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Abstract—In the realm of edge intelligence, emerging video
analytics applications are often based on resource constrained
edge devices. These applications need systems which are able
to provide both low-latency and high-accuracy video stream
processing, such as for object detection in real-time video streams.
State-of-the-art systems tackle this challenge by leveraging edge
computing and cloud computing. Such edge-cloud approaches
typically combine low-latency results from the edge and high
accuracy results from the cloud when processing a frame of
the video stream. However, the accuracy achieved so far leaves
much room for improvement. Furthermore, using more accurate
object detection often requires having more capable hardware.
This limits the edge devices which can be used. Applications
related to autonomous drones, with the drone being the edge
device, give one example. A wide variety of objects needs to be
detected reliably for drones to operate safely. Drones with more
computing capabilities are often more expensive and suffer from
short battery life, as they consume more energy. In this paper, we
introduce VATE, a novel edge-cloud system for object detection
in real-time video streams. An enhanced approach for edge-
cloud fusion is presented, leading to improved object detection
accuracy. A novel multi-object tracker is introduced, allowing
VATE to run on less capable edge devices. The architecture of
VATE enables it to be used when edge devices are capable of
running on-device object detection frequently and when edge
devices need to minimise on-device object detection to preserve
battery life. Its performance is evaluated on a challenging, drone-
based video dataset. The experimental results show that VATE
improves accuracy by up to 27.5% compared to the state-of-the-
art system, while running on less capable and cheaper hardware.

Index Terms—Video Analytics, Edge Intelligence, Edge Com-
puting, Edge-Cloud Systems, Object Detection, Object Tracking

I. INTRODUCTION

Detecting objects fast and accurately in dynamic environ-
ments remains a challenge [1] [2]. Applications that utilize
intelligent drones, intelligent cars, and augmented reality
headsets, are all exposed to such environments, where the
surroundings change rapidly within a few frames as the drone,
car, or headset moves or as any object in the environment
moves [3]. Reliable object detection is one of the foundational
problems that needs to be solved to enable these applica-
tions [1]. Streaming video analytics systems can be built for
operation at the edge to tackle this. These systems need to
process frames with high accuracy and at a high frame rate [3].

The most accurate models can be leveraged with fast
inference only by running them in the cloud [3]. Vision

transformers, like [4], have for example made significant
progress in recent years, but are computationally expensive
models, making them infeasible to be used on edge devices for
fast object detection. At the same time, communicating with
models in the cloud incurs a latency overhead in itself [3]. In
the context of systems that need to operate at a high frame rate
and target dynamic environments, this becomes problematic as
object detections coming from cloud models can be outdated
when they finally arrive.

Edge computing offers a lower latency alternative to using
the cloud by moving data processing closer to the data sources
[5] [3]. Nowadays GPUs and tensor processing units (TPUs)
provide computational acceleration at the edge, making it
possible to leverage deep neural networks, in particular convo-
lutional neural networks for object detection, on edge devices
by running inference operations directly at the edge [5] [6].
However, the computational power of edge devices does not
match that of the cloud, resulting in limitations on the accuracy
of the object detection models that can be used at the edge [6].

State-of-the-art systems combine object tracking, edge ob-
ject detection, and cloud object detection [6]. Typically, results
from the edge and the cloud are combined, which enables
the system to achieve higher object detection accuracy. RE-
ACT [6] showed that up-to-date, lower-accuracy edge and
outdated, higher-accuracy cloud object detections can be fused
to improve the accuracy in dynamic environments while being
able to process frames at a high frame rate. Nevertheless, many
challenges remain in developing these systems [3].

In this paper, we introduce VATE1, a novel edge-cloud
system for object detection in real-time video streams. VATE
is inspired by REACT, which gives the state-the-of-art system.
VATE extends the design of REACT in several directions and
presents the following contributions:

• An enhanced algorithm for fusing edge and cloud object
detections, leading to improved object detection accuracy
by 27.5% compared to the state-of-the-art algorithm,
while the system is running on less capable and cheaper
edge hardware.

