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Abstract. We observe irregular data transfer performance across fed-
erated serverless infrastructures (sometimes faster across providers than
colocated), making the entire workflow scheduling even more challenging
in federated FaaS and sky computing. This paper introduces StoreLess –
a novel workflow scheduler and heuristic algorithm for serverless storage
attachments that dynamically selects, provisions, and configures suitable
function deployments and storage backends from the federated serverless
infrastructure. StoreLess improves workflow execution time by up to
30% by running cross-regional setup compared to the state-of-the-art.
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1 Introduction

Serverless workflows enable the composition of individual functions-as-a-service
(FaaS) into a cohesive pipeline, allowing for seamless integration and coordi-
nation of various data processing steps. By modeling applications as serverless
workflows, developers gain flexibility in managing dependencies, controlling data
flow, and optimizing resource allocation for efficient execution. In serverless work-
flows, developers must explicitly communicate intermediate data, representing
ephemeral input and output data transferred between steps.

Recently, federated serverless [6] and sky computing [11] have gained in popu-
larity due to their numerous benefits to serverless workflows in terms of cost and
performance. Existing serverful workflow management systems [3] optimize the
workflow execution by proactively transferring the data to the virtual machines
hosting the running tasks and aiming to hide communication. Unfortunately,
this optimization is impossible for serverless functions that transfer interme-
diate data during runtime through cloud storage because their file system is
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inaccessible to the workflow management system. Moreover, we observed irreg-
ular data transfer performance across federated cloud storage, sometimes faster
across providers than colocated, making the workflow scheduling even more chal-
lenging (Section 2). However, existing schedulers colocate serverless workflows [9]
or centralize the storage in a single region [6] without exploiting the potentially
higher bandwidth to other cloud regions to optimize communication.

This paper introduces StoreLess, a novel workflow scheduler that delivers
dynamic federated FaaS and storage to serverless workflows 6. StoreLess aims
to reduce the total workflow execution makespan by exploiting the function de-
ployments and attached storage systems across regions and cloud providers (Sec-
tion 3). We ran microbenchmarks to evaluate intra- and inter-region networking
and drawn several surprising conclusions (Section 4). With this configuration,
we evaluated StoreLess with two state-of-the-art approaches using two rep-
resentative serverless workflows across six European and North American AWS
and GCP regions. We reduced their makespan by up to 30% compared to the
colocated or federated FaaS setups (Section 5).

2 Motivational Study

We identified higher bandwidth across federated cloud regions compared to the
intra-region. We implemented a simple copyFile function that downloads a file
from AWS S3 and GCP Cloud Storage and uploads it back. We deployed the
function copyFile in the AWS London (AL) region with 2GB of RAM and
configured it to upload a 100MB file in AL S3, GCP London (GL), GCP Virginia
(GV), and AWS Virginia (AV). We denote these setups as ALAL, ALGL, ALGV, and
ALAV by concatenating the function deployment with the storage regions.

Observation: A function may upload data faster across regions than to its
colocated storage. Counter-intuitively, Fig. 1 (left) shows that ALGL and ALGV
performed respectively 68.26% and 32.65% faster, despite their geographical
distance. We further narrowed down the benchmark for ALAL and ALGL while
varying the file size from 25MB to 100MB, as presented in Fig. 1 (right). We
determined that both regression functions intersect at 3.5MB and estimated the
upload time of 0.364 s.

3 StoreLess Workflow Scheduling

StoreLess targets serverless workflows SW = (F,D) composed of n serverless
functions F =

⋃n
i=1 fi interconnected in a directed acyclic graph through a set of

data-flow dependencies D = {(fi, fj , dij , Nij) ∈ F× F× R+ × N}. The function
fj can start only after its predecessor fi finishes execution and generates inter-
mediate data dij in Nij files. StoreLess supports workflows for which dij is
constant for a given workflow input data. StoreLess utilizes a federated server-
less infrastructure with multiple regions R =

⋃R
j=1 rj . We adopt the general

6 https://github.com/xAFCL/StoreLess
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Fig. 1: Upload time of a 100MB file (left) and different file sizes (right).

networking model [1] to estimate the transfer time of intermediate data dij with
Nij files from a function deployment region rf to the storage region rs:

TT (rf , rs, dir) = Nij · L (rf , rs, dir) +
dij

B (rf , rs, dir)
, (1)

where L (rf , rs, dir) and B (rf , rs, dir) are the unidirectional latency and band-
width between the function deployment and intermediate data storage regions,
depending on the transfer direction dir = {down, up} (download or upload).

