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Abstract—Internet of Things (IoT) systems open up massive
versatility and opportunity to our world. Providing solutions
for smart cities, healthcare, energy, and mobility, such systems
increasingly permeate critical aspects of human activity. In a
flourish of growth, these complex systems run software, are
dynamic, without stable spatial and temporal boundaries, and
involve mostly independent software components with different
lifespans and evolution models. IoT systems provide data-centric,
device-centric and service-centric functionalities that are subject
to continuous disruption, under limitations such as resource-
constrained devices, platforms heterogeneity, deployment in ad-
verse environments and administrative domains. As these sys-
tems evolve and gain complexity, resilience becomes a crucial
system property. Bolstering resilience entails understanding and
systematically managing dynamic behavior and decentralizing
operations. We advocate that to systematically engineer resilience
in IoT systems, a complete rethink is necessary regarding their
design and operation. In this paradigm shift, systems demand
conceptual frameworks, techniques, and mathematically-backed
formalisms to treat change and achieve decentralization. We out-
line a vision for addressing fundamental challenges that software
engineering and distributed systems research encounters when
building resilient IoT systems. Within a roadmap, we identify
techniques and methods that can be leveraged to maintain
resilience in the face of disruption, especially in the absence of
central control and persistently at the system’s runtime.

I. INTRODUCTION

The recent evolution towards an increasingly integrated

world has at its basis novel types of large-scale distributed sys-

tems achieved through new technologies and paradigms such

as the Internet of Things (IoT), inducing systems composed

of heterogeneous devices, computing infrastructures and cloud

services. With these novel types of distributed systems also

come along new types of requirements and an increasing need

of satisfying them in a dependable manner [1], as systems

often address societal challenges such as solutions for smart

cities, healthcare, energy, and mobility, permeating more and

more critical aspects of human activity.

IoT already bridges a number of research communities –

from sensing, networking, and cyber-physical systems to con-

trol theory. IoT is increasingly made up of software, as devices

now increasingly host (or are near) software stacks which man-

age data, interact with users, or implement control facilities.

Complex software IoT systems [2] often (i) lack clearly stable

spatial and temporal boundaries, (ii) are dynamic, and (iii)

entail mostly independent software components with different

lifespans and evolution models. Despite these common traits,

these systems are quite different regarding system structure,

environments they operate in, execution and coordination

among elements within them.

IoT provides data-centric, device-centric and service-centric

functionalities that are subject to continuous disruption, under

limitations such as resource-constrained devices, platform het-

erogeneity, deployment in adverse environments or unknown

administrative domains. This raises an abundance of issues

related to reliable system requirements satisfaction. In an

attempt to mitigate such deficiencies, often data or control

in IoT systems is architecturally offloaded to the cloud. This

however is not a panacea, as novel functional and non-

functional requirements dictate data, computation or control

to be situated locally near devices and not to the cloud. Such

requirements may capture diverse system concerns ranging

from reliability to performance or privacy, whose satisfaction

suggests placing computational, control and data resources and

facilities close to IoT end-devices [3].

As a class of distributed systems on its own, IoT is quite

different. Connected devices are often distributed in space

and their environment context is dynamic and composite [4];

it embeds both physical and computational aspects, as de-

vices interact with the physical world. Similarly, software

components hosted on IoT devices may belong in different

administrative domains or legal jurisdictions. Thus, locality

emerges as a key contextual characteristic. Distribution in

space raises execution aspects as well, and communication

becomes an issue when internet-connected devices rely on

remote cloud facilities. From an engineering perspective, the

way applications are built differs from traditional systems.

Firstly, devices are heterogeneous and typically host software

stacks of varying complexity. Their software is also developed

and maintained by different teams, by communities which may

originate in other engineering disciplines and dominated by

their practices, tools and domain knowledge. Finally, despite

all such differences, IoT as any other complex software system

is increasingly sought to be dependable [1], as applications

increasingly require guarantees of meeting their design goals.

This poses challenges, as IoT software components are faced

with constant disruption – e.g., internal faults may lead to

service unavailability, connectivity to cloud control structures

may not be persistent, transfer of administrative domains may

occur, or the current circumstances a device is found in may

be untrusted.
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The IoT ecosystem is made up of different devices and

scales and accordingly is often considered from different

viewpoints – from sensor networks to software engineering.

We consider IoT devices that range from internet-connected

sensors and actuators to powerful cloudlets and gateways

deployed close to end-devices. Notice that IoT devices – from

microcontrollers to mobile phones and micro-clouds – are

made up of software; of course, in various degrees and with

varying abilities. Even microscopic sensors expose microser-

vices [5]–[7], while complex computational processing may be

performed on mobile devices such as phones or cars [8]. We

collectively refer to IoT entities able to host computational,

control and data facilities as edge components [9]. Edge

components may be themselves resource-constrained, low-

powered, but able to run software – they are typically deployed

at the network boundary and are heavily interacting with other

end-devices.

