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Abstract—Web services and service-oriented architecture
(SOA) have become the de facto standard for designing
distributed and loosely coupled applications. Many service-
based applications demand for a mix of interactions between
humans and Software-Based Services (SBS). An example is
a process model comprising SBS and services provided by
human actors. Such applications are difficult to manage due
to changing interaction patterns, behavior, and faults resulting
from varying conditions in the environment. To address these
complexities, we introduce a self-healing approach enabling
recovery mechanisms to avoid degraded or stalled systems. The
presented work extends the notion of self-healing by consider-
ing a mixture of human and service interactions observing their
behavior patterns. We present the design and architecture of
the VieCure framework supporting fundamental principles for
autonomic self-healing strategies. We validate our self-healing
approach through simulations.

Keywords-Self-healing model, monitoring, recovery, mixed
service-oriented system, delegation behavior

I. INTRODUCTION

Large-scale distributed applications become increasingly

dynamic and complex. Adaptations are necessary to keep

the system fit and running. New requirements and flexi-

ble component utilization call for updates and extensions.

Thus, a challenge is the sound integration of new and/or

redesign of established components. Integration must also

consider changing dependencies. Unfortunately, to cope with

all efforts, including deployment, integration, configuration,

and fine tuning, monitoring and control of the system has

proven sheer impossible by humans alone [1]. Today’s SOAs

are composed of loosely coupled services orchestrated to

collaborate on various kinds of tasks. However, their benefit,

modularity and an almost infinite number of combinations,

fosters unpredictable behavior and as a consequence results

in poor manageability. Mixed Systems extend the solely

software implemented capabilities of traditional Service-

oriented Systems with human provided services. The inte-

gration of humans and software-based services is motivated

by the difficulties to adopt human expertise into software

implementations. Rather than dispense with the expertise, in

Human-Provided Services (HPSs) a human handles tasks [2]

behind a traditional service interface. The mix of common

services based purely on software denoted as Software-Based

Service (SBS) and HPS forms a Mixed System.

Systems with self-healing properties are part of the Au-

tonomic Computing [1] and Self-adaptive Systems [3] re-

search. The self-healing properties of a system enhance new

or existing unpredictably, unsatisfactorily manageable envi-

ronments with self-aware recovery strategies. Hence, self-

healing is considered a property of a system that comprises

fault-tolerant, self-stabilizing, and survivability capabilities,

and on exceptions, relies also on human intervention [4],

[5]. A certain self-awareness is guaranteed by a continuous

flow of status information between self-healing enhancement

and environment. Inherited from fault-tolerant systems, the

success of self-healing strategies depends on the recognition

of the system’s current state.

A. Self-healing principles

Mixed Systems are designed and built for long term use.

Once available they are expected to remain accessible and

tend to grow in size. To keep the system prevalent new

services are integrated and legacy ones are updated. New

requirements, advances in and novel technologies involve

necessary changes. Therefore, a certain adaptability is re-

quired and expected from the system. However, the required

flexibility increases the complexity of the system, and adap-

tations possibly cause unexpected behavior. The main goal

of a self-healing approach is to avoid unpredictable behavior

leading to faults. Filtered events are correlated to analyze

the health of the system. The problem is identified and

appropriate recovery actions are deployed [6]. The current

health is usually mapped to recognizable system states as

provided by the generic three state model for self-healing as

for example discussed in [4].

According to their classification a system is considered in

healthy state when not compromised by any faults. Once

a degradation of system performance caused by faults is

detected, the system moves to a degraded state but still

functions. The situation is in particular observed in large-

scale systems. This provides self-healing extensions with

time for carefully planned recovery strategies that do not

only include fault recovery by repair actions, but also sound

deployment and compensation of side-effects. Finally, if

the faults affect essential parts or a majority of the nodes

the system’s behavior becomes unpredictable and ultimately

stalls. The system is considered in unhealthy state.



Self-healing tries to avoid a stalled system. The state

is prevented by a combination of self-diagnosing and self-

repairing capabilities [3]. A compelling precondition for any

self-healing enhancement is a continuous data-flow between

those and the guarded system. According to [1] a control

loop is the essence of automation in a system. In detail

[7] presents the autonomic manager as a generic layout

for any self-management property, including self-healing.

The manager relies on a control loop and includes monitor,

analyze, plan, and execute modules.

B. Contributions

Possible fault sources in Mixed Systems are manifold.