We define a function deployment as a quadruplet fdir = (fi, r, rs, RTTir)
that associates a function fi with a computation region r and attached storage
region rs to upload the intermediate data. The expected RTTir of a function
deployment has four components:

RTTir = STir + FTir +DTir + UTir : (2)

1. Session time STir based on the SimLess’ model [7];
2. Function time FTir necessary to run the computing part of the function;
3. Download time DTir to load intermediate data from predecessor functions;
4. Upload time UTir to upload output files to the attached storage region rs.

We omit the cloud region s of the attached storage in the indexation because rs
affects only UTir.

We model the workflow deployment based on its scheduled functions and
storage attachments. We model earliest start time est (fi) of a function fi as the
latest completion time of its predecessors pred (fi) (on their deployment region
r′). Further on, we model completion time ct (fdir) of a function fi deployed in
a region r ∈ R as the earliest start time plus its round-trip time RTTir. The
makespan MSW of a workflow SW is the completion time ct (fder) of the end
function fe deployed in the region r:

est (fi) = max
fp∈pred(fi)

[
ct (fdpr′)

]
, ct (fdir) = est (fi) +RTTir. (3)

The StoreLess scheduling heuristic, formally presented in Algorithm 1 has
three input parameters: a serverless workflow SW , a federated infrastructure
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with R regions, and the deployment sets of all functions FDi,∀fi ∈ F (with the
corresponding session, download, function, and upload time benchmark infor-
mation). It returns a workflow deployment with the lowest makespan using a
heterogeneous earliest finish time heuristic.

Algorithm 1: StoreLess scheduling algorithm
Input : SW = (F,D),F =

⋃n
i=1 fi; // Serverless workflow

Input : R = ∪R
r=1r; // Federated infrastructure regions

Input : FDi =
⋃R

r=1 fdir, ∀fi ∈ F; // Function deployments
Output: DSW = {(fi, sched(fi)) , ∀fi ∈ F}; // Workflow deployment

1 Function StoreLess (SW , R, FD):
2 Rank ← B-Rank(F); // Order functions according to bottom rank
3 DSW ← ∅ ; // Initialize workflow deployment with empty set
4 for i← 1 to n do // Iterate over the ranked functions
5 ctmin ←∞; // Initialization
6 estmax ← est(Ranki); // calculate est based on Eq. 3
7 for r ← 1 to R do // Iterate over computational regions
8 ST ← STRankir; FT ← FTRankir ; // load ST and FT
9 DT ← DTRankir ; // Calculate download time based on Eq. 1

10 for rs ← 1 to R do // Iterate storage regions
11 UT ← UTRankir ; // Load upload time
12 RTTRankir ← ST + FT +DT + UT ; // based on Eq. 2
13 ct← ct(fdRankir) ; // based on Eq. 3
14 if ct < ctmin then
15 fdmin ← fdRankir; // save the fastest deployment
16 ctmin ← ct; // Save earliest finish time
17 end
18 end
19 end
20 DSW ← DSW ∪ fdmin; // Add function deployment
21 end
22 return DSW ; // Return workflow deployment
23 return

Firstly, line 2 sorts all workflow functions according to their bottom rank [12],
representing the critical path to the end of the workflow. The rationale of the
ranking is to give a higher priority to the functions that have more dependent
functions than others. Then, line 3 initializes the serverless workflow deployment
plan with the empty set. Lines 4 to 21 iterate the ranked functions to deploy
them to the most suitable region and dynamically attach storage. For each func-
tion (line 4), the algorithm first initializes the completion time and calculates
the earliest start time of the function in lines 5 to 6, respectively. Further on,
StoreLess traverses the function deployments of the function Ranki in lines
7 to 19. For each function deployment of the function, StoreLess loads ST
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and FT (line 8) and estimates DT based on Eq. 1. These parameters are known
since the regions of the input files, and the function deployment are known at
this step. Further, the algorithm iterates over each storage region for their out-
puts (lines 10 to 18). Given that the function deployment and output storage
regions are iterated (known), the algorithm estimates upload time UT based on
Eq. 1. Afterward, it uses all computed and loaded parameters ST , DT , FT ,
and UT to compute RTT of the current function deployment in the region r
with the current output storage rs, based on Eq. 2. At each nested iteration,
the algorithm saves the deployments with the earliest completion time (lines 14
to 17) and adds the fastest one to the workflow deployment in line 20. Line 22
returns the final serverless workflow deployment, ready for execution.