• A novel multi-object tracker that enables running VATE
on the less capable edge devices. VATE runs on a Nvidia
Jetson TX2, which is less capable than a Nvidia Jetson

1The source code is available at https://github.com/polaris-slo-cloud/vate



Xavier, as was used to evaluate the state of the art. The
TX2 is also available on many commercial drones.

• Two novel coordination algorithms to support on-device
object detection and offloading of object detection to a
combination of edge and cloud servers. This allows the
system to be used with the less capable edge devices and
in scenarios where object detection on edge devices needs
to be avoided to preserve battery life.

The system is evaluated on the VisDrone-VID2019
dataset [2] and the performance of our system under different
deployment options is investigated.

The rest of this paper is organized as follows: In Section
II, the system design, architecture, and deployment modes of
VATE are described. Section III presents the main runtime
mechanisms used by VATE. The implementation is depicted
in Section IV. Section V describes how VATE is evaluated and
the experimental results achieved by it. Sections VI and VII
introduce related work and conclude this paper, respectively.

II. VATE SYSTEM DESIGN & ARCHITECTURE OVERVIEW

The system consists of 3 components:
1) Edge Server: Runs inference using the edge object

detection model
2) Cloud Server: Runs inference using the cloud object

detection model
3) Edge Device: Runs object tracking and is supported by

both: (i) Object detections from the Edge Server: De-
pending on the configured mode, these can be received
synchronously or asynchronously. (ii) Object detections
from the Cloud Server: These are always received asyn-
chronously.

An overview of the architecture of VATE is shown in
Figure 1. A frame from the VisDrone-VID2019 dataset being
processed by VATE is shown in Figure 2. Annotations are
displayed in green. The objects detected by the edge model
are displayed in blue, if enhanced by the cloud model in red.

Fig. 1. VATE architecture overview

An Edge Server request consists of an encoded frame. A
predictor runs the object detection for this frame. Multiple
predictors are supported by VATE. In particular, a Jetson
predictor is available, which uses an object detection model
and leverages the hardware capabilities of the Nvidia Jetson

Fig. 2. Example frame with objects detected by VATE

platform. The response to these requests represents the de-
tected objects, each consisting of a category, a bounding box
and a score. A Cloud Server request consists of a frame as
well. An object detection model is used to respond to the
requests with detected objects.

The Edge Device represents the component that uses the
detected objects, for example running on a drone, a car, or
an augmented reality headset. It sends frames to the Edge
Server to get up-to-date, lower-accuracy detected objects.
Inter-process communication (IPC) is used for this commu-
nication if the Edge Server component is running on the
same device as this component, otherwise, TCP is used. For
communication with the Edge Server, the Edge Device can use
sync or async mode. A detection rate d is used by these modes.
It influences how often frames are sent to the Edge Server and
how often object tracking is used. The modes are described
in Section III by the coordination algorithms. Additionally,
the Edge Device sends a frame to the cloud to get outdated,
higher-accuracy detected objects as often as possible. It sends
the current frame to the Cloud Server every time objects from
the cloud are received and processed. This happens irregularly
and is dependent on the response time of the Cloud Server and
the network.

On start-up, the Edge Device creates a separate process
that is used for cloud object tracking. This process takes
the objects detected by the Cloud Server and uses a multi-
object tracker and previous frames to provide up-to-date cloud-
detected objects to the main process. To reduce CPU usage and
the amount of data being exchanged, a cloud tracking stride
s ≥ 1 can be specified. Only every sth frame of the previous
frames is sent to the cloud tracking process. This results
in certain frames not being used for cloud object tracking.
s = 2 and s = 3 were found to work well. See [6] for more
information on the concepts of a detection rate/frequency and
a cloud tracking stride.

The up-to-date cloud-detected objects are fused with edge-
detected objects by the Edge Device. This is called edge-
cloud fusion. A custom edge-cloud fusion algorithm is used,
which is presented in Section III. The result of this edge-cloud
fusion is up-to-date, higher accuracy detected objects. The
detected objects coming from the Edge Server are enhanced
with detected objects from the Cloud Server.

