
  

  

Abstract— Traffic anomaly detection is a hot research topic 

in road safety. With the rapid growth of video data, Video-based 

Traffic Anomaly Detection (VTAD) becomes a core module in 

safe driving and the security of surveillance systems. Visual 

unimodal   methods are usually limited to shallow modeling of 

visual features only and lack linguistic reference frames, facing 

inherent shortcomings such as limited semantic comprehension 

and insufficient cross-domain generalization. In recent years, 

the rapid development of Vision-Language Models (VLMs) 

provides a new paradigm for traffic anomaly detection, which 

significantly improves the detection robustness in complex 

scenes. This paper provides the first survey of traffic anomaly 

detection based on VLMs, focusing on the three dominant 

methodologies: prompt learning-based, end-to-end 

fine-tuning-based, and feature adapter-based. In addition, in 

order to support and promote further research in the field, we 

provide a critical review of the latest traffic anomaly datasets 

and related evaluation metrics. Through this survey, we hope to 

provide valuable references and open possible trends for 

researchers and practitioners in the field. 

I. INTRODUCTION  

As road traffic accidents occur all over the world, the lives 
of approximately 1.19 million people worldwide are ended 
each year [1]. The cause of most of these accidents is traffic 
anomalies. This grim reality has driven a large number of 
researchers into the field of traffic anomaly research. In recent 
years, multi-sourced data have significantly advanced our 
understanding of driver behaviors [2], [3], traffic risk 
modeling [4], [5], [6] and so on. Furthermore, the rapid 
development of video surveillance technology has led to 
increasingly diverse video data sources. The abundant video 
data provide a foundation for traffic anomaly detection.  
Video-based Traffic Anomaly Detection (VTAD) technology 
has gradually become a hot direction of Intelligent 
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Transportation System (ITS) research by virtue of its features 
of no physical contact and non-intrusive deployment. 

Current mainstream VTAD methods primarily rely on   
unimodal visual analysis techniques. As shown in Figure 1. , 
the field has evolved from spatiotemporal feature extraction 
based on convolutional neural networks (CNNs) [7], [8], to 
leveraging generative adversarial networks (GANs) [9], [10] 
and memory modules [11] to improve sensitivity in anomaly 
detection, and further using long short-term memory networks 
(LSTM) [12], [13] for enhanced modeling of temporal 
dependencies in traffic scenes. With ongoing progress in 
research, spatiotemporal modeling approaches based on 
Vision Transformers (ViT) [14] have also emerged, further 
improving the global modeling capabilities for complex traffic 
anomaly detection.  

However, traffic anomalies often involve significant scene 
changes, such as collisions or loss of vehicle control, which 
require richer background and prior knowledge than simple 
visual data to effectively represent the dynamic changes in 
driving scenarios. Moreover, the diversity and novelty 
characteristics of the anomaly types make it difficult for visual 
unimodal methods to distinguish between different traffic 
anomalies with similar visual features. Therefore, although 
visual unimodal methods have made good progress, 
identifying abnormal events only by analyzing visual features 
makes them lack the combination of visual features with 
meaningful context such as specific scene details and relevant 
linguistic information, and face certain limitations in complex 
traffic scenarios. 

 

Figure 1.  Development of VTAD Methods 

  In recent years, the rapid development of multimodal 
Vision-Language Models (VLMs) such as CLIP [15] has 
given new impetus to this field. VLMs can enhance the ability 
to characterize complex dynamic traffic scenes by combining 
textual features to obtain richer a priori visual language 
knowledge, achieve more accurate semantic differentiation, 
and also remain robust in the face of noise, occlusion, and 
missing information that are common in real video data. 
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  In addition, VTAD methods based on VLMs can provide 
clear semantic feedback on the information of anomalies 
detected in complex traffic scenarios, support autonomous 
driving systems or human drivers in making safer and more 
flexible driving decisions. Notably, further integration with 
the reasoning capabilities of large language models (LLMs) 
can offer linguistic descriptions of detected anomalies and 
conduct causal analyses, which can help vehicles respond to 
complex traffic scenarios in a timely and effective manner, 
further enhancing driving safety and reliability. 