As IoT infrastructures are often deployed in unknown

or adverse environments, understanding and systematically

managing disruption to the system is key. Disruption is

an adverse change to system stability, which fundamentally

affects system requirements. An adverse change refers to

an external to the system (i.e. due to the environment) or

internal to the system (i.e. due to a fault) event, that may

lead to violation of its design goal witnessed especially in

the heterogeneous, possibly untrusted, highly distributed IoT

systems under investigation. In such systems, adverse changes

constitute disruptions that may affect resilience. We argue that

the key to resilient IoT systems lies in providing engineering

support for the paradigm shift from a traditional centralized

system design, configuration and operation of coupled cloud-

IoT, to decentralized IoT systems. This requires novel methods

spanning design and operation of IoT systems. Given the

abundance of taxonomies in the wider engineering field [10],

our working definition of resilience in IoT systems is drawn

from ecological systems [11] – we treat resilience as “the

persistence of reliable requirements satisfaction when facing

change” [12].

In this paper, we outline a vision for addressing the fun-

damental challenges that software engineering and distributed

systems research encounters when building resilient IoT sys-

tems. To this end, we propose a roadmap, mapping key

research challenges to bodies of work that have the potential

to realize large-scale, resilient IoT. First, from a requirements

engineering perspective, we need to characterize resilience;

identify its components and constituent properties, and rep-

resent them as well as the IoT systems under investigation

accordingly in analyzable models. Subsequently, we seek

to leverage mechanisms and techniques – particularly from

distributed systems and formal software engineering research

– of how they can maintain resilience in the face of disruption,

especially in the absence of a central control. The role of

data is certainly an integral part that must be investigated –

particularly how data flows between components that comprise

the IoT system. Finally, when the system is operational,

resilience must persist – thus, monitoring and validation must

occur at runtime, and possible counteractions that the system

can perform to mitigate issues must be devised. In essence,

we advocate that to achieve resilience, we have to equip edge

devices with higher-order reasoning regarding coordination,

data management, and runtime adaptive reasoning.

The rest of the paper is structured as follows. Section II

outlines the current landscape of software IoT. Section III

outlines challenges for resilient IoT, and provides a roadmap.

Subsequently, Section IV describes modeling and foundations;

Section V illustrates control and coordination as necessary

for resilient IoT; Section VI discusses data, and Section VII

describes runtime aspects. Section VIII concludes the paper.

II. SOFTWARE-DEFINED IOT SYSTEMS

The recent evolution toward an increasingly integrated

world has at its basis, novel types of large-scale distributed

systems achieved via new technologies and paradigms that

blend IoT, heterogeneous computing and communication in-

frastructures, mobile devices, and cloud services. Figure 1

provides a birds-eye view on contemporary software-defined

IoT systems; their elements are software components, and

each component has its own (possibly heterogeneous) soft-

ware stack. Often components are in different locations and

administrative domains, and their functionality is typically

exposed through software services. Devices may range from

computationally powerful mobile devices to microcontrollers

responsible for sensing or actuation, having minimal software.

Typical deployments may involve microscopic sensors as part

of a wireless infrastructure feeding data to network gateways,

forwarding it for cloud processing, or a computing infrastruc-

ture controlling processes through actuators operating upon the

physical environment in remote locations. The overall systems

are further characterized by mobility, unpredictable human

activity, and emergent behaviors. Edge entities able to host

computational, control and data facilities run software, are

typically situated at the network boundary and heavily interact

with other end-devices and resources [7].

To achieve the system’s high-level goals, coordination of

components lets their functionalities be composed. They may

also exchange data to do so, either with centralized cloud

facilities or among them. System modeling and validation can

enable formal and systematic reasoning of the requirements

that the overall system should satisfy. A key concept perme-

ating the IoT ecosystem is that dynamism – of the system’s

context as well as its software configuration – is omnipresent.

IoT systems provide data, device, and service functionalities

that are subject to continuous disruption [13]. Disruption can

be external or internal to system stimuli, something witnessed

especially in the heterogeneous, possibly untrusted, and highly

distributed IoT systems under investigation. In such systems,

it is important to factor in potential changes such as transfer of

administrative domains, internal faults, connectivity changes,

and non-persistent control structures. Specifically, the system

should change form to accommodate the external or internal

forces while continuing to satisfy its design goals. This raises

multiple issues related to reliable system requirements satis-

faction.
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Fig. 1. The current landscape of IoT, comprising of cloud, device and edge entities and IoT resources. To achieve resilience, software components situated
on heterogeneous devices, themselves located in different administrative domains or locales, must coordinate in a decentralized manner and exchange data.
Requirements reasoning facilities take into account design goals, while self-adaptation at runtime can ensure persistent requirements satisfaction.