The detected objects are used to prepare the objects to be
tracked by the multi-object tracker for the next frames. This
object tracking uses a custom CPU-based multi-object tracker.



The multi-object tracker takes a frame as input and outputs a
tracking result based on the current objects to track.

Figure 3 illustrates the high-level model of VATE from the
perspective of the Edge Device. The inputs and their impact
on aspects of the Edge Device are illustrated. The result
corresponds to the detected objects. The result processing is
determined by the concrete application.

Fig. 3. The model of VATE from the perspective of the Edge Device.

A. Deployment options

1) Edge Device and Edge Server on the same physical
device: This option is shown in Figure 4. It is seen as
suitable for intelligent cars, which have onboard hardware
acceleration. As both edge components are running on the
same device, IPC can be used. There is no network between
the edge components, thus object detections can be received
synchronously without severely limiting the number of frames
that the system can process.

Fig. 4. The deployment option with Edge Device and Server on the same
physical device.

2) Edge Device and Edge Server on different physical
devices: This option is shown in Figure 5. It is seen as
suitable for drones used at industrial facilities and AR headsets
used in cities. Battery life is assumed to be a major concern.
Offloading to a nearby Edge Server is possible. The Edge
Server leverages hardware accelerators (like GPUs). It needs
to be located close to the Edge Device, for example in
the same city, to able to respond to requests of the edge
devices sufficiently fast for the desired frame rate. As the edge
components are not running on the same device, TCP must be
used. Since there is a network between the edge components,
edge object detections should be received asynchronously to
avoid lag in the video.

III. VATE MAIN RUNTIME MECHANISMS

A. Enhanced edge-cloud fusion algorithm

A custom edge-cloud fusion algorithm is used by the Edge
Device. The algorithm is shown by Algorithm 1. The edge-
cloud fusion algorithm takes current objects, new objects, and
a source of the new objects (Edge or Cloud Server) as its

Fig. 5. The deployment option with Edge Device and Server on different
physical devices.

input and returns a list of enhanced detected objects. The
current objects can be edge detected and the new objects cloud
detected or vice versa.

An Intersection over Union (IoU) matrix based on the
bounding boxes of the current and new objects is calculated,
giving the IoU of each current object with each new object
(line 1). A linear sum assignment is performed (line 3). The
result is used to build the collection of enhanced detected
objects. For current objects that are matched by new objects
(line 5), the resulting category and bounding box are deter-
mined by the source of the new objects. If the source is the
cloud, then the category is taken from the new object, and
the bounding box is taken from the current object (lines 6-9).
This leverages the fact that the cloud model is more accurate,
thus the category determined by it is used. As frames may
have passed and there is a matching current object, its up-to-
date bounding box is used. If the source is the edge, then the
category of the current object is taken, and the bounding box
from the new object is used (lines 10-13). This ensures that the
more accurate categories are retained, and up-to-date bounding
boxes are used. For current objects which are unmatched by
new objects, the new object is used as-is (line 17). For details
on these aspects of the algorithm, see [6].

Unlike existing approaches, the current objects that are
unmatched by new objects are kept in the result (lines 18-
20) if the current objects are coming from the Edge Server.
This avoids discarding a detected object from the Edge Server
when there is no corresponding detected object from the Cloud
Server and was found to increase accuracy.

B. Coordination algorithms

VATE provides two coordination algorithms, which show-
case the main loop used by the system for processing a frame.
Both algorithms include the details on how the Cloud Server is
incorporated asynchronously. The algorithms differ in how the
communication between Edge Device and Edge Server works.

The coordination algorithm for sync mode is shown by
Algorithm 2. With sync mode, the Edge Device sends every
dth frame to the Edge Server to get detected objects for that
frame (lines 4-5). The Edge Device waits until it has received
the detected objects. For the frames between every dth frame,
object tracking is used based on the last detected objects (line
10).