  Existing surveys [16], [17], [18], [19] focus on the 
application of traditional vision methods in general-purpose 
traffic anomaly detection, but fail to fully explore the unique 
value of visual-linguistic modeling in VTAD and its 
domain-specific challenges. The purpose of this paper is to fill 
the above research gaps by providing a comprehensive 
overview of VLM-based traffic anomaly detection techniques, 
focusing on their methodological innovations, evaluation 
challenges and future directions. The rest of this paper is 
structured as follows: Section II provides a brief overview of 
the development of the VLMs. Section III specifically 
discusses the VLM-based traffic anomaly detection 
methodology. Experimental open-source data and evaluation 
metrics are outlined in Section IV. Section V dissects the 
challenges and looks forward to the future directions, and 
Section VI summarizes the research insights. 

II. DEVELOPMENT OF VISION-LANGUAGE MODELS 

The development of VLMs has undergone an evolution 
from early simple modal fusion methods to current large-scale 
pre-trained models. Initial research mainly used methods such 
as embedding splicing and bilinear pooling to simply combine 
image and text features for tasks such as image description 
generation and Visual Question Answering (VQA) [20]. With 
the introduction of deep learning structures such as 
Transformer [21], the information interaction between vision 
and language has become closer, and mechanisms such as 
cross-attention have significantly improved cross-modal 
understanding. 

Since 2021, large-scale end-to-end pre-training has 
become the mainstream in the VLM field. Represented by 
CLIP [15] proposed by OpenAI, the model's performance on 
tasks such as open-domain target recognition and zero-sample 
inference was substantially improved by training on hundreds 
of millions of sets of graphical data for comparative learning, 
there is also a growing number of derived models based on 
CLIP [22], [23], [24], [25]. Series of models such as ALIGN 
[26] and BLIP [27] continue to innovate in data size and 
pre-training strategies, further promoting the generalization 
ability of VLMs in multimodal tasks. 

The latest generation of large-scale VLMs continues to 
innovate in multimodal reasoning, visual understanding 
approaches, and model capability extensions, thus enabling 
them to handle more complex semantic understanding tasks. 
For example, Flamingo [28] enables models to reason about 
and generate image content given textual contexts by 
modeling cross-modal sequences. BLIP-2 [29] pioneered the 
introduction of the Q-Former mechanism based on BLIP, 
which efficiently embed visual features into linguistic models, 
enabling multimodal capabilities. LLaVA [30] introduces 

visual command fine-tuning for enhanced visual and verbal 
synergistic understanding. Video-LLaMA [31] extends the 
processing and comprehension capabilities of large language 
models for video data, especially in dynamic content 
comprehension, broadening its applications in multimodal 
scenarios. Since 2024, the latest multimodal large models such 
as GPT-4V [32] and DeepSeek-VL [33] exhibit stronger 
cross-modal understanding abilities in a variety of tasks, 
including image captioning, visual question answering, and 
complex reasoning. 

However, these models rely on large-scale generalized 
datasets for training with rich parameterized knowledge, their 
generality makes them not directly applicable in specific 
traffic anomaly detection scenarios, and often require transfer 
learning. 

III. VISION-LANGUAGE MODEL-DRIVEN TECHNIQUES 

In recent years, VTAD based on Vision-Language 

Models has gradually focused on the transfer learning 

paradigm, which significantly reduces the computational and 

annotation costs of domain adaptation by migrating the 

cross-modal comprehension ability of the pre-trained models 

and adapting the parameters of the models with the 

characteristics of the downstream tasks. As shown in Figure 

2. , current research mainly centers on three types of 

migration strategies: Prompt Learning, End-to-End 

Fine-Tuning and Feature Adapter [34]. Based on the 

investigation, we will review the VTAD works using VLMs 

from these three aspects. 

A. Prompt Learning 

Existing mainstream prompt learning methods can be 
categorized into two paradigms based on modal interaction 
forms: Text Prompt Learning and Visual Prompt Learning. 

1) Text Prompt Learning 
Text Prompt Learning utilizes the semantic understanding 

capability of VLMs to extract spatial and temporal features 
from video sequences that are highly correlated with textual 
prompts, which can be further categorized into three types: 
hand-crafted prompts, learnable prompts, and 
knowledge-based prompts.  

