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Abstract—Serverless functions typically depend on external
services to manage the application state, which can be difficult
at the Edge due to high latency and network costs. Current
solutions for stateful serverless functions at the Edge either have
limited support for data locality or require mutual consensus
for write operations which is hard to achieve at the Edge.
This paper introduces MISO, a novel middleware for serverless
computing that enables stateful serverless functions across the
Edge-Cloud continuum. The middleware provides MISO Objects
offering data locality. It is interoperable with existing serverless
platforms and allows concurrent state modifications in a decen-
tralized manner. The main contributions of our work include:
i) A novel conceptual model to maintain application state in
serverless functions called MISO Objects, ii) MISO middleware
and an SDK for serverless functions, and iii) The asynchronous
state replication mechanism of MISO Objects using an overlay
network to optimize data transfer and resource consumption. Our
evaluation demonstrated that MISO outperforms the state-of-the-
art by up to 243% in terms of total execution time for AllReduce-
type operations. Furthermore, the state replication exhibits O(n)
scalability regarding time, throughput, memory usage, and data
volume. We further demonstrate that our work can seamlessly
be integrated into an open-source serverless platform and that
our SDK requires up to 150% fewer lines of code and exhibits
up to 75% less cognitive complexity than the state-of-the-art.

Index Terms—serverless, faas, middleware, CRDT, stateful
objects, edge-cloud continuum

I. INTRODUCTION

The Function as a Service (FaaS) paradigm has emerged
as a popular way to develop applications. They abstract away
the complexity of provisioning computational resources from
developers by running custom functions in response to events
or API calls [1]–[4]. Serverless functions are increasingly
used in the Edge-Cloud continuum [1], [2], [5], [6]. However,
these functions are stateless and typically depend on remote
services to maintain application state [3]. This dependency
poses a significant challenge at the Edge, for example, due
to latency issues. The characteristics of the Edge, including
heterogeneous devices and sites [1], [5] that might fail un-
expectedly [7] adds to the complexity managing state in the
Edge-Cloud continuum.

To address these issues, research has extended existing
serverless platforms with a solution to manage state, such
as the Crucial [3] framework and the stateful FaaS platform
proposed by Baresi et al. [8]. Some solutions are specifically
designed for specific FaaS providers, such as Azure Durable

Functions [9]. In contrast, other researchers have proposed
novel serverless paradigms, like Object as a Service (OaaS)
[10], or entirely new FaaS platforms like Cloudburst [11]
which incorporate state management.

Many of these solutions operate adjacent to an existing
(often cloud-based) FaaS platform and lack direct integra-
tion with the serverless platform. As serverless computing is
currently not standardized across FaaS platforms [12], [13],
this lack of interoperability increases development efforts for
application developers. They typically have to manage sep-
arate development environments for various FaaS platforms,
requiring multiple different tools [12]. Adopting entirely new
FaaS platforms, hence, introduces additional complexity for
developers due to potentially new abstractions, toolchains,
programming models, and development workflows. Moreover,
direct integrations facilitate data locality for lower latency,
which is often missing in current state-of-the-art solutions.

Traditional storage systems, such as database management
systems or key-value stores like MongoDB [14], [15] and
Redis [15], [16] can also be used to maintain state in serverless
functions. However, they often require mutual consensus for
state modifications, which becomes increasingly challenging in
a large and distributed Edge-Cloud continuum. To circumvent
this issue, other solutions for stateful serverless functions
use a centralized queue for state modifications regarding
the same entity [9], or output immutable objects instead of
modifying existing ones [10]. There is a lack of a solution that
provides data locality, interoperability with existing serverless
platforms, and facilitates concurrent state modifications in a
decentralized manner.

In this paper, we introduce MISO1, an open-source mid-
dleware for serverless computing that is based on Conflict-
Free Replicated Data Types (CRDTs). The middleware allows
serverless functions in the Edge-Cloud continuum to maintain
application state across function invocations. Our middleware
introduces MISO Objects, which are locally available on the
continuum’s devices and nodes that execute the serverless
functions. The MISO Objects are specifically designed to
support concurrent modification while eliminating the need
for a central authority to perform data synchronization and
update merging. Instead, the updates are done independently

1https://github.com/polaris-slo-cloud/miso
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by the MISO Objects in a decentralized manner. Further, our
middleware ensures low-latency access to the MISO Objects
and offers seamless integration with existing open-source
serverless platforms by exposing MISO Objects as well-known
data structures. MISO middleware is part of Polaris SLO
Cloud2, a SIG of the Linux Foundation Centaurus project3,
a novel open-source platform for building unified and highly
scalable public or private distributed Edge, Cloud, and 3D
continuum systems.

The main contributions of this paper include:

1) MISO Objects, a novel state management model to access
and modify application state within serverless functions.
MISO Objects run locally on the nodes that execute
serverless functions and can be accessed transparently
in serverless functions. Serverless functions concurrently
access or modify MISO Objects via Inter-Process Com-
munication (IPC).

