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Kurzfassung
Die steigende Beliebtheit des Internets führte in Kombination mit dem rasanten Fort-
schritt bei Verarbeitungs- und Speichertechnologien zu einem Paradigmenwechsel der
Ressourcenverwaltung. Heutzutage werden Ressourcen als Internetservice gemietet, ent-
weder als Pay-as-you-Go oder On-Demand Dienst: Das sogenannte Cloud-Computing.
Das sowohl von der Industrie als auch von akademischer Seite her wachsende Interesse
am Cloud-Computing führt zu einer steigenden Anzahl an Cloud-Service Anbietern und
Nutzern.

Cloud-Infrastrukturanbieter versuchen sich durch höhere Qualität von den anderen
Anbietern abzugrenzen, bei gleichzeitiger Verringerung der Betriebskosten. Durch das
stete Wachstum und die geographische Verteilung der Rechenzentren wird dies zuneh-
mend anspruchsvoll. Das Hauptziel der Kunden, welche auf die Cloud statt auf eine
IT-Infrastruktur setzen, liegt darin, eine hohe Dienstgüte (QoS) bei gleichzeitiger Kosten-
reduktion zu erreichen. Die Kunden werden bedingt durch die Vielzahl an Angeboten in
Bezug auf Qualität und Kosten ermutigt, gleichzeitig Services mehrerer Cloud-Anbieter zu
nutzen, die sogenannte Multi-Cloud. Die Verwendung von Multi-Cloud Services führt je-
doch zu neuen Herausforderungen bei der Auswahl und Zusammenstellung von geeigneten
Diensten. Im allgemeinen bieten Cloud-Anbieter keine Leistungsgarantie, obwohl Kunden
dringenden Bedarf an garantierter Serviceleistung haben. Es fehlen praktikable Ansätze
diese kosteneffektiv zu erreichen. Die Komplexität entsteht aufgrund der dynamischen
Natur der Cloud, unkalkulierbarer Auslastung und der nichtlinearen Zuordenbarkeit von
Leistungsbedarf auf Cloud Ressourcen.

Die Abwägung zwischen Dienstgüte und Kosten ist sowohl für Infrastrukturanbieter
als auch Kunden ein herausforderndes Ziel. Diese Arbeit untersucht Modelle, Algorithmen
und Mechanismen um den Zielkonflikt von beiden Perspektiven zu betrachten. Zuerst
wird der Cloud-Anbieter Standpunkt vertreten, indem ein Platzierungsalgorithmus für
virtuelle Maschinen bei geographisch verteiler Infrastruktur vorgestellt wird. Dabei wird
ein Bayesisches Netz zur Entscheidungsfindung bei Unsicherheit verwendet. Anschließend
adressieren wir die Kosten in Korrelation mit der Service-Dienstgüte vom Standpunkt des
Kunden aus durch Nutzung des Multi-Cloud Paradigmas. Wir schlagen eine auf Erwar-
tungstheorie basierende Serviceauswahl vor, um vergleichbare Angebote zu klassifizieren.
Weiters schlagen wir autonome Ressourcenzuteilungstechnologien vor, um die Leistungs-
zielvorgabe der Kunden zu garantieren. Zu diesem Zweck wird mittels Kontrolltheorie
ein Ressourcenzuteilungs-Controller entwickelt und mehrere Controller werden mittels
Fuzzyregelung zum Erreichen der geforderten Leistungsziele kosteneffektiv koordiniert.
Schlußendlich wird das Ergebnis dieses Ansatzes mit dem existierenden Stand der Technik
verglichen.
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Abstract
The growth in popularity of the Internet, along with the rapid development of processing
and storage technologies, has brought a paradigm shift in the way computing resources
are provisioned. The technological trend today is to offer computing resources as services,
leased and exposed via the Internet in a pay-as-you-go and on-demand fashion, called
cloud computing. The interest in cloud computing is growing in both industry and
academia, so the number of cloud providers offering their services, and the number of
cloud customers interested in using such services is rapidly increasing.

Cloud infrastructure providers are trying to reduce their operating costs while offering
their services with higher quality; something they strive to do to stand out among
other providers. However, this is becoming challenging as providing such services needs
operating large-scale and geographically distributed data centers. On the other hand, the
main purpose of customers in using clouds is to achieve a high quality of service (QoS)
while reducing their overall costs. Given the variety of offered services in terms of quality
and cost, customers are encouraged to simultaneously use services from multiple cloud
providers, known as multi-cloud. However, utilizing multi-cloud brings a new set of open
challenges, such as selecting and composing the most appropriate services. Furthermore,
despite the critical need of customers in having predictable service performance, in
general cloud providers do not yet offer any performance guarantees. This gap is due
to the complexity of practically addressing this issue in a cost-effective way. Such a
complexity mainly comes from the dynamic nature of the cloud, unpredictable workloads,
and non-linearity of mapping performance measurements into required cloud resources.
Hence, controlling the trade-off between QoS and cost is a challenging goal for both cloud
infrastructure providers and customers.

This thesis investigates models, algorithms, and mechanisms to tackle this trade-off
from both perspectives. More specifically, in the scope of this thesis, we first take
the cloud provider viewpoint by proposing an approach for virtual machine placement
across geographically distributed infrastructures. In this approach, a Bayesian network
model is used to address decision making under uncertainty. Then, we address the
trade-off between QoS and cost from the cloud customer point of view by facilitating the
utilization of the multi-cloud paradigm. We propose a service selection approach using
prospect theory to rank the comparable service offerings. Furthermore, to guarantee
the performance objectives of customers, we propose autonomic resource provisioning
techniques. To this aim, control theory is used to design resource provisioning controllers,
and fuzzy control is utilized to coordinate multiple controllers toward meeting the service
performance objectives in a cost-effective manner. Finally, the evaluations of these
contributions in comparison with the state-of-the-art approaches are presented.
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CHAPTER 1
Introduction

Cloud computing has emerged as a promising computing paradigm for providing “ubiqui-
tous, convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications and services) that can be rapidly
provisioned and released with minimal management effort or provider interaction“ [131]
in a pay-as-you-go manner. The advantages of using cloud services have been increasingly
encouraging customers to adopt them. The granularity of the offered service varies from
low-level to high-level and are often categorized into three cloud delivery models:

1. Infrastructure-as-a-Service (IaaS). It allows cloud customers to run and deploy
arbitrary software on a set of infrastructure, including fundamental computing
resources such as storage, and virtual machine (VM). In this model, the customer
has full control on both the application and the hosting infrastructure. A notable
example of IaaS offering is Amazon Elastic Compute Cloud (EC21)

2. Platform-as-a-Service (PaaS). It offers cloud customers to use a hosting en-
vironment, including the programming languages, libraries, and tools, for their
applications. While the customers have the capability of controlling their appli-
cation, they have limited control of the operating system, hardware, and network
devices in the hosting environment. A notable example of PaaS offering is Google
App Engine2.

3. Software-as-a-Service (SaaS). It offers software applications running on top of
cloud infrastructures. The cloud customer can only use the application, i.e., neither
the infrastructure nor the application can be controlled by the customer. Notable
examples of this model are storage services such as Dropbox3, or streaming services
such as Netflix4.

1Amazon EC2: http://aws.amazon.com/ec2
2Google App Engine: http://developers.google.com/appengine
3Dropbox: http://www.dropbox.com
4Netflix: http://www.netflix.com
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Among the advantages of adapting cloud services, elasticity is the main selling point
for cloud computing [96, 112, 90, 150], and it is a characteristic that differentiates it
from previously proposed computing paradigms such as grid computing [71]. Elasticity
is defined as the degree to which a cloud service is able to accommodate the varying
demands at runtime by dynamically provisioning and releasing resources, such that the
available resources match the current demands closely [90]. This can be realized by using
a component named elasticity controller.

In cloud computing, provisioning the services is negotiated by means of service level
agreements (SLAs). An SLA is defined as an agreement between a cloud provider
and a cloud customer. It is expressed in terms of quality of service (QoS) parameters,
i.e., measurable levels of non-functional attributes such as availability, scalability, and
performance, as well as the service cost. If the cloud provider fails to adhere to this
agreement (i.e., violates the SLA), the cloud customer can claim penalties that result
in missed revenues, and decreased the provider’s reputation. Therefore, the goal of any
cloud provider is to meet the SLAs, while reducing the total cost of offering its services.

In the research carried out in the scope of this thesis, we mainly focus on cloud
infrastructure services. This thesis develops different control mechanisms, including
algorithms, models, and techniques to address the trade-off between QoS and cost for
both cloud infrastructure providers and customers. In the following sections, we present
the problem statement, research questions that motivate our work, and major scientific
contributions that are addressed in the scope of this thesis.

1.1 Problem Statement

With the growth in popularity of cloud computing from both industry and academia,
the number of cloud providers offering their services and the number of cloud customers
interested in using such services is rapidly increasing. Cloud infrastructure providers
are responding to this situation by offering their services with higher quality in order
to stand out among other providers, while keeping their operating costs low. On the
other hand, the main motivation of customers in utilizing cloud services rather than
operating their own infrastructure is to achieve a high QoS while reducing the overall
cost. Therefore, balancing the trade-off between QoS and cost is the interest of both
the cloud provider and customer.

From the cloud provider viewpoint, addressing this trade-off is challenging as the
complexity of cloud data centers are increasing, i.e., they are getting larger in scale and
geographically distributed. For instance, Google has twelve cloud data centers across
four continents [123]. However, control and management of such data centers in a cost
efficient way, while avoiding QoS degradation is still a major challenge [116].

Tackling the trade-off between QoS and cost is also challenging from the cloud
customer perspective. On one hand, to benefit from the variety of offered services with
different quality and cost, customers are increasingly encouraged to simultaneously use
services from multiple cloud providers [48], known as multi-cloud. However, multi-cloud
itself brings a new set of challenges such as selecting and composing the most appropriate
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(1) Problem identification 
(State-of-the-art)

(2) Problem modeling 
(Clarifying problem domain)

(3) Solution invention
(Finding possible solutions)

(4) Solution evaluation 
Implementing the solutions 
(Simulated or experimental)

(5) Reflection 
(Publication)

Exploring the existing work to find research questions (RQs)

What do we want to solve? What are the assumptions? 
What is our perspective? How can we model the problem?

Finding key papers and key people. Which solutions are more suitable? 
What are the pros and cons of each? Who are working on this RQ? 

Is it possible to collaborate? What can be our contributions?

How can we prove that our solution outperforms the existing work? 
Can we evaluate our contributions in an experimental or simulation setup? 

What are our baseline methods and evaluation metrics?

Publishing the contributions as scientific papers, attending conferences to know people of 
our community and hear their feedbacks on our contributions.

Research Methodology

Figure 1.1: Overview of our research methodology, according to design-science [178]

services that best satisfy the customer in terms of QoS and cost [184]. On the other hand,
despite the recent expectation of customers of having predictable performance, existing
cloud providers do not offer any performance guarantees [111]. Due to the dynamic
nature of cloud environments, unpredictable runtime workloads, and the non-linearity
of mapping performance measurements to required resources [111, 171, 56, 24], having
control mechanisms to provide performance guarantees in a cost effective way is still an
unresolved challenge in the cloud.

1.2 Research Methodology
Two fundamental paradigms determine the research in the domain of information systems:
behavioral-science and design-science [178]. The behavioral-science looks for developing
and verifying theories that explain human or organizational behavior. While, the design-
science is a methodology to seek the boundaries of human capabilities through building
and evaluating innovative software artifacts. Since the synthetic nature of software
engineering is in line with the subject of study at the design-science paradigm [95], we
align the research carried out in this thesis with the design-science methodology.

The artifacts that are developed for this thesis are presented as a set of algorithms,
models, and techniques for controlling the trade-off between QoS and cost for both the
cloud infrastructure providers and customers. The application domain of the mentioned
research artifacts is cloud computing. Taking the general guidelines for conducting
research based on the design-science methodology, we perform our research according to
the following steps:

1. Problem identification. In this step, we identify the research questions related
to cloud computing, as the general domain of our research. Based on the problem
statement introduced in Section 1.1, the problem that is tackled in the scope of
this thesis is to control the trade-off between QoS and cost in cloud environments
from two different perspectives: the cloud providers’ and the cloud customers’. In
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order to identify the research gap in the specified domain, we perform a systematic
literature review to get to know the existing research work. Such a study enables us
to identify the primary research questions, which are presented later in Section 1.3.

2. Problem modeling. In this step, we model the research questions extracted from
the problem specified in the previous step. Modeling the problem by considering
the assumptions and the corresponding perspectives is the output of this step. To
this aim, we use various modeling techniques and languages to model the cloud
environments, first from the perspective of an infrastructure provider, then from
the viewpoint of an infrastructure customer, such as an application owner. We
accordingly set the assumptions in these models in such a way to focus on the
trade-off between QoS and cost.

3. Solution invention. In this step, we conduct a set of activities required to identify
the potential solutions for addressing the extracted research questions based on the
designed models of the previous step. Meanwhile, identifying the key researchers
who are also working on the same research problems and complementary solutions
can lead to establish possible collaboration in this step. The scientific contributions,
which are presented later in Section 1.4, are the outputs of this step.

4. Solution evaluation. In this step, we evaluate the proposed contributions through
controlled experiments on the developed techniques and mechanisms. Controlled
experiments are frequently used to evaluate and validate research artifact correctness
and how precisely the research goals are met through measurement of the various
criteria [96]. It provides a better understanding of the problem and gives feedback
to improve the mechanisms. Such experiments can also explain the contributions
of the proposed techniques compared to the existing practices. The aim of this
step is to show the ability of the proposed contributions on outperforming the
state-of-the-art solutions. We use the existing solutions as baseline approaches to
be compared with our proposed approaches. In this step is required to define the
evaluation environment either a simulated or an experimental setup, along with
the evaluation metrics, which reflect the validity of the contributions.