Hand-crafted text prompts, i.e., manually designing text 
prompts or questions. Several researchers [35], [36], [37], [38] 
based on the chain-of-thought reasoning mechanism, drive the 
LLM to gradually generate fine-grained traffic anomaly 
detection results and analyses through staged prompts, which 
enhances the credibility and interpretability of the detection 
results.  

Further, R. Liang et al. [39] devised a Linguistic Focusing 
Strategy (LFS) to enhance the understanding of traffic 
anomalies by using fine-grained text prompts specific to 
traffic events, to guide the model to adaptively focus on the 
visual context of interest. J. Fang et al. [40] on the other hand, 
reconstructed the textual descriptions by using antithetical 
verbs (e.g., “do not”) to enhance the understanding of the 
semantics of accidents. In addition, to address the limitation of 
traditional methods to solidify the anomaly categories, some 
recent work [41], [42] dynamically defines the semantic 
boundaries of anomalies by inputting user prompts into the
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Figure 2.  Vision-Language Model-Driven Techniques

text encoder, to adapt the challenge of the dynamics of the 
anomaly concepts in real-world scenarios. 

Different from traditional static manual design, learnable 
text prompts adaptively learn representative video event text 
prompts to extract spatio-temporal features in the video that 
are strongly associated with the text.  Several research [43], 
[44], [45], [46] put the anomaly category embedding and the 
learnable prompts in tandem into the text encoder, which are 
able to dynamically adapt to the semantic expressions of 
different anomaly categories, and make up for the domain gap 
of the original text encoder of CLIP in the video anomaly task. 
Instead, TCVADS [47] combined three types of information, 
namely, video-based generated text descriptions, 
corresponding original category labels in the dataset as well as 
learnable prompts, and fed them into a text encoder. Unlike 
the above researchers who directly concatenate learnable 
prompts and labels, C. Xu et al. [48] designed a learnable 
Domain-specific prompt module and an Anomaly-specific 
prompt module that generates anomaly category 
characterization using LLM, fusing generalized domain 
knowledge with fine-grained semantic descriptions specific 
anomalous scenarios to improve the model's accuracy in 
recognizing complex anomaly patterns. A reparameterized 
prompt encoder (DistilBERT) [49] was designed to 
re-parameterize input prompt embeddings to generate 
task-specific context-rich templates. Specifically, M. Ye et al. 
[50] proposed a two-stage collaborative optimization 
mechanism: determining video anomalies based on a guiding 
question by a learner agent, and dynamically adjusting the 
guiding question using an optimizer, which effectively 
reduces the induction bias of artificial rules in complex 
anomaly scenarios.  

Knowledge-based text prompts further introduce an 
external knowledge base to build context-rich prompt 
templates, and enhances the model with structured semantic 
constraints on the fine-grained attributes of traffic anomalies. 
Y. Pu et al. [51] utilize an external knowledge base [52], and S. 
Hu et al.[53] introduce an external dataset of high-quality 
instructions [54], to construct prompts templates that provide a 
nuanced understanding of the specific semantics of an 
exception, enhancing fine-grained discriminability and 
inter-class separability. 

2) Visual Prompt Learning 
Unlike text prompt tuning, visual prompt tuning transfers 

VLMs by modulating the input of image encoder [34]. M. 
Zhang et al. [55] obtained implicit knowledge from training a 

Visual Relationship Recognition (VRR) task on the Visual 
Genome dataset [56] and embedded it into a frame prediction 
network, enabling the model to capture key object-context and 
object-object relationships associated with anomalies more 
effectively. Y. Su et al.  [57] on the other hand, enabled the 
model to adaptively learn the contextual relevance of visual 
representations by integrating external scene-aware examples 
and designing a prompt likelihood learning mechanism, 
thereby utilizing scene prior knowledge to effectively guide 
the model to focus on specific anomaly types. 

B. End-to-End Fine-Tuning 

The end-to-end fine-tuning strategy adapts the pre-trained 

VLMs to the traffic anomaly detection task by directly 

optimizing all of its parameters. This strategy is able to fully 

utilize the model's representational capabilities and 

significantly improve the detection performance with the 

support of sufficient labeled data. 