Failures occur on all layers including the infrastructure

layer, e.g., hardware and communication channels, imple-

mentation, such as mistakes and errors in application soft-

ware, and application layer, due to errors in utilization

and incomprehensible administration. In this work we focus

on a novel kind of fault source: unpredictable and faulty

behavior of services in a Mixed System. For that purpose,

we observe the behavior of the heterogeneous services and

their interactions. In particular, we focus on task delegation

behavior in a collaborative scenario. Services have a limited

buffer for tasks and excessive delegations to single nodes

in the network can cause buffer overloads, and furthermore,

may lead to service degradation or ultimately to failure. It

is thus essential that we identify misbehavior, analyze the

cause, and heal the affected services. Moreover, we use a

non-intrusive healing approach which punishes misbehavior

by protecting affected nodes from load and restricting the

delegation options of misbehaving nodes.

In this paper we present the following contributions:

� Delegation Behavior Models. We identify the funda-

mental delegation behavior models and their effects on

the health state of the network.

� Failure Models.We outline failure models in the system

caused by misbehavior and analyze their root cause.

� VieCure Architecture. We present our self-healing

framework using state of the art Web services tech-

nologies.

� Recovery Strategies. We formulate algorithms to com-

pensate the effects of misbehavior and facilitate fast

system recovery.

� Evaluation. We simulate discussed recovery strategies

to enable sophisticated self-healing in mixed service-

oriented networks.

The rest of the paper is structured as follows. In Section

II we outline our motivation for the chosen approach, give

a guiding example scenario, and identify two types of

misbehavior. Sections III and IV describe the components

and architecture and detail our self-healing framework. The

algorithm presented in Section V represents our misbehavior

healing approach. An evaluation with experiments follows in

Section VI. Related work is discussed in Section VII, and

the paper is concluded in Section VIII.

II. FLEXIBLE INTERACTIONS AND COMPOSITIONS

In this section we introduce a cooperative system envi-

ronment, explain the motivation for our work, and deal with

the major challenges of self-healing in mixed SOA.

A. Scenario

WS
DL

WS
DL

Expert

Network

Symbols:

HPS

SBS

profile data

expertise area 

delegation
relation

WS

DL

WS
DL

WS
DL

service

consumer

request

Figure 1. Flexible cooperation of actors in an expert network.

Today, processes in collaborative environments are not

restricted to single companies only, but may span multiple

organizations, sites, and partners. External consultants and

third-party experts may be involved in certain steps of such

processes. These actors perform assigned tasks with respect

to prior negotiated agreements. Single task owners may

consume services from external expert communities. For a

single service consumer this scenario is shown in Figure 1.

We model a mixed expert network consisting of HPSs [2]

and SBSs that belong to different communities. The mem-

bers of these communities are discovered based on their

main expertise areas (depicted as shaded areas), and are

connected through certain relations (see later for details).

Community members receive requests from external service

consumers, process them and respond with appropriate an-

swers. A typical use case is the evaluation of experiment

results and preparation of test reports in biology, physics, or

computer science by third-party consultants (i.e., the Expert

Network). While the results of certain simple but often

repeated experiments can be efficiently processed by SBSs,

analyzing more complex data usually needs human assis-

tance. For that purpose, HPS offers the advantage of loosely

coupling and flexible involvements of human experts in a

service-oriented manner. Therefore, our environment uses

standardized SOA infrastructures, relying on widely adopted

standards, such as SOAP and the Web Service Description

Language (WSDL), to unify humans and software services

in one harmonized environment.

Various circumstances may be the cause for inefficient

task assignments in expert communities. Performance degra-

dations can be expected when a minority of distinguished ex-

perts become flooded with tasks while the majority remains



a

d

c

b

(a) Healthy behavior.

a

d

c

b

(b) Delegation factory.

d

c

b

a

(c) Delegation sink.

Figure 2. Delegation behavior models.

idle. Load distribution problems can be compensated with

the means of delegations [8]. Each expert in a community

knows (i.e., realized as ‘knows’ relation in FOAF profiles1)

some other experts that may potentially receive delegations.

We assume that experts delegate work they are not able

to perform because of missing mandatory skills or due

to overload conditions. Delegation receivers can accept or

reject task delegations. Community members usually have

explicit incentives to accept tasks, such as collecting rewards

for successfully performed work to increase their community

standing (reputation).

Delegations work well as long as there is some agreement

on members’ delegation behavior: How many tasks should

be delegated to the same partner in a certain time frame?

How many tasks can a community member accept without

neglecting other work? However, if misbehavior cannot be

avoided in the network, its effects need to be compensated.

Consider the following scenario: Someone is invited to

join a community, e.g., computer scientists, in the expert

network. Since she/he is new and does not know many other

members, she/he is not well connected in the Web. In the fol-

lowing, she/he will receive tasks that match her/his expertise

profile, but is not able to delegate to other members. Hence,

she/he may get overloaded if several tasks arrive in short

time spans. A straightforward solution is to find another

member with similar capabilities that has free capacities.