5. Reflection. Reflection consists of activities that involve illustration of the research
impact on a specific research community. In the software engineering domain and
in particular cloud computing, the research outcomes are communicated through
publications in scientific conference proceedings, workshops, and journals. Moreover,
releasing the source code of the implemented techniques is often used to facilitate
the reproducibility of the research.

1.3 Research Questions
The challenges and problems identified in Section 1.1 serve as motivation for the research
conducted throughout this thesis. In this section, we derive five primary research questions
(RQs) that are addressed in this thesis.
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Research Question I
How can a cloud provider control geographically distributed cloud

infrastructures to reduce the operating costs while providing high QoS?

In recent years, cloud infrastructure providers have been trying to offer highly available,
and scalable cloud services to surpass in the competitive market of various cloud service
offerings by keeping their customers satisfied. Providing such high quality services requires
having large-scale and geographically distributed cloud infrastructures. This has raised
serious management issues for cloud providers, since they usually use inefficient cloud
control and management solutions that only work for small-scale and centralized cloud
infrastructure [130]. Providing cost-efficient control actions in geographically distributed
cloud infrastructures while avoiding SLAs violation needs addressing several time- and
location-dependent external and internal factors under some levels of uncertainty [116].
Some of these factors are regional power-outages, temperature, regional electricity prices,
and unpredictable resource demands.

Research Question II
How can a cloud customer select services from multiple cloud providers to

achieve the best combination of cost and QoS offerings?

Cloud customers are increasingly interested in simultaneously provisioning services
from multiple cloud providers in order to have a wider range of cost and QoS offerings.
However, selecting and composing the most suitable service offerings from multiple cloud
providers is still an unresolved problem. This problem is challenging because the selected
services should best satisfy the cloud customer in terms of the requested QoS while
reducing the overall cloud leasing cost. Beside the challenges related to service selection
such as efficient scoring of different service offerings, addressing other open issues caused
by heterogeneous SLAs in such an environment is essential, too.

Research Question III
How to guarantee the performance objectives of a cloud application

despite its dynamic runtime workload?

Web applications are usually exposed to dynamic, and unpredictable workload at
runtime. Since cloud elasticity provides the ability to rapidly decide the right amount of
resources needed, the application owners tend to target clouds as a fertile deployment
environment. By using clouds, they are able to better satisfy the application QoS
objectives, while reducing the resource cost. Horizontal and vertical are two types of
cloud elasticity strategies. While horizontal elasticity is the ability to acquire or release
the virtual machines, vertical elasticity is adjusting the capacity (e.g., memory, CPU
cores) of individual virtual machines hosting the application to cope with runtime changes.
Although vertical elasticity is recognized as a key enabler for efficient resource utilization
of cloud infrastructure through fine-grained resource provisioning [138], a large body of
research work as well as the commercial clouds have been only focused on horizontal
elasticity. Nevertheless, only a few research efforts have addressed vertical elasticity, and
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among them the approaches which are able to guarantee the application performance
objectives are still scarce.

Research Question IV
How to make cloud applications vertically elastic to guarantee the

performance objectives while using resources efficiently?

A commonly used vertical elasticity approach is a capacity-based, where the decision is
made only based on the resource utilization. Only recently, a new trend has been realized
by performance-based approaches, where the application performance is used as a decision
making criterion. Although in a capacity-based approach a higher resource utilization
can be achieved, unexpected runtime workloads can cause poor service performance, kill
the end users’ satisfactions, and eventually reduce the revenue of the cloud application
owner [136]. On the other hand, a performance-based approach may cause resource
over-provisioning as it does not have enough insight into the current resource utilization
at runtime. Therefore, there is a need for vertical elasticity solutions that can guarantee
the application performance while at the same time achieving a high resource utilization
in spite of the varying application workload at runtime.

Research Question V
How to coordinate multiple elasticity controllers

for a cloud application to efficiently meet the performance objectives?

The research efforts made on vertical elasticity mostly focus on a single resource (e.g.,
CPU cores, memory). The underlying assumption made in such approaches is that the
application intensively uses one resource at runtime (e.g., it is either CPU-intensive or
memory-intensive), while the application performance is rarely considered. However,
during the application lifespan, it can show multiple resource intensive characteristics
depending on the nature of the workload, which may affect its performance unless it
is properly dealt with. However, existing techniques that support the elasticity of a
single resource cannot readily be used as-is for scaling multiple resources at the same
time. This is because uncoordinated control actions by different controllers may lead
to sub-optimal or inconsistent resource allocations which may in turn result in SLA
violations [52]. Therefore, a solution is needed that under some level of uncertainty
dynamically performs coordinated adjustments of each resource allocation in order to
meet the performance objectives of a cloud application.

1.4 Scientific Contributions
Guided by the research questions presented in Section 1.3, the core scientific contributions
are highlighted in this section to provide an outline of the work carried out in the scope
of this thesis. These contributions have been previously published in several scientific
journals, conference proceedings, and workshops. In the following, for each contribution
the original published reference is specified.
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Scientific Contribution I
A cloud control mechanism to support VM placement across geographically

distributed cloud infrastructures using Bayesian networks.

Taking the perspective of a cloud provider, who aims to manage geographically
distributed infrastructure, we propose and develop a virtual machine placement approach
to select the most suitable physical hosts for both the newly requested VMs and running
VMs. Such an approach reduces the infrastructure operating costs while avoiding the
customers’ SLA violations. The novelty of our work lies in addressing the decision making
under uncertainty in the cloud infrastructure management by modeling expert domain
knowledge with Bayesian networks [137]. The constructed Bayesian network model
is able to make control decisions regarding VM placement while taking into account
time- and location-dependent factors under some levels of uncertainty. The proposed
VM placement approach is evaluated in a realistic simulation setup and compared with
two state-of-the-art baseline approaches. This contribution addresses RQ I, previously
introduced in Section 1.3. It has been originally published in [82], and is discussed in
detail in Chapter 3.

Scientific Contribution II
An SLA-based service selection approach for a multiple cloud environment

We present and develop a novel service selection approach which is placed between
the cloud customer and the cloud providers in a multiple cloud environment. It enables
the cloud customer to find and compose the best set of cloud service offerings that
satisfy the SLA in terms of the requested QoS and the overall leasing cost. The novelty
of our approach lies in addressing the problem of ranking comparable services offered
by multiple cloud providers with respect to the customer’s satisfaction, using prospect
theory [102]. The proposed approach first constructs a set of SLAs to cope with the
heterogeneity of different providers’ SLAs. Then, it selects and composes a set of services
that most closely fulfills the customer’s SLA. We evaluate our approach in a realistic
simulated environment by comparing the results with a state-of-the-art utility-based
selection algorithm. This contribution addresses RQ II presented in Section 1.3. It has
been originally published in [64, 60] and is fully elaborated in Chapter 4.

Scientific Contribution III
A performance-based vertical memory elasticity controller

for cloud applications.

In order to enable the cloud customer (i.e., an application owner) to meet the
application performance objectives via a fine-grained autonomic resource provisioning, we
propose a vertical memory elasticity controller. To design this controller, we use control
theory to guarantee the application performance by adjusting the allocated memory as a
control knob. The main benefits of realizing such a controller by using control theory
are: being fast and robust; having adjustable parameters; and being grounded on a
solid mathematical background [125]. The novelty of our work lies in applying a control

9



design process that guarantees the robustness and stability of the controller, while taking
into account the application response time as a decision making criterion. To verify the
efficiency of the implemented controller for meeting the application response time despite
varying workloads, we run an experimental study on a cloud benchmark application
deployed in a virtualized environment under real-world workloads. This contribution
addresses RQ III introduced in Section 1.3. It has been originally published in [63, 61]
and is discussed in Chapter 5.

Scientific Contribution IV
A hybrid vertical memory elasticity controller for cloud applications,

taking into account both resource utilization and application performance.

A commonly used vertical elasticity approach is a capacity-based that decides based
on the resource utilization. In a new trend, performance-based approaches (e.g., con-
tribution III) are coming into play in which the application performance is used as
a decision making criterion. In the scope of this contribution, these two approaches
are discussed and a novel hybrid approach is proposed. The hybrid approach makes
memory elasticity decisions based on both the application performance and the resource
utilization to leverage the benefits of both mentioned approaches. To this aim, we use
control theory to synthesize a feedback controller that maintains the application response
time while achieving a high resource utilization by adjusting the allocated memory. The
proposed controller is implemented and evaluated in an experimental setup, using a cloud
benchmark application under both synthetic and real-world workloads, and compared
with two baseline controllers. This contribution addresses RQ IV discussed in Section 1.3.
It has been originally presented in [62], and is elaborated in Chapter 5.

Scientific Contribution V
Using fuzzy control to coordinate CPU and memory elasticity controllers

to meet the application performance objectives.

We design and implement a fuzzy coordination approach for multiple resource coor-
dination to guarantee the application performance. The proposed approach consists of
three sub-controllers: fuzzy controller, CPU controller, and memory controller. The fuzzy
controller acts as a coordinator and dynamically infers the degree of the contributions
of both CPU and memory to the application performance change. By using such a
coordinator, the control actions of the CPU and memory controllers complement each
other in order to fulfill the application performance objectives, without over-provisioning
any of the resource types. We perform a thorough experimental evaluation of the pro-
posed approach compared to a baseline approach using three different cloud benchmark
applications under various workload patterns. This contribution addresses RQ V, has
been originally published in [65], and is presented in details in Chapter 6.
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1.5 Structure of the Thesis
According to the research questions and the scientific contributions presented in this
chapter, the remaining of the thesis is organized as follows. The five scientific contributions
outlined in Section 1.4 are grouped into four main chapters (Chapters 3 to 6).

• Chapter 2 discusses the cloud computing concepts as well as the primary well-
established theories, techniques, and models from other domains used in the scope
of this thesis.

• Chapter 3 discusses a VM placement approach that enables the cloud providers to
manage and control multiple geographically distributed cloud infrastructures. The
goal is to reduce the operating costs while keeping the cloud customers satisfied in
terms of QoS. We first present the motivation and then provide the details of the
proposed models, and the algorithms.

• Chapter 4 introduces a service allocation framework applied in a multiple cloud
environment. The main focus of the chapter is on the service selection by proposing
an approach that enables the cloud customer to choose the best set of services, in
terms of QoS and cost, from multiple cloud providers. Finally, the service selection
model and algorithm are presented.

• Chapter 5 first motivates the effect of vertical memory elasticity on the application
performance. Then, it follows a control design process used in control theory and
elaborates the design process of the two proposed memory elasticity controllers.

• Chapter 6 presents an abstract coordination model for elasticity controllers. Then
as the focus on the chapter, it proposed a fuzzy coordination approach that
controls different resource types to meet the application performance objectives
by coordinating multiple elasticity controllers. The process of designing the fuzzy
controller is elaborated in the remaining of the chapter.

• Chapter 7 describes the evaluation of each contribution proposed in the scope of this
thesis (Section 1.4). The first two contributions are evaluated in a simulation-based
environment, while the other three contributions are evaluated in experimental
setups. The evaluation of each contribution is discussed in a separated section.
Each section covers the details of the evaluation setup and the baseline approaches,
as well as an extensive discussion on the achieved results.

• Chapter 8 presents the related work, compares it to the work carried out in this
thesis, and outlines the enhancements that this thesis has brought. The research
work presented in this chapter is divided into four sections: (i) cloud infrastructure
management; (ii) service selection in multiple clouds; (iii) vertical resource elasticity;
and (iv) control-theoretical approaches for cloud elasticity.

• Chapter 9 concludes the thesis while discussing the limitations of the presented
contributions, and providing an outlook into possible future directions.
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CHAPTER 2
Background

This chapter provides background information about well-established concepts and
technologies which form the basis of the work carried out in the scope of this thesis. We
first illustrate and clearly define the cloud computing concepts which are used in our
research, and then introduce the models, theories, and concepts that are utilized in our
solutions from other scientific domains.

2.1 Cloud Computing Concepts

Cloud computing is an emerging paradigm that is based on different areas and tech-
nologies, such as Internet, service-oriented architecture (SOA), grid computing, and the
virtualization technology. Cloud computing offers services that follow pay-as-you-use and
on-demand computing models to customers. One of the core technologies that enable
cloud computing as a popular paradigm is virtualization [72, 111].

The virtualization technology facilitates cloud resource management and provides
efficient resource utilization by providing the ability of sharing resources in the form of
virtual machines [180]. A virtual machine is typically a basic building block running
a separate operating system (OS), which can be easily started, stopped, hibernated,
or migrated [106]. The virtualization technology also enables adding or removing the
resources such as CPU, memory, storage, and communication bandwidth from one VM
to another, on demand at runtime [111]. The software that provides the virtualization is
called a virtual machine monitor or hypervisor. A hypervisor virtualizes all the resources
of physical machines, thereby supporting the execution of multiple VMs [164] in a single
physical host. In the scope of this thesis, we mainly work with Xen [28], and KVM [86]
hypervisors.
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2.1.1 Cloud Deployment Models

The deployment models in clouds are the different ways of using cloud infrastructure and
services. The most common categorization is as follows [158, 128]:

1. Public cloud. In a public cloud, services are available publicly to all customers
through the Internet. The public cloud providers have well-defined pricing models
and accounting mechanisms for their offered services.

2. Private cloud. This deployment model is used by organizations for deploying
their private applications in their in-house data centers. Access to a private cloud
is being granted only to the members of the organization.

3. Hybrid cloud. A hybrid cloud deployment model represents a combination of
at least two distinct clouds that connects two or more clouds in terms of their
deployment models (e.g., public and private) [131]. Often a hybrid cloud model
is used in the case of workload bursting, i.e., the usage of external cloud services
when the private cloud is not sufficient [149].