2) MISO middleware, including the definition of the ar-
chitecture, core runtime mechanisms, and a Software
Development Kit (SDK) for serverless functions to use
MISO Objects. It provides data locality and does not
depend on a central authority for data synchronization
to ensure applicability to the Edge-Cloud continuum.
Furthermore, it is designed to be integrated into existing
serverless platforms which we demonstrate practically
with OpenFaaS.

3) A state replication and merging mechanism that enables
asynchronous replication of MISO Objects using an over-
lay network to propagate changes across the system. The
overlay network is used to make the replication process
more efficient by only replicating to nodes that run the
affected serverless function. This ensures that the limited
resources in the Edge-Cloud continuum are not being
utilized unnecessarily and thus optimizes the algorithm
toward data transfer and resource consumption.

We evaluate MISO on a serverless implementation of an
AllReduce use case. Our middleware outperforms both Redis
Enterprise and MinIO in terms of total execution time. Specifi-
cally, it is 26.7% faster than Redis Enterprise and over twice as
fast as MinIO. Our experiments also show that MISO’s state
replication algorithm exhibits O(n) scalability with respect
to the required replication time, throughput, process memory
usage, and data volume. We further demonstrated the mid-
dleware’s seamless integration capabilities with an existing
open-source serverless platform, OpenFaaS. This integration
required only little modifications to the function deployment
handler of OpenFaaS to set environment variables. Moreover,
our SDK required up to 150% fewer lines of code and
exhibited up to 75% less cognitive complexity compared to
the state-of-the-art. This suggests that our middleware not
only enhances performance but also contributes to reducing
the code complexity.

2https://polaris-slo-cloud.github.io/
3https://www.centaurusinfra.io/
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Figure 1. Conceptual Model of MISO Objects

II. MISO’S CONCEPTUAL MODEL AND ARCHITECTURE

A. MISO Objects

Figure 1 depicts the conceptual model of MISO Objects.
They are stateful objects that serverless functions can use to
maintain the application state. One serverless function can
create multiple such objects. MISO Objects bundle multiple
CRDT-based data types into a single object. MISO Objects
are distributed, as their state is replicated across all nodes that
run the same serverless function. This is because their under-
lying data types, CRDTs, are designed to be replicated. This
provides data locality to serverless functions. MISO Objects
can be modified concurrently and independently by serverless
functions, and MISO does not limit the function concurrency
on a single node. Coordinating state modifications with other
MISO Objects or serverless functions is not required. Fur-
thermore, due to the utilized data types, MISO Objects are
eventually consistent across multiple nodes. On a per-node
level, MISO provides a read-your-writes consistency level. The
asynchronous state replication of MISO disseminates updates
to all nodes running the same serverless functions, which then
merge the state updates with their local states. MISO Objects,
therefore, eventually converge to the same value across nodes.
The merging of the state happens at the data-type level, and
the algorithms are built into the data types themselves.

Every MISO Object is identified by an ID, which can be
set manually or automatically generated. As MISO Objects are
linked to a serverless function, the ID only needs to be unique
for each serverless function. Multiple replicas of the same
serverless function can share the same MISO Object, even if
they are executed on different nodes. Every CRDT-based data
type within a MISO Object has a name. A certain name can
only exist once per object. However, the same data type can
be present multiple times within a single MISO Object with
different names. Using a simple name to identify the data type
contributes to the developer experience, as no ID needs to be
memorized to access the individual data types.

As serverless functions are stateless, they alone cannot
maintain the state of MISO Objects across function invo-
cations. For this reason, the lifecycle of MISO Objects is
managed by the MISO middleware. This includes creating, re-
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trieving, modifying, and replicating the state of MISO Objects.
To access and modify MISO Objects from serverless functions,
the MISO SDK provides proxy versions of the MISO Objects
and the CRDT-based data types they encompass. The proxies
can be retrieved from the MISO Object proxy object, and the
configuration process of the proxies so that the correct mid-
dleware instance can be invoked is transparent to developers.
The proxy versions of the CRDT-based data types behave like
regular data types but internally call the middleware whenever
an operation is executed against them. The middleware ensures
that the data of the MISO Objects is available on every node
of the serverless platform that runs this serverless function by
replicating the state asynchronously.

To demonstrate the concept further, we now discuss a
hypothetical example of a serverless function dealing with IoT
sensor data readings of a smart car with the id 12345. The
function accesses a single MISO Object with the ID TripData-
12345, where 12345 stands for the car’s ID. This MISO Object
contains two CRDT-based data types: i) a Counter with the
name distanceDriven which stores the total distance driven
during the trip, and ii) a Set with the name alerts which
contains all extraordinary events that arise during the current
trip (e.g., low fuel). The serverless function could access other
MISO Objects with different IDs to maintain other sensor
readings, such as engine parameters. This logical separation
and grouping of data types into MISO Objects offers flexibility
to developers and allows for a clear separation of concerns.