4 Implementation and infrastructure setup

To schedule data transfers, StoreLess relies on two variable types from Eq. 1:
(i) cloud-specific (e.g., L,B) acquired using micro-benchmarks, and (ii) workflow
or function-specific (e.g., N, d), incorporated directly in the workflow. We first
measured upload and download time of files with 25MB, 50MB, 75MB, and
100MB between all evaluated regions within each provider. For this purpose, we
developed a serverless function that uploads and downloads the file three times.
We repeated the function five times and omitted the first execution to avoid the
cold start. Further, we used the regression function to determine the bandwidth
and latency in both upload and download directions.

Table 1 presents the parameter setup determined from the microbenchmark.
Surprisingly, we observed several irregular data transfer parameters. First, the
AWS download bandwidth Bdown is larger than the upload bandwidth Bup,
while latency follows the opposite pattern. For example, AWS S3 in London has
the highest Bdown, which is 3.15 times larger than Bup. However, GCP shows
the opposite pattern, with Bup larger than Bdown.

Table 1: Federated serverless infrastructure network model.
r rs Bup Lup Bdown ldown

AL AL 26MB/s 0.231 s 82MB/s 0.123 s

AL GL 101MB/s 0.351 s 93MB/s 0.365 s

AF AL 23MB/s 0.453 s 85MB/s 0.373 s

AF GL 100MB/s 0.396 s 151MB/s 0.312 s

GL GL 58MB/s 0.109 s 43MB/s 0.117 s

AL GV 50MB/s 0.877 s 58MB/s 0.942 s

Surprisingly, the cross-provider bandwidth from AWS functions to GCP stor-
age is significantly higher than the colocated setups for both providers. Notable
is the AFAL setup with 100MB/s upload compared to the colocated 26MB/s for
ALAL and 58MB/s for GLGL, with comparable latency. The download bandwidth
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for AFAL is even higher with 151MB/s. ALGL shows a similar pattern, which is
still worse than AFGL, despite the geographical closeness between functions and
the storage. While, as expected, the ALGV upload and download latencies are
higher than the colocated ALAL, the ALGV’s bandwidth for upload is surprisingly
nearly twice higher.

5 Experimental results

We use a double experimental strategy to enhance the completeness of the
StoreLess evaluation: (i) simulation estimates the workflows’ makespan using
the model presented in Section 3; and (ii) real testbed validates the simulation
by running the workflows in a federated infrastructure of AWS and GCP.

We selected two serverless workflows Montage [2] and Burroughs-Wheeler
Alignment (BWA) [5] to challenge StoreLess. Both workflows are characterized
in detail by Hautz et al. [4]. We used a federated testbed comprising several AWS
and GCP regions across Europe and North America. We deployed the workflows
in AWS London (AL), AWS Frankfurt (AF), GCP London (GL), and GCP Belgium
(GB). We further selected four storage regions, AL, GL, AWS Virginia (AV), and
GCP Virginia (GV). We run the scheduled workflows with the xAFCL serverless
workflow management system [8] that can scatter the functions across federated
FaaS by specifying their locations without updating the workflow structure.

Related work comparison. We evaluate StoreLess compared with two ap-
proaches. FADO [10], AWS Step Functions, or IBM Composer, colocate the stor-
age in the same region running the workflow functions, assuming that network
proximity minimizes data transfer times. FaaSt [6] supports federated FaaS but
uses single storage due to a lack of support for storage federation. StoreLess
federates all storage and all function regions.

5.1 Montage workflow

We present the Montage evaluation results with input first in AL, then in GL.