In the case of a hybrid cloud model, if the underling clouds, which are simultaneously
used by a customer, are restricted to only public clouds, it is called multiple clouds [48].
In other words, in a multiple cloud model, a cloud customer, e.g., an application owner,
deploys the application simultaneously on services from multiple cloud providers. In
general, two types of delivery models exist for multiple clouds [148]: federated-cloud and
multi-cloud. These models differ in the degree of collaborations between the involved
cloud providers and the way the cloud customer interacts with them:

• Federated-cloud model. In this model, the cloud providers are in agreement
with each other to provide a federation in order to enhance the services offered to
their customers. In this model the usage of multiple cloud services is transparent
from the cloud customer viewpoint.

• Multi-cloud model. A multi-cloud model represents the usage of multiple,
independent clouds by a cloud customer. This model does not imply interconnection
and sharing among the clouds [149], i.e., there is no need for an agreement among
them. Furthermore, in this model, the cloud customer is aware of using services
from multiple clouds, and usually a third party, e.g., a multi-cloud middleware, is
responsible for communicating among the providers involved.

The required agreements between cloud providers in federated-cloud model is a
real barrier for the popularity of this model in the commercial world. Therefore, this
model mainly has been implemented so far in the academic world where establishing
an agreement between the cloud providers is easier [148]. In contrast, the multi-cloud
model seems to be more attractive in the commercial world and this interest has been
raised in the last five years [149]. It is mainly because this model is not intrusive from
the perspectives of the cloud providers. Such a middleware exists now and it addresses
the interoperability issue of this model by providing unique entry points for the various
involved clouds [149].
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SLA parameter desired value
Contract duration 3 months
Budget for virtual machine 0.07 $ per hour
Budget for storage 0.1 $ per month
Budget for traffic 0.1 $ per month
Availability 99.9 % in 3 months
Response time 600 ms

Table 2.1: A sample SLA agreement in the cloud computing domain

Based on the mentioned benefits of the multi-cloud model over the federated-cloud
model, and the growth in its popularity, in this thesis, we focus on a multi-cloud model
by proposing a multi-cloud service selection approach.

2.1.2 Service Level Agreement

The service level agreement is not a new term since it has been used widely in the
telecommunication and networking domains in order to specify the quality of service
objectives [42, 186]. However, this term is now adopted in the computer science field for
the same purpose of specifying quality of service for the services offered via Internet [57].

Cloud computing as a clear example of Internet-based services utilizes SLA in order
to cover quality and cost aspects of this technology [36, 57].

In the context of cloud computing, a service level agreement is a contract between a
cloud provider and a cloud customer that covers a clear description of the agreed service,
quality of service parameters, service cost, and compensation actions in case of violating
the agreement. In other words, the main idea behind using SLA is to provide a clear
definition of the formal agreements about the non-functional aspects of the service such
as QoS parameters, e.g., performance and availability, as well as the service billing [18].

Two types of SLA can be defined [22]: (i) off-the-shelf (non-negotiable) agreements;
(ii) customized, negotiated agreements. While public clouds usually offer a non-negotiable
SLA, such off-the-shelf agreements may not be acceptable for cloud customers who have
critical data or applications to be deployed in the cloud. In the research carry out in the
scope of this thesis, we consider SLAs as off-the-shelf agreements, so the cloud provider
must satisfy them otherwise in case of violation, the customers can claim for the penalty.

Table 2.1 presents an example of the SLA agreement specifying some QoS parameters
in the cloud computing context, such an SLA is used in the scope of this thesis.

2.1.3 Cloud Infrastructure Management

Utilizing large-scale data centers are a prerequisite for providing high quality cloud
services [37]. Data centers for cloud computing are often called cloud data centers, but
we use the term “data center“ or “cloud infrastructure“ for this aim in the scope of this
thesis. A data center is a facility used to house computer systems and all the associated
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components like telecommunications, storage, power supply, and cooling systems. To be
able to accommodate all the cloud customer demands, the energy consumption of data
centers is increasing rapidly. For example, large-scale data centers use as much electricity
as a small town [66], and in overall accounting for 1.5% of global electricity usage [187].
Cloud infrastructure management is defined as the process of managing physical and
virtual computing resources in a way to ensure that all the offered infrastructure services
are working efficiently while avoiding the violation of customers’ SLAs.

The key to efficient cloud infrastructure management is a solid configuration of virtual
machine and their physical hosts [139]. To this end, an efficient VM placement can
improve the utilization of available resources. VM placement is defined as mapping the
requested VMs to the physical hosts so as to select the most suitable host (in terms
of required resources) for each VM [167], it is often called VM allocation. Moreover,
VM consolidation is defined as a mean for time-sharing the virtual resources between
multiple users to minimize the energy consumption of the infrastructures by maximizing
the number of inactive physical machines [164].

One of the common ways to realize consolidation in virtualized environments, is
the live virtual machine migration which leads to efficient power management and load
balancing across data centers. Live VM migration is the replacement of running VMs
seamlessly across distinct physical hosts without any impact on VM availability from
the end user’s viewpoint [43, 179]. An efficient cloud infrastructure management can
be realized through an effective VM placement (i.e., VM allocation) for each incoming
VM demand followed by a dynamic VM consolidation, which triggers necessary VM
migrations at runtime. In this thesis, a VM placement approach for efficient management
of geographically distributed cloud data centers is presented.

2.1.4 Cloud Resource Elasticity

The term elasticity is widely used in the field of physics and economics, and it has been
transferred to the context of cloud computing, as one of its core characteristics [150]. In
the cloud computing domain, elasticity is defined as the ability of a system to dynamically
adjust its main attributes in response to runtime changes such as varying workloads.
Resource elasticity is introduced where the allocated resources are considered as the
elastic attributes of the system [54]. In other words, resource elasticity is the ability of
a cloud system to automatically provision and release computing resources on demand
to accommodate dynamic workloads over time in order to meet the quality of service
requirements. Two cloud resource elasticity strategies are defined, as shown in Figure 2.1:

• Horizontal elasticity is the ability to acquire or release virtual machines which
host the application according to workload changes.

• Vertical elasticity is adjusting the capacity (e.g., allocated memory or CPU) of
individual VMs hosting the application to quickly cope with runtime changes.

Horizontal elasticity is coarse-grained, as the units which are added or removed are
fixed size VMs, and is relatively slow (in order of minutes) to be applied. It also needs
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Figure 2.1: Horizontal elasticity vs. vertical elasticity

some application-level features, such as load balancing and state synchronization, to be
supported. In contrast, vertical elasticity is fine-grained, as the units are in any arbitrary
size such as a few MB of memory or a portion of a CPU core. Vertical elasticity is
relatively fast (less than a second), and in spite of the need of hypervisor-level support, it
requires only some basic application-level features such as multi-threading. In the scope
of this thesis, vertical resource elasticity, is the primary focus of interest.

Note that in the cloud computing domain, elasticity covers both increasing and
decreasing the capacity of the deployed environment, while scalability only addresses the
increasing of the capacity. Moreover, the elasticity concept implies the live configuration
at runtime where there is no need for restarting the application. In the scope of this
thesis, when the resource elasticity term in used, it implicitly indicates live resource
auto-scaling either up or down (i.e., vertical elasticity), or in or out (i.e., horizontal
elasticity).

Mechanisms for vertical memory elasticity

Since the focus of this thesis is more on memory elasticity, in this section we elaborate
hypervisor-level mechanisms that realize it. We explain two different mechanisms that
are used in hypervisors to enforce memory actuation, and finally we clarify which of these
mechanisms are used in our proposed solutions. In general, the hypervisor is responsible
to provide users with application programming interfaces (APIs) for vertical elasticity. In
the case of memory operation, it also requires some support from the virtual machine’s
kernel, hence two mechanisms are commonly mentioned:

• Hot memory add or remove. Adding or removing resources without having
to reboot the system is called hot add or remove. Assuming a kernel supports
hot memory add or remove, this concept can easily be extended to virtual environ-
ments: whenever the hypervisor wants to take memory from a virtual machine, it
would request it through a VM-hypervisor interface, and the VM’s kernel would be
elastic with respect to memory. This mechanism is not widely used since it cannot
be supported by the guest operating systems without restarting the VM.

• Memory ballooning. In this mechanism, instead of adding or removing memory,
the VM’s kernel can ban the usage of a portion of memory in spite of the fact
that initially it was allocated to the VM. This is achieved by running a custom
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device driver, the so-called ballooning driver, in the VM’s kernel, which creates
a bridge between the hypervisor and the VM. Using this mechanism, the VM’s
kernel is booted with a certain amount of memory. Initially, the balloon would
be deflated, i.e., the ballooning driver would request no memory from the VM’s
kernel. Hence, the VM could use all the initial memory. If the hypervisor wants to
reduce the memory allocation of the VM, then it would tell the balloon to inflate
to that amount. When the balloon expands, the physical memory available in the
VM is reduced that compels the guest operating system to reduce the memory
footprint of other processes when insufficient free memory is detected; for instance,
via passing some of the processes’ memory pages to the swap space, or killing some
of them in extreme situations. Then, the memory allocated by the balloon process
in the guest OS can be reclaimed by the host OS, and can then be used by other
co-located VMs, enabling a higher consolidation ratio on the physical host [169].
Finally, if the hypervisor decides to increase the memory allocated to the VM, it
would map that amount to the VM address space, in the region allocated by the
balloon driver. Now the balloon driver has access to that memory, and can safely
release it to the VM’s kernel. Despite its complexity, this mechanism reacts almost
instantaneously, and the guest OS reflects the memory change a few moments after
the operation is executed through the hypervisors’ APIs [134].

Based on the above explanation, in contrast to hot memory add or remove, memory
ballooning has some restrictions in order to support memory elasticity: (i) a maximum
amount of memory needs to be specified; (ii) some ballooning drivers can only deflate as
much as they had been previously inflated. However, in the case of memory ballooning,
it is supported by all recent Linux kernels and no additional features are required. This
makes memory ballooning a practical mechanism for realizing vertical memory elasticity,
as it is supported by both Xen and KVM hypervisors, while hot memory add or remove
is currently not supported by any guest OSs without restarting the VM [169]. Hence, in
our work, we utilize memory ballooning mechanism through the reconfiguration APIs
provided by the Xen and KVM hypervisor.

2.2 Scientific Models, Theories, and Methods used in this
Thesis

In this section, we briefly explain the well-established models, theories, and concepts used
in the proposed contributions of this thesis. They are either concepts from the computer
science domain, such as Bayesian networks, model driven architecture, and autonomic
computing; or from the interdisciplinary domains, such as control theory (mostly used in
mechanical engineering), and prospect theory (a well-known theory in economics).

2.2.1 Bayesian Networks

In what it follows, we first introduce Bayesian networks (BNs) covering the definition,
the structure, and their benefits. Then, in order to better exemplify their applications in

18



the cloud computing domain, we explain the application of a sample Bayesian network
in solving a small-scale cloud computing problem.

Definition. Bayesian networks have emerged as a practical form of knowledge
representation. A BN is a graphical model to represent a variety of interests such as event
occurrences and the probability between them via a direct acyclic graph (DAG) [137]. In
a DAG, nodes are random variables and edges show conditional dependencies among the
nodes; it means nodes that are not connected represent variables that are conditionally
independent of each other. Each node is associated with a probability function that
takes a particular set of values of the node’s parent variables as input and gives the
probability of the variable represented by the node. BNs can be modeled both via
graphical representations, i.e., qualitative models, and probability values which indicate
the relationship strength of each edge, i.e., quantitative models. The most common
task which can be solved using Bayesian networks is probabilistic inference [135]. As an
example, consider a simple network with three nodes: Web application response time,
user workload, and physical host failure. Suppose we observe the fact that the application
response time is increasing. There are two possible causes for this: either the workload
is increasing, or the physical host faced a failure. By designing a Bayesian network for
this simple example, and feeding it with the historical data, we can further answer such
questions: which node has a higher probability to be the reason of the performance
degradation; or computing the probability that the application response time will be
high given that the application workload has been increased. General questions that can
be answered by using a BN are: what are the most probable hypotheses for the set of
training data? Or what is the most probable category of an observed data?

Structure. The structure of a DAG is defined by two sets: a set of nodes, and a set
of direct edges. The nodes which represent random variables are drawn as circles labeled
with the variable names, similar to nodes shown in Figure 2.2. As depicted, the edges are
drawn as arrows between nodes and represent the direct dependency among them. In
particular, an edge from node Xi to node Xj represents a statistical dependency between
the corresponding variables. Thus, the arrow indicates that a value taken by variable Xj

depends on the value taken by variable Xi, while node Xi is a parent of Xj .
In a BN the conditional probability is represented by a conditional probability table

(CPT) for each node, listing the local conditional probability that a child node takes
for each combination of values of its parents, where each cell contains the calculated
conditional probabilities, similar to the CPT shown in Figure 2.2 for node Cost limit
exceeded. If there are no parents for Xi, its local probability distribution is considered
unconditional, similar to the CPT shown in Figure 2.2 for node Change in energy tariffs.
If the variable represented by a node is observed, then the node is said to be an evidence
node, otherwise the node is said to be hidden or latent [152].

Assume U = {V1, ..., Vn} which represents all random variables in a system which is
modeled by a BN. The goal of reasoning under uncertainty is to calculate the conditional
probability of a variable Vi in one of its states given the status of a set of other variables
{V1, ..., Vk}, where ({V1, ..., Vk} ⊂ U)

∧
(Vi /∈ {V1, ..., Vk}). This conditional probability is
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Figure 2.2: A sample Bayesian network model for a cloud computing scenario

formally specified as Equation (2.1).

P (Vi | {V1, ..., Vk}) = P (Vi, V1, ..., Vk)
P (V1, ..., Vk) (2.1)

In probability theory, both P (Vi, V1, ..., Vk) and P (V1, ..., Vk) can be calculated if the full
set of joint probability distributions P (U) is known. However, for large and complex
systems, determining P (U) is a computationally expensive process. Nevertheless, in
a BN each node is conditionally independence of its ancestors given the values of its
parents, as depicted in Equation (2.2).

P (node| ancestors) = P (node| parents) (2.2)

Therefore, by considering Equations (2.1) and (2.2) and having a BN modeled based on
the variable set of U = {V1, ..., Vn}, the joint probability distribution P (U) is defined
as Equation (2.3), which is named as chain rule.