A central question in this work is how to support this

process in an effective manner considering global network

properties. In this paper we focus on failures in the ad-

hoc expert network. Such failures impact the network in a

harmful manner by causing degradations. In particular, we

deal with misbehavior of community members and highlight

concepts for self-healing to recover from degraded states in

SOA-based environments comprising human and software

services.

B. Delegation Behavior

Each node, i.e., community member, has a pool of open

tasks. Therefore, the load of each node varies with the

amount of assigned tasks. In Figure 2 the load of nodes

is depicted by vertical bars. If a single node cannot process

assigned tasks or is temporarily overloaded, it may delegate

work to neighbor nodes. The usual delegation scenario is

1FOAF: http://xmlns.com/foaf/spec/

shown in Figure 2(a). In that case, node a delegates work to

its partner nodes b, c, and d, which are connected by chan-

nels. A channel is an abstract description of any kind of link

that can transport various information of communication,

coordination and collaboration. In particular, a delegation

channel has a certain capacity that determines the amount

of tasks that may be delegated from a node a to a node b

in a fixed time frame. None of the nodes is overloaded with

work in the healthy state.

Delegation Factory. As depicted in Figure 2(b) a del-

egation factory produces unusual amounts (i.e., unhealthy)

of task delegations, leading to a performance degradation

of the entire network. In the example, node a accepts

large amounts of tasks without actually performing them,

but simply delegates to its neighbor node d. Hence, a’s

misbehavior produces high load at this node. Work overloads

lead to delays and, since tasks are blocked for a longer while,

to a performance degradation from a global network point

of view.

Delegation Sink. A delegation sink behaves as shown

in Figure 2(c). Node d accepts more task delegations from

a, b, and c as it is actually able to handle. In our collab-

orative network, this may happen due to the fact that d

either underestimates the workload or wants to increase its

reputation as a valuable collaboration partner in a doubtful

manner. Since d is actually neither able to perform all tasks

nor to delegate to colleagues (because of missing outgoing

delegation channels), accepted tasks remain in its task pool.

Again, we observe misbehavior as the delegation receiver

causes blocked tasks and performance degradation from a

network perspective.

Healing refers to compensating the effects of delegation

misbehavior by adapting structures in the delegation net-

work. This includes modifying the capacity of delegation

channels, as well as adding new channels and removing

existing ones.

III. ARCHITECTURE OVERVIEW

One of the biggest challenges in Mixed Systems is to

support flexible interactions while keeping the system within

boundaries to avoid degraded or stalled system states. Thus,

adaptation mechanisms are needed to guide and control

interactions. In this section we introduce the VieCure frame-

work to support self-healing principles in mixed service-

oriented systems. Such environments demand for additional



tools and services to account for human behavior models

and complex interactions. In the following, we present the

overall architecture, inspired by existing architectural models

in the self-healing and autonomic computing domain, and

introduce novel components such as a behavior registry

holding information regarding HPS delegation behavior.
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Figure 3. Environment overview and the VieCure framework.

Figure 3 shows the overall framework model comprising

three main building blocks: SOA Environment consisting of

human and software services, Monitoring and Adaptation

Layer to observe and control the actual environment and the

VieCure framework providing the main features to support

self-healing actions.

A. Mixed SOA Environment

Many collaboration and composition scenarios involve

interactions spanning human actors as well as software

services. Traditional SOA architectures were designed to

host SBSs without considering Human-Provided Services.

We extend the architectural model by introducing:

� A service registry maintaining information related to

human and software services.

� Definition of interaction patterns and interaction con-

straints using Web service technology.

� Enhanced service-related information by describing hu-

man characteristics and capabilities.

The resulting environment characteristics are dynamic,

because of changing behavior and profiles, and the need for

adaptation mechanism due to variable load conditions (e.g.,

changing availability of human actors and changing amount

of task that need to be processed).

B. Monitoring and Adaptation Layer

The main building block of an environment enhanced with

self-* capabilities is a feedback loop enabling adaptation

of complex systems. The functions of a feedback loop can

be realized as a MAPE-K cycle (Monitor, Analyze, Plan,

Execute, and K denoting the Knowledge) [7]. Therefore our

architecture needs to integrate the functions of this loop by

performing two essential steps:

Observations. Part of the knowledge base is provided

by observations. Observations constitute most of the current

knowledge of the system. Interaction data is gathered from

the mixed system environment and stored in the logging

database (denoted as Logs). Events are registered and cap-

tured in the environment, stored in historical logs, and serve

as input for triggers and the diagnosis.