III. RESILIENT IOT: EVOLUTION AND ROADMAP

As we observed, software-intensive IoT systems provide

data, device, and service functionalities that are subject to

continuous disruption. Functionality should be persistent un-

der limitations such as resource-constrained nodes, platform

heterogeneity, and deployment in adverse environments or

unknown administrative domains. In the following, we outline

specific challenges for engineering resilience in IoT, as well

as illustrate a roadmap.

A. Challenges for Engineering Resilience in IoT

IoT systems’ development context extends beyond writing

custom business logic components (e.g., services). When de-

veloping these systems, researchers must consider (1) the IoT

devices’ technical specification and configuration details (e.g.,

their capabilities), and (2) deployment and provisioning of

such services across geographically dispersed, heterogeneous

IoT infrastructures. The reasons for this include the business

logic’s complex and strong interdependence on underlying de-

vices (and their specific capabilities), and the novel (resource)

features that must be considered, such as device location and

IoT cloud resources’ heterogeneity.

Satisfying these new requirements in a dependable and re-

silient manner remains largely under-explored in contemporary

scientific literature. This becomes of paramount importance

when contemplating systems’ surge in development and op-

erations complexity, as we move from simple devices and

services to satisfying higher-level design goals. A current set-

back is that we lack suitable abstractions, analysis techniques,

runtime mechanisms, and software engineering best practices

to support development and operation.

To overcome this, resilience should become a first-class,

native concept in systems throughout the entire IoT software

stack. Inevitably, resilience is fundamental in building and op-

erating such systems, as it allows supporting dynamic demands

and governing system change, such as varying performance

and cost, as well as dealing with system disruption such as

failures, governance assurances, and software configuration

changes. Although studies have outlined general issues related

to a composite system’s reliable requirements satisfaction,

achieving resilience as a first-class, native “citizen” in IoT

presents significant challenges:

1) Addressing the inherent heterogeneity in software stacks,

languages, and architecture;

2) Eliminating central points of failure by component coor-

dination, autonomous control and data exchange;

3) Obtaining assurances on reliable requirements satisfaction

in an environment that may adversely change at the

system’s runtime operation; and

4) Addressing mobility and distribution of software com-

ponents between diverse administrative domains and lo-

cales.

B. Resilient IoT Roadmap

In this section, we present our research roadmap towards re-

silient IoT, which aims at achieving resilience in IoT systems.

The main high-level principles which underpin our roadmap

include:
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• First, we recognize that with the inherently different

nature of IoT systems, it is infeasible to adopt traditional

resilience mechanisms (e.g., as for fault tolerance) and

tailor them by making small and incremental changes.

• Second, we recognize that the required paradigm shift

cannot happen in a one-dimensional world view–instead,

it requires disrupting multiple relevant research fields

along several so-called disruption vectors.

• Third, we argue that resilience must be built into core

IoT component mechanisms natively, as opposed to

the traditional view of adding (self-contained) resilience

mechanisms (e.g., circuit breakers) to applications.

• Finally, we submit that the most groundbreaking results

will emerge as a combined effect of individual advance-

ments along the aforementioned disruption vectors.

Table 1 compares state-of-the-art research (e.g., in fog [14]

and edge [9] computing) and our vision of resilient IoT. There

is currently a wide gap between the current IoT systems and

resilient IoT systems of the future, considering our disruption

vectors. For each disruption vector, we identify four main

evolutionary steps, i.e., maturity levels (MLs) towards resilient

IoT systems:

(ML1) Traditional vertically coupled IoT systems;

(ML2) Hybrid IoT-Cloud systems;

(ML3) Edge-centric systems; and

(ML4) Resilient IoT systems.

Next, we briefly discuss the main disruption vectors. From

a pervasiveness perspective, to facilitate openness in IoT in-

frastructure and enable applications to consume IoT resources

uniformly as a full-fledged utility we need novel abstractions

and infrastructure virtualization approaches rooted in a formal

representation and treatment of resource capabilities [15], [16].

To reduce the coupling between applications and infrastructure

capabilities and to eliminate the need for manual service

management, we advocate a deviceless paradigm [17], [18].

This entails engineering a new set of techniques for service

orchestration and scheduling, as well as a set of resilience

mechanisms intrinsically built into IoT systems’ cores. For

validation of requirements of both infrastructure and appli-

cation logic, we advocate that IoT systems need formally

analyzable and verifiable models to enable reasoning, starting

from the early stages of design to models@runtime. Regarding

automation in operations techniques research in self-adaptive

systems must be brought in this new domain. In particular op-

erations and management processes [19], by employing novel

management and control techniques. Finally, enabling uncon-

strained inter-IoT communication and data flows is critical;

this can be achieved by developing fundamental mechanisms

and methodologies for data governance (on both the data and

control planes) among administrative domains and different

levels of trust [20], [21].