P (U) = P (V1, ..., Vn) =
∏

P (Vi| parents of (Vi)) (2.3)

Application of Bayesian networks. Bayesian networks are powerful tools for
deep understanding of very complex, high-dimensional problem domains which deal with
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uncertainty, i.e., where the correlation between variables cannot be clearly observed [175].
Since a BN can simulate the mechanism of exploring the causal relationship among various
factors, it can facilitate the prediction and cognitive activities via causal reasoning [151].
There are various areas in which Bayesian networks can be used, such as machine
learning, text mining, natural language processing, speech recognition, signal processing,
Bioinformatics, medical diagnosis, weather forecasting, cellular networks, root cause
analysis, risk management, system reliability analysis [33, 152]. The main benefit of a
BN model is simulating the mechanism of exploring causal relations between key factors
using Bayes’ theorem [100]. Bayes’ theorem is a simple mathematical formula used for
calculating conditional probabilities. In other words, this theorem explains the probability
of an event based on the conditions related to the event.

In comparison with other modeling techniques, BN has the following benefits [109,
81]: (i) using probabilistic rather than deterministic expressions to describe the relation-
ships; (ii) the ability to deal with systems where uncertainty is inherent; (iii) facilitating
learning of causal relations among variables; (iv) the ability to be adjusted for new
knowledge; (v) the ability to learn a model based on observations. Therefore, in the
scope of this thesis, Bayesian networks are used for the solutions proposed in cloud
infrastructure management.

The steps for using a Bayesian network

The usage of a Bayesian network can be done through the following steps [193]:
1. Transforming the problem statement into a Bayesian network. This step includes

identifying the root variable nodes (the nodes with no parents). Then, determining
the inputs and outputs of all other individual variable nodes. This can shape the
causal relationship that the variable nodes can have with each other; A summary of
the activities in this step is as follows [193, 88]: (i) identifying the goals of modeling
(e.g., prediction, explanation, exploration); (ii) identifying the observations that
may be relevant to the identified problem; (iii) determining which subset of those
observations is worthwhile to be modeled; (iv) organizing the observations into
variables having mutually exclusive and collectively exhaustive states.

2. Configuring the parameters of the Bayesian network. In this step the prior prob-
ability of each node based on the past values of the variable, should be obtained.
Moreover, for each node a conditional probability table should be extracted by
using the historical data gathered from the domain experts. The values of a CPT
can be either deterministic (i.e., 0 1) or probability (e.g., 0.95).

3. Reasoning with Bayesian networks. Two types of reasoning are possible with a
Bayesian network [152]: (i) causal (top-down) inference. Such usage of Bayesian
networks is often named generative model, since they specify how causes generate
effects [135]; (ii) diagnostic (bottom-up) inference, where reasoning is about cause
based on the evidence.
To find the cause, the node with the highest value, the posterior probability of
cause node is calculated by considering the evidence set of corresponding nodes, and
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finally the maximum a posterior approach [47] is applied. In practice, a Bayesian
network is a useful model for root cause analysis and decision support [153, 182].

In the remaining of this section, in order to exemplify the usage of Bayesian networks
in the cloud computing domain, we apply the above mentioned steps to design a Bayesian
network for root cause analysis of QoS degradation in the scope of cloud infrastructure
management, depicted in Figure 2.2.

Using Bayesian networks in a sample cloud computing scenario

Every cloud provider has certain goals such as providing services with high QoS, and
minimizing the cloud operation cost. At runtime when QoS is decreasing, the provider
needs to quickly find the cause and solve it. However, the relationships between the
provider’s goals and the factors that influence these goals are non-deterministic. In such
situations, the probability of possible influencing factors can be helpful in detecting the
cause of the problem. As a sample goal for a cloud provider, assume the provider aims
to keep the operating costs under a certain level for a certain period.

There are many factors that directly or indirectly influence the cloud operating costs.
The relationships between increasing costs and some of these factors are non-deterministic
and may only be defined by their probabilities. In the following, we explain how to
utilize Bayesian networks to detect the cause of the violating for a cloud infrastructure
provider. Note that, as previously mentioned, there are two types of reasoning in Bayesian
networks top-down and bottom-up reasoning. In this problem, the bottom-up reasoning
is leveraged which is for diagnostic problems, i.e., reasoning about causes based on the
evidences.

We can model the influencing factors and the predefined cloud provider goals as the
nodes of a DAG, as shown in Figure 2.2. The aim of this modeling is analyzing the
cause of the cost violation. We simply extract all possible reasons that influence the
operating costs from the perspective of a cloud provider. Then we draw edges from cause
variables to their immediate effects as their children. The causal relationships between
the goals and the associated influencing factors are modeled as a child-parent relationship.
In order to make a probabilistic inference to detect the cause of the operating costs
violation, we leverage Equation (2.3) to compute the posterior probability of each cause
and determine the most probable root of the problem. In the following, we calculate the
posterior probability of each node by considering the evidence set from the corresponding
observation node, such as Cost limit exceeded node in Figure 2.2) and then based on
maximum a posterior strategy, the node with the highest value is the most probable
responsible cause of the cost violation.

Based on the designed Bayesian network, Figure 2.2, and the introduced Equa-
tions (2.1) to (2.3), we can find the answers of questions such as “what is the probability
of change in energy tariffs, given the cost limit exceeded?“. Notice, as shown in Figure 2.2,
these two nodes in the graph are colored in dark red and influencing nodes are colored in
light red, plus the initial letters of each node are used in Equations (2.4) and (2.5). It is
worth mentioning that for each node the only influencing probability is the value of the
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probability of its parents.
P (Ch|C = true)⇒
P (Ch|C = true,E)⇒
P (Ch|C = true,E,Co, Se)⇒
P (Ch|C = true,E,Co, Se,W )⇒

(2.4)

and then by using Equation (2.1) we have:

⇒ P (Ch,C = true,E,Co, Se,W )
P (C = true,E,Co, Se,W ) (2.5)

Now by using Equation (2.3) and the values of CPT of each node, we can calculate the
probability.

2.2.2 Multiple-Criteria Decision Analysis

A multiple-criteria decision analysis (MCDA) is concerned with structuring and solving
decision making problems where multiple criteria are involved. There is no longer a
unique optimal solution to an MCDA problem that can be obtained without incorporating
preference information. Therefore, it is necessary to take the preferences of the decision
makers to differentiate between solutions and score them in order to choose the best
solution, i.e., the most preferred alternative of a decision maker. There are two main
classifications of MCDA problems depending on whether the solutions are explicitly or
implicitly defined [177]:

• Multiple-criteria design problems. In this category, the alternatives are not
explicitly known. A solution can be found in this case by solving a mathematical
model. In such problems, the number of alternatives is typically either infinite, e.g.,
in case of continuous variables, or very large, e.g., in case of discrete variables.

• Multiple-criteria evaluation problems. This category of problems consists of
a finite number of alternatives that are explicitly known in the beginning of the
solution process. In this category, the problem can be defined as finding the best
alternative or a set of good alternatives for the decision maker. This type of MCDA
problem is the focus of interest in the scope of this thesis.

To solve MCDA problems in either categories, preference information of the decision
makers is required. While Bayesian network can effectively be used to make decisions
under uncertainty, they cannot deal with multiple criteria decision making problems.
Therefore, along with using Bayesian networks, MCDA technique is applied to help
multi-criteria decision making under uncertainty in the scope of this thesis.

2.2.3 Model Driven Architecture

Model driven architecture (MDA) [141] is a software design approach based on models,
launched by the object oriented group (OMG)1 in 2001. It provides a set of guidelines

1Object oriented group: http://www.omg.org
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Figure 2.3: The basic process of model driven architecture [87]

to structure the specifications that are expressed as models. MDA introduces certain
types of models as well as the relationships among them. The main concept of MDA is
separating the system operation from the details provided by using a target platform. It
defines three different viewpoints on a system which are mapped to the following three
models [87]:

• Computation independent model (CIM). A CIM, or often called a domain
model, represents the system from a computation independent viewpoint, where
the focus is on the requirements of the system in a specific domain without any
details about the system structure and processing.

• Platform independent model (PIM). A PIM reflects the system from the
platform independent viewpoint, where the operation of a system is concerned
without the details of a particular platform. In other words, this model covers
the system specification that does not change from a platform to another, i.e., the
implementation details are hidden.

• Platform specific model (PSM). A PSM shows a view of the system from the
platform specific viewpoint, where the details of the used platform are added. This
model covers the details about the way the target platform is used by the system.

As shown in Figure 2.3, the basic process of using MDA for building a software
system, starts with defining the CIM for the target domain by a business analyst. Then,
this model is enriched and transferred into a PIM by an architecture who adds the
architectural details of the system without showing the details of the target platform.
Finally, the platform specialist completes the PIM by adding all the implementation
details needed for the system to operate. In general, knowledge is added by different
system professionals to each model so that it is transferred to another model at each
step [87]. The introducing MDA concept and its corresponding models are used in the
solutions proposed in the scope of this thesis.

2.2.4 Prospect Theory

Prospect theory [102] is a behavioral economic theory developed by Daniel Kahneman
and Amos Tversky in 1979. Daniel Kahneman won a Nobel Prize (2002) in economics
for his work on this theory. Prospect theory is a descriptive model for decision making
under uncertainty based on the potential value of losses and gains rather than the final
outcome. It is an alternative and psychologically more accurate decision making model
for utility theory and it is more realistic in calculating the user satisfaction [102, 174].
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It uses the concept of value instead of utility, where utility is typically defined only
in terms of net wealth, while value is defined in terms of gains and losses. Based on
prospect theory, probabilities are replaced by decision weights [142]. Figure 2.4 shows
a sample value function under prospect theory, which is s-shape and asymmetrical and
defined based on the deviations from a reference point. As depicted, this value function
is concave for gains (implying risk aversion) and is convex for losses. It is also steeper for
losses than for gains (loss aversion) [142]. In the scope of this thesis, the user satisfaction
for a specific cloud service is modeled using prospect theory.

2.2.5 Autonomic Computing and Control Theory

The term autonomic computing first was proposed by IBM [91] in 2001 for describing
computing systems that are self-management [105]. In such systems, humans do not
control the system and only define the general goals and rules as the inputs [57]. A
self-management system constantly adapts itself to accommodate runtime changes like
varying workloads, or software failures [105].

To achieve self-managing system by utilizing autonomic computing, a closed control
loop is suggested as a reference model [92], where an autonomic manager, also called
autonomic controller, controls the states and behaviors of the system. In this reference
model, an autonomic system is implemented following a MAPE loop [91] including four
main steps: monitoring, analyzing, planning, and execution. The autonomic controller
monitors the system to detect the changes (M), analyzes their impacts (A) and if needed
plans based on them (P) to execute suitable control actions on the system in response to
the changes (E).

The introduced autonomic computing reference model (i.e., the MAPE loop) is
a software engineering perspective toward realizing self-adaptive systems. From this
viewpoint, a software system is adaptive when it includes features to adapt its structure
or behavior at runtime, without interrupting its service. If an adaptive system is coupled
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with an autonomic controller, which continuously satisfies the system requirements in
spite of runtime changes, creates the system is called self-adaptive [70].

Control theory as an interdisciplinary branch of engineering and mathematics deals
with the behavior of systems, and how their behaviors are modified by feedback loops.
Control systems have been widely used in many engineering domains [68]. From the
control engineering perspective, an adaptive system consists of a closed control loop [26, 89]
with a controller and a plant that is being controlled. The controller is designed to follow
a control signal (reference) by monitoring the output and comparing it with the reference.
The controller periodically configures the controlled plant by adjusting a control knob
taking a quantitative feedback. This feedback is the actually the difference between the
actual output and the reference named as control error. The main goal of the controller
is to bring the actual output closer to the reference.

Control theory is emerging as an approach for the design of self-management software
systems [70, 68, 104], where an adaptive software system is defined as the plant. Applying
the theory of controlling industrial plants (i.e., control theory) on the software engineering
domain to design self-adaptive software systems can enhance the software engineering
process with a variety of mathematically grounded adaptation formulas [70]. In this
thesis the control theoretical techniques are applied in the cloud computing domain as a
sub-domain of the software engineering to make cloud application self-adaptive.

Elasticity controller. In the context of cloud resource elasticity, previously intro-
duced, we can consider a so called elasticity controller that continuously monitors the
QoS attributes of a cloud application, and in the case of necessity applies either horizontal
or vertical elasticity strategies at runtime to meet its QoS objectives. In this thesis, a
self-adaptive cloud application is realized by coupling it with an elasticity controller.

2.3 Self-Adaptation Process for Cloud Applications

Current cloud elasticity features provided for cloud applications rely on the knowledge
of the applications’ owners as cloud customers in configuring the elasticity parameters,
but achieving smooth elasticity is intrinsically hard to be performed by customers. In
order to overcome this dependency, using approaches from autonomic computing is
shown to be appropriate. Control theory, as previously introduced, proposes a systematic
way to design feedback control loops to handle unpredictable changes at runtime for
software applications. Although there are still substantial open issues to effectively utilize
feedback control in self-adaptation of software systems, software engineering and control
engineering communities have made recent progress to consolidate their differences by
identifying challenging points that can be addressed cooperatively. This section is in
the same vein, but in a narrower domain given that cloud computing is a sub-domain of
software engineering. More specifically, although feedback control is a powerful approach
to construct any adaptive software systems, in this section our focus, as a member of
cloud community, is on self-adaptive cloud applications. We highlight the aspects that
are important in the self-adaptation process of cloud applications from the perspective of
control engineers.
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2.3.1 The Trend of Self-Adaptive Software Systems

There is some research on self-adaptive solutions for software systems which take the
software engineering point of view [50, 41]. Moreover, there is a new trend of applying the
control theory in software systems, taking the point of view of control engineering [67, 126].
Recently, a Dagstuhl seminar2 [69, 70] gathered two communities of software engineering
and control theory to develop their cooperation for devising new modeling strategies
to empower software engineers with theoretical and practical skills of control engineers
and bring control to the core of adaptation. As a result of the last seminar, in [70] they
present a general control design process for software systems which enables automatic (i)
analysis and (ii) synthesis of a controller that is guaranteed to have the desired properties
and behavior. However, the research regarding the application of control theory to enable
self-adaptation in software engineering, despite its recent progress, is still in a very early
stage [67].

