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Abstract—The 3D continuum presents a complex environment
that spans the terrestrial, aerial and space domains, with 6G
networks serving as a key enabling technology. Current AI
approaches for network management rely on monolithic models
that fail to capture cross-domain interactions, lack adaptability,
and demand prohibitive computational resources. This paper
presents a formal model of Compound AI systems, introducing
a novel tripartite framework that decomposes complex tasks
into specialized, interoperable modules. The proposed modu-
lar architecture provides essential capabilities to address the
unique challenges of 6G networks in the 3D continuum, where
heterogeneous components require coordinated, yet distributed,
intelligence. This approach introduces a fundamental trade-off
between model and system performance, which must be carefully
addressed. Furthermore, we identify key challenges faced by
Compound AI systems within 6G networks operating in the 3D
continuum, including cross-domain resource orchestration, adap-
tation to dynamic topologies, and the maintenance of consistent
AI service quality across heterogeneous environments.

Index Terms—3D Continuum, Compound AI, 6G Networks

I. INTRODUCTION

The integrated 3D continuum represents a fundamental
shift from traditional ground-based infrastructure, seamlessly
connecting terrestrial, aerial, and space-based components into
a unified ecosystem. 6G networks serve as one of the key
enabling technologies for this continuum, facilitating inter-
actions between ground networks, high-altitude platforms,
unmanned aerial vehicles, and satellite constellations [1].
This 3D continuum extends beyond mere connectivity to
encompass distributed compute and storage resources across
heterogeneous domains, creating a fabric that supports ubiq-
uitous digital services regardless of geographical location or
altitude. Through 6G’s orchestration capabilities, the system
promises unprecedented global coverage, enhanced reliability,
and improved throughput across all segments of this multidi-
mensional environment.

However, managing this 3D environment presents signifi-
cant challenges due to the high mobility, heterogeneity, and
dynamic nature of its components, particularly satellite nodes
that continuously reshape network topologies in real time [2].
Although current AI-assisted approaches to network manage-
ment predominantly rely on monolithic models, these face
critical limitations within the 3D continuum context. Single-
model strategies typically specialize in optimizing specific

domains without effectively capturing cross-domain interac-
tions, lack the adaptability required for rapidly changing net-
work conditions, and often require substantial computational
resources unavailable across all segments of the network. Fur-
thermore, training and operating such large monolithic models
incurs prohibitive costs in terms of computation, energy, and
maintenance. System performance metrics such as latency and
throughput also suffer significantly when these models attempt
to handle large-scale, heterogeneous network environments,
creating bottlenecks that undermine real-time decision-making
capabilities.

Compound AI systems [4], [5], [7] offer distinct advantages
over these current state-of-the-art approaches. By distribut-
ing intelligence across the network, Compound AI systems
enable localized decision making while maintaining global
coordination, efficiently utilize heterogeneous computational
resources, and adapt to the unique characteristics of each
domain. This paper presents Compound AI systems to address
the key management challenges of the 6G networks in the
3D continuum, demonstrating how this modular yet integrated
approach can enable autonomous adaptation while maintaining
consistent service quality and operational efficiency across
terrestrial, aerial, and space domains.

II. OVERVIEW OF COMPOUND AI SYSTEMS

A. Towards system design approach to AI

Rather than relying on a single model to handle all aspects
of a complex problem, Compound AI systems decompose
tasks into manageable sub-components. This modular ap-
proach enables developers to leverage specialized models or
tools for different sub-tasks and control information flow. For
example, lightweight models can make real-time decisions at
terrestrial base stations, while different specialized models si-
multaneously optimize aerial and satellite resource allocation.
Supporting infrastructure components such as vector databases
for similarity search, orchestration frameworks for module
coordination, API gateways for external tool access, and mon-
itoring systems for quality assurance create a rich ecosystem
of components to build upon. This diversity allows the system
to function effectively even when parts have varying computa-
tional capacities or connectivity constraints. Similarly, routing
inputs to different-sized models based on task complexity
and overall system load can optimize computational resources



while maintaining quality of service across heterogeneous
network segments. As network conditions evolve, individual
AI components can be updated independently, preserving
adaptability without requiring retraining of the entire system.

B. Example Compound AI System and Main Design Principles

To better understand the concept of Compound AI systems,
we turn to the following explanatory example.

Fig. 1. VATE: A Compound AI System for Edge-Cloud Object Detection
and Tracking. [8]

Fig 1 illustrates a Compound AI system for edge-cloud
collaborative object detection and tracking. It demonstrates
how multiple specialized modules collaborate in a unified
system. At the edge, a lightweight detector identifies potential
objects, while a tracking module maintains object persistence
across frames. On the cloud side, a more powerful detector
offers greater accuracy for challenging cases. A fusion module
combines detections from both edge and cloud sources to
create an improved understanding of the scene. Furthermore,
a dedicated orchestrator module makes intelligent decisions
about when to process input locally, when to offload to the
cloud, and when to rely on tracking rather than detection,
balancing between computational efficiency and accuracy.