Based on this roadmap, we identify four main research di-

rections that we urge the community to investigate – those are

crucial in achieving the highest maturity levels of our disrup-

tion vectors (Table 2). We consider latency, heterogeneity, and

locality as particularly pertinent to resilience in IoT. Achieving

resilience entails system awareness through monitoring and

analysis, along with operating controllable components. A

system must have provisions to deal with change in those key

factors–otherwise, its requirements satisfaction in the face of

change may not persist. To realize this approach, we advocate

research directions that represent distinct scientific research

topics, yet whose combination could maximize impact in

achieving resilient systems:

1) Conceptual foundations and representations to address the

need for defining modeling and formal aspects related to

systematically engineering resilient IoT, as well as rele-

vant requirements concepts such as domain knowledge,

goals, context and scope (Section IV);

2) Coordination between system components is crucial,

leveraging current distributed systems research for soft-

ware engineering and addressing the non-central decision-

making theme that emerges as a key resilience attribute

(Section V);

3) Data as it is stored, processed, and transmitted in and

between components (Section VI); and

4) Operationalization, where runtime aspects and unforeseen

as well as emergent system behaviors that might hinder

resilience must be monitored, and potential counterac-

tions must be devised in a self-adaptive manner (Sec-

tion VII).

Such concepts manifest themselves in different scientific com-

munities within computer science and engineering, working

in diverse subfields such as software engineering or dis-

tributed systems. However, the common denominator is that

the paradigm shift to resilient IoT is theoretically and method-

ologically under-investigated. The following sections discuss

the fundamental topics identified by our roadmap.

IV. MODELING AND FOUNDATIONS FOR RESILIENT IOT

Reasoning about resilience requires first its precise charac-

terization, representation, and appropriate abstractions that can

enable systematic reasoning. After contextualizing resilience

as persistence of an IoT system’s requirements satisfaction

when faced with change, we argue that analyzable repre-

sentations of certain system aspects are necessary to enable

systematic reasoning.

A. Persistence of Requirements Satisfaction in IoT

Resilience in computing is the persistence of dependability

when facing change [10], and is understood as the ability

of a system to handle disruptions and variations that fall

outside the defined base mechanisms for being adaptive as

defined in that system [22]. Generally, in computer science,

it has been used in lieu of, and related to dependability,

fault tolerance, or robustness, especially within critical systems

engineering [12]. Resilience concepts have been investigated

for decades in fields ranging from critical and dependable

systems [23], embedded and cyber-physical systems [24], [25],

networks [26]–[28], security [29], [30], and cloud comput-

ing [31]. Engineering support similarly ranges from theoretical

foundations [32], operations and process [33], [34], formally

backed system validation [26], [35], quality control [36], and

fault management [37]–[39].
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ML1 IoT silos – vertically
closed and task-specific
IoT infrastructure

Business logic bundled and

shipped with IoT devices

Ad hoc requirements with
little to no validation

Exclusively manual inter-
actions with on-site pres-
ence

Proprietary and task-
specific communication
protocols. Isolated data
flows

ML2 Cloud-based platforms

for brokering IoT data

Services are decoupled,
with a hard line between
the IoT and cloud
responsibilities (business
logic)

Limited verification.
Parts of the system offer
service-level agreements

Partly automated opera-
tions processes, mainly
on the Cloud side

Unidirectional data flows,
with no explicit support for
data governance

ML3 Common access to spe-
cific types of resources
(gateways, cloudlets, and
microclouds)

Some shared services exist.
Services are partly man-
aged

Task-specific formal veri-
fication possible

Full automation of spe-
cific tasks. Manual inter-
actions still needed, but
mainly handled remotely

Bidirectional (Edge-Cloud)
data flows. Data gover-
nance limited to specific
domains

Table 1: Current state of the art within engineering IoT systems.

ML4 Edge infrastructure con-
sumed as a full-fledged
utility

Deviceless – business logic
fully managed and ab-
stracted from the infras-
tructure capabilities

Formally verifiable
requirements of both
infrastructure and
application logic

Autonomous control,
coordination and self-
healing

Unconstrained data flows.
Governance among admin-
istrative domains & trust
levels

Table 2: Future directions for engineering resilient IoT systems.

The challenge here is that the key taxonomical subconcepts

of resilience must be understood in terms of the IoT –

such concepts are required to be brought into the way we

design and operate contemporary IoT systems. We consider the

factors of locality (e.g., in physical or computational domains),

latency (e.g., in network connectivity), and heterogeneity (e.g.

in device or software stacks) as highly pertinent to reliable

requirements satisfaction in IoT. As such, the development of

usable abstractions and analyzable models should be geared

to reason on those factors.

B. Analyzable Models for Resilient IoT

This future challenge expresses the need for defining

modeling and representation aspects of IoT systems, which

demand conceptual frameworks and definitions to capture

key concerns; the environment and its uncertainty, software

configurations, and system objectives and overall design goals.