M. Shoman et al. [58] introduced the PDVC dense 

description model and fine-tuned its domain adaptation on the 

WTS Normal and Event datasets, significantly improving the 

model's adaptability to traffic scenarios. A. Lohner et al. [59] 

fine-tuned a classification header after multimodal alignment 

(visual, textual, scene graph) for fusing the three-modal 

embeddings and outputting incident classification results. To 

further reduce computational costs, Low-Rank Adaptation 

(LoRA) [60] has been adopted by some researchers [61],  [62],  

[63], [64], enabling lightweight fine-tuning of low-rank 

matrix parameters in pre-trained Large Vision Language 

Models (LVLMs) without modifying the full model weights, 

thereby significantly reducing resource demands while 

preserving detection performance. 

C. Feature Adapter 

The feature adapter-based transfer learning approach 
enables the model to flexibly adapt to specific spatio-temporal 
anomalous features in the traffic scene without changing the 
original feature extraction capability by introducing a 
lightweight adaptation module after the feature encoder of the 
VLM, and training the adaptation module only. Compared 
with fine-tuning, this strategy reduces the computational 
overhead while effectively enhancing the adaptation 
capability of image or text features, which is especially 
suitable for traffic monitoring scenarios with limited data or 
resources. 

P. Wu et al. [65] proposed a lightweight Temporal Adapter 
Module (TA) to model the contextual positional dependencies 



  

between video frames by constructing adjacency matrices to 
enhance temporal dynamic feature capture. In the follow-up 
study [43], the authors further introduced the spatial attention 
aggregation module to dynamically screen key spatial 
anomaly regions by fusing the motion a priori and the 
attention weighting mechanism. In addition, P. Wu et al. [46], 
P. P. Dev et al. [49], and Y. Wu et al. [66] designed a 
two-stage adapter to extract local time-series features and 
global time-series representations, which further enhances the 
model's ability to characterize multi-scale anomalies. On the 
other hand , H. Lv et al. [67] and J. Tang et al. [68] designed 
an adapter for receiving original visual features with 
context-enhanced features and generating the input 
embedding of LLaMA through linear transformation, which 
effectively enhances the dynamic interaction of multimodal 
features in anomaly detection tasks. 

IV. METRICS AND DATASETS 

In this section, we systematically review publicly available 
traffic anomaly detection datasets (TABLE I. ) for the last five 
years (2020-2024), and provide a comprehensive comparison 
in terms of dimensions such as data size, class diversity, and 
annotation granularity. Further, the mainstream evaluation 
metrics in this field are analyzed and the performance results 
of representative methods for the traffic anomaly detection 
task are summarized in TABLE II.  

A. Datasets 

The performance of traffic anomaly detection is highly 

dependent on the diversity and annotation quality of datasets. 

We summarize the mainstream traffic video anomaly datasets 

and their characteristics in the last five years through TABLE 

I.  Some of them are depicted as follows. 

DoTA[69], built by the Robotics Institute of the 

University of Michigan, contains 4,677 on-board camera 

videos, and provides temporal boundaries of anomalous 

events, spatial locations as well as 9 anomaly category 

annotations. Compared with previous datasets [70], [71] that 

only contain temporal annotations, DoTA is much larger in 

scale and realizes the assessment of anomaly localization 

capability for the first time. However, DoTA primarily 

collects data from dashboard perspectives in specific urban 

settings, which may bring geographical and scene diversity 

limitations. Consequently, models trained solely on DoTA 

may face generalization challenges when deployed in rural, 

highway, or adverse weather scenarios. 

MP-RAD[72] is a synthetic dataset proposed by the 

Artificial Intelligence and Robotics Research Institute (AIRI) 

of KIST, which simulates and generates 400 unique road 

accidents through the gaming platform GTA-V, and each 

event is recorded from five independent camera angles, 

containing a total of 2,000 high-precision videos. Compared 

with real datasets [69], MP-RAD fills the research gaps such 

as missing data and insufficient samples from multiple 

viewpoints. Nevertheless, as a synthetic dataset, MP-RAD 

exhibits a domain gap compared to real-world scenarios, 

notably in visual appearance, event dynamics, and traffic 

participant variety, models require additional domain 

adaptation when applied to real-world data.  