With these considerations, we define Compound AI systems
as systems composed of specialized, interoperable modules
that collectively address complex AI tasks. Each module
performs a distinct function and interacts via well-defined
defined interfaces. The following key characteristics define the
structural and functional principles that underpin Compound
AI systems, enabling them to address complex tasks in a
scalable and efficient manner:

• Modularity – Separate parts of Compound AI systems
can be developed, tested and maintained independently
while minimizing impacts on the overall system. This
represents a separation of concerns that facilitates parallel
development and iterative improvement by specialized
teams [9].

• Adaptability – The modular design of Compound AI
systems enables rapid adaptation to new requirements or
changing conditions by allowing individual components
to be replaced, enhanced, or reconfigured without rebuild-
ing the entire system.

• Abstraction – Internal complexities of modules are hid-
den behind well-defined interfaces, ensuring that changes

to a module’s implementation don’t affect other compo-
nents. This creates a clear separation between what a
module does and how it accomplishes its task.

• Interaction-defined Architecture – The architecture of
a Compound AI system is fundamentally defined by
how modules interact with each other. These interactions
establish the data flow through the system and determine
how information is processed, transformed and utilized
across modules.

• Cost-Effectiveness - Designing with cost-effectiveness
in mind ensures that resource utilization, energy con-
sumption, and computational requirements are optimized.
This principle is crucial not only for reducing operational
expenses but also for enabling an architecture where in-
dividual components can be updated or replaced without
necessitating a complete retraining of the entire system

III. COMPOUND AI SYSTEM MODEL

A. Definition and Core Components

Fig. 2. Tripartite model for Compound AI systems

In Fig 2 we present a model and reference architecture
for Compound AI system. This reference architecture offers
a conceptual framework through which to analyze, conceptu-
alize, and implement Compound AI (CAI) systems as multi-
modular, interactive, and adaptive entities. These systems are
composed from a comprehensive ecosystem encompassing
various AI/ML models, vector databases, retrieval mecha-
nisms, external APIs, and domain-specific algorithmic solu-
tions.

We define a Compound AI System formally as a triple:

CAI = (S, F,O)

Where:
• S represents the Structural component
• F represents the Functional component
• O represents the Operational component
While each component serves a distinct role, they interact

in important ways:



1) The Structural component (S) defines what modules
exist and how they connect, constraining the possible
implementations in the Functional component (F ).

2) The Functional component (F ) realizes the abstract
architecture defined in S through concrete implemen-
tations, potentially informing structural changes based
on implementation constraints.

3) The Operational component (O) monitors and maintains
S and F , providing feedback for optimization and
adaptation.

The tripartite model naturally supports key system design
principles such as modularity, adaptability, and abstraction.
By clearly separating architectural, behavioral, and operational
concerns, it enables more systematic approaches to the de-
velopment, deployment, and maintenance of complex, multi-
model AI systems.

B. Structural Component (S)

The Structural component defines the high-level architecture
of the system, specifying what each module does and how
information flows between modules. Formally, we represent
this as a directed graph:

S = G(M,E)

Where:
• M = {M1,M2, . . . ,Mn} is the set of modules
• E ⊆ M ×M is the set of connections between modules
For any two modules Mi and Mj , an edge E(Mi,Mj)

indicates that the output of module Mi serves as an input
to module Mj .

Each module Mi is characterized [6] by its input space
Ii and output space Oi, which define the types and formats
of data the module can accept and produce. The Structural
component thus establishes a “schema” for the Compound AI
system, defining the roles and relationships of its constituent
parts without specifying their implementation details.

C. Functional Component (F)

The Functional component defines how the system behaves
by mapping the abstract architecture to concrete implementa-
tions. It encompasses:

F = (P,Φ, δ)

Where:
• P = {P1, P2, . . . , Pn} is a implementation set where

each Pi is an implementation pool for module Mi

• Φ is the composition function that determines the overall
system behavior

• δ is the mapping function that selects specific implemen-
tations from pools

For each module Mi, the implementation pool Pi =
{fi1, fi2, . . . , fik} contains multiple possible implementations
that fulfill the same functional role but may differ in their

performance characteristics, resource requirements, or other
properties.

The mapping function δ : M →
⋃
Pi selects a specific

implementation for each module, such that δ(Mi) ∈ Pi.
The composition function Φ integrates these implemen-

tations according to the structural blueprint to produce the
overall system behavior:

Φ : I → O

Where I is the input space and O is the output space of the
entire system.

Critically, this function ensures that the compound system’s
behavior matches what would be expected from a monolithic
model:

y = Φ(x) where x ∈ I, y ∈ O

The composition function can be formally defined in terms
of the graph execution:

Φ(x) = Ψ(G(M,E), δ(M1), δ(M2), . . . , δ(Mn), x)

Where Ψ is a graph execution function that propagates
inputs through the implementation graph according to the
connection pattern defined in S.