Then, mathematically backed formal methods can enable sys-

tematic engineering. Modeling the environment and software

configurations of IoT systems as well as their dynamics (to

enable formal reasoning about system properties) is a crucial

prerequisite for engineering systems that reliably satisfy re-

quirements and render them resilient. Thus, modeling is not

merely a representation, but a foundation for both design-time

analysis of resilience factors and resilient system operational-

ization. In essence, the factors that make IoT different must

be understood, captured and analyzed in a systematic way.

As we observed within IoT, system-wide requirements

may state desired collective behavior – however, devices

themselves, as they operate within different administrative

domains and dynamic environments may have possibly con-

flicting goals [40]. Domain knowledge may include environ-

ment uncertainty – hindering precise reasoning – while users

introduce variability. Thus, requirements methods (e.g. goal

modeling and validation [41], [42]) can be applied in novel

ways. Similarly, the organization of components into software

architectures must not be understood as static, as devices

may be updated by vendors, their interfaces changed and thus

their overall software configuration altered. Subsequently, such

model representations [43] –e.g. of environments, configura-

tions and requirements – can be analyzed. What we advocate

here, is that for IoT to become resilient, such aspects must be

systematically treated, especially in the ways that traditional,

established methods did not foresee.

IoT System Model IoT System Validation

Formal Verification
Software Testing

Satisfiability
…

Mechanisms

Environment & Uncertainty
Requirements & Goals
Software Configuration

Aspects
…

Fig. 2. IoT models as foundations for formal reasoning.

As a general methodology from a requirements engineering

perspective, the initial steps are to (i) characterize resilience,

identify its components and constituent properties and repre-

sent them; and (ii) capture representations of the IoT systems

under investigation in analyzable models. Representations, in

the form of views, can enable the assessment of a system’s

resilience attributes [44], [45]. Then, (iii) based on the de-
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fined resilience properties and system model representation,

this is a classical system validation and verification problem

(Figure IV). The verification process checks whether a given

system (i.e., a facet of an IoT system model) satisfies a

given correctness specification (i.e., resilience properties). The

challenge here is to leverage formal methods and verification

research from traditional software engineering and theoretical

computer science to this new domain, developing a modeling

discipline and methodology that captures and analyses re-

silience (i.e. through its various attributes). We foresee formal

aspects of software engineering to be leveraged, including

formal logics, computational models, and stochastic processes

or uncertainty quantification techniques.

In the engineering sense, this paves the way to adopt

reasoning tools developed by the software engineering com-

munity, such as requirements reasoning with qualitative and

quantitative model checking techniques including statistical,

systematic testing or satisfiability. This future challenge is

the foundational precursor of the others, as representation and

requirements validation are critical for engineering resilience

in every aspect. For example, validating distributed protocols is

fundamental for coordination and composition, and it requires

appropriate system representations; timeliness, availability and

privacy data characteristics needed for reliable inter-IoT data

exchanges can be expressed as quantitative logical properties;

verification and planning facilities needed to assess and ensure

resilience at runtime in a changing environment are naturally

a port to runtime of design time representations, enriched with

validation techniques suitable for system operation.

V. DECENTRALIZED COORDINATION

IoT applications can be of various types, software stacks,

and complexities, with multiple system components deployed

in diverse domains and contexts. Those, however, do not live

in isolation and must be able to coordinate to fulfill application

requirements [46]. In the following, we seek to leverage

mechanisms and techniques – particularly from distributed

systems and formal software engineering research – of how

systems can resiliently coordinate in the face of disruption,

especially in the absence of a central control.

A. Control and Coordination

Recall that IoT applications need to operate on diverse

infrastructures and integrate heterogeneous components from

various providers in a long-running system, with possibly

conflicting goals between components. Software-based control

here entails actively setting in motion configuration changes

to satisfy system objectives. Centralizing control – typically

in the cloud and evident in today’s IoT-cloud architectures

– partly mitigates such problems, but requires cloud control

structures to be always available, secure, and fault tolerant

(including other aspects such as within low latency). This has

been driven by necessity, as IoT may be comprised of sensor

devices whose operational program structures are minimal.

Coordination and control play a key role in several current

research streams, where various research communities are

attempting to provide theoretical foundations and practical

frameworks for the development of dynamically adaptive sys-

tems. From a networking perspective, for instance, networked

systems capable of autonomous changes in topology, load,

and physical and logical network characteristics have been

developed [47]. The intelligent agent, machine learning, and

planning communities have also had an abiding interest in au-

tonomous systems. Self-adaptive systems are capturing interest

in the wider software engineering community; initial research

in self-adaptive software architectures focused on replaceable

components and connectors [48]. Other approaches consider

all possible levels of abstraction: from the architectural level

down to language primitives, and from requirements analysis

and validation to runtime system operation. On a higher level

of abstraction, many techniques support adaptation or self-

healing at the component or system level [49], [50].

For resilient IoT, coordination presupposes a general ab-

sence of centralized control [51], instead leveraging coopera-

tion between software components, in a peer-to-peer fashion.