MM-AU [40] is a large-scale dataset for multimodal 
traffic accident understanding, which consists of several 
publicly available self-view accident datasets [69], [70], [71] 
and video clips from various video platforms, containing 
11,727 videos of accidents. It offers rich event diversity, with 
58 accident categories, over 2.23 million bounding boxes, and 
multi-level annotations including bounding boxes, accident 
causes, preventive suggestions, and aligned textual 
descriptions. This scale supports research on complex scene 
understanding, multi-label learning, and vision-language 
alignment. Yet, due to the heterogeneous video sources, 
MM-AU may suffer from inconsistent video quality, 
annotation noise, and potential regional or temporal biases. 

B. Metrics and Performance Evaluation 

Since video data is temporal and each frame represents a 
state at a point in time, the moment and duration of anomalies 
can be captured more accurately by detecting and evaluating 
each frame, so frame-level evaluation metrics are commonly 
used in VTAD studies, the most common being the 
frame-level Receiver Operating Characteristic (ROC) curve, 
Area under the ROC curve (AUC) and frame-level Average 
Precision (AP).  

The AUC curve is a plot of true positive rate (TPR) versus 
false positive rate (FPR). This metric measures the overall 
performance of the VTAD model at different thresholds. 
VTAD models with higher AUC values are considered 
superior to models with lower AUC values. Some researchers 
[46], [49] have further used anomalous AUC (Ano-AUC) as 
an evaluation metric. Ano-AUC focus only on the detection 
performance of the anomalous category, which can more 
objectively reflect the model's ability to recognize anomalous 
events, reduce the interference of the normal category in the 
evaluation, and at the same time. 

In addition to the ROC family, Precision, Recall, and F1 
test values are also popular in VTAD tasks. Precision is the 
proportion of instances predicted by the model to be positive 
samples that are actually positive samples, Recall refers to the 
proportion of actual positive instances that are correctly 
predicted as positive by the model. And the frame-level 
average precision (AP), which is calculated by averaging the 
precision of each prediction result matched with the true label, 
is used to measure the average performance of the model 
under different recall rates. It is especially suitable for 
evaluating the classification and localization performance in 
video anomaly detection tasks. 

Certainly, there are some works advocating the use of 
intersection and union ratio (IoU) and mean Average 
Precision (mAP) based on different IoU thresholds, to 
comprehensively evaluate the model's ability to recognize 
multiple anomaly types. 

It's worth mentioning that H. Du et al. [73] proposed a 
multimodal metric, MMEval. Compared to a single-modal 
metric, this metric integrates multimodal inputs (video, text, 
and contextual annotations) to holistically evaluate causal 
relationships in anomaly comprehension. By designing natural 
language prompts and temporal importance curves, it focuses 
on anomalous clips to emulate human-like analysis of 
temporal severity shifts and causal dependencies. 



  

TABLE I.   

THE REPRESENTATIVE DATASETS FOR THE PAST FIVE YEARS FOR VTAD WITH SYNTHETIC(S) OR REAL(R), NUMBER OF SEQUENCES(SEQ.), OBSERVATION 

VIEWS(DASHCAM, SURVEILLANCE, AND BEV),  NUMBER OF ANOMALOUS CATEGORIES(CATEG.) , AND DATASET LINKS 

Datasets Years S/R Seq.num View Categ.num URL 

RetroTrucks[74] 2020 R 474 Sur. 4 
https://drive.google.com/drive/ 

folders/1VxFG1jHBiep4R3i_MmvMfKWH11AEFFhu 

TAD-1[75] 2021 R 500 Dash., Sur. 7 https://github.com/ktr-hubrt/WSAL 

TaskFix[76] 2021 R 1436F* Sur. - https://bit.ly/TaskFixDataset 

USDC[77] 2022 R 122 Dash. - https://public.roboflow.com/object-detection/self-driving-car 

DADA-2000[78] 2022 R 2,000 Dash. 54 https://github.com/JWFangit/LOTVS-DADA 

DoTA[69] 2022 R 4,677 Dash. 9 https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly 

MP-RAD[72] 2023 S 2,000 Sur. - https://github.com/draxler1/MP-RAD-Dataset-ITS- 

UIT-ADrone[79] 2023 R 14,021F* BEV - https://uittogether.github.io/datasets/UIT-ADrone 

CTAD[80] 2023 S 1,100 Sur. - https://github.com/hankluo2/UrbanTrafficAccidentDetection 

MM-AU[40]  2024 R 11,727 Dash. 58 https://github.com/jeffreychou777/LOTVS-MM-AU 

SO-TAD[81] 2024 R 2,186 Sur. 4 https://github.com/cccxy-299/so-tad. 