The coordination algorithm for async mode is shown by
Algorithm 3. With async mode, at least every dth frame is
sent to the Edge Server. The Edge Device does not wait



Input: A list of current objects objscurr, a list of new objects
objsnew, a source typenew (“EDGE” or “CLOUD”)

Output: Collection of objects with their source
1: M ← ComputeIOUMatrix(objscurr, objsnew)
2: M [M < 0.5]← 0
3: curr objs, new objs← LinearSumAssignment(M,

maximize = true)
4: for curr obj, new obj in curr objs, new objs do
5: if M [curr obj][new obj] ̸= 0 then
6: if typenew = “CLOUD′′ then
7: category ← new obj.category
8: bbox← curr obj.bbox
9: end if

10: if typenew = “EDGE′′ then
11: category ← curr obj.category
12: bbox← new obj.bbox
13: end if
14: o← {category, bbox, new obj.score}
15: result.append((o, typenew))
16: else
17: result.append((new obj, typenew))
18: if typenew = “CLOUD′′ then
19: result.append((curr obj, “EDGE′′))
20: end if
21: end if
22: end for
23: return result

Alg. 1. Enhanced edge-cloud fusion algorithm

for the detected objects, except when d frames have passed
without newly detected objects (line 9). Instead of waiting,
after sending the frame to the Edge Server, it continues to use
object tracking and checks once every frame whether newly
detected objects are available from the Edge Server (line 12). If
newly detected objects are available, object tracking is used on
the frames that have passed since sending a frame to the Edge
Server (lines 16-17). This makes the received detected objects
up to date with regards to the current frame. The assumption is
that since the Edge Server provides up-to-date, lower-accuracy
detected objects, only a few frames will pass between sending
a frame and receiving the detected objects. This object tracking
fills the small gap introduced by these frames passing and by
the async mode.
process objects received from cloud() checks whether

objects have been received from the Cloud Server. If this is the
case, it sends them to the cloud tracking process and triggers
the next asynchronous request for cloud objects.

C. Multi-object tracker

A custom CPU-based multi-object tracker, which manages a
list of objects to track, is used by the Edge Device. The multi-
object tracker uses a single object tracker for each object to
track. As such, potentially many single-object trackers are used
at the same time. It was found that using many CSRT or KCF
trackers makes it infeasible to reach the desired frames per

1: while true do
2: frame← next frame()
3: reset tracker ← false
4: if frame count%detection rate = 0 then
5: edgenew ← request edge objects sync(

frame)
6: cloudcurr ← cloud objects of curr objs
7: curr objs← fuse edge cloud objects(

cloudcurr, edgenew, “EDGE′′)
8: reset tracker ← true
9: else

10: curr objs← track objects(frame)
11: end if
12: process objects received from cloud()
13: if cloud tracking result is available then
14: cloudnew ← cloud tracking result
15: edgecurr ← edge objects of curr objs
16: curr objs← fuse objects(

edgecurr, cloudnew, “CLOUD′′)
17: reset tracker ← true
18: end if
19: if reset tracker then
20: set tracker objects(frame, curr objs)
21: end if
22: frame count← frame count+ 1
23: process objects(curr objs)
24: end while

Alg. 2. Coordination algorithm - Sync mode

second (FPS) on limited edge devices, like the Nvidia Jetson
TX2. For this reason, the MOSSE tracker is leveraged instead.

When adding an object to track to the multi-object tracker,
the tracker is created and initialized with the bounding box
of the detected object. This collection of MOSSE trackers is
used when object tracking is leveraged on new frames. If the
object to track has a score lower than a threshold, no tracker
is created, meaning only objects with a score greater than or
equal to this threshold are tracked. This is done to reduce CPU
usage and to be able to process frames at the desired rate.