AL workflow input

Simulation. Fig. 2a presents the schedules of the function (r) and storage (rs) of
StoreLess, and FedFaaS approaches for an in-depth comparative analysis. We
do not show the colocated schedules that place the functions and intermediate
data in the same AL region with the workflow input. prepColor is the first func-
tion scheduled by StoreLess GLGL, with expected RTT = 173.5ms+109ms. On
the other side, FedFaaS cannot federate storage and decides among AFAL (0.9 s),
ALAL (0.77 s), GBAL (1.1 s), and GLAL (0.93 s). Thus, FedFaaS schedules it to ALAL,
although there is a faster mapping GLGL detected by StoreLess, expecting a
faster execution by 0.49 s. prepmProject neither downloads nor uploads files but
still accesses the AL storage to count the number of stored files. This function
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runs fastest in AL (lower FT ) with RTT = 0.41 s. However, StoreLess does not
select ALAL as the first AWS function introducing a session time ST for a total
of 0.96 s. Therefore, StoreLess schedules this function on GL again with RTT
of 0.51 s. mProject – mImgtbl are all scheduled on ALAL by both StoreLess
and FedFaaS as each instance downloads a small amount of data, insufficient to
benefit from the cross-regional higher bandwidth of GCP regions.

Function
AL input region GL input region

StoreLess FedFaaS StoreLess FedFaaS
r rs r rs r rs r rs

prepColor GL GL AL AL GL GL GL GL
prepmProject GL – AL – GL – GL –

mProject AL AL AL AL AF GL AF GL
prepmDiffFit AL AL AL AL GL GL GL GL

mDiffFit AL – AL – AF – AF –
mconcatFit AL AL AL AL AL AL AF GL
mBgModel AL AL AL AL GL GL GL GL

prepmBackgr AL – AL – GL – GL –
mBackground AL AL AL AL AF GL AF GL

mImgtbl AL AL AL AL GL AL AL GL
mAdd AL GL AL AL GL GL GL GL

mShrink AF GL AL AL AF GL AF GL
mViewer AF GL AL AL AF GL AF GL

(a) StoreLess schedules.
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(c) GL input region.

Fig. 2: Schedules and executions with Montage and input in AL and GL.

However, the last three functions (mAdd, mSchrink, mViewer) differ signif-
icantly due to the large data transfers. mAdd deployed by StoreLess to ALGL
dominates all schedules with an RTT = 7.87s + 1.5s (UT ), which is 25.37%
smaller than the colocated ALAL of the other schedulers, which need UT = 4.68 s,
or 3.12× longer. mSchrink is the successor function deployed by StoreLess
AFGL with the lowest download and computation times) and attached the GL
storage (with the lowest upload time), minimizing the RTT by 35.8% or reduc-
ing it by 1.8 s. mViewer is the last function deployed by StoreLess AFGL. It
downloads the intermediate data from GL, with a minimum download and com-
putation time of 4.06 s achieving an RTT = 4.48 s, which is 3.56% higher than
ALAL. Since FedFaaS scheduled mShrink to upload on AL storage, it allows a
lower DT and FT of 4.01 s, including the lower time of 0.31 s to upload on AL,
compared to 0.42 s to upload from AF to GL storage, as decided by StoreLess.

Real testbed validation. Fig. 2b presents the completion time distribution for ex-
ecuting Montage functions, which has an elevator shape with three large jumps
representing the workflow parallel loops. We observe that the distribution of the
completion times follows the estimated values of the StoreLess scheduler. For
two reasons, the first two functions scheduled by StoreLess finish faster than
the other two schedulers. First, StoreLess scheduled prepareColor in GL lead-
ing to 0.3 s including the shorter session time to GCP, while prepareColor ran
0.78 s, which includes the higher session time for AWS. mProjectPP ran 14.47%
slower with the StoreLess schedule because of the session time to AWS since
that is the first function executed on AWS. Further on, the other functions until
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mImgtbl followed the same pattern because of the same schedule. Finally, the
main difference was observed for the last three functions. StoreLess reduced the
RTT of the mAdd and mShrink functions 1.35× and 2.4×, respectively, achiev-
ing absolute reduction of 6.14 s for both functions. Still, this led to a slower
RTT = 0.33 s or by 7% for mViewer, as discussed before.

StoreLess advantage. StoreLess simulates the fastest makespan of 41.24 s,
while both FedFaaS and colocated schedules expect 46.46 s, which is by 12.65%
slower. This improvement is not significant because it is achieved mainly for five
functions, whose joint round trip times is 17.87 s and 23.09 s for the StoreLess
and FedFaaS, respectively. Considering only these five functions, FedFaaS achieves
a significant slowdown of 29.19%. In real executions, the StoreLess schedule
achieved similar improvement of 13.92% compared to the other two schedules.

