
boxes indicate the results of the corresponding methods respectively. Our method can estimate a more accurate accident occurrence region.

to accurately localize traffic accidents and delineate their
temporal boundaries (i.e., the onset and termination times),
even in the presence of complex environment and visual chal-
lenges. Specifically, the model maintains robust performance
under conditions of severe occlusion, where critical visual
cues may be partially or entirely obscured; under low-light
scenarios such as nighttime scenes, which typically impair
feature visibility and compromise conventional detection
frameworks; and within complex traffic environments charac-
terized by dense vehicular flow, heterogeneous agent behav-
iors, and intricate scene dynamics. These results highlight
the ability of STFN to learn discriminative spatiotemporal
representations and to generalize effectively across diverse
real-world traffic conditions.

VI. CONCLUSION AND FUTURE WORK

In this study, we introduced the challenging STTAD
dataset for traffic surveillance scenarios and defined a de-
tailed task for accident analysis, specifically spatio-temporal
occurrence region detection. To address fine-grained TAD,
we proposed a tailored algorithm named STFN. We also
present the performance of our model alongside baseline
models on the STTAD dataset, demonstrating the effective-
ness of our approach in fusing video features for each task.
We believe STFN can serve as a robust baseline for future
research. Furthermore, the experimental results highlight that
fine-grained accident detection is more complex than tradi-

tional accident analysis tasks, such as binary classification or
object detection. In future work, given the spatial temporal
nature of traffic accidents, incorporating scene priors should
be a key focus for fine-grained accident analysis.
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