For objects to track with a score below this threshold, the
behaviour is dependent on the configuration of the multi-
object tracker. The tracker can assume that the objects do not
move and decay their score. As there are frequent requests
for detected objects from the Edge Server, there are only a
few frames where tracking is used in between those detected
objects. In these few frames, many objects will not move
drastically due to the spatiotemporal correlation of video
frames, which is why this option was introduced. The same
behaviour is used when tracking of a single object fails,
meaning it is assumed that the object does not move and its
score is decayed, when the said option is used. Alternatively,
when the score is too low or tracking of a single object fails,
the tracker can be configured to drop the object. The main
object tracker uses the option to assume no movement and the
cloud object tracker uses the drop option. The objects tracked



1: while true do
2: frame← next frame()
3: reset tracker ← false
4: if no edge request in progress then
5: request edge objects async(frame)
6: frames until current← []
7: end if
8: frames until current.append(frame)
9: if length(frames until current) ≥ detection rate

then
10: wait for objects from edge
11: end if
12: if objects received from edge then
13: edgenew ← objects from edge
14: cloudcurr ← cloud objects of curr objs
15: objs← fuse objects(

cloudcurr, edgenew, “EDGE′′)
16: set tracker objects(

head(frames until current), objs)
17: curr objs← track objects until current(

tail(frames until current))
18: else
19: curr objs← track objects(frame)
20: end if
21: process objects received from cloud()
22: if cloud tracking result is available then
23: cloudnew ← cloud tracking result
24: edgecurr ← edge objects of curr objs
25: curr objs← fuse objects(

edgecurr, cloudnew, “CLOUD′′)
26: reset tracker ← true
27: end if
28: if reset tracker then
29: set tracker objects(frame, curr objs)
30: end if
31: frame count← frame count+ 1
32: process objects(curr objs)
33: end while

Alg. 3. Coordination algorithm - Async mode

by the main object tracker are updated frequently, as such it
was found that said assumption works well here. For the cloud
object tracker, it was found that dropping is preferable as the
detected objects are too outdated to assume no movement.

IV. IMPLEMENTATION

The Edge Device and Edge Server components are imple-
mented using Python. jetson-inference is used for detecting
objects on the edge, leveraging the edge object detection
model. It uses TensorRT to optimize and run networks on
GPUs. pycocotools and scipy are used to implement the edge-
cloud fusion algorithm. A collection of the single object
trackers provided by opencv-contrib-python is used for multi-
object tracking. In particular, the MOSSE tracker is leveraged.
The communication between the Edge Device and Edge Server

is implemented using ZeroMQ sockets via pyzmq. When using
IPC, the ZeroMQ local inter-process communication transport
is used. Otherwise, the ZeroMQ unicast transport using TCP
is leveraged. The Cloud Server corresponds to a model being
served by TorchServe in the cloud, on a machine with access
to data center GPUs.

The models used by the Edge and Cloud Server are trained
using the VisDrone-DET2019 dataset [1]. It consists of images
captured by drones. MobilenetV2 SSD [7] is used as the edge
model. Either Faster R-CNN [8] or Swin transformer [4] is
used as the cloud model. The MobileNetV2 SSD which was
trained works with images of size 512x512 as its input, given
to it by the Edge Server. Images of size 1333x800 are sent
to the Cloud Server and used by the cloud models. The tools
provided by [9] are used to train the MobileNetV2 SSD and
to convert it to an ONNX graph. Faster R-CNN and Swin
transformer are trained using the mmdetection toolbox [10].

V. EVALUATION

VATE is evaluated using 4 experiments. In our experiments,
VATE processes videos of the VisDrone-VID2019 test-dev
dataset [2]. Accuracy is measured using mAP@50. This is
repeated using different modes, models, and configurations.
The Edge Device and Edge Server are located in Vienna.
The Cloud Server is deployed on an AWS EC2 instance of
type p3.2xlarge in the Frankfurt region. For the deployment
option with Edge Device and Edge Server on the same physical
device, the Edge Device and Edge Server components are
running on an Nvidia Jetson TX2. For the deployment option
with Edge Device and Edge Server on different physical
devices, the Edge Server component is running on an Nvidia
Jetson TX2 and the Edge Device component is running on
a laptop. Both physical devices are connected to the same
WiFi network. The laptop represents any physical device with
a sufficiently powerful CPU for the object tracking.