TADS[82] 2024 R 966 Sur. 13 https://github.com/cyc-gh/TADS 
1436F: 1436 frames. 14,021F:14,021 frame 

TABLE II.  PERFORMANCE OF CURRENT REPRESENTATIVE VLM-BASED METHODS FOR TRAFFIC ANOMALY DETECTION 

Category Supervision Approach Feature Years Benchmark: Metrics 

Prompt 

Learning 

Text 

Hand-craft 

Weakly-Supervised TTHF[39] CLIP 2024 
DADA-2000: AUC=71.7% 

DoTA: AUC=84.7% 

Open World LaGoVAD[42] CLIP 2025 
TAD-1: AUC=89.56% 

DoTA: AUC=62.60% 

Weakly-Supervised STPrompt[43] CLIP 2024 
UBnormal: AUC=63.98% 

UCF-Crime: AUC=88.08% 

Learnable 

Weakly-Supervised 
TPWNG[44], DWFF[45], 

VadCLIP[46], TCVADS[47], 

ReFLIP-VAD[49] 

CLIP 2024 

UCF-Crime:AUC=87.79%,88.39%, 

88.02%, 88.58%, 88.57% 

XD-Violence:AP=83.68%, 85.27%, 
84.51%, 85.58%, 85.81% 

Open Vocabulary PLOVAD[48] CLIP 2025 
UBnormal: AUC=64.35% 

UCF-Crime: AUC=86.78% 

Weakly-Supervised VERA[50] - 2024 
UCF-Crime: AUC=86.55% 

XD-Violence: AUC=88.26% 

Knowledge-based Weakly-Supervised Y. Pu et al.[51] I3D 2023 
UCF-Crime: AUC=86.76% 
XD-Violence: AP=85.59% 

Visual 

Unsupervised CG-VAD[55] 
Swin 

Transformer 
2024 UBnormal: AUC=67.00% 

Weakly-Supervised VPE-WSVAD[57] Prompt 2024 
UCSDped2: AUC: 99.86% 
Shanghai Tech: AUC= 96.88% 

End-to-End Fine-Tuning Weakly-Supervised Holmes-VAD[63] CLIP 2024 
UCF-Crime: AUC=89.51% 

XD-Violence: AP=90.67% 

Feature Adapter 

Weakly-Supervised VadCLIP[46], Y. Wu et al.[64] CLIP 2024 
UCF-Crime:AUC=84.51%, 87.42% 

XD-Violence: AP=84.51%, 82.39% 

Open Vocabulary OVVAD[65] CLIP 2024 
UCF-Crime: AUC=86.40% 
XD-Violence: AP=62.94% 

Weakly-Supervised VADor[67] CLIP 2024 
UCF-Crime: AUC=88.13% 

TAD-1: AUC=91.77% 

 

V. CHALLENGES AND FUTURE DIRECTIONS 

Although VLMs provide a new paradigm for traffic 
anomaly detection and have shown significant potential in 
research, their application in complex dynamic traffic 
scenarios still faces multiple challenges. This section 
systematically examines the three major challenges faced by 
the field of video-based traffic anomaly detection driven by 
VLMs, and further explores potential directions for future 
research.  

A. Long-tail Characteristics 

Traffic anomalies have a significant long-tail 
characteristic, reflected in the fact that high-frequency normal 
events constitute the majority of samples (head category),  

 

 

while anomalous events are diverse but each has only a small 
number of samples and occurs infrequently (tail category). 
Abnormal events in traffic scenarios include rear-end 
collisions, vehicle loss of control, wrong-way driving, and the 
incursion of non-motor vehicles or pedestrians into motor 
lanes. These events are diverse in type, with significant 
variations in their frequency within datasets, and some 
datasets do not cover rare anomaly types. Most existing 
VLM-based approaches are trained primarily on massive 
conventional data training, and their ability to detect traffic 
anomalies after migration learning is still limited, making it 
difficult to effectively identify critical but extremely rare 
traffic incidents. Therefore, enhancing the sensitivity and 
generalization ability of models to long-tailed or rare traffic 
anomalies in real-world roads and varying environments 
remains an urgent challenge. 