Considering cloud computing as a sub-domain of software engineering, there are also
some research attempts which focus more on the cloud scenarios [106, 55, 108, 146]. In
this trend, cloud control, as a new research area, is proposed [106], to apply control
theoretic approaches in a range of cloud management problems, such as managing resource-
optimized cloud data centers. Their idea leads to establishing a series of scientific meeting
called cloud control workshops3 aim to foster research in the area of cloud computing
and control theory. Current existing research on combining cloud computing and control
theory have predominantly the perspective of cloud providers, hence their focus is more
on controlling the cloud data centers. Whereas we look at the main aspects from the
cloud application’s point of view. In particular, as discussed, there are only a few research
attempts [146, 106] that address the challenges of self-adaptive cloud applications, so
there are still open issues which have not been thoroughly investigated.

By combining cloud computing, modern software systems, and control theory, the
ultimate objective is to turn cloud applications into self-adaptive systems which are
performance-aware, robust, flexible, and resource- and cost-efficient. The aim of the
remaining of this section is along with the lines of cloud control research area proposed
in [106], but with a more pronounced application perspective. We bring up a range
of important aspects which need attention on the way of realizing self-adaptation for
cloud applications. In the following, we first present an overview of self-adaptation cloud
applications, then we highlight various main aspects of this process.

2.3.2 Self-Adaptive Cloud Applications

The key aspect of an elastic software is its capability to autonomic ally adapt at runtime
(i.e., self-adapt) in response to changes in the operating conditions, such as fluctuations
in workload, by automatically stretching and shrinking the resources. Cloud elastic
software systems are the most common realization of elastic software systems. This
category of software systems exploits the ability of cloud environments to acquire and

2Dagstuhl seminars https://www.dagstuhl.de/programm/dagstuhl-seminare
3Cloud control workshop series: http://cloudresearch.org/workshops
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Figure 2.5: A realization of self-adaptive cloud applications via feedback control loop

release resources while serving end users. For instance, when the usage of the system
increases, the allocated resources may saturate and in order to avoid degradation of QoS,
the elastic system allocates more resources to rectify the situation. Once the incoming
workload diminishes and the allocated resources become under-utilized, the elastic system
consolidates the load for a portion of resources and releases unused resources to reduce
the costs. In this interpretation, elasticity is a feature or a means to avoid under- or
over-provisioning and allows elastic software to service end users with acceptable QoS
while minimizing the operational costs. In the cloud citation, as previously mentioned,
horizontal and vertical are defined as two elasticity strategies.

In the context of control theory, a standard feedback control loop roughly looks as
shown in Figure 2.5. The system which is being controlled is labeled target system and
the combination of the controller and the target system is labeled controlled system.
There is a desired output that needs to be achieved by tuning the controller’s output,
which can be one or more configurable parameters of the target system. The controller
periodically adjusts the value of the controller’s output (often named control knob) at
runtime in such a way to ensure continued satisfaction of the desired output despite the
runtime change.

Self-adaptive cloud software applications can be realized via a feedback control loop
architecture. Figure 2.5 depicts a reference architecture, where a controller supervises
a software application. The target system consists of an application deployed in a
cloud environment (i.e., cloud application). The desired output is one or more QoS
attributes, such as application response time, which are monitored periodically as the
measured output. The workloads for a cloud application are changing unpredictably
at runtime. Since the controller cannot control the workload, it should apply corrective
actions and change the cloud environment in a way to meet the desired QoS.

By taking the resource elasticity as a control knob, the controller implements a logic
that adjusts the resources consumed by the application to accommodate workloads. The
controller monitors the operational condition of the cloud application at runtime. Based
on the output, the controller instantiates new virtual machines or terminates existing
ones–horizontal elasticity, or adjusts the capacity of individual active VMs hosting the
application–vertical elasticity, to cope with runtime changes on demand. Finally, the
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main aspects for self-adaptation of cloud software applications

designing controllers for software systems

1) Uncertainty (e.g., due to measurement imprecision and noises)
2) Methodological procedures to synthesize controllers

deploying  the controlled software systems in cloud environments  

3) Heterogeneous interfaces of cloud services (e.g., different control levels)
4) Unpredictable workloads
5) Detecting the applications’ resource bottlenecks
6) Controlling multi-tier applications
7) Different desired QoS sensitivity levels

8) Using resources from multiple clouds
9) Scalability (e.g., the need for distributed controllers and coordination)

Figure 2.6: Summary of the main aspects of self-adapting cloud applications

cloud provider calculates the total usage and bills the application owner for the cost of
leasing cloud resources. In order to design and maintain an effective feedback control
loop for cloud applications, there are several parts of the process which need attention
and they are discussed in the next section.

2.3.3 Main Aspects of Self-Adapting Cloud Applications

In this section we scratch the surface by exploring the most important aspects in the
process of making a cloud application self-adaptive and briefly propose some hints to
pave the way for each aspect. As shown in Figure 2.6, we start with the relevant aspects
in the process of designing a controller for a software system in general, then extend
them by bring up particular aspects in the process of deploying the application in the
cloud. Finally more long-term aspects are presented that need attention due to the cloud
computing trend.

Uncertainty

Designing elasticity mechanisms poses complexity challenges because of uncertainty [75,
122, 96, 95] that is likely to be present in every facet of elasticity reasoning. For instance,
users often find it difficult to accurately describe elasticity policies, or knowledge used
for elasticity reasoning may not be accurate. Moreover, in order to make decisions about
corrective control actions, monitoring tools provide input data for elasticity decision
making. These measurements are not usually free of noise and contain random and
persistent disturbances that can affect the clarity of a given property, especially in cloud
environments. They may also contain irrelevant or meaningless data. This affects elastic
systems in a way that they are not able to replicate a given measurement consistently
throughout a control period. If these potential sources of uncertainty are not explicitly
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taken into account in elasticity reasoning, they affect runtime scaling decisions which are
often unreliable.

Theoretically, elasticity should accommodate even unexpected changes in capacity,
adding resources when needed and reducing them during periods of low demand, but
the decisions to adjust capacity must be made automatically and accurately to be cost
effective. If elasticity decisions are made without considering uncertainty, then available
resources may not be sufficient or cost-effective at a certain point in time. Several
approaches are used in practice to cope with uncertainty, e.g., in software engineering [77]
or self-adaptive software [59]. However, as discussed in [96, 122], uncertainty in the
context of dynamic resource provisioning for cloud application [75] is still unclear.

Developing methodological procedures to synthesize controllers

Cloud computing is not a deployment environment to which existing software solutions
can be transferred easily. Instead, it offers novel characteristics not existing in traditional
deployment environments such as seemingly endless resource pool [80]. Therefore, the ad-
vantages of using cloud as a deployment environment for a software systems are leveraging
such characteristics. For instance, cloud elasticity can be used to provide consistent per-
formance while minimizing resource cost for application owners. As previously discussed,
horizontal and vertical elasticity as two possible cloud elasticity strategies in clouds, have
their own pros and cons to be adopted as control knobs. Hence, these strategies should
be used in accordance to the application requirements at runtime as possible control
actions. From the cloud provider’s perspective, the details of the applications that they
host are basically black-box and not visible. This makes it difficult to accurately devise
an optimal set of corrective actions (i.e., adopting a proper elasticity controller at runtime
or defining thresholds for elasticity mechanisms). Thus, the burden of such tasks falls
on the application owner as a cloud customer [76], which does not have deep knowledge
about the application workloads, cloud environment characteristics, and performance
modeling.

To address this aspect, the control community can provide certain generic methodolog-
ical solutions to facilitate the design of controllers for software systems and consequently
cloud applications. A solution in which the application owner is only required to de-
fine a desired level of QoS attributes and put the decision making responsibility on an
autonomic controller at runtime. As a recent and promising research work, Filieri et
al. [68, 70] propose a generic and yet practical methodology to synthesis controllers for
software systems. The main benefit of this methodology is to reduce the need for a strong
mathematical background as a software engineer to devise ad-hoc control solutions. Based
on this, having chosen a target system, one only needs to indicate a controller’s output,
which can change the behavior of the target system as well as specifying a desired output
to be achieved by the controller. This methodology as a control design process is used in
the scope of this thesis.

Several aspects should be carefully considered while designing and maintaining
elasticity controllers are as follows: (i) determining when a resource is insufficient; (ii)
quantifying requirements according to application environment; (iii) identifying when
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and how much of resource can be added or removed without degrading the application
performance; (iv) finding a safe adjustment granularity at runtime as the reaction of the
application deployed in the cloud for the applied controller’s outputs is not deterministic.

Heterogeneous interfaces of cloud services

A cloud application can be deployed either in an IaaS or PaaS. As previously illustrated,
these two delivery models provide different control levels of the environment which hosts
the application such as the interface for monitoring and the interface for a reactive
control knob. For instance, while the amount of resources (e.g., memory or CPU)
can be adjusted at runtime using an infrastructure service, such levels of control on
resources are not yet possible for a PaaS. As a result, from a control perspective, applying
certain control actions or monitoring some QoS attributes might not be possible in some
cloud environments, so the interface between cloud applications and cloud services is
an aspect that needs attention while designing controllers. Therefore, both interfaces
must be designed cooperatively by taking into account the control level of the deployed
environment which are efficiently supportable by the cloud provider. Note that in the
scope of this thesis our focus in on cloud infrastructure services.

Unpredictable workloads

Typically, a variety of different application types can face different workloads, or even
for a certain cloud application, different users usually have different usage patterns [19].
Self-adaptation of such applications can be realized by using controllers that dynamically
tune the amount of allocated resources. The change of the resources should be according
to the changing workload at runtime. Such changes are sometimes very sudden and
unpredictable with sporadic runtime peaks. Since controlling the workload is unrealistic,
classification and using workload analyzing tools can improve workload predictions. This
way, it is possible to further synthesize controllers that can deal with a specific category
of workload at runtime, more effectively. This knowledge is also beneficial at runtime for
dynamically adopting a set of controllers to cope with various situations.

Ali-Eldin et al. [19] address this research challenge by proposing a workload classifi-
cation tool to analyze the application workloads, and assign them to the most suitable
elasticity controllers. In a more generic view, in order to have an effective adaptive
solution for cloud applications, selection of a controller among a set of synthesized con-
trollers based on runtime situations (e.g., workload) is inevitable. For instance, during the
runtime, different vertical elasticity controllers or horizontal elasticity controller can be
adopted for a cloud application. Therefore, investigating on solutions in which dynamic
switching among various controllers are doable at runtime is an important aspect in
designing self-adaptive cloud applications.

Detecting applications’ resource bottlenecks

The host cloud environment should be able to provide resources which are critical for the
application at runtime. However, in spite of the importance of identifying the nature of
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the application and its resource bottleneck before deploying it in cloud environments,
application owners do not pay attention to this issue while choosing a cloud environment.
Without enough knowledge of what is the application bottleneck, designing corrective
actions (control knob) is impossible. Different resources can be the main reasons of
QoS degradation for an application at runtime. For instance, an application can be
CPU-intensive, memory-intensive, IO-intensive, or a combination of them.

An elasticity controller should be able to adjust the allocated amount of such re-
sources. To this aim, (i) bottleneck detection should be applied on an application before
synthesizing the controller; (ii) application should be deployed in a cloud environment
which can provide elasticity and control permission on the detected resources. Although,
utilizing methods such as the “trigger-less black-box bottleneck detector“ presented
in [183] or familiarity with the potential cloud application categories [132] are possible
solutions, software engineering community can still provide clearer guidelines or more
effective tools to facilitate this process for cloud community.

Controlling multi-tier applications

The pervasive and popular architectural patterns for a cloud application is the 3-tier
pattern [80]. It comprises presentation tier (representing user interface (UI)), business
logic (BL) tier (featuring the main application computation), and data storage (DS) tier
(storing and managing the persistent data). Realizing self-adaptation of a multi-tier
application deployed in cloud environments acquires research attention. In a multi-tier
application, every tier can be the main reason of QoS degradation in a specific period of
time; therefore, a possible solution can be adopting separated controllers for each tier
and then use coordination methods such as message passing techniques among these tiers
to make them isolate and avoid cascading effects. Each controller can pass the monitored
data of its own tier as part of the input for controllers at other tiers.

Different desired QoS sensitivity levels

In a cloud application, different users may have different priority classes, such as Gold,
Silver and Bronze [97]. Each class can define various sensitivity levels for the desired QoS
attributes such as performance. Therefore, a solid self-adaptive solution for a cloud
application should be able to make satisfaction of different classes of application users.
In [31], Bayuh Lakew et al. propose a performance-based service differentiation where in
case of overload, a service differentiation schema dynamically decides which services to
degrade and to what extent. In case where enough capacity is available, each service is
automatically allocated by the right amount of capacity that meets its target performance.

Using resources from multiple clouds

The traditional approach of using a single cloud as the only deployment environment for an
application has several limitations in terms of QoS, vendor lock-in, unoptimized renting
cost for world-wide users [148]. Therefore, as previously mentioned, using resources
from multiple clouds has envisioned as a future trend for cloud community. Since in a
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multi-cloud model dependent tiers of a single application can be deployed across multiple
clouds in a distributed manner, making such an application self-adaptive is even more
complex. Hence, enlightening solutions for interoperability and distributed controllers
is getting necessary. As a recent work, Copil et al. [46] propose control mechanisms to
address the elasticity of a multiple cloud deployment model.