Scenarios are described as {model}-{mode}-{communi-
cation}-{*fusion}, where

1) model ∈ {faster-rcnn, swin-t}, representing the
cloud model used.

2) mode ∈ {sync, async}, representing the mode used.
For sync mode, a detection rate d = 5 is used. For
async mode, a detection rate d = 10 is used.

3) communication ∈ {ipc, tcp}, representing whether
IPC or TCP is used. IPC implies that Edge Device and
Server are on the same physical device, whereas TCP
implies that they are on different physical devices.

4) fusion can optionally specify that the original edge-
cloud fusion algorithm is used, referring to Algorithm 1
without the lines 18-20. If omitted, the enhanced edge-
cloud fusion algorithm is used.

The results obtained by the scenarios are used for the
evaluation of the experiments. 8 scenarios are tested: faster-
rcnn-sync-ipc, swin-t-sync-ipc, faster-rcnn-sync-ipc-original-
fusion, swin-t-sync-ipc-original-fusion, faster-rcnn-async-tcp,
swin-t-async-tcp, faster-rcnn-sync-tcp, swin-t-sync-tcp



A. Experiment: VATE compared to REACT

The goal of this section is to compare VATE to REACT with
regards to accuracy, where the enhanced edge-cloud fusion
algorithm is the primary contribution of this work. To represent
the approaches used by REACT, the *-sync-ipc-original-fusion
scenarios are used. These represent REACTs architecture,
coordination algorithm and fusion algorithm. The VisDrone-
VID2019 dataset, which was used to evaluate REACT, is
used here. faster-rcnn-sync-ipc-original-fusion achieves results
comparable to the ones reported by REACT for the model
combination MobileNetV2 SSD + Faster R-CNN.

Said scenarios are compared to the *-sync-ipc scenarios,
where the enhanced fusion algorithm is used. As such, the
enhancement of the fusion algorithm is evaluated in isolation.
Figure 6 summarises the edge-cloud fusion algorithm results.

Fig. 6. Edge-cloud fusion: faster-rcnn-sync-ipc-original-fusion next to faster-
rcnn-sync-ipc, swin-t-sync-ipc-original-fusion next to swin-t-sync-ipc

When using Faster R-CNN as the cloud model, the enhanced
edge-cloud fusion leads to a 22.7% increase in accuracy,
when compared to the original edge-cloud fusion. For Swin
transformer, the increase in accuracy is 27.5%. As such,
when comparing the approaches used by VATE and REACT
using the same edge and cloud model, VATE achieves an
up to 27.5% higher accuracy than REACT, attributed to the
enhanced edge-cloud fusion algorithm.

The enhancement of the edge-cloud fusion algorithm is that
a detected object from the edge model is kept even if there
is no corresponding detected object from the cloud model.
More weight is given to the edge model, which provides up-
to-date, lower accuracy object detections. They are of lower
accuracy compared to the cloud model, but they are not of
low accuracy with current edge object detection models. This
idea of giving more weight to the edge can be generalized
and applied to tasks other than object detection. Approaches
leveraging redundant computations on the edge and the cloud
are likely applicable to other tasks, like human pose-estimation
or instance segmentation [6].

By using different model combinations, REACT achieves
higher accuracy, in particular when using more capable edge
models which require more capable edge devices. Comparing
the cloud models based on the results reported by REACT,
Swin transformer lands between CenterNet [11] and Reti-
naNet [12] in terms of added accuracy for this use case.

B. Experiment: Impact of offloading edge object detection

The ability to offload edge object detection makes VATE
support varying edge device capabilities and constraints like

battery life. The goal of this section is to compare sync and
async mode concerning the impact that offloading of edge
object detection has on the time to process frames. Measuring
said impact is done by measuring how often the frame rate
drops below m, the desired frame rate. The focus is on videos
recorded at a constant frame rate m. When displaying a
video while VATE is processing it, such a frame rate drop
is noticeable in the form of lags and is highly undesirable for
low-latency object detection.