Recovery Actions. By filtering, analyzing, and diagnosing

events, an adaptation may need to be performed. Recovery

actions are parts of a whole adaptation plan determined by

diagnosis. Single recovery actions are deployed in correct

order and applied to the environment by Recovery module.

IV. VIECURE FRAMEWORK

The building blocks of the VieCure framework are be

detailed in this section. Figure 4 shows the fundamental

interplay of VieCure’s components. The Monitoring and

Adaptation Layer is the interface to the controlled environ-

ment that is observed by the framework and influenced after-

ward through corrective actions. All monitored interactions,

such as SOAP-based task delegations (see Listing 1), are

stored for later analysis by Interaction Logging Facilities.

Environment events, including adding/removing services or

state changes of nodes, are stored by similar Event Logging

Facilities. Logs, events, and initial environment information

represent the aggregated knowledge used by the VieCure

framework to apply self-healing mechanisms. The effective-

ness and accuracy of the healing techniques strongly depend

on data accuracy.

The Event Monitor is periodically scheduled to collect

recent interactions and events from the logging facilities.

Upon this data, the monitor infers higher level composite

events (c− event). Pre-configured triggers for such events,

e.g. events reporting agreement violations, inform the Di-

agnosis Module about deviations from desired behavior.

Furthermore, the actual interaction behavior of nodes is

periodically updated and stored in the Behavior Registry.

This mechanism assists the following diagnosis to corre-

late behavior changes and environment events. Furthermore,

profiles in conjunction with the concept of HPSs allow to

categorize these services and determine root causes.

Once a deviation indicating composite event triggered

the Diagnosis Module, a root cause analysis is initiated.

Previously captured and filtered interaction logs as well as

actual node behaviors, assist a sophisticated diagnosis and to

recognize the mixed system’s health state. On failures a set
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Figure 4. VieCure’s fundamental mode of operation.

of corrective recovery actions is submitted to the Recovery

module.

A substantial part of recovery is the self-healing policy

registry (underneath the Recovery block in Figure 3). It

manages available adaptation methods. As mentioned before,

adaptations and constraints applied by self-healing policies

include, for example, boundaries and agreements imposed

on the services defining the interaction paths and limiting

recovery strategies. The recovery module executes the re-

covery actions and influences the mixed system environment

through the Monitoring and Adaptation Layer.

A. Interaction Monitoring

Interactions between community members of the expert

network are modeled as standardized SOAP messages with

header extensions (see also [8]), as shown in Listing 1.

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:vietypes="http://www.infosys.tuwien.ac.at/Type"

xmlns:hps="http://myhps.org/Type"

xmlns:hpsht="http://myhps.org/HumanTask"

<soap:Header>

<wsa:MessageID>uuid:722B1240�...</wsa:MessageID>

<wsa:ReplyTo>http://www.expertweb.org/Actor#Harald</wsa:ReplyTo>

<wsa:From>http://www.expertweb.org/Actor#Harald</wsa:From>

<wsa:To>http://www.expertweb.org/Actor#Florian</wsa:To>

<wsa:Action>http://myhps.org/Action/Delegation</wsa:Action>

<vietypes:activity url="http://www.expertweb.org/Activity#42"/>

<vietypes:delegation hops="3"/>

<vietypes:timestamp value="2010-01-29T15:13:21"/>

<hpsht:taskContext>

<hpsht:deadline="2010-01-30T12:00:00"/>

<hpsht:priority>...</hpsht:priority>

</hpsht:taskContext>

</soap:Header>

<soap:Body>

<hps:prepReport>

<prepReport:requ>Please create a report for experiment X</prepReport:requ>

<prepReport:generalterms>algorithm</prepReport:generalterms>

<prepReport:keywords>ranking, interactions, graph</prepReport:keywords>

<prepReport:resource url="http://.../experimentX"/>

</hps:prepReport>

</soap:Body>

</soap:Envelope>

Listing 1. Simplified interaction example.

A logging service is part of the monitoring layer to

capture all interactions performed in the network. Header

extensions include the context of interactions (i.e., the ac-

tivity that is performed), delegation restrictions (e.g., the

number of hops), identify the sender and receivers with

WS-Addressing2, and hold some meta-information about the

activity type itself. For HPS, SOAP messages are mapped

to user interfaces by the HPS framework [2]. Task Context

related information is also transported via header mecha-

nisms. While activities depict what kind of information is

exchanged between actors (type system) and how collabora-

tions are structured, tasks control the status of interactions

and constraints in processing certain activities.

B. Event Trigger, Diagnosis and Recovery Actions

The event monitor is an integral part of the monitoring

layer. As previously described it constantly logs arriving

events from the environment and composes log and event

history to higher level events. Events from the environment

are delivered by a reliable and asynchronous event bus

provided by the Java Message Service (JMS)3.