B. Middleware Architecture

Figure 2 provides an overview of MISO’s architecture. The
system is designed to be modular and flexible enough to be
integrated into different serverless platforms and is divided
into two main components (blue): the middleware and a SDK.
A major characteristic of the middleware is that it is distributed
across multiple nodes. More precisely, the middleware runs on
every node of the serverless platform that executes serverless
functions. This is necessary so that the middleware and, thus,
the data of the MISO Objects are located in close proximity
to the serverless functions. The middleware is responsible for

managing MISO Objects, which includes the management of
their lifecycle and the states they contain. It also provides an
API for serverless functions using which they can modify the
MISO Objects. Due to the fact that serverless functions might
run on different nodes due to load balancing, the middleware
needs to replicate data between different nodes.

The middleware is combined with an SDK for serverless
functions. It enables serverless functions to use the middleware
and provides proxy versions of MISO Objects and the data
types they contain. Developers can use the data types as if
they are regular local data types. However, in the background,
the operations are delegated to the middleware over the
network. This is transparent to the developers of the serverless
functions. The state of the data types themselves are not stored
in the proxy versions but only on the middleware instance that
executes this particular serverless function. The details of this
component are described below in Section II-C. The SDK is
dependent on the programming language used to write the
serverless function, so there might be multiple such SDKs for
various programming languages in the future.

All middleware instances are interconnected via an Overlay
Network. This is depicted by the blue arrows in Figure 2. This
network is mainly used for the replication of updates whenever
a MISO Object is modified. To make the process of sending
updates more efficient, the overlay network needs to provide
information, such as on which nodes a particular function is
currently being executed.

Figure 2 also shows how MISO integrates with existing
serverless platforms. Certain components of the serverless
platforms, such as the ingress controller, are deliberately
omitted from the figure for readability. The serverless plat-
form provider manages the containers that run the serverless
function containers. To integrate the middleware with the
serverless platform, it is necessary to extend the provider
in such a way that it provides MISO-specific environment
variables to the containers of the serverless function. The list
of required information includes the hostname and IP address
of the node that executes the function so that the SDK can
communicate and register with the middleware correctly. In
case the serverless platform already provides such information,
the provider does not have to be modified to integrate the
middleware. To integrate the SDK, it has to be added to the
dependencies of the serverless function. We show a practical
integration of the middleware with OpenFaaS, an existing
serverless platform, in Section IV.

C. MISO SDK for Serverless Functions

The SDK facilitates the communication between serverless
functions and the middleware. It serves as an intermediary
layer that invokes the API endpoints of the middleware over
the network, abstracting away the complexity of connection
management from developers of serverless functions. This
architectural separation between middleware and the proxies
contributes to the maintainability of both the middleware and
the code of serverless functions, as the SDK can be developed
independently of the serverless function code. The SDK is
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1 // function handler of the serverless function
2 module.exports = async (event, context) => {
3 const so = context.statefulObject;
4 const counter = so.getGCounter('totalSum');
5 await counter.add(1);
6 return { data: await counter.getValue() };
7 };

Listing 1. Example Usage of MISO SDK to develop Serverless
Function (OpenFaaS)

created for a particular programming language, so there can
be multiple such SDKs for different programming languages in
the future. The SDK is not dependent on a serverless platform
and can be used in multiple FaaS platforms that support a
runtime for serverless functions in which the SDK is written.

1) API and Programming Model: There are two key ab-
stractions that are exposed to developers of serverless func-
tions: MisoObjectProxy and CRDT Proxies.

The MisoObjectProxy is the most important program-
ming abstraction of the SDK and is responsible for the
following tasks:

1) Providing serverless functions the functionality to create
and modify proxy versions of MISO Objects, which is
transparent to developers

2) Abstracting away the complexity of communicating with
the MISO middleware, where the lifecycle of the MISO
Objects is managed

3) Providing mechanisms to register and unregister server-
less functions with the overlay network of the MISO
middleware. This is necessary so the overlay network
can properly provide the information required in the
replication process.

4) Providing instances of proxies of CRDT-based data types
that can be accessed via MISO Objects. They behave like
regular data types but transparently proxy the operations
to the middleware.

CRDT Proxies provide a proxy instance of a given
CRDT. They can be accessed via the MisoObjectProxy and
behave like regular data types, but internally the operations are
delegated to the middleware. This is because the middleware
manages the lifecycle and state. The proxies can purposely not
be instantiated without the MisoObjectProxy, as other-
wise, developers would have to manually configure the details
on how these data types communicate with the middleware.
The list of supported CRDT-based data types currently in-
cludes:

1) Enable-Wins Flag (EWFlag),
2) Grow-only Counter (GCounter),
3) Positive-Negative Counter (PNCounter),
4) Grow-only Set (GSet),
5) Multi-Value Register (MVRegister), and
6) Observed-Remove Set (ORSet).
2) Usage in Serverless Functions: In this Section, we

describe an example of how the SDK can be used in the code
of serverless functions.