Scalability

On one hand, software applications tend to be more large-scale and distributed; therefore,
cloud environments are the most suitable environment to host such distributed appli-
cations. On the other hand, centralized control of a large-scale distributed system is
seldom feasible. A solution which proposes a hierarchical control and leverages distributed
controllers seems practical. However, this causes a problem of co-existence and possible
inconsistencies and interference between controllers. Hence, coordination is recognized
as an important aspect, not completely solved by existing research [51, 84, 162], and
requiring special attention [83], which is in the scope of this thesis, too.
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CHAPTER 3
VM Placement across Distributed

Cloud Infrastructures

In recent years, cloud providers have been seeking for solutions to enable them to provide
highly available and scalable cloud services to stand out in the competitive market of
various cloud services. The difficulty is that to provide such high quality services, they
need to manage large-scale and geographically distributed cloud infrastructure. While
the energy consumption and consequently the operating costs of such infrastructures
(i.e., cloud data centers) has been turned into a global problem [123]. Hence, leveraging
cost-aware solutions to manage resources is necessary for cloud providers to decrease the
total energy consumption, while keeping their customers satisfied with providing their
expected QoS. An effective cloud management solution for geographically distributed
cloud infrastructure should make decisions while taking into account various time- and
location-dependent factors. These factors can be internal factors such as dynamic
and unpredictable cloud resource demands, or external such as regional power-outages,
temperature, regional electricity prices, and the ability to use different cooling modes.
All of these factors can influence the decision under some levels of uncertainty.

In this chapter, we address research question I by explaining the details of contribution
I, specified in Chapter 1. We propose a new approach to assist the cloud infrastructure
provider in order to reduce the cloud operating costs by applying a novel cost- and
QoS-aware virtual machine placement approach that is applied across geographically
distributed data centers. We model the VM placement problem along with its related
factors as a Bayesian network and then apply the multi-criteria decision analysis method
on it. The proposed solution includes two algorithms for the virtual machine allocation
and consolidation.
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3.1 Motivation

The main goal of a cloud infrastructure provider is to minimize the operating costs
of running data centers while meeting SLAs of the customers. Cloud providers tend
to distribute their data centers all over the world in order to cover specific customer
requirements and improve the performance of their services. However, for supporting the
virtual machine placement across geographically distributed data centers, cloud providers
need to consider several aspects in order to achieve a cost-aware solution such as:

• Each region has its own electricity market that directly affects energy cost. Global
electricity price comparison [4] shows quite big price differences that can dynamically
change in various countries. Moreover, due to the different temperatures in each
region, temperature-aware management of distributed infrastructure can greatly
reduce the energy cost, especially the cooling cost. More precisely, data centers
located in cold regions have smaller partial power usage effectiveness (pPUE)
rate [188], i.e., consume less energy to cool their infrastructures.

• Power outages can cause big issues for a cloud provider in terms of SLA violation.
Statistics of electrical outages [14] reports the countries with frequent power outages
in spite of a low energy price. Hence, it might be impossible to guarantee some
QoS requirements such as availability in such regions.

• Decision making regarding the live VM migration, as one of the common ways for
realizing efficient power management and load balancing across data centers, needs
to consider the influence of the following factors on the migration period: (i) VM
random-access memory (RAM) size, amount of data that should be transferred
via network; (ii) bandwidth of the migration link, the higher speed links the faster
data is transferred and the lower time is consumed to complete a VM migration to
a destination physical machine (PM); (iii) dirty page rate (DPR), the rate at which
memory pages are modified. The higher the rate, the larger amount of information
needs to be sent, so the longer total migration time of the VM.

Considering the introduced aspects, the trade-off between reducing the operating
costs (including power and cooling) of cloud infrastructures on the one hand, and keeping
the customers satisfied in terms of QoS on the other hand, brings many challenges for
cloud providers. Inappropriate management decisions such as frequent switching on and
off virtual machines, or large number of unnecessary VM migrations can lead to SLA
violations and consequently penalty cost to the cloud provider that can inversely affect
the cost efficiency. The aim of this chapter is to propose a solution to assist the cloud
provider to reduce the infrastructures operating costs without degradation of providing
QoS.
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3.2 Modeling VM Placement Problem
In this section, we formally model the aspects of cloud that are used in the proposed VM
placement approach.

VM States. At each point of time t each VM can operate within two possible sets,
either already allocated to a PM, allocated(t), or has to be allocated, waiting (t). A set
consists of all VMs is called all (t), where all (t) = waiting (t)

⋃
allocated(t). The set

migrated (t) defines a set of VMs that are being migrated to other PMs at time t, where
migrated (t) ⊆ allocated(t), i.e., all VMs of this set are currently under migration. At
each execution step, a VM placement method should find a target PM for: (i) all the
VMs in the set waiting (t); (ii) the VMs from the set allocated (t) that their current
allocation is not optimal enough based on a calculated utility value.

Resources. In our modeling, a data center consists of M distinct PMs. Each PM m
is defined by a certain set of resources R. Each resource r has a known limited capacity
Cmr, where m ∈ {1..M} and r ∈ {1..R}. We define the binary variable xij(t) that
indicates if a VM vi is allocated to a PM j at time t. Equation (3.1) states that each
VM from the set allocated (t) is allocated exactly to one PM.

M∑
j=1

xij = 1, ∀ vi ∈ allocated (t) (3.1)

Each VM vi has its specifications that define an upper bound of each resourcemax(vrir(t))
required by it at any point of time. During each execution step, a VM requires a certain
amount of resources vrir that is considered during the decision making process of the
VM placement. Since these resources are not being necessary provisioned for the VM,
we introduce the amount of resources vpir(t) that are provided for the VM. This value
can be less (in case of the VM downtime) or equal to the resources required by the
VM vrir(t). Equation (3.2) guarantees that the amount of the provisioned resources for
all VMs allocated to a PM does not exceed the overall capacity of the PM.∑

i ∈ allocated (t)
xij(t) · vpir ≤ Cjr, ∀ j = 1..M, r = 1..R (3.2)

Moreover, Equation (3.3) states how the utilization Ujr of a PM j and certain resource r
with allocated VMs can be computed. Note that the primary focus of this chapter in on
CPU as the cloud resource.

Ujr =
∑

i∈allocated (t)
xij(t) · vpir, ∀ j = 1..M, r = 1..R (3.3)

Live VM migration. In Equation (3.4), we define a binary variable yij(t) that
indicates a VM vi is under migration to a PM j at time t. This equation states that each
VM from the set migrated (t) can be migrated exactly to one PM.

M∑
j=1

yij = 1, ∀ vi ∈ migrated (t) (3.4)
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In our model, we assume that the migration of a VM does not affect the resources of a
target PM until the migration is completed. Equation (3.5) states how DPR depends on
the RAM size of a migrated VM:

dpri(t) = f(vriram), ∀ vi ∈ migrated (t) (3.5)

where dpri(t) is the DPR of the VM and f is a custom defined functional dependency.
For the simplicity, we assume f is a certain linear function. The amount of migrated
RAM of VM i to another PM, migratedRAMi(t), is computed by Equation (3.6), where
bw(t) is a bandwidth speed rate between the source and the target PMs and ∆ (t) is a
period when the VM has been under migration.

migratedRAMi(t) = bw(t) ·∆ (t)
dpri(t)

(3.6)

Energy consumption and cost. We utilize a commonly used technique for power
saving, namely dynamic voltage and frequency scaling (DVFS) [107]. DVFS allows to
adjust the frequency of a microprocessor and thereby to reduce power consumption. In
our model, energy consumption of a certain PM j is defined by CPU utilization and is
stated in Equation (3.7), where f is the power specification of the PM:

Wj = f(UjCP U ) ·∆ (t) (3.7)

Energy consumption of a data center is the sum energy consumption of all included
physical machines plus energy consumption for the cooling of the data center. As
originally modeled in [188], overall energy consumption of a data center is defined as
Equation (3.8):

WDC =
n∑

i=1
Wi · pPUEDC(T ) (3.8)

where pPUEDC(T ) is the pPUE rate of data center at temperature T . The energy cost
of a data center for a given period of time depends on energy price at that period and the
amount of consumption. In our model, energy cost is defined as Equation (3.9), where
PDC is the regional energy price of the data center location.

CDC = WDC · PDC (3.9)

3.3 Designing the Decision Model
Building a decision model is started with the definition of objectives and an appropriate
set of actions that are allowed to achieve the provider’s goal, which is reducing the
operating costs while satisfying the customers in terms of QoS. In our model, the set of
possible decision actions are Allocate VM, Migrate VM, Switch-on PM, and Switch-off
PM. Afterwards, we identify a set of criteria which are important to be considered from
the cloud provider’s point of view during the VM placement. Each criterion is a function
of a certain quantitative measurement of a cloud infrastructure. Table 3.1 contains a list
of criteria used in our model, and they are introduced in the following:
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criteria abbreviation related equations
VM unavailability g1 Eq. 3.10
PM power consumption (incl. cooling) g2 Eqs. 3.7, 3.11
PM CPU utilization g3 Eqs. 3.1, 3.2, 3.3
VM migration duration g4 Eqs. 3.4, 3.5, 3.6
Energy price g5 Eq. 3.12

Table 3.1: The list of criteria used for the VM placement modeling

1. VM unavailability (g1). There are several assumptions based on which we define
the migrated list migrated (t). We assume that the penalty cost is relatively high
for all the incoming requests, hence the cloud provider aims to avoid placement
of the virtual machines to the physical hosts, where the SLAs can be violated
with a high possibility. Hence, we define VM unavailability (g1) according to
Equation (3.10):

g1 =
∑

(downtime duration v)i

billing period
, where v ∈ allocated (t) (3.10)

where the numerator is the duration of VM downtime i during the billing period.
A high value of this criterion increases the possibility of SLA violation.

2. PM power consumption (g2). It directly influences the energy cost of the cloud
provider. Equation (3.11) shows the calculation of g2 for a certain PM j:

g2 = (Wmax −Wj · pPUEDC(T ))/Wmax (3.11)

where Wmax is a constant that defines the maximal utilized power of a PM by
considering the energy consumption for cooling. While Wj is the PM power
consumption (Equation (3.7)), pPUEDC(T ), as introduced in Equation (3.8), is
the pPUE rate of the data center at temperature T . Equation (3.11) utilizes the
pPUE rate of a data center where a certain PM is hosted. Indeed, we define g2 as
a function where values closer to 1 are preferred over the values closer to 0.
To clarify Equation (3.11), assume PM1 with W1 = 150Wh is hosted in DC1
with pPUE = 1.2, thus we can imply that the real power consumption of PM1 is
180Wh. WhileW2 = 160Wh and it is located in DC2 with pPUE = 1.1, so the real
power consumption of PM2 is 176Wh. Therefore, based on the Equation (3.11),
if Wmax = 250Wh, g2(PM1) = 0.28 < g2(PM2) = 0.296, and as the result in our
model migrating the VM to PM2 at DC2 is preferred to PM1 at DC1 despite the
lower power consumption of PM1.

3. PM CPU utilization (g3). This criterion is an indicator of efficient energy
consumption. Although a cloud provider tends to utilize as less resources as
possible, it should consider the risk of higher CPU demands than the PM capacity
which may lead to QoS degradation.
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4. VM migration duration (g4). Run time load balancing in cloud infrastructure
is performed via live VM migration. Since a lower VM migration duration decreases
the period of VM re-allocation, it allows more efficient use of cloud resources, so in
our model, we try to decrease this criterion.

5. Energy price (g5). It explicitly impacts the energy cost of a cloud provider.
Equation (3.12) defines the calculation of this criterion:

g5 = (Pmax − Ptarget P M )/Pmax (3.12)

where Pmax defines the maximal energy price over all geographically distributed
data centers managed by a certain cloud provider, and Ptarget P M is the energy
price of a data center, where hosts the target PM that the VM is going to be
migrated.

In summary, some of these criteria can be directly measured or observed (e.g., g2,
g3, g5). However, some of them (e.g., g1, g4) depend on the hidden factors, and such
dependencies induce a level of uncertainty during the decision making process from the
cloud provider’s point of view. Therefore, utilizing Bayesian networks is a proper way as
they can reason under uncertainty.

3.4 VM Placement Phases
The proposed VM placement approach works in the following three phases:

1. Designing the Bayesian network to model the expert knowledge of the cloud
infrastructure management.

2. Quantifying the underlying measures of each criteria used in the Bayesian network
model.

3. Applying multi-criteria decision analysis method [177] to create a utility function
as the decision making indicator.

As previously explained in the background chapter (see Section 2.2.1), Bayesian net-
works are graphical models that represent variables of interest and probabilistic depen-
dencies among them. The main benefit of such models is their ability to explore the
causal relations between the key factors using Bayes theorem.

Although a Bayesian network model can be efficiently used to aid decision making by
observing the value of uncertainty corresponding to each node, since the VM placement
problem is a multi-criteria decision problem, utilizing a Bayesian network model solely is
insufficient. To this aim, the MCDA method, previously explained in the background
chapter (see Section 2.2.2), is an effective mean to combine measured results and rank
all alternatives. MCDA allows sophisticated and flexible utilization of Bayesian networks
in decision making analysis [177].
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Figure 3.1: A simplified snapshot of the designed Bayesian network

Phase 1: designing the Bayesian network. As the first phase of the proposed
approach, the Bayesian network depicted in Figure 3.1 is constructed. For the sake of
readability, this figure represents a simplified version of the designed Bayesian network.
Recalling the steps of transferring a problem into a Bayesian network model, previously
presented in the background chapter (see Section 2.2.1), here we follow them to design
the Bayesian network for the VM placement problem.

The initial step is to recognize the goal of modeling which is prediction is our work.
This model is used to enable the decision making for managing geographically distributed
cloud data centers. The initial model is extracted based on a data collection approach from
a group of technical domain experts who have enough knowledge of cloud infrastructure
management. The next step is to configure the initial model by using the factors that
can influence the decision, e.g., using the time- and location dependent input parameters
that influence the management decisions such as temperature data or regional power
outage statistics (see Section 3.6.2 for more details).