<complexType name="Event"> <sequence>

<element name="logSeqNumber" type="int"></element>

<element name="logTime" type="time"></element>

<element name="eventSeqNumber" type="int"></element>

<element name="eventTime" type="time"></element>

<element name="eventOrigin" type="string"></element>

<element name="eventType" type="tns:EventType"></element>

<element name="eventExtendedType" type="tns:ExtEventType">

</element>

<element name="eventDescription" type="string"><element>

<element name="eventSeverity" type="tns:Severity"></element>

...

</sequence>

</complexType>

Listing 2. Extract of event specification.

2http://www.w3.org/Submission/ws-addressing/
3http://java.sun.com/products/jms/



The structure of an event as payload of a message or

composed by the event monitor is provided by the XSD-

based definition in Listing 2. The initial four fields identify

the event at the receiver (fist two) and sender (last two),

if arriving from the environment. The tuple sequence

number and time uniquely identify an event at both sides.

This also supports examinations on the events actuality.

The following fields origin, type, extended type,

and description are mandatory. Origin indicates the

source of the event. These include environment or composed

type. The extended type field tags the events nature.

Tags reflect hardware and communication faults, human

related workload and delegation problems, and QoS and

agreements related issues. The description field con-

tains a human readable description of the event. This is

included for offline evaluation and or online test runs assisted

by humans. The final required field of the schema is the

event’s severity. The severity defines the events queuing

priority and processing urgency.

Event triggers are implemented using JBoss Drools4 to

detect negative behavior of nodes. Multiple rules are de-

fined to trigger behavior that potentially leads to unhealthy

problems, such as factory or sink behavior discussed before.

Listing 3 shows an excerpt of rule definitions to detect sink

behavior. In particular, if a node’s task queue is considerably

filled (numTasksQueued) but does not (or nearly not)

delegate to neighbors (delegationRate), sink behavior

is detected. VieCure attempts to heal such situations by

creating recovery actions (RecoveryAction) that lead to

the insertion of additional edges, i.e., delegation channels,

in the network.

rule "TriggerFactoryBehavior"

when

node:Node(delegationRate > 50 && role == "worker")

recoveryActionList:ArrayList()

then

Node neighbor = Utils.lookupNodeSimilarCapabilities(node)

RecoveryAction ctlCapacity = new CtlCapacity(neighbor, node);

recoveryActionList.add(ctlCapacity);

end

rule "TriggerUnusualDelegationRateWorker"

when

node:Node(numTasksQueued > 15 && delegationRate < 2)

then ...

end

Listing 3. Triggering events and setting recovery actions.

The final step in the healing process is to execute recovery

actions. Listing 4 shows an example how such recovery

actions can be performed in our system.

As mentioned previously, an approach for recovering

from degraded system state is regulation of delegation

behavior between actors (HPSs). This is accomplished by

sending the corresponding recovery action to an Activity

Management Service (see [9] for details). In Listing 4, a

4http://jboss.org/drools

ControlAction of type Coordination is depicted

regulating the flow of delegations between two actors. Each

Coordination action has a unique identifier and is ap-

plied in the context of an activity. The ControlAction

also contains what kind of ActionType has to be regu-

lated as a result of a recovery. In this example regulation

applies to Delegation actions by changing the capacity

of delegation channels.

<ControlAction xmlns="http://myhps.org/Action"

xmlns:vietypes="http://www.infosys.tuwien.ac.at/Type"

xsi:type="Coordination"

URI="Coordination#10"

Activity="Activity#42">

<From>http://www.expertweb.org/Actor#Harald</From>

<ActionType>http://myhps.org/Action/Delegation</ActionType>

<To>http://www.expertweb.org/Actor#Florian</To>

<vietypes:ctlCapacity capacity=.../>

</ControlAction>

Listing 4. Control action to recover from degraded system state.

V. REGULATION OF BEHAVIOR

In our self-healing algorithm for Mixed Systems we opted

for a regulation of a node’s behavior in a non-intrusive

manner. Instead of healing misbehavior directly at the nodes,

we influence their behavior by restricting delegations, estab-

lishing new delegation channels, and by redirecting work.

Next, we outline the modules of our self-healing mechanism

in Algorithm 1 and detail and analyze the concepts with

respect to the failure scenario in Figure 5.

a

d

c

b
e

(i)

(iii)

(ii)

Figure 5. Self-healing recovery actions for a failure affected node.

Trigger. The first module (line 1 to 5), a trigger, represents

a filter for the failure scenario in Figure 5. As a prerequisite

any agreements and constrains monitored by this self-healing

approach need to be expressed as threshold values. These

values are integral part of the decision logic of a trigger

module.