Listing 1 gives an example of using the SDK in a JavaScript-
based serverless function for OpenFaaS. In this case, a MISO
Object is injected into the context argument of the serverless
function, as we integrated MISO with the serverless platform
as described in Section IV-C1. The serverless function then
creates a GCounter, increments it by 1, and returns the current
value.

III. RUNTIME MECHANISMS

A. Constructing MISO Overlay Networks

All instances that run MISO create an internal overlay
network, consisting of a node- and function discovery service.
The overlay network is required for the replication module
and has two main tasks. The first is to discover other nodes
that run the middleware, and the second is to discover which
replicas of a serverless function are executed on a particular
node. This information is necessary so the middleware can ef-
ficiently replicate MISO Objects, making sure only nodes that
actually run replicas of the same serverless function receive
the updates. This increases the efficiency of the replication
process, saving bandwidth and processing power compared to
replicating updates to all discovered nodes.

The node discovery service is responsible for discovering
other nodes that run the MISO middleware. To accomplish
this, every node instantiates a Map that stores node names
(i.e., hostnames) alongside the Set of IP addresses this node
has. Whenever a new node is discovered, the details about
this node are added to the map. This process is performed
regularly so that new middleware instances are identified.
A heartbeat mechanism removes unresponsive nodes from
the list of discovered nodes when no connection can be
established over an extended period. We provide a practical
implementation that relies on mDNS, but there could be other
strategies in the future.

The function discovery service provides the replication part
of the middleware a list of nodes that need to receive the
update whenever MISO Objects are modified. To achieve this,
serverless functions need to register and unregister with the
overlay network. This can be done via the MISO SDK and is
transparent to developers of serverless functions. The function
discovery service stores a list of serverless function replicas
for every previously discovered node.

B. Replication and Merging of MISO Objects

MISO disseminates modifications to MISO Objects to all
nodes executing the relevant serverless functions. It employs
a debounced/delayed transmission of updates to other nodes,
subject to a configurable time interval. This assures that
multiple updates in a short time are batched and replicated
in a single update only. The pseudocode for the replication
algorithm is visible in Algorithm 1. Whenever the state of
a MISO Object is modified, this data eventually needs to
be replicated (line 2). To achieve this, an update is gener-
ated for every such modification, which is then wrapped in
a ReplicationTask (lines 3-4). This task is then queued in
the ReplicationService and replicated asynchronously after a
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Algorithm 1: State Replication Algorithm

input : fds // FunctionDiscoveryService
input : object // MISO Object
input : crdt // CRDT that is modified
input : fnName // function name

1 crdtTasks = new Observable(object.id, crdt.name)
2 while state of crdt is modified do
3 update = crdt.createUpdateMessage()
4 task = new ReplicationTask(crdt.name, object.id,

fnName, update)
5 crdtTasks.next(task)
6 debounce replication tasks in crdtTasks
7 task = crdtTasks.getLatestTask()
8 targetNodes = fds.getReplicationTargets(fnName)

// on source node
9 for node in targetNodes do

10 stream = getStream(node)
11 result = stream.sendUpdate(task)
12 if result.status == FAILED then
13 retry sending
14 end

// on target node
15 object = getStatefulObject(task)
16 crdt = object.getCrdt(task.crdtName)
17 crdt.merge(task.update)
18 end
19 end

configurable delay (lines 5-6). The replication module must
ensure that exactly one replication happens in the configured
replication interval, as long as the data type within a MISO
Object is being modified. Our algorithm always uses the latest
queued task for each CRDT within a MISO Object (line
7). This is because MISO uses state-based CRDTs, where
every state update carries the entire state. Afterward, the
overlay network is utilized to determine which nodes need the
modified data. The function discovery service knows which
discovered nodes run the same serverless function (line 8).
The replication module does not replicate the update to nodes
that currently do not run any replica of this serverless function,
avoiding unnecessary network requests and processing power.
In case the network transmission fails, the request is retried
on the network level (line 13). In case a node does not
successfully receive an update, it will eventually receive one of
the next updates, given that the node is back online. Whenever
the target node receives an update, it sets the received state to
the local CRDT by merging it with an empty instance of the
CRDT.

Every update that is disseminated contains the following
data:

1) Information Regarding the MISO Object and affected
data type (ID and CRDT name)

2) Information regarding the serverless function that is af-

Algorithm 2: Restoring State of MISO Objects

input : fds // FunctionDiscoveryService
input : object // MISO Object
input : crdtType // Type of modified CRDT
input : crdtName // Name of modified CRDT
input : fnName // function name

1 for r: request modifying CRDT do
2 intercept r
3 if crdtName /∈ object then
4 targetNodes =

fds.getReplicationTargets(fnName)
5 for node in targetNodes do
6 stream = getStream(node)
7 payload = getPayload(crdtType, crdtName,

object.id, fnName)
8 result = stream.retrieveCrdt(payload)
9 if ∄ result then

10 continue
11 end

12 crdt = new CRDT(object.id, crdtName)
13 crdt.merge(result)
14 object.addCrdt(crdtName, crdt)
15 break
16 end
17 continue regular execution of r
18 end
19 end

fected (serverless function name)
3) The whole state of the source CRDT after it has been

modified. This field’s data depends on the particular
CRDT that is transmitted.