  

In the future, meta-learning approaches can be explored to 
model anomaly detection tasks under varying environmental 
conditions, enabling VLMs to rapidly adapt the parameters 
upon receiving a small number of novel anomaly samples 
from specific traffic scenarios. This would allow for efficient 
transfer and generalization to new road networks, special 
weather conditions, or newly deployed infrastructure, thereby 
enhancing the detection of rare traffic anomalies in complex 
settings. 

B. Lack of Explainability 

      In intelligent transportation systems, detecting anomalies 

alone does not effectively support safety decisions. Compared 

to general vision tasks, VTAD has a higher need for 

interpretability, because the interpretation results not only 

enhance model transparency, but also serve as a key basis for 

traffic management and accident accountability. Although 

existing VLM-based approaches have improved detection 

performance by fusing visual features with semantic 

descriptions, current research is still dominated by shallow 

cross-modal alignment. Only a few studies [42], [83], [84]  

have preliminarily explored the potential of VLMs for causal 

inference and interpretable representations.  
Subsequent work can explore the deep integration of 

attribution-based approaches into VLM-based VTAD 
workflows. SHAP is a machine learning model interpretability 
tool based on game theory, which can help to locate key 
spatio-temporal segments and actors by calculating the mean 
value of marginal contribution among all possible feature 
combinations after feature extraction, providing a basis for 
traffic event traceability and key roadway supervision. 
Counterfactual analysis, by comparison, provides a causal 
level expansion for model interpretation. By constructing 
hypotheses in a specific traffic situation that are contrary to the 
current scenario (e.g., adjusting for specific vehicle speeds, 
positions, or pedestrian behaviors), it can help to distinguish 
between real anomalies and misjudgments brought about by 
environmental disturbances. 

C. Domain Shift 

Rare abnormal events in many traffic scenarios are 

difficult to collect extensively in real-world environments; as 

a result, researchers often rely on simulation platforms or 

synthetic data to augment sample sets. However, there are 

considerable differences between simulation and real-world 

roads in terms of scene complexity, participant behaviors, 

traffic flow patterns, and details such as urban versus rural 

road structures. These disparities lead to a significant decline 

in model generalization performance when applied to 

real-world traffic environments, resulting in a typical domain 

shift problem. To address this, on one hand, domain 

adaptation techniques such as adversarial networks can be 

used to introduce adversarial losses when training the VLM, 

so that the model produces as similar feature representations 

as possible on the source and actual data. On the other hand, 

locally collected real-world multi-source traffic data can be 

integrated, utilizing fine-grained scene attribute alignment 

and multi-factor simulation event reconstruction to better 

reflect real-world features such as varying road types, 

weather conditions, and traffic signal layouts, thereby 

improving the fidelity of simulation data to complex real 

scenarios.  

TABLE III. summarizes the main challenges and their 

corresponding representative approaches. 

TABLE III.  CHALLENGES AND SOLUTIONS IN VLM-BASED VTAD 

Challenges Potential Solutions 

Long-tail 

Characteristics 

Meta-Learning (Model-Agnostic Meta-Learning, 

Prototypical Networks) 

Lack of 

Explainability 

Attribution-based approaches (SHAP, 
Counterfactual Analysis, CAM, Diffusion-based 

Attribution, GAN-CAM) 

Domain Shift 

Domain Adaptation (Distribution distance metric 

constraint-based, Adversarial learning-based), Joint 
Training with Multiple Sources of Data 

VI. CONCLUSIONS 

This paper focus on a systematic review of VLM-based 

traffic anomaly detection methods. After briefly reviewing 

the development of VLMs, the paper provides in-depth 

explorations around three major technological paradigms:  

prompt learning, end-to-end fine-tuning, and feature adapter. 

Meanwhile, we systematically comb through the latest key 

publicly available datasets, and further point out some 

challenges encountered in the existing research work as well 

as potential research directions for further investigation. From 

this survey, we hope VTAD problems can bring springing 

progress from effective models, new benchmarks, insights, 

and practical applications. 
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