Diagnosis. A recognized violation fires the second module

(line 6 to 23), the diagnosis. It defines the necessary recovery

actions by analyzing the result of the task history evaluation

of the failing node.

Recovery Actions. The possible resulting recovery ac-

tions are listed in the last three modules (line 24 to 37).

The first balances load of a failing node by restricting

incoming delegations. The second provides the failing node

with new delegation channels for blocked tasks. The last



Algorithm 1 Detection of misbehavior and recovery actions.

Require: Monitoring of all nodes

Require: Listen to Events

1: Trigger triggerQueueOverload(event)

2: node← event:node /*affected node*/

3: if q >#q then

4: fire diagnoseBehavior(node)

5: end if

6: /*diagnose sink and factory behavior*/

7: Diagnosis diagnoseBehavior(node)

8: recActs← ∅ /*set of returned recovery actions*/

9: recActs.add(addChannel(node))

10: analyzeTaskHistory(node)

11: for neighbor ← affectedNeighbors(node)

12: if (rankTasks(node) > #pref ) or (p < #p) then

13: /*root cause: sink behavior*/

14: recActs.add(redDeleg(neighbor))

15: recActs.add(ctlCapacity(neighbor, node))

16: else if (q < #q) and (d > #d) then

17: /*root cause: factory behavior*/

18: recActs.add(ctlCapacity(neighbor, node))

19: else

20: /*root cause: transient degradation*/

21: recActs.add(redDeleg(neighbor))

22: end if

23: return recActs

24: /*recovery action: control capacity*/

25: Recovery Action ctlCapacity(neighbor, node)

26: cap← estimateCapacity(neighbor, node)

27: setCapacity(cap)

28: /*recovery action: add channel*/

29: Recovery Action addChannel(node)

30: simNode← lookupNodeSameCapabilities(node)

31: addDelChannel(node, simNode)

32: ctlCapacity(node, simNode)

33: /*recovery action: redirect delegations*/

34: Recovery Action redDeleg(neighbor)

35: simNode← lookupNodeRequiredCapabilites(neighbor)

36: addDelChannel(neighbor, simNode)

37: ctlCapacity(neighbor, simNode)

assists neighbors by providing new delegation channels to

alternative nodes.

As mentioned before, a loop-style data-flow between the

guarded system and the self-healing mechanism allows to

observe changes. Changes leading to possible failures are

recognized by the mechanism by directing the data-flow

through the trigger modules’ logic. In Algorithm 1 Trigger

triggerQueueOverload filters events which indicate

a threshold violation of the task queue capacity of a node

(Line 3). Such an event causes triggerQueueOverload

to fire the related diagnosis diagnoseBehavior passing

on the failure affected node information. E.g., in Figure 5

the congestion of node b is reported as such an event.

As a first precaution in diagnoseBehavior the algo-

rithm balances the load at node and adds recovery action

addChannel to the recovery result-set recActs. The idea

is to relieve node by providing node with new delegation

options to nodes with sufficiently free capacities. The task

of this recovery action is to discover a node that has

capabilities similar to node. Once the delegation channel

is added, in ctlCapacity method estimateCapacity

estimates the maximum possible of task transfer regard-

ing the discovered nodes’ processing capabilities. Finally,

setCapacity controls the throughput accordingly. Next, in

analyzeTaskHistory the diagnosis derives a root cause

from the reported node’s task history. A repository of classi-

fied failure patterns is compared to the last behavior patterns

of the node and the corresponding root cause returned. In a

loop (line 11), by selecting the affected neighbors, behavior

is analyzed.

Sink Behavior. Line 12 identifies sink behavior. The re-

sult of the pattern analysis shows that node is still accepting

tasks from any neighbor, however, prefers to work on tasks

of a certain neighbor and delays the tasks of the other nodes.

The second misbehavior of a sink is to perform tasks below

an expected rate (p < #p). The additional counter actions

try to provide options for the set of affected delegating

neighbor nodes and to decouple the sink. Recovery action

redDeleg finds the alternatives and again estimates the

adequate capacity of the new delegation channels. Recovery

action ctlCapacity sets the delegation rate between sink

and its neighbors to a minimum. The situation is depicted

in Figure 5. Delegation channel (ii) is added from b to

similar capable node d and allows b to dispense a certain

amount of capability matching tasks. Delegation channel (iii)

from a to d is a result of redDeleg. In our example, d

has enough resources to process blocked (from b) and new

tasks (from a). The amount of recently delegated tasks is

balanced in estimateCapacity. Thereafter the capacity

of delegation channel (i) is minimized. A limitation of the

delegations depends on the content of b’s task queue. The

example assumes that it mostly contains tasks from a. If

the capacity of delegation channel (iii) is too low for a’s

delegation requirements, it might consider to process the

tasks itself, or discover an additional node for delegation.