The updates are sent over the network in a stream (line
11). Streaming mitigates the need for constant re-openings of
network connections and is especially useful for frequent repli-
cation intervals to reduce the replication time. The network
connection is specific to another node and is shared between
replication calls of different CRDTs. In case there is an error
on the stream (e.g., node disconnects), the stream is closed.
Whenever the next update arrives, the stream is then re-opened
to this node unless it is no longer present in the overlay
network. The merging of the states itself is implemented in
the CRDT data types. Every state-based CRDT has a merge
method that has one argument, which is another instance of
the same CRDT (line 17). This function must be associative,
commutative, and idempotent, as this is a requirement of state-
based CRDTs [17]. The replication algorithm described in
Algorithm 1, therefore, has no information about the actual
merge logic but only needs to make sure that the correct
method is called with the right data.

C. Restoring State from MISO Objects

Another important functionality is restoring states from
other middleware instances. This is important when one of the
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nodes restarts, or the serverless function is scaled to nodes that
did not previously execute this particular serverless function.
Algorithm 2 describes the process of restoring MISO Object
states. When a serverless function modifies a CRDT of a
MISO Object via the SDK, the middleware checks if the
node running this serverless function locally has such a CRDT
(line 3). If true, the requested operation is executed without
initializing the state. If the data is not present locally, the
overlay network provides a list of nodes running replicas of
the same serverless function (line 4). Every node in the list
is then asked for the current state of the CRDT (lines 5-11),
and the state of the first node that answers is then initialized
(lines 12-15). The process runs in a loop over all known nodes
that run the same serverless function. The requested CRDT is
automatically initialized with a default value if the state cannot
be retrieved from other nodes. The initialization process is
transparent to developers of serverless functions when they
modify MISO Objects (line 17).

IV. EVALUATION

In this section, we present a multifaceted evaluation of
MISO that encompasses both quantitative and qualitative as-
pects. We start with studying the performance overhead of
MISO (Subsection IV-A), followed by examining the replica-
tion algorithm in more detail (Subsection IV-B). We conclude
with a qualitative evaluation of MISO’s usability and inter-
operability with an existing serverless platform (Subsection
IV-C).

A. Performance Overhead

In this evaluation, we focus on assessing the performance of
the core middleware operations using technical experiments,
specifically the modification of MISO Objects via serverless
functions. For this experiment, we have chosen to utilize an
AllReduce operation.

1) Experiment Definition: The objective of this experiment
is to reduce a numeric array to a single number as fast as
possible. At the beginning, an array of numbers is generated
and split into multiple chunks. The serverless function then
sums up the chunk to an intermediate sum and stores this in-
formation. When all intermediate results have been calculated,
they are reduced to a single number. The serverless function
is, hence, called n+1 times (n times for writing intermediate
results, 1 time to retrieve the overall result). The experiment
was executed 500 times using three different solutions to store
the partial/total results: MISO, MinIO (S3-compatible Object
Store), and Redis (Key-Value Store). The usage of those well-
known solutions for state management enabled us to use the
same serverless platform and function for all software systems,
with the only difference being the utilization of a different state
management solution in the serverless function code.

2) Experiment Results: Figure 3 provides a comprehensive
summary of the experiment results. It depicts the average total,
read, and write times, as well as the 99th percentile of the total
average time for different technologies and configurations. We
ran all solutions in a cluster of 5 nodes except MISO which we
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Figure 3. AllReduce Results - Grouped Bar Chart

additionally ran in a single-node cluster for a baseline measure.
A detailed analysis of the results is presented in the subsequent
sections.

a) MISO: As visible in Figure 3, the measured average
read time (14ms) and write time (783ms) for MISO are lowest
for all three utilized solutions. The read time for MISO is
minimally higher than that of Redis Enterprise, which can
be attributed to how CRDT-based counters, as employed by
our middleware, are designed. They operate by storing the
sum of each replica within a map. To obtain the current total
sum of the counter, the partial sums from all replicas need to
be aggregated, which contributes to the overall computational
overhead. However, this also means that the serverless function
does not have to manually compute the intermediate sums, as
this is essentially built into the data type itself. The difference
in read times between our solution and Redis Enterprise in this
setting is marginal. The average read and write times of MISO
are significantly lower than what we have measured with
MinIO. This negligible difference underscores the efficiency
of our middleware in this use case.