Generally, the state of the art in IoT systems usually adopts

centralized coordination techniques [52]–[54], adhering to the

device-cloud archetype. We advocate both distributed com-

puting infrastructures and decentralized management policies.

The attributes of locality, variability in the environment, and

distributed computation in IoT systems (manifested as un-

certainty at runtime) hinder coordination and control. Similar

attributes have been investigated as uncertainties [55], [56] and

can provide the basis to analyze them for resilience in highly

distributed, widely deployed IoT systems. For example, one

taxonomy [55] classifies types of uncertainties by the place

where they manifest, their uncertainty level, and their nature –

i.e., whether the uncertainty is because of imperfect knowledge

or variability [51]. Research on self-adaptive systems has tack-

led such attributes, albeit in a different context, by managing

uncertainty at runtime and considering both functional and

non-functional requirements [49]. Information sharing patterns

where each entity self-adapts locally by implementing its own

MAPE-K loop – using information from other entities in the

system [57] – is a characteristic self-adaptive view. More-

over, requirements engineering proposed approaches that use

requirements management to handle uncertainty at runtime,

which may be used for characterizing and modeling resilience

factors.

B. Decentralization for Resilience

Going forward, resilient IoT systems must correctly fulfill

requirements in changing, unpredictable, and potentially ad-

versarial environments where availability of a central point

of control cannot be guaranteed. We argue that because IoT

distributed systems are made up of software components, fa-

cilities providing control and coordination must be performed

at the software components’ level. It is therefore imperative

that the control facilities of such systems become grounded

in distributed systems research, ensuring that IoT systems can

autonomously react to changes in different contexts derived

from changes in environment, software configuration, execu-

tion infrastructure, or other unforeseen issues in a resilient

manner. Essentially, our community needs to address the
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problems created from the move of IoT software systems to

decentralization, something imposed by (i) new requirements

emerging from the increasing need of distributing computation

to heterogeneous software components, and (ii) the preva-

lence of internet-enabled devices, which call for additional

management and control closer to their operating architectural

layer, so that central points of failure are eliminated. We view

decentralization as the key to achieving resilience in the face

of the uncertainty and variability that IoT systems are exposed

to.

Going from centralized, traditional systems design, config-

uration, and operation of IoT-Cloud systems to decentralized

IoT systems is a paradigm shift – to another technology

maturity level (ML4 in Table 2). Parts of the control logic

situated on the Cloud now must move closer to end-devices,

situated at the network edge. This requires edge devices to

decentralize operations, but raises complex issues associated

with distributed systems [58]. To this end, understanding and

systematically managing change in is key: change may refer

to software configuration, environment, execution context or

resources.

Certainly, control in the large-scale IoT systems we investi-

gate aims to achieve requirements satisfaction – autonomously

– in a changing environment. Thus, research on formal as-

pects of self-adaptive systems can be leveraged, especially

as relating to model-based planning and self-healing on a

system level using contextual information. However, this can

also diverge from major research directions in self-adaptive

systems, because planning may be required to be performed

in a distributed fashion. To this end, distributed systems

mechanisms relevant to process coordination and control can

be adopted. System models, kept at runtime, can facilitate co-

ordinating and determining how control actions affect system

resiliency.
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Fig. 3. Decentralized coordination and control performed at the IoT’s edge.

Regarding architectural deployment, we envision the edge

acting as a manifestation of a control agent responsible for

observing and evaluating contextual information, and inducing

appropriate actions for its controlled subsystem. In Figure 3,

an edge entity takes into account device objectives as well as

ones of the overall system, providing control and coordination

facilities to participating devices within its scope. Coordination

may extend to cloud entities or other edge nodes, in a

decentralized manner. The attainability of the edge paradigm

has been shown in several examples emerged over the past

decade; “cloudlets” that offer locally cloud services, “crowd-

sensing” as collaborative devices sensing the environment,

“edge analytics” leveraging stream operations before reaching

remote storage, or “edge networking” for overlay control of

wireless networks. In a broader sense, coordination is the

underlying theme, and distributed systems research is required

to support such applications. Situating coordination facilities

on edge components eliminates central points of failure and

leads to decentralization.

VI. INTER-IOT DATA FLOWS

A system of connected devices that collect, send, and act

upon information from various surrounding sources certainly

makes data management an integral part of the IoT paradigm.

Composite applications such as data analytics are built on

IoT data foundations, and data provenance has been widely

researched within the IoT at various abstraction levels, ranging

from wireless sensor networks to databases, covering aspects

of the input sources, programs, and humans involved.

A. Data Management within IoT

However, research has predominantly focused on tightly

coupled IoT-Cloud systems; information such as sensor read-

ings flow from devices to cloud storage and processing. As IoT

becomes increasingly made up of software and decentraliza-

tion emerges as a crucial property, IoT software components

not only produce, but transmit, share, and act upon data. Now

data flows from the device to device in a bidirectional manner,

and among different data consumers and producers [59]. A

further challenge is that data often traverses through com-

putational resources of diverse administrative domains and

different levels of trust, raising issues in reliable satisfaction

of privacy, timeliness, and availability requirements.