The whole scenario is also applicable for a factory behavior

of a. In that case, further uncontrolled delegations of a are

avoided and no new delegation channel (iii) would be added.

Factory Behavior. Line 16 detects a delegation factory

behavior. A factory is identified by moderate use of queue

capacity (q < #q) in contrast to high and exceeding delega-

tion rates (d > #d) causing overloaded nodes despite avail-

able alternatives. Recovery restricts the delegations from the



factories to node, expecting that the factories start increasing

their task processing performance or find themselves other

nodes for delegations. Besides releasing the load from node,

ctlCapacity ensures that the delegation of tasks from a

factory to node is set to a minimum.

Transient Behavior. In Line 19, if neither factory nor

sink behavior are recognized diagnoseBehavior must

assume a temporal overload of node. As a second precau-

tion the algorithm estimates alternative delegation nodes in

redDeleg for the neighbors of node.

VI. SIMULATION AND EVALUATION

In our experiments we evaluate the effectiveness of previ-

ously presented recovery action algorithms (c.f., Section V)

in a simulated mixed SOA environment. Figure 6 outlines

the controllable simulation environment on the left used for

our experiments. We took interaction logs from the real

mixed SOA environment on the right to reconstruct the main

characteristics.
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Figure 6. Simulation setup.

A. Simulation Setup

Simulated Heterogeneous Service Environment. The

simulated interaction network comprises a node actor frame-

work implemented in JAVA language. At bootstrapping the

nodes receive a profile including different behavior models.

Each node has a task list with limited capacity. Depending on

the deployed behavior model a node tends either to delegate,

or process tasks, or exposes a balanced behavior. New

tasks are constantly provided to a quarter of the nodes via

connected entry points. Tasks have an effort of three units.

A global timer initiates the simulation rounds. Depending

on the behavior model, in each round a node decides to

process tasks or delegate one task. A node is able to process

the effort of a whole task, or if delegating, only one effort

unit. For the delegation activity a node holds a current

neighbor list which is ordered according to the neighbors’

task processing tendency. The delegating node prefers nodes

with processing behavior and assigns the selected the longest

remaining task. A receiving node with a task queue at its

upper boundary refuses additional tasks. However, each task

is limited by a ten round expiry. If a task is not processed

entirely in this period it is considered a failed task.

VieCure Setup. At bootstrapping the VieCure monitoring

and adaptation layer is instantiated. In our simulated environ-

ment the monitor has an overview over all nodes. Thus, the

monitor provides the VieCure framework with a current node

list together with their task queue levels. A trigger filters the

queues’ levels and reports to diagnosis if the lower threshold

value is exceeded. Diagnosis estimates then the actual level

and decides on the recorded history together with the current

situation which recovery action to choose. For the purpose of

the evaluation of the recovery actions, we required diagnosis

to act predictable and decide according to our configuration

which recovery action to select.

Recovery actions Two of the outlined recovery actions in

Section V were implemented. In control capacity, the dele-

gation throughput to the affected node is adapted according

to the current task queue level. In add channel, the filtered

node is provided with a new channel to the node with the

currently lowest task queue load factor. In order to evaluate

the effects of the recovery actions we executed four different

runs with the same setting. At the end of each experiment

the logging facilities of the VieCure framework provided us

with all the information needed for analysis. The results are

presented next.

B. Results and Discussion

The experiments measure the efficiency of a recovery

action by the amount of failed tasks. An experiment consists

of a total number of 150 rounds and a simulation environ-

ment with 128 nodes. During an experiment 4736 tasks are

assigned to the nodes’ network. In order to prevent an initial

overload of a single node as a result of too many neighbor

relations, we limited the amount of incoming delegations

channels to a maximum of 6 incoming connections at start-

up. The resulting figures present on their left the total of

failed tasks after a certain simulation round. The curves

show the progress of different configurations of VieCure’s

diagnosis module. The figures on the right represent the

ratio failed/processed tasks in percentages at the end of the

experiments with an equal setting.
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Figure 7. Equal distirbution of behavior models.

The setting for the results in Figure 7 consisted of an equal

number of the three behavior models distributed among the

nodes. Whilst the nodes on their own produce a total of 2083

failed tasks (top continuous curve) the two different recovery

actions separately expose an almost equal progress and finish

at almost half as much; 1171 for add channel action and



1164 for control capacity action, respectively. Combining

both diminishes the failure rate to a quarter compared to

no action, to 482 failed tasks (lower continuous curve). The

results demonstrate that in an equilibrated environment our

two recovery actions perform almost equal and complete

each-other when combined.
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Figure 8. Distribution with a trend for 10% factory behavior.
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Figure 9. Distribution with a trend for 10% sink behavior.