GL workflow input

Simulation. FedFaaS fixes the storage in GL and selects among the function
deployments of the four regions AL, AF, GL, and GB, shown in Table 2a (right).
StoreLess schedules the functions and storage in a similar way as for AL input
region. FedFaaS generates almost the same schedule as StoreLess.

Real testbed validation. While StoreLess schedules with input in AL and GL fol-
low the same pattern, the colocated schedule shows a significant delay, especially
for functions in parallel loops. In other words, we achieved skewed elevations
with positive gradients for the colocated parallel loops instead of verticals for
two reasons: (i) GCP functions share the underlying infrastructure and starve
for network bandwidth to the GCP storage, and (ii) simultaneous execution of
multiple GCP functions increases their RTT , reported as concurrency overhead
for massive function spawning [7]. The AWS functions from AFGL reported a
negligible overhead compared to the colocated GLGL, especially for the largest
parallel loop of 141 mDifffit instances (i.e., top of the second stair).

StoreLess advantage. StoreLess shows the main benefit for the workflow in-
put in GL exhibiting 12.66% improvement over colocation. StoreLess generates
a similar schedule to FaaSt by attaching the GL storage to all functions except
mconcatFit, estimated to run within 45.83 s, respectively 46 s. Surprisingly, the
StoreLess real executions achieved even higher speedup of 1.3×, mainly from
the functions deployed in AF. StoreLess ran within 51.19 s, or 1.12× longer,
while the colocated schedule finished within 66.52 s, or 1.27× longer.

5.2 BWA workflow

The results for BWA are similar as for Montage and therefore we briefly discuss
them. Since Sampe uploads 11.4MB, the AL deployment needs 0.46 s upload time
to GL, which is 0.2 s faster than storing it to AL storage. Since data is already
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in GL, StoreLess schedules Merge as AFGL for downloading and uploading
45.6MB. Notably, the estimated upload time for ALGL is 0.8 s, which is lower
than the AFGL’s 0.85 s. The StoreLess schedule improvement is visible in the
last three functions in Fig. 3b, i.e., running them 4% faster than colocated.

Function
AL input region GL input region

StoreLess FedFaaS StoreLess FedFaaS
r rs r rs r rs r rs

split AL AL AL AL GL GL GL GL
index AL AL AL AL GL GL GL GL
aln1 AL AL AL AL AF GL AF GL
aln2 AL AL AL AL AF GL AF GL
sampe AL GL AL AL AF GL AF GL
merge AF GL AL AL AF GL AF GL
sort AL GL AL AL AF GL AF GL

(a) BWA
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(b) input in AL.
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(c) input in AL.

Fig. 3: Schedules and executions with BWA and input in AL and GL.

6 Related work

xAFCL [8] introduced a model to distribute bags of tasks as parallel loop itera-
tions across multiple cloud regions. Similarly, FaDO [10] distributes files across
multiple regions and colocates functions. However, both systems configured the
loop iteration functions to access the colocated storage, assuming maximal per-
formance. Recently, FaaSt [6] introduced a more granular distribution of work-
flow functions scattered in federated FaaS, which achieves better performance
than xAFCL. However, the trade-off is that all workflow functions access single
storage. StoreLess overcomes this weakness by allowing functions to dynami-
cally select the storage regardless of the region where they are deployed.

Cheaper and faster sky computing. The high data transfer price is higher for
cross-regional data transfers as it stems from external networking services to
third-party providers. However, sky computing observations [13] reported cross-
provider executions dominating the colocated ones in makespan and costs for ML
pipelines thanks to the big data platforms overcoming the data transfer costs.

7 Conclusion and future work

We introduced StoreLess, a novel scheduler that minimizes the makespan
of serverless workflows by exploiting that colocated functions and storage do
not always provide the lowest transfer time. The main novelty introduced by
StoreLess is a list-based orchestration heuristic to determine function deploy-
ments and storage attachments that maximize performance.

We plan to extend our work in two directions: 1. develop other serverless
workflows for memory-intensive satellite image processing AI model training and
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federated learning and apply StoreLess in federated serverless infrastructures;
and 2. extend StoreLess to consider passing of intermediate data to workflow
functions by-reference or by-value, as well as transformation of the control and
data flow of the workflows to reduce data transfers.
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