The sheer number of heterogeneous devices, software

stacks, and processes involved in IoT make it challenging to

achieve applications’ data goals [60]. Moreover, novel require-

ments dictate data to reside and be processed close to where it

is produced, for several emerging reasons. Traditional tightly

coupled IoT-Cloud computing cannot meet especially stringent

requirements about latency [23], privacy [61], or geographical

restrictions of data. Privacy [62], [63] for instance, may require

not only data within a IoT application to remain locally close

to where it is sourced, but also for all mechanisms managing

it to respect different legal or administrative frameworks (e.g.,

the EU General Data Protection Regulation [64] versus the

California Consumer Privacy Act [65]) and user preferences.

Enabling the application to operate within diverse domains

points to another facet of resilience, where data producers

and consumers require control over data exchanges. Several

research directions in the distributed systems community have

advocated that because the edge is closer to data sources

and users, there is not only obvious latency advantages but

also an opportunity for stronger privacy and operation within

administrative domains by building appropriate data handling

logic inside software components.

1760



B. Data Flows among IoT Software Components
Engineering decentralized, data-driven applications where

information is managed and exchanged by software compo-

nents raises issues of availability, timeliness, and privacy. Such

issues as they pertain to IoT have not been previously investi-

gated by the community, because (i) IoT-Cloud coupling was

considered a basic assumption, (ii) IoT devices were largely

considered producers of data (i.e., in sensing applications),

and (iii) data processing within IoT entities was rarely an

option (because of minimal storage or limited computational

facilities). However, devices become increasingly able to host

software stacks and emerging requirements restrict centralized

cloud storage and processing. As a community, we need to

leverage research from overlapping areas of distributed sys-

tems and databases for the IoT paradigm. The main idea is that

instead of arbitrary networked processes, the particularities of

IoT software components require novel applications of data

synchronization, network storage, messaging [58] and their

supporting distributed protocols in a decentralized manner.
One way to achieve this, is to methodologically follow the

data lineage within IoT– data’s origins, what happens to it

and where it moves over time, and providing mechanisms

for resilient data governance. Furthermore, how availability

and timeliness of data relate to privacy and decision-making

goals must be addressed, as those are particularly pertinent

to the applications under investigation; we note an absence

of a systematic treatment within the requirements engineering

of IoT data goals, especially regarding privacy. This paves

the way for employing distributed systems techniques to

implement support in software IoT components, based on

metrics and evaluating mechanisms for data management that

the database community actively investigates.
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Fig. 4. Inter-IoT data flows highlighting privacy, timeliness and availability.

Figure 4 illustrates data-handling software components; data

may need to be kept synchronized or transfered among them.

This must occur in a timely manner and with certain availabil-

ity requirements. Moreover, privacy needs to be respected, as

certain data can be sensitive. Sensitive data-producing devices

can be in privacy scopes, defined by particular legal jurisdic-

tions (e.g. EU GDPR) or end-user privacy preferences. Privacy

requirements in this case, dictate what data should leave (or

enter, e.g. to modify) a component, and each component must

have control of its own data out- or in-flow privacy policies

(e.g. that govern data synchronizations) [66]. Note that in

the case of resource-constrained IoT deployments, the edge

paradigm similarly applies. Situating data storage, manage-

ment and computational facilities in edge devices entails mak-

ing those available to resource-constrained devices that may

lack them, while the edge is often located within the privacy

domain of its local IoT devices. Thus, the edge can manage

a local privacy scope, by ensuring privacy requirements. For

example, a user’s mobile phone as an edge device, can enforce

privacy preferences on data generated from her wearable IoT

devices.

VII. RUNTIME IOT SELF-ADAPTATION

As we observed, unforeseen changes in the software con-

figuration or the environment within an IoT system operates,

may hinder overall system resilience. This future challenge ad-

dresses (i) continuous monitoring of IoT systems for checking

the conformance of their behavior with respect to requirements

and for discovering unforeseen or emergent behaviors that

might hinder their resilience, as well as (ii) planning appro-

priate counteractions that can maintain requirements satisfac-

tion. The system must continuously work with little or no

disruption, despite exogenous changes in component context.

The challenge arises due to dynamic behavior – design-time

assumptions about the environment or configuration might not

hold at runtime, and behaviors (unforeseen during design)

might arise.

A. IoT as a Self-adaptive System

Maintaining a software system that operates in a dynamic

environment faces the manifold challenges of software sys-

tem evolution [67], and demands operational management to

observe a constantly changing context and potentially react

to changes. Addressing the problem of continuously monitor-

ing [68] IoT systems requires extending (i.e., from foundations

as per Section IV) modeling and validation to runtime and

the further definition of novel techniques to maintain system

knowledge and its contextual characteristics. If the system

is found to violate its resilience objectives, counteractions

must be devised and actuated; to this end, techniques from

self-adaptive systems engineering can be incorporated [69].