D. Operational Component (O)
The Operational component encompasses the infrastructure

and processes that enable, maintain, and optimize the running
system. This includes:

O = (Mon, Sec,Gov,Orch)

Where:
• Mon represents monitoring and observability systems
• Sec represents security and compliance mechanisms
• Gov represents governance frameworks and policies
• Orch represents orchestration and resource management
The Operational component serves as the foundation that

supports both the Structural and Functional components, pro-
viding:

1) System monitoring that tracks performance, resource
utilization, and failure modes

2) Security controls that protect system integrity and data
privacy

3) Governance mechanisms that ensure compliance with
regulations and ethical standards

4) Orchestration tools that manage deployment, scaling,
and resource allocation

This component parallels DevOps and MLOps practices in
software engineering but extends them to address the unique
challenges of compound AI systems.

IV. OPEN CHALLENGES FOR COMPOUND AI IN 6G
NETWORKS FOR 3D CONTINUUM

To realize our vision of Compound AI, the following
challenges need to be addressed.



A. Cross-Domain Resource Orchestration

Orchestrating Compound AI resources across the 3D con-
tinuum faces unique constraints that existing AI solutions fail
to address. Terrestrial components can leverage high compu-
tational capacity but are limited in coverage, aerial platform-
based components faces energy and computational constraints,
while satellite-hosted systems can provide wide coverage but
with significant computational and latency limitations. Current
AI orchestration approaches treat these domains separately,
creating inefficiencies at domain boundaries. Compound AI
for 6G networks requires intelligent decomposition and co-
ordination mechanisms that can distribute AI tasks optimally
across these diverse domains while accounting for their unique
characteristics and computational limitations.

B. Adaptation to Dynamic Network Topologies

The constantly evolving network topologies of the 3D
continuum challenge traditional deployment strategies. As
satellite constellations orbit, aerial platforms move, and terres-
trial demand shifts, Compound AI systems must continuously
reconfigure themselves to maintain performance. Current AI
composition algorithms struggle with this dynamism, leading
to suboptimal configurations where component distribution
becomes misaligned with actual network conditions. Com-
pound AI for 6G networks requires adaptive systems capable
of predicting topology changes and proactively reconfigur-
ing component distribution and communication patterns, thus
maintaining overall model performance while optimizing sys-
tem performance metrics.

C. Maintaining AI Service Consistency

Delivering consistent AI service quality across the 3D
continuum presents significant technical challenges. As AI
requests and data transition between terrestrial, aerial, and
space segments, maintaining continuity of AI inference quality
becomes increasingly difficult. Current approaches typically
react to AI service degradations after they occur, particularly
at domain boundaries where computational resources vary
dramatically. Compound AI for 6G networks requires pre-
dictive capabilities that can anticipate performance variations
across the continuum and implement proactive measures in
order to maintain service level objectives despite the inher-
ent heterogeneity and dynamic nature of the underlying 3D
infrastructure.

D. Balancing the Trade-offs

Compound AI systems present trade-offs between improv-
ing model performance and maintaining system efficiency [3].
In scenarios requiring advanced reasoning, adding specialized
components to a monolithic model can enhance accuracy,
precision, and recall. However, this often leads to increased
latency, energy consumption, and computational demands.
Conversely, when deploying on the edge, Compound AI aims
to retain comparable model performance while significantly
improving system efficiency to suit resource-constrained en-
vironments. These trade-offs become especially challenging

across the 3D continuum, which spans from powerful data
centers to limited-capacity edge devices. Addressing this com-
plexity requires adaptive frameworks capable of dynamically
reconfiguring Compound AI systems based on fluctuating net-
work conditions, available resources, and application-specific
requirements. Such adaptability would allow systems to strike
the right balance between model and system performance,
depending on the deployment context. Advancing this research
is key to ensuring that the benefits of Compound AI outweigh
the added complexity it introduces in real-world scenarios.

V. CONCLUSION

In this paper, we introduced the concept of Compound AI
systems and presented a formal tripartite model that captures
their structural, functional, and operational dimensions. By
breaking down complex tasks into specialized, interoperable
modules, Compound AI systems offer a scalable and adapt-
able alternative to traditional monolithic AI architectures. We
explored how this general framework can address the unique
challenges of 6G networks in the 3D continuum, highlighting
the advantages of modularity and distributed intelligence in
such complex scenarios.

Looking ahead, our future work will focus on applying
this general Compound AI system model to real-world 6G
use cases and other dynamic, distributed environments. This
includes implementing adaptive orchestration strategies, de-
veloping proactive reconfiguration mechanisms, and validating
system performance across varying network and resource con-
ditions. By doing so, we aim to demonstrate how Compound
AI systems can be effectively deployed to meet the demands
of next-generation networks and beyond.
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