b) Redis Enterprise: As visible in Figure 3, the read
times for Redis Enterprise in this use case were similar to
the one of our solution, with an average of 11ms. This is
marginally lower than what we have observed for MISO. The
write time average, visible in Figure 3, was 1077ms, which is
almost 300ms higher than what we have measured for MISO.

c) MinIO: As depicted in Figure 3, the observed average
read and write times in this experiment for MinIO were
substantially higher than those of MISO and Redis Enterprise.
The read-time average was 1759ms in a single cluster and
3429ms in a replicated cluster. The write-time average was
979ms in a single cluster and 1262ms in a replicated cluster.
The times of creating the bucket in the beginning and removing
the files and bucket after each test run were not taken into
account in our measure.

d) Comparison: Our results show an improvement over
Redis Enterprise by 26.7% for the total average time. Com-
pared to MinIO, our solution was 243.2% faster in a non-
replicated cluster and 487.9% faster in a cluster with site
replication turned on. To compare our numbers, we used the
total average time of MISO in a cluster of 5 nodes, so all
solutions utilized a cluster of 5 nodes. This implies that CRDT-
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based data structures offer great performance for use cases that
can utilize their potential, as our presented AllReduce use case.

B. Replication Algorithm

In this section, the replication algorithm of MISO is eval-
uated by performing load tests. The following metrics are
measured:

1) Replication time (i.e., the time it takes to replicate to all
relevant nodes for one replication run without waiting for
acknowledgement),

2) Total RPS (i.e., the sum of all MISO-related RPS on all
participating nodes),

3) Replication Data Volume,
4) Process Memory Usage.
1) Experiment Definition: We perform a stress test on the

middleware to evaluate the replication algorithm. As the proto-
type implementation of the middleware exposes its operations
through gRPC, we use an open-source gRPC benchmarking
tool for this [18]. The benchmark repeatedly calls a gRPC
endpoint with multiple threads. We increase a PNCounter
concurrently and then study the metrics of the replication
algorithm with varying nodes. Our test simulates concurrent
data modification on all participating nodes. We have used
10 concurrent threads and performed 5 million increases to a
PNCounter with a replication interval of 5ms.

2) Experiment Results:
a) Average Replication Time: Figure 4 depicts how the

replication time changed over time during the experiment.
It stays consistent during the experiment run for all cluster
sizes. It is visible that the replication takes more time as more
nodes are added to the system, which is expected. Because of
how our experiment works, we leave out the initial 500 000
requests to show results with equal load and without initial
connection setup. The total average replication times were 0.22
ms, 0.51 ms, 0.97 ms, and 1.83 ms for 5,10,20, and 30 nodes,
respectively.

b) Requests per Second: Figure 5 demonstrates how
the total RPS rate changed during the experiment execution
time with 5 million total requests. The total rate consists of
the core requests that modify a CRDT and the replication
requests to propagate state modifications across the system.
The average core RPS rate is depicted in a solid line in
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Figure 5. Requests per Second over Time

5N (5ms) 10N (5ms) 20N (5ms) 30N (5ms)
Nodes

0

500

1000

1500

2000

2500

3000

Si
ze

 in
 M

B

Total Size of Replicated Data

Figure 6. Replication Data Volume

Figure 5 was between 13 800 and 16 300 core requests per
second, depending on the cluster size. The replication requests,
depicted in a dashed line in Figure 5, rose from approximately
3 100 to 43 300 RPS with 5 and 30 nodes, respectively. This
is an increase in replication requests by approximately 1297%
while the cluster size increased by 600%. Our results indicate
that MISO can handle increasing workloads. We leave out the
initial and last 1 million requests to show results with equal
load and without initial connection setup.

c) Replication Data Volume: Figure 6 depicts the total
replication data volume. It is visible that the amount of
data increased from 211 MB with 5 nodes to 3.02GB with
a cluster of 30 nodes. We have deliberately chosen a low
replication interval where replication happens almost in real-
time to simulate as high a load as possible and demonstrate
the limits. Depending on the use case, the amount of data
sent over the network can be drastically reduced with a lower
replication interval.

d) Process Memory Usage: Figure 7 shows the maxi-
mum observed process memory usage of the middleware dur-
ing the experiment, including all components. The maximum
memory usage for 5 nodes was lowest, with 216 MB. This has
increased to 251 MB with 30 nodes. The observed increase in
memory from 5 to 30 nodes was 16.2%, while the cluster size
increased by 500%. This means that the increase in memory
is significantly smaller than the increase in node size. This
suggests that our work can be applied in resource-limited
environments.
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Table I. Impact of Replication Interval on Performance