Typically, this can be achieved through an autonomic, self-

adaptive approach – e.g., a MAPE loop [70]: (M)onitoring

the environment for changes which are reflected in a model,

(A)nalyzing the model for possible requirements violations,

(P)lanning required countermeasures and then (E)xecuting the

appropriate actions and updating the model for the next loop.

Research in self-adaptive systems has long considered such

issues, however they must be brought into the IoT context [71].

IoT encompasses computing and communication capabil-

ities embedded into multiple environments – a device may

be found in a physical space, its software component part

of an overall infrastructure and logically connected to others.

Hence, locality emerges as a key contextual characteristic,

and a view of the system’s environment [4] as a composite

model can be the foundation for model-based analysis and

planning. The system model can encompass descriptions of

the environment, the software configuration and the require-

ments (Section IV). To enable analysis, the model can then

be translated into formal abstractions enjoying well-defined

semantics. Formalization aims to encode the model into a

form that facilitates automated reasoning; different analyzable
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models may be automatically generated to support different

kinds of analyses [72], [73], including quantitative or statistical

validation [74]–[76].

B. Runtime Validation and Planning at the Edge

As we observed in Section IV, the extent of assurances

obtained from analyses of system requirements depends on

whether they address concerns that arise at design time

or runtime. When contemplating design time analysis, the

objective is that the IoT system must satisfy requirements

“by design”; disruption that may occur when the system is

deployed cannot harm resilience, given that certain assump-

tions are met. However, certain resilience aspects may not be

guaranteed at design time. Instead, resilience must be achieved

at runtime by generating adaptive actions that can prevent the

IoT system from violating stated resilience goals. What we

advocate, is a self-adaptive systems view; a composite model

of the environment must be kept alive at runtime [77] and

populated with information as they become available. This

model is then analyzed with respect to factors critical for

system resilience [78], and if it is found to violate them,

counteractions are devised [79], [80].

Bringing self-* properties to the IoT involves an increased

focus on their operational aspects. As we observed in Sec-

tion II, IoT has distinctive characteristics. Software stacks

are heterogeneous but generally more limited than traditional

software systems, as IoT is comprised of resource-constrained

devices. As such, computationally-intensive analyses cannot

be performed there. Moreover, devices are often spatially

distributed [81] in a composite environment that changes [4].

Analysis must also take into account the rate of change of

the environment. Similarly, actuation of countermeasures [82]

to satisfy requirements must be performed in accordance

to constraints imposed by the application domain and the

composite cyber-physical environment.
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Fig. 5. Analysis and planning situated at IoT edge components at runtime.

Figure 5 captures activities within a MAPE loop for IoT

systems, where monitoring and execution may be referred to

as sensing and actuation, as they are dominant in the IoT

end-devices. The above distinctive IoT characteristics suggest

placing analysis and planning activities on edge components

– close to end-devices and responsible for their management

within a certain local scope. Limiting scope to a certain extent

is in accordance to the domain – deploying an edge entity

within a local wireless network or administrative domain can

render its resources available to local resource-constrained

devices and be responsible for evaluating resilience factors (i.e.

analysis) and for their overall coordination and counteraction

construction (i.e. planning). Note that this adheres to the

decentralization and coordination theme discussed in Sec-

tion V as well. IoT’s consideration as a runtime, self-adaptive

system must also address facets that often do not appear in

traditional adaptive software systems. As devices are often

deployed in wide physical spaces, the spatial aspect (and how

locality affects the system) is significant [4]. Similarly, their

IoT’s highly distributed nature allows emergent, unforeseen

behaviors to occur. Centralized control is often unfeasible in

practice, not only because it presents a central point of failure,

but also because network connections may not be persistent.

This points to analysis and planning to be performed close to

the end-device level, and perhaps on edge entities which may

not enjoy the vast resources of cloud computing.

VIII. AN EMERGING RESEARCH AGENDA

The novel types of large-scale distributed systems that

have emerged with the prevalence of the IoT, bring together

heterogeneous computing and communication infrastructures,

mobile devices, and cloud services. IoT systems provide data-

centric, device-centric and service-centric functionalities that

are subject to continuous disruption, under limitations such as

resource-constrained devices, platforms heterogeneity, deploy-

ment in adverse environments and administrative domains. As

these systems evolve and gain complexity, resilience becomes

crucial; to achieve it, understanding and systematically man-

aging dynamic behavior and decentralizing operations are key.

We advocated that to systematically engineer resilience in

IoT systems, a complete rethink is needed regarding design

and operation. We outlined a vision for addressing funda-

mental challenges for building resilient IoT, and presented a

roadmap where we identified techniques and methods from

formal aspects of software engineering as well as distributed

systems that can be leveraged to foster resilience in the face

of disruption, especially in the absence of centralization and

persistently at the system’s runtime.
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