In Figure 8 the setting configured a tenth of nodes with

factory tendency and an equal distribution of the other two

models across the remaining nodes. An immediate result of

the dominance of task processing nodes is that less tasks

fail generally. The failure rate for the experiment with no

recovery falls to a total of 1693 (top continuous curve).

The success of add channel (dashed curve) remains almost

the same (1143). With this unbalanced setting the potential

neighbors for a channel addition remain, however, the same

as in the previous setting. In contrast, the success of control

capacity (dotted curve, 535) relies on the fact that regulat-

ing channels assures that the number of tasks in a queue

relates to the task processing capabilities given by a node’s

behavior. In strategy combination (lower continuous curve,

77), this balancing mechanism is supported by additional

channels to eventually still failing nodes. The results are also

reflected by the success rate figure. In Figure 9 the setting

was changed to a 10% of sink behavior trend. Without a

recovery strategy the environment performs almost the same

as in the previous setting (top continuous curve, 1815). The

strategy of just adding channels to overloaded nodes fails.

Instead of relieving nodes from the task load, tasks circle

until they expire. Thus, a number of 2022 tasks fail for

add channel (dashed curve). The figure further shows, that

this problem has also impact on the combination of the two

strategies (lower continuous curve, 1157). The best solution

for the setting is to inhibit the dominating factory behavior

by controlling the channels capacity (dotted curve, 753).

VII. RELATED WORK

The concepts of self-healing are applicable in various

research domains [4]. Thus, there is a vast amount of

research available on self-healing designs for different areas.

These include higher layers such as models and systems’

architecture [10], [11] application layer, and in particular in-

teresting for our research are large-scale agent-based systems

[12], [13], [14], Web services [15] and their orchestration

[16]. In the middle, self-healing ideas can be found for

middleware [17], [18], and at a lower layer self-healing

designs include operating systems [19], [20], embedded sys-

tems, networks, and hardware [21]. The two main emerging

directions that include self-healing research are provided

by autonomic computing [7],[22] and self-adaptive systems

[3]. Whilst autonomic computing includes research on all

possible layers, self-adaptive systems focus primarily on

research above the middleware layer with a more general

approach.

With current systems growing in size and ever changing

requirements plenty of challenges remain to be faced such

as autonomic adaptations [6] and service behavior modeling

[23]. The self-healing research demonstrated in this paper

relates strongly to the challenges in Web services and

workflow systems. Apart from the cited, substantial research

on self-healing techniques in Web Service environments

has been conducted in the course of the European Web

service technology research project WS-Diamond (Web-

Service DIAgnosinbility, MONitoring and Diagnosis). The

recent contributions focus in particular on QoS related

self-healing strategies and adaptation of BPEL processes

[24], [15]. Others are theoretical discussions on self-healing

methodologies [25].

Human-Provided Services [2] close the gap between

Software-Based Services and humans desiring to provide

their skills and expertise as a service in a collaborative

process. Instead of a strict predefined process flow, these

systems are denoted by ad-hoc contribution request and

loosely structured processes collaborations. The required

flexibility induces even more unpredictable a system prop-

erty responsible for various faults. In our approach we

monitor failures caused by misbehavior of service nodes.

The contributed self-healing method recovers by soundly

restricting delegation paths or establishing new connections

between the nodes.

VIII. CONCLUSION AND OUTLOOK

In our work we analyze misbehavior in Mixed Systems

with our novel VieCure framework comprising an assem-

ble of cooperating self-healing modules. We extract the

monitored misbehaviors to models and diagnose them with

our self-healing algorithms. The recovery actions of the



algorithm heal the identified misbehaviors in non-intrusive

manner. The evaluations in this work shown that our elab-

orate recovery actions compensate satisfactorily the misbe-

haviors in a Mixed System (about 30% higher success rate

with equal distribution of behavior models). The success

rates of the recovery actions depend on the environment

settings. In all but one of the cases, deploying recovery

actions supports the overloaded nodes resulting in a higher

task processing rate. Important to note, that the failure rate

increase near linearly even when recovery actions adjust the

nodes’ network structure. This observation emphasizes our

attempt in implementing non-intrusive self-healing recovery

strategies.

Future work will involve the integration of VieCure into

the GENESIS testbed framework [26] in order to interface

the controlling capabilities of the framework with VieCure’s

self-healing implementations. Experiments in this testbed

environment will provides us with more accurate data when

extending VieCure with additional self-healing policies to

cover new models of Mixed System’s misbehavior.
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