Replication
Interval

RPS Total
Time

Avg.
Latency

Repl.
Data

Repl. Re-
quests

0ms 1 502 333s 6.41ms 244 MB 1 726 131
5ms 1 909 262s 4.99ms 124 MB 640 490
10ms 2 742 182s 3.41 ms 52.3 MB 269 762
50ms 3 884 129s 2.36ms 8.91 MB 45 904
200ms 4 168 120s 2.19ms 2.19 MB 11 153
1000ms 4 339 115s 2.10ms 449 KB 2 185
5000ms 4 501 111s 2.01ms 111 KB 437

e) Impact of Replication Interval: Table I shows the
impact of the replication interval on the middleware perfor-
mance. We have performed a gRPC throughput test using ghz
with 10 concurrent connections over a single connection to
increment a PNCounter 500 000 times. We have directed all
requests to a single MISO node in a cluster of 20 nodes, which
replicated the modifications to the other 19 nodes using a
varying replication interval. Our results show that the config-
ured replication interval heavily influences the performance
of the middleware and the replication process. The higher
the replication interval is set (i.e., less frequent updates), the
higher the RPS scores are, and the request latency for core
middleware operations decreases. Starting from a replication
interval of around 200ms, further increases in the replication
delay had a negligible impact on the overall performance. This
suggests that tuning the replication interval to the requirements
of each use case is essential and has a big impact on the overall
system performance.

C. Qualitative Evaluation

In this section, we evaluate whether it is possible to integrate
MISO with an existing open-source serverless platform and the
usability of the SDK. The goal is to show that our middleware
is easy to integrate into existing serverless platforms and that
the SDK is easy to use and understandable.

1) Integrability: This section demonstrates the process of
integrating both the middleware and SDK with OpenFaaS.
The principle of how we integrated the middleware and SDK
also applies to other serverless platforms and programming
languages.
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Figure 8. Comparison of Lines of Code and Cognitive Com-
plexity

a) Integrating the Middleware: The necessary steps to
integrate the middleware with OpenFaaS can be summarized
as follows:

1) Adding the MISO middleware to the Helm chart template
of the OpenFaaS provider.

2) Setting environment variables in the function deployment
handler of the faas-netes provider by utilizing the Ku-
bernetes Downward API (node name and IP address,
serverless function name).

3) Building the provider image locally and changing the
image pull policy so that the updated image is used.
b) Integrating the SDK: To integrate our SDK with

OpenFaaS, we have added it as a dependency to the server-
less function template for NodeJS. In the template, we also
register the serverless function with the overlay network of
the MISO middleware before the function is executed. This
means that developers of serverless functions do not have to
deal with registering/unregistering the serverless function with
our middleware, which contributes to usability.

2) Usability: A major part of software development cost is
poor code understandability [19]. This is because inspecting
and maintaining poorly understood code is hard, and a lot
of time is spent there. Refactoring hard-to-understand code
sections improves maintainability.

In this section, we use two metrics to measure the under-
standability of MISO’s SDK. The first is Lines of Code, a
widely used traditional code measure. The second is Cognitive
Complexity, a newer metric introduced in 2018 [19]. Campbell
[20] describe how the score is calculated.

We recall the experiment previously mentioned in Section
IV-A. In this experiment, we have utilized three different
state-of-the-art solutions to accomplish an AllReduce use case:
MISO, Redis Enterprise, and MinIO. In this section, we now
compare the implementations of the three different SDKs to
measure the understandability of the solutions to see whether
our own SDK is understandable.

Figure 8 shows a comparison of the lines of code and
cognitive complexity of our experiments. It can be seen that
MISO required the least amount of code. Redis Enterprise
required approximately 20.5% more and MinIO 150% more
lines of code than our solution. Similarly, our minimal code
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samples for both MISO and Redis Enterprise have a cognitive
complexity score of 2, while our sample for MinIO has a score
of 8. This means that the cognitive complexity of MinIO was
four times as high as what we measured for MISO and Redis
Enterprise.

D. Threats to Validity

The analysis of the performance overhead and replication
algorithm was performed on a KinD4 cluster running on a
Ubuntu 22.04.3 LTS VM, powered by an AMD EPYC 7742
processor with 64 cores and 128 GB of RAM. This simulation
of nodes enabled us to evaluate MISO in different settings.
Still, this setting does not fully replicate the same conditions
as if we used distinct (virtual) machines. We did not simulate
an artificial network latency in our experiments.

V. RELATED WORK

The literature mentions multiple proposals for stateful
serverless functions. They can be categorized according to:

a) Data Locality: In terms of where data is maintained,
some research approaches either provide data locally to server-
less functions or, alternatively, rely on remote storage services.
Cloudburst [11] is a novel stateful serverless platform that
relies on caching on the nodes executing serverless functions
to provide local and low-latency access to frequently used
data stored in a remote key-value store. On the other hand,
the Crucial [3] framework, the Object as a Service [10]
paradigm introduced, and Apache Flink Stateful Functions
[21] manage the state separately from the node running the
serverless function. Shahidi et al. [22] highlight the neces-
sity for an intermediate layer that is positioned between the
serverless functions and the storage infrastructure that places
the application state in close proximity to the nodes executing
serverless functions to boost performance. Our work maintains
the data of MISO Objects locally on the nodes that execute the
serverless functions. This means that the data of MISO Objects
can therefore be retrieved from the same local node that also
runs the serverless function via IPC, which is beneficial for
latency.