The structure of the designed Bayesian network is shown in Figure 3.1 in which there
are three types of nodes. The gray nodes define the parameters that can be directly
measured at runtime. The red nodes denote the criteria presented in Table 3.1, which
have influences on the VM placement decision making. The values of the red nodes are
further used as the inputs of the utility function. The black nodes are the hidden factors
that indirectly affect the decisions. The probabilistic dependencies between nodes are
determined based on the experts’ knowledge and expressed by conditional probability
table, previously introduced in the background chapter. In our problem, CPT of each
node is obtained by extracting statistical data of the cloud data centers, the specifications
of the PMs inside each data center, the used time- and location dependent parameters,
and the expert domain knowledge.

Furthermore, in order to proactively apply optimum actions at runtime on the cloud
infrastructure, we use several prediction policy that can estimate the future workload of
resource demands. These workload prediction policies are used as the input of the
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g1,g2,g4,g5 0:10 10:20 20:30 30:40 40:50 50:60 60:70 70:80 80:90 90:100
value 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
g3 [%] 0:10 10:20 20:30 30:40 40:50 50:60 60:70 70:80 80:90 90:100
value 0.125 0.25 0.375 0.5 0.625 0.750 0.875 1 0.66 0.33

Table 3.2: Mapping the continuous criteria values to the discrete values

BN. Each policy uses a different technique to predict the future workload, as defined in
the following:

• Last workload (BN-LW): the next workload is estimated as equal to the last value.
• Trend workload (BN-TW): the next values follow a certain linear trend.
• Linear regression on workload (BN-LRW): the next values are predicted by applying

the linear regression of the historical data.

Phase 2: quantifying the underlying measures of the criteria used. While
the Bayesian network model is constructed in the first phase, the second phase is to
convert the chosen criteria (continuous values) to discrete values. Table 3.2 represents the
conversion of each criterion value ∈ [0, 100] to its corresponding discrete value ∈ [0, 1],
where 0 denotes the worst value and 1 indicates the best value. For all the criteria except
g3, 10% increments of their values is considered as 0.1 increment of the corresponding
discrete value. While, in the case of g3, the discrete value is found empirically, so that if
the value exceeds 100% (i.e., over-usage of CPU), the selected action which leads to this
condition is immediately rejected.

Phase 3: applying MCDA method. As the third phase, once discrete values
for all criteria are computed based on the previous phase, MCDA method is applied to
combine the values for each possible action, namely allocation or migration to the PMs,
and ranks the results. Each criterion gi is defined with a weight wi that represents its
relative importance in the context of the given decision problem. Equation (3.13) defines
the utility function U(a) of an action a:

U(a) =
∑

wi · gi(a) (3.13)

Where gi(a) is taken based on the discrete utility value of each criterion presented in
Table 3.2. The utility function U(a) is used to evaluate the benefits of the possible
actions. A VM is either allocated or migrated to a PM with the highest utility value.

3.5 Algorithms for VM Placement
We propose a VM placement algorithm based on the defined utility function (Equa-
tion (3.13)) to leverage the benefits of the geographical distribution of the data centers
managed by the cloud provider. The proposed algorithm makes decisions according to
the time- and location-dependent factors of such data centers such as regional energy
prices, or the temperature difference between these data centers.

42



Algorithm 3.1: VM allocation algorithm
input : pmList, vmList: vm ∈ waiting (t)
output : vmAllocationMap

1 vmList.sortDecreasingSLAPenalty();
2 foreach vm ∈ vmList do
3 maxUtility← 0 ;
4 allocateToPm← NULL;
5 foreach pm ∈ pmList do
6 utility← computeUtility(pm,vm); . Equation (3.13)
7 if utility > maxUtility then
8 allocateToPm← pm;
9 maxUtility← utility;

10 end
11 end
12 if allocateToPm 6= NULL then
13 vmAllocationMap.put(vm, allocateToPm);
14 if allocateToPm.isSwitchedOff() then
15 allocateToPm.switchOn();
16 end
17 end
18 end
19 return vmAllocationMap;

VM placement algorithm use the Bayesian network model along with applying the
MCDA method. In our proposed solution, the virtual machine placement can be divided
into the allocation of the incoming VM demands to PMs (i.e., the Allocate VM action),
and the consolidation of the current running VMs (i.e., the Migrate VM action). The
VM allocation is triggered when a new VM request arrives, while the VM consolidation
is applied periodically on running infrastructure at each control interval. Both VM
allocation and consolidation use a similar best fit decreasing heuristic that utilizes a
certain utility function for assessments of the most optimal decision.

3.5.1 VM Allocation Algorithm

As presented in Algorithm 3.1, first VMs ∈ waiting (t) are sorted in a decreasing order
by their SLA priorities. In our approach, we support three SLA priority levels, namely
Gold, Silver, and Bronze. They define the priority of resource allocation for a VM. A VM
with a Gold SLA has the highest priority for the resource allocation and consequently
has the highest penalty cost in case of SLA violation. Afterwards, based on the final
utility value for each PM according to Equation (3.13), a PM with the highest utility
value is chosen as the target PM for allocating the VM. If the chosen PM is off, the
action Switch-on PM is applied (Lines 14-16).
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Algorithm 3.2: VM consolidation algorithm
input : pmList, vmList: vm ∈ allocated (t) \ migrated (t),

vmAllocationMap
output : vmMigrationMap

1 vmList.sortDecreasingSLAPenalty();
2 foreach vm ∈ vmList do
3 maxUtility← 0 ;
4 migrateToPm← NULL;
5 foreach pm in pmList do
6 utility ← computeUtility(pm,vm); . Equation (3.13)
7 if utility > maxUtility then
8 migrateToPm← pm;
9 maxUtility← utility;

10 end
11 end
12 currentPm← vmAllocationMap.get(vm);
13 if migrateToPm 6= currentPm then
14 vmMigrationMap.put(vm, migrateToPm);
15 end
16 end
17 foreach pm ∈ pmList do
18 if pm.hasNoVMs() then
19 pm.switchOff();
20 end
21 end
22 return vmMigrationMap;

3.5.2 VM Consolidation Algorithm

The consolidation of the running VMs is performed in two steps. First, the VMs
that need to be consolidated is identified, based on the calculated utility value of each
physical machine using the presented workload prediction policies. Then, the chosen VMs
are migrated according to Algorithm 3.2 that acts similar to the allocation algorithm
(Algorithm 3.1). Migration of a VM to a certain PM is triggered, if the utility value of
that PM is higher than the utility value of the current host PM. Algorithm 3.2 triggers
Switch-off PM action, if there is no allocated VMs on a PM after the VMs migration
(Lines 17-21).
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3.6 Implementation Details

In this section, we first introduce a simulation tool that is designed and implemented
for the evaluation of the proposed VM placement approach, then we explain the data
extracted from the real-world traces used as the input parameters for simulating a realistic
environment.

3.6.1 CloudNet Simulation Framework

CloudNet [81] is a framework that allows cloud providers to simulate their infrastructure
in a repeatable and controllable way, in order to find the performance bottlenecks,
and evaluate different management scenarios under real-world data traces. The most
important feature of CloudNet that distinguishes it from the other similar frameworks is
the ability of simulating geographically distributed cloud infrastructures while taking
into account time- and location-dependent parameters such as infrastructure energy and
cooling costs, power outage statistics, regional temperature and electricity prices. It also
supports the three presented SLA priority levels with different penalty cost. CloudNet is
a flexible simulation framework written in Java, which is designed based on the usage of
Bayesian networks for the decision making analysis. It follows a loosely coupled design
paradigm, where its components communicate through a message oriented middleware
(MOM).

For the evaluation of the proposed VM placement approach, we simulate the manage-
ment of geographically distributed data centers with frequent power outages by using
CloudNet. To facilitate the reproduction of our research, we release the source code of
CloudNet1.

3.6.2 Time- and Location-dependent Input Parameters

For the evaluation, we setup CloudNet with five distributed data centers located in
different time zones. Each location has a regional electricity price and temperature value.
The temperature changes can cause the necessity of using different cooling modes and
directly affect the pPUE rate. By utilizing a competitive energy price among the chosen
data centers and the temperature differences due to the various time zones, the proposed
algorithms are able to make a migration decision depending on the temperature and
energy price thereby decreasing the operating costs for the cloud provider. We use the
following real-world data traces as the input parameters of CloudNet:

• Temperature data. We retrieve the real temperature data traces for the cho-
sen period (Jan-Feb 2013) and selected locations from the public web service,
Forecast.IO [6] with the granularity of one hour (see Figure 3.2a).

• Cooling modes. We simulate Emerson’s DSETM cooling system, described in [188].
This system has three different cooling modes: Air, Mechanical, and Mixed. One

1CloudNet source code: https://github.com/dmitrygrig/CloudNet
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Figure 3.2: Real-world data traces for the chosen data centers used as input parameters

mode switches to another one when the outside temperature is changed. In our
evaluation, we switch Air mode to Mixed after temperature exceeds 12°C and
Mixed to Mechanical after exceeds 18°C. Figure 3.2b depicts the switching between
various modes of cooling system.

• Electricity prices. Electricity prices for each location is extracted using statistics
in [4]. Some locations such as Austria have different pricing models for day and
night as shown in Table 3.3. As presented, some locations such as Austria have
different pricing models for day and night. Figure 3.2c shows changes in electricity
prices for different locations.

• Power outage statistics. We obtain the data traces of the power outages
corresponding to the chosen locations and period from [14]. As shown in Table 3.3,
the electric measure system average interruption duration index (SAIDI) is utilized.
Note that we use the scaled real-world values of one year of the simulation period
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data center specification Brazil Canada Norway Austria Japan
Day/Night switch hours (hour) 8-23 8-23 8-23 6-22 8-23
Day energy price ($/kWh) 0.162 0.117 0.159 0.2484 0.24
Night energy price ($/kWh) 0.162 0.117 0.1113 0.1678 0.20
SAIDI (min/month) 1101.6 220 218 39 6

Table 3.3: CloudNet input parameters for the chosen data centers

of one month in order to better show the ability of our approach in handling more
unreliable data centers in terms of power outage.

• PM power specification. We use data traces of SPECpower benchmark [13] to
define power specification of each physical machine in the simulated data centers.

Figure 3.2d shows the values of the pPUE rate for the chosen data center locations.
In general, as shown in Figures 3.2a and 3.2d, a lower temperature drastically decreases
pPUE and hence is more energy efficient due to the lower cooling cost.

The described simulated framework and the introduced input parameters are used
for evaluating the VM placement approach, including the VM allocation and VM con-
solidation algorithms, in comparison with two state-of-the-art baseline algorithms. The
evaluation details are explained in Section 7.1 of the evaluation chapter.
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CHAPTER 4
Service Selection in Multi-Cloud

Cloud computing popularity is growing rapidly and consequently the number of companies
offering their services in the form of cloud services (i.e., IaaS, PaaS, or SaaS) is increasing.
The benefits of the cloud infrastructure offerings are encouraging application owners to
lease resources from the cloud providers instead of operating their own data centers. This
can help them to reduce the maintenance overheads and operating costs while being able
to better satisfy their end users in terms of QoS as long as they deploy their application
in suitable cloud services [184].

The diversity of cloud providers both in the number of players and the variety of offered
services forces cloud customers to deal with a complex service selection problem [45].
Meanwhile, this problem is getting even more challenging with the emergence of a new
delivery model of cloud services in which cloud customers can deploy their applications
on multiple clouds instead of sticking to a single cloud and thereby achieving a better
cost and QoS. As previously discussed in the background chapter, in our work we focus
on multi-cloud delivery model where the cloud customer is aware of using multiple clouds,
and usually a third party, i.e., a middleware, deals with the heterogeneity of cloud
providers.

In this chapter, we address research question II by presenting a multi-cloud service
allocation framework, and in particular, a multi-cloud service selection approach (con-
tribution II). The proposed approach is used by an application owner, as a potential
cloud infrastructure customer, to cost- and QoS-aware leverage the multi-cloud model.
The proposed multi-cloud service selection chooses the most suitable combination of
services that best satisfy the cost and QoS requirements of the customer. In this chapter,
first a realistic use case is introduced as the motivation, then the SLA-based service
allocation framework is proposed. Afterwards, we elaborate the proposed multi-cloud
service selection approach, including an SLA definition and a service selection algorithm
that use prospect theory. To the best of our knowledge, this is the first application of
prospect theory in the scope of cloud computing service selection.
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Figure 4.1: CAD-aaS as a motivation use case

4.1 Motivation

By using the multi-cloud, dependent components (or tiers) of a single software application
can be deployed on different cloud infrastructures which have different values for QoS and
cost. From the perspective of the application owner, such a deployment can be considered
as an abstract composite service with a set of functional and non-functional requirements
for each component included. The question remains how to, on the one hand, score and
select services for each single component and on the other hand, optimize this selection in
such a way that the requirements of the composite service are also satisfied. Furthermore,
the concerned QoS parameters can be conflicting or have various importance levels. As a
motivation use case, we consider a computer-aided design (CAD) application owner, who
aims to deploy the CAD application in multi-cloud and offers it as a public cloud software
service, called CAD-as-a-Service (CAD-aaS); accordingly the CAD application owner is
called CAD-aaS provider. The rationale behind choosing such a use case is that deploying
CAD applications in the cloud has been recently investigated widely. One example is the
CloudFlow project [2] that aims to make the cloud infrastructures a practical solution for
manufacturing by automatic provisioning of SaaS applications over cloud infrastructure
services.