For the VisDrone-VID2019 dataset, m = 24 is assumed. An
FPS value is calculated for every frame and the distribution
of the FPS values is analysed. The FPS value vi for a frame
i is calculated as vi = 1/f , where f represents the frame
processing time in fractional seconds. FPS values vi greater
than m are set to m, as the desired frame rate is achieved. If
this is not achieved, then the system cannot process frames
at the desired rate, leading to lags. For each scenario, the
standard deviation of these FPS values is calculated. As most
frames are processed at or above the desired rate, a lower
standard deviation indicates fewer lags in the video. Figure 7
summarises the edge object detection offloading results.

Fig. 7. FPS values: faster-rcnn-sync-tcp next to faster-rcnn-async-tcp, swin-
t-sync-tcp next to swin-t-async-tcp

When offloading edge object detection and using Faster
R-CNN as the cloud model, async mode leads to a 42.7%
decrease in standard deviation, when compared to sync mode.
For Swin transformer, the standard deviation decrease is
45.2%. The lag, which is noticeable in the video when using
sync mode, disappears with async mode. The idea of provid-
ing edge devices with asynchronous edge and cloud object
detections is demonstrated to work by VATE. The approach
of offloading to edge and cloud servers can be applied to tasks
other than object detection as well.

C. Experiment: Accuracy of VATE

The goal of this section is to evaluate the accuracy impact
of offloading edge object detection, compared to doing on-
device edge object detection, and to demonstrate that both sync
and async modes benefit from more capable cloud models.
The accuracy of VATE is evaluated by looking at different
combinations of modes and models. Figure 8 summarises the
accuracy results.

For sync mode, using Swin transformer as the cloud model
results in a 20% higher accuracy compared to using Faster R-
CNN. For async mode, a 14.5% accuracy increase is achieved.
This shows that sync and async mode benefit from more
capable cloud models. Said offloading comes with a loss in



TABLE I
VATE COMPARED TO RELATED SYSTEMS

Features VATE REACT [6] Glimpse [13] Marlin [14] Edge-Assist. [15] EC²Detect [16]
detection on edge device Yes Yes No Yes No No

offloading detection to edge or cloud server Yes Yes Yes No Yes Yes
offloading detection to edge and cloud server Yes No No No No No
redundant detection on edge and cloud server Yes Yes No No No No

Fig. 8. Accuracy: faster-rcnn-sync-ipc, faster-rcnn-async-tcp, swin-t-sync-ipc
and swin-t-async-tcp

accuracy, compared to doing on-device edge object detection,
as the edge object detections are delayed due to the network
and as more object tracking is required. Going from sync mode
with IPC to async mode with TCP leads to a 34.7% decrease
in accuracy when using Faster R-CNN. The decrease is 37.9%
when using Swin transformer.

D. Experiment: System-related metrics of VATE

The CPU and network usage of VATE are evaluated next.
The approach of using CSRT trackers, as suggested by

REACT, turned out to be problematic for VATE, as it is
running on less capable hardware. The density of small objects
in the dataset leads to a need for many single-object trackers.
When using a multi-object tracker based on CSRT trackers,
the average CPU utilization of VATE goes to ≥ 95% on our
edge infrastructure and the FPS drops below 1. By leveraging
MOSSE trackers instead, VATE is able to achieve 24 FPS
while running at 60%− 70% CPU utilization on average.

The network bandwidth used by the communication be-
tween Edge Device and Cloud Server is 291 KB/s on average,
with the maximum value being 492 KB/s. When offloading
edge object detection and using async mode, the network
bandwidth used by the communication between Edge Device
and Edge Server is 355 KB/s on average, with the maximum
value being 736 KB/s. These numbers suggest that VATE can
be used with many network technologies, like 4G and 3G.