b) Interoperability: Other solutions for stateful serverless
functions either extend existing serverless platforms or propose
entirely new stateful serverless platforms. Crucial [3] is a
framework that works with FaaS platforms that offer a Java
runtime and an API to upload/call serverless functions. Baresi
et al. [8] propose a prototype stateful serverless platform
for the Edge that extends OpenWhisk, an existing serverless
platform. Certain solutions, such as Durable Functions [9], are
tailored to a specific serverless platform and not generalizable
to multiple serverless platforms. Cloudburst [11] is a novel
serverless platform that provides state management. Similarly,
Lertpongrujikorn et al. [10] have introduced a new paradigm
called Object as a Service (Oaas) to manage state for serverless
functions, and their prototype is based on top of Knative.
[6] propose a system model of a new stateful FaaS platform

4https://kind.sigs.k8s.io/

tailored to the Edge. New stateful serverless platforms and
paradigms provide state management for serverless functions,
but they come at a cost as they potentially introduce new
programming models, data structures, or toolchains. This
contributes to an increased complexity in the learning curve
experienced by developers. Similarly, a solution for stateful
serverless functions should ideally work for multiple plat-
forms. MISO is deliberately designed in a way that it inter-
operates with existing open-source serverless platforms. Our
work does not rely on any particular component of the FaaS
platform besides setting environment variables in the serverless
function containers. This adds to the independence of MISO
and is a fundamental design decision to enable interoperability
with various serverless platforms.

c) Concurrent State Modification: Many solutions for
managing application states (e.g., key-value stores or database
management systems) require mutual consensus when modi-
fying the state. This can, for example, be achieved by electing
primary nodes for writes with consensus protocols. Examples
of this are MongoDB [14], [15] and Redis [15], [16], where
writes are only possible against primary nodes [16], [23].
Burckhardt et al. [9] propose a solution for stateful serverless
functions that uses use a centralized queue to sequentially
perform writes regarding the same entity [9]. Similarly, in
[8] the authors propose that all requests belonging to a
certain session are routed to the same container instance
which mitigates the need to replicate data across nodes, but
therefore limits horizontal scaling of the serverless function
across different nodes. All these proposed solutions work best
when there are stable nodes that do not fail, which might
not always be the case in the Edge-Cloud continuum [1], [7].
MISO Objects relax the requirement for mutual consensus for
state modifications and work in a decentralized way, offering
automatical reconciliation in case of conflicting updates due to
their semantics. They offer strong eventual consistency, which
means replicas eventually converge to the same state if it is
ensured that all replicas receive the exact same updates [17].
MISO Objects do not require the coordination of state mod-
ifications between nodes and can be modified independently
by serverless functions.
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VI. CONCLUSION

In this work we have presented MISO, a CRDT-based
serverless middleware for the Edge-Cloud continuum. It pro-
vides MISO Objects for serverless functions, which combine
multiple CRDT-based data types into a single object. The
objects are accessed from serverless function handlers using
proxies, and the state and lifecycle are managed by the middle-
ware instance that runs on the node executing the serverless
function. The middleware is designed to be integrated into
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multiple open-source serverless platforms, provides data lo-
cality, and does not depend on a central authority for data
synchronization.

We evaluated MISO’s performance in an AllReduce op-
eration, where the total experiment time was 26.7% lower
than with Redis Enterprise and almost 2.5 times lower than
with MinIO. We have also performed an in-depth assessment
of the replication algorithm, where we demonstrated that the
replication process exhibits O(n) scalability with respect to the
required replication time, throughput, process memory usage,
and data volume. The integration with OpenFaaS, a popular
serverless platform, was seamless and required only minimal
code changes to provide MISO-specific environment variables
to serverless functions. Finally, our SDK required up to 150%
fewer lines of code and exhibited up to 75% less cognitive
complexity than the other state-of-the-art.

In the future, we intend to extend our work in several
directions. MISO Objects are currently only stored in memory.
While this makes it fast to access their data, this also means
that there is the potential for data loss. In the future, we plan
to address this by exploring the possibility of persisting MISO
Objects locally on the nodes that run the MISO middleware
while retaining the benefits of CRDTs. Additionally, the data
types exposed by the SDK do not exactly match the typical
data types offered by programming languages. This is because
there is no one-to-one mapping of conventional data types
and CRDTs. In the future, we aim to explore how we can
offer native interfaces for common data types while still
using the data types provided by MISO Objects. We envision
that overcoming this challenge includes combining multiple
CRDTs into new data types. We also intend to transform
MISO’s SDK into a stand-alone programming model and
combine it with our previous efforts in the field (e.g., [24])
to better support the development of large-scale, pervasive,
serverless applications. Lastly, we aim to investigate the usage
of δ-CRDTs [25] to improve network utilization.
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