VI. RELATED WORK

Past works [17] show a trend that the most accurate models
often come with the lowest FPS values. Currently, streaming
video analytics systems have to choose a middle ground
between model accuracy and achievable FPS. Low FPS is
a severe issue when edge devices are used, often making
streaming applications impractical.

The exact desired FPS for streaming video analytics use
cases, like ones involving drones, varies. This work assumes
it to be between 10 and 40 FPS, for drones specifically around

24 FPS (see for example [17]). The Nvidia Jetson TX2 is used
to represent hardware in drones. In combination, this leads to
a realistic restriction in the models which can be used.

Existing systems, apart from REACT [6], either run less
accurate models which are fast enough on the edge device
or run no GPU intensive models on the edge device at all,
offloading this to an edge or cloud server. Marlin [14] opted
for the former option, whereas Glimpse [13], EC²Detect [16]
and Edge-Assist. [15] opted for the latter one.

REACT proposed a combination of both approaches, where
redundant computations in the edge and cloud are leveraged
to improve the accuracy of such systems. VATE is built on
this idea of REACT and enhances it as described. Sync and
async mode are introduced for edge object detection in VATE.
Respective coordination algorithms are given by this work.

Significantly higher mAP values have been achieved on the
VisDrone datasets (see for example [17]). To get these results,
either more capable models and hardware are leveraged, low
FPS is accepted or object detection is used on every frame,
which is infeasible for many edge devices [6]. These aspects
differentiate those approaches from our research.

Table I compares VATE with the related systems. Aspects
from these related systems can be seen as complementary and
used to improve the performance of VATE. This is the same
for VATE as is described by REACT: VATE benefits from
improved hardware in edge devices and this work is applicable
as long as there exists a performance gap between the edge
and cloud models. Models are continuously improving [1].
More capable edge models improve the accuracy of the system
and decrease the impact of cloud unavailability. More capable
cloud models and advances in multi-object tracking [18]
further improve the accuracy of the system.

Furthermore, improvements in network latency and edge
server infrastructure reduce the impact that offloading of edge
object detection has on the accuracy of VATE.

VATE belongs to a subset of edge intelligence called edge
video analytics (EVA) [3]. It fits the definition of EVA given
in [3], as the hierarchy of end, edge, and cloud devices is
leveraged by VATE to improve the accuracy and responsive-
ness of it as a video analytics system. In the context of
edge intelligence [5], systems like VATE deal with challenges
similar to the challenges of AI for edge research. The balance
between optimality and efficiency is particularly prevalent. The
goal to be optimized by the systems is Quality of Experi-
ence, determined by considering performance, cost, efficiency,
reliability, and privacy. The current focus of such systems
primarily lies on improving performance or cost (for example



computation cost, energy consumption). For the VisDrone
datasets in particular, performance remains a challenge, as is
reflected by the mAP values [1] [2]. Video analytics systems
have broad implications for privacy and must be used ethically.
This is discussed in [19], which presents a privacy-preserving
approach for video analytics queries.

VII. CONCLUSION & FUTURE WORK

This work introduced VATE, an edge-cloud system for
object detection in real-time video streams inspired by RE-
ACT [6]. The system presents an enhanced edge-cloud fusion
algorithm, a novel multi-object tracker, and coordination al-
gorithms. It runs on less capable and cheaper edge hardware
while achieving up to 27.5% higher accuracy than REACT
when using the same edge and cloud model combination on the
challenging VisDrone-VID2019 dataset [2]. VATE supports
varying capabilities of edge devices. The offloading of edge
object detection, in addition to cloud object detection, is
enabled.

However, building systems to enable low-latency, high-
accuracy object detection on a wide selection of edge
devices remains a challenge. To push the accuracy further,
usage of advanced multi-object tracking approaches, like
StrongSORT [20], can be investigated on the appropriate edge
devices. The privacy-related aspects can be incorporated into
VATE to make it more suitable for real-life scenarios. Like
with REACT, usage of the adaptive streaming perception [21]
can be explored. Finally, we intend to investigate the
serverless computing paradigm for efficient data processing
in the edge-cloud continuum [22] [23].
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