In order to attract different groups of end users, CAD-aaS is delivered in different 
software editions which have a certain set of cost and QoS requirements, expressed as 
various SLAs. In our use case, there are three software editions: enterprise; professional; 
and standard. As depicted in Figure 4.1, the CAD application has three tiers: (i) 
the user interface tier, which needs one small cloud virtual machine; (ii) the business 
logic tier that provides the computations and needs for large cloud VMs equipped with 
graphics processing units (GPUs); (iii) the data storage tier that stores the CAD 
models and requires two 1000 GB cloud storage. To leverage the benefits of using 
multiple clouds,
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Figure 4.2: The architecture of multi-cloud service allocation framework

the CAD-aaS provider aims to deploy each tier of the CAD application on a separated
cloud which best satisfy the QoS requirements of each tier, while keeping the overall
leasing cost within a specific range. Different tiers of the CAD application communicate
with each over the Internet based on the application topology. In the following sections,
we exemplify our proposed solutions on this use case.

4.2 Multi-Cloud Service Allocation Framework

The architecture of the proposed multi-cloud service allocation framework is depicted
in Figure 4.2. This framework is located between the cloud customer layer and the cloud
infrastructure provider layer and manages the allocation of services in a multi-cloud
environment with respect to the SLA requested by the customer. As previously discussed
in the background chapter, there is a middleware in the multi-cloud model that carries out
all the transactions between the cloud customers and the cloud providers. It is responsible
for handling the interoperability issues in a multi-cloud, for example by communicating
via different APIs of the involved cloud providers.

In this framework (Figure 4.2), SLA Construction Engine and Service Selection
Engine (colored in the light red) handle the design-time activities such as SLA formation
and service selection using their interactions with SLA Repository and IaaS Offerings
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Repository components. While other components (colored in gray) cover the runtime
activities such as SLA validation tracking, violation detection, and SLA enforcement.
These activities are done by monitoring the allocated services at runtime and applying
certain strategies in order to detect SLA violations and react accordingly. The service
allocation process is realized in this framework through two main phases: (i) design-time
phase which includes SLA Construction, and Service Selection steps; (ii) runtime phase
consisting of SLA Monitoring and SLA Violation Detection steps. In the remaining of
this section, these two phases are explained with more details.

4.2.1 Design-Time Phase

As the input of this phase, the CAD-aaS provider submits its requirements in terms of
cost and QoS to the framework. According to the requirements, a set of high level SLAs
is constructed which are cloud provider neutral. Afterwards, a service selection algorithm
is used to find the best set of services that satisfy the requirements of each involved
service. Additionally, it considers the whole request as a composite service and tries to
choose an optimum combination of services by using service offerings from multiple cloud
providers. The algorithm takes into account the runtime latency and data traffic as two
main factors among the selected services of the composite service.

As the user satisfaction has been a subject of great interest to cloud providers, prospect
theory is used in our selection algorithm to model the customer satisfaction as a function
of service cost and quality aspects, as well as their importance level according to the
customer. This theory as a descriptive model of decision making under uncertainty, is
an alternative to utility theory while being more accurate in calculating the customer
satisfaction. As previously discussed in the background chapter, the core rationale behind
this theory is that the satisfaction is subjective, it means two different customers might
have completely different satisfaction levels when offered the same service with a exactly
similar quality level. This difference comes from the differences in priorities and prospect
theory takes them into account for a better result.

4.2.2 Runtime Phase

An SLA cannot guarantee that the service is delivered as it has been described, similar
to the case that a car guarantee cannot claim that your car will never break down. “In
particular, an SLA cannot make a good service out of a bad one. However, it can mitigate
the risk of choosing a bad service“ [20]. While we have the same purpose for using SLA
in our research, the runtime phase is responsible for handling the activities including:
SLA monitoring; SLA validation tracking; SLA violation detection; and SLA enforcement.
While more investigation of runtime activities is out of the scope of this thesis, in the
following sections, the focus is on the activities of the design-time phase by proposing an
SLA-based multi-cloud service selection approach including a formal definition of the
SLA model along with a multi-cloud service selection algorithm.
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4.3 Overview of the SLA-based Multi-Cloud Service
Selection

As previously introduced in the background chapter, an SLA serves as an agreement
for the expected functional and non-functional requirements of a cloud service between
the involving parties [110], who are an infrastructure provider and cloud customer in
our work. To provide a service selection approach to facilitate choosing the best set of
services from a multi-cloud environment for a cloud customer, it is necessary to specify
and manage the SLAs in two layers, as shown in SLA hierarchy perspective of Figure 4.3:
(i) an SLA between the end user and the cloud customer (e.g., CAD-aaS provider) that
directly reflects the QoS aspects of the offered services to the end users; (ii) an SLA
between the cloud customer and the infrastructure provider, this SLA implicitly affects
the end user satisfaction.

The proposed SLA-based multi-cloud service selection approach, as shown in the
system perspective of Figure 4.3, is located between the cloud customer and cloud
infrastructure provider layers and it handles the SLA heterogeneity and service selection.
In our approach, the concept of sub-SLA and meta-SLA as InterCloud-SLAs are proposed
to cover the requirements of the cloud customer for the requested composite service and
all individual services.

The proposed multi-cloud service selection approach focuses on the SLA between the
cloud customer and the IaaS provider which includes both functional and non-functional
parameters. SLA functional parameters express the number and the type of the required
cloud service. While each SLA non-functional parameter can be defined as a hard or a
soft constraint. A hard constraint must be satisfied (the infrastructure cost must be less
than a specific amount), while satisfaction of a soft constraint is not mandatory, but is
preferred (response time is preferred to be less than 2sec). By SLA satisfaction, we do
provide all the functional and hard non-functional parameters and also try to provide the
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soft constraints. The proposed approach works in two steps: (i) SLA Construction; (ii)
Service Selection. Figure 4.4 depicts the architecture and the steps of the multi-cloud
service selection approach along with inputs and outputs of each step. These two steps
cover all activities of the design-time phase of the previously presented framework.

Step I: SLA construction

As the input of Step I, the cloud customer submits its infrastructure requirements of
the SLA Construction Engine as a single extensible markup language (XML) file. These
requirements contain two parts: (i) the first part includes the requirements for each cloud
service (cloud VM or storage) as the host of each application tier; (ii) the second part
contains the requirements of the whole deployed application, considered as a composite
service. The information related to these two parts is extracted from the given XML file
and transformed into a set of SLAs by using the principles of model driven architecture.
The generated SLAs are provider independent, and named InterCloud-SLAs in our work.
Note that as a recent investigation of SLA interoperability issues in a multi-cloud, an
IEEE working group, InterCloud Working Group (ICWG)1, has been established to
develop a set of standards for InterCloud interoperability. The name InterCloud-SLAs
has been inspired by the name of a sub-group of this working group.

The main purpose of constructing such InterCloud-SLAs is addressing the SLA
interoperability issue in a multi-cloud. Based on the model driven architecture, previously
introduced in the background chapter, an InterCloud-SLA can be considered as a platform

1IEEE InterCloud Working Group (ICWG): http://grouper.ieee.org/groups/2302
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independent model. Since each cloud infrastructure provider has offered an SLA that is
dependent on the details of its provided infrastructure, this SLA can be modeled as a
platform specified model. One of the activities of this phase is to construct the PIMs
and then transform them to the corresponding PSMs of the selected cloud providers.
In other words, SLA Construction Engine is responsible to automatically transform a
PIM to a PSM, i.e., to map the customer requirements to the available service offerings.
While investigating more about proposing an automatic solution for such a mapping is
out of the scope of this thesis, effective techniques can be found in [35, 155]. A formal
definition of the proposed SLA used in our approach is introduced later in Section 4.4.

Step II: Service selection

As shown in Figure 4.4, the InterCloud-SLAs and the IaaS providers’ offerings are the two
inputs of this step. Service Ranker component is responsible to create a ranking list of
services for each sub-SLA, which are then used by Composite Service Ranker component
to score the combinations of services for the meta-SLA. The output of this phase is
a composite service, which has the best satisfaction score among all other candidates.
The details regarding the service scoring is presented as a service selection algorithm in
Section 4.5.

4.4 SLA Formal Definition
In this section, we formally define the specification of the SLAs used in Step I. A set
of m infrastructure services can be defined as Equation (4.1) where Fi is the functional
parameter of service Si and NFi is its non-functional parameter.

Service Offerings = {S1, · · · , Sm}, where Si = {Fi, NFi} 1 ≤ i ≤ m (4.1)

The InterCloud-SLA contains a set of n sub-SLAs and one meta-SLA and is defined
as Equation (4.2).

InterCloud-SLA = {{subSLA1, · · · , subSLAn}, metaSLA} (4.2)

Where each subSLAj and metaSLA includes a set of functional parameters F and
non-functional parameters NF that are defined as Equations (4.3) and (4.4).

subSLAj = {Fj , NFj} 1 ≤ j ≤ n (4.3)

metaSLA = {F, NF} (4.4)

Non-functional parameters of subSLA or metaSLA, NFk are represented as Equa-
tion (4.5).

NFk = {Mink, Maxk, Wk, Tk} 1 ≤ k ≤ l (4.5)

Where Mink and Maxk determine the accepted boundaries for the values of parameter k.
Wk ∈ (0, 1] represents the cloud customer priority on parameter k in the service selection.
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A larger value for Wk represents the importance of the parameter k for the customer,
and accordingly the more impact of this parameter on the service ranking. Tk specifies
the type of constraint for parameter k, which can be a hard or a soft constraint. In
our proposed service selection approach, the hard non-functional parameters are treated
similar to the functional parameters. If the customer specifies no value for each of the
introduced factors, the default values are assigned, Tk = soft and Wk = 0.5 that show
the medium importance (customer priority) of parameter k. Moreover, for Mink and
Maxk, the default values are defined as the smallest and largest values for parameter k
within a corresponding set of Service Offerings. For example, if k = availability, then
Mink = 90% and Maxk = 100% can be assigned as the default values.

The last part in our modeling is a graph which describes the degree of connectivity 
among sub-SLAs, in which the connectivity can have a number between 1 and 3, a 
larger value represents a more connectivity. In this graph, nodes present the sub-SLAs 
and the edge shows to which degree these two corresponding components are going to 
transfer data at runtime, so it influences the traffic cost and latency of the composite 
service deployment. Figure 4.5 shows a complete version of the motivation use case 
presented in Figure 4.1. As depicted, each requested service of each application tier 
has a sub-SLA. Non-functional parameters related to the whole CAD composite service 
form the meta-SLA. The edge numbers represent the execution sequence of the CAD-
aaS. The degree of data communications between the components is depicted as the 
connectivity value of each edge, which shows the amount of transferred data between 
the involved nodes. For example, in the CAD-aaS graph, the business logic tier node 
transfers the highest amount of data with the data storage tier node (i.e., 
connectivity=3), among all other edges.
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4.5 Algorithm for SLA-based Multi-Cloud Service
Selection

The cornerstone of the service selection step is a selection algorithm that works based on
prospect theory to compute the cloud customer satisfaction score for a certain service.
This theory is proper for describing user decisions among various choices under uncertainty,
and considers human behavior in the computation of the user satisfaction. The proposed
algorithm supports service selection for a cloud composite service in a multi-cloud, and
covers all functional and non-functional parameters of the proposed InterCloud-SLAs.
The service selection algorithm is depicted in Algorithm 4.1 and is described in the
following six steps.

Algorithm 4.1: SLA-based multi-cloud service selection algorithm
input : ServiceOfferingList, subSLAList, metaSLA
output : CompositeService

1 foreach subSLA ∈ subSLAList do
2 ServiceOfferingList.filter(F,Hard-NF);
3 foreach NFi of Si ∈ ServiceOfferingList do
4 foreach NFj ∈ subSLAj do
5 Nik=normalize(NFik); . Eq. (4.6)
6 computeSatisfactionScore(Nik); . Eq. (4.7)
7 end
8 FinalSatisfactionScore.compute(Si,subSLAj) . Eq. (4.8)
9 end

10 end
11 CompositionServiceList.add(ServiceOfferingList);
12 foreach Composition ∈ CompositionServiceList do
13 foreach NF ∈ metaSLA do
14 aggregateFunction(NF); . Table 4.1
15 end
16 end
17 CompositionServiceList.filter(F,Hard-NF);
18 foreach Composition ∈ CompositionServiceList do
19 foreach NF ∈ metaSLA do
20 normalize(NF.AggregateValue); . Eq. (4.6)
21 satisfactionScore.compute(Composition); . Eq. (4.7)
22 end
23 FinalSatosfactionScore.compute(Composition); . Eq. (4.8)
24 FinalCompositionScore.compute(subSLAs,metaSLAs); . Eq. 4.9
25 CompositionServiceList.sort();
26 end
27 return the first ranked CompositeService;
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1. A set of services that satisfies the functional and hard non-functional parameters is
chosen for each sub-SLA (line 1-2). We assume that the filtered list is not empty at
this step, and the negotiation with the cloud customer in case of finding no service
for the given requirements in out of the scope of this thesis.

Norm(NFik) = Nik =


NFik − Minjk

Maxjk − Minjk
if a larger NFik is desirable

Maxjk − NFik

Maxjk − Minjk
if a smaller NFik is desirable

(4.6)

2. Due to the variety of supported non-functional parameters in metrics and scales
for a given service set, they need to be normalized before being used in the service
ranking. In Equation (4.6), we normalize QoS parameters in such a way that a
higher value always means better. For instance, for the parameters like availability
which a higher value is desirable, we use the first case of Equation (4.6), and for
the parameters like cost, where minimization is the goal, the second case is used
for the normalization. This equation calculates the normalized result, Nik, for the
values between their accepted boundaries [Min-Max]. For values better than the
accepted boundaries, the result is 1 and for the ones that their values are not inside
the boundaries, the normalized values are 0 (line 3-5).

3. Let Nik is the normalized value of NFik of service Si, the satisfaction scoring
function (SSF ) can be defined as Equation (4.7). This Equation computes the
customer satisfaction score of the normalized value Nik for each non-functional
parameter of Si based onWj (the priority value of the customer) defined in subSLAj

(line 3-7).
The rationale behind SSF is based on prospect theory. This theory implies that
changes in a specific quality aspects of a service are sensed more by customers
who have assigned higher weights (priority) to those quality parameters. Indeed,
the satisfaction of a cloud customer for a service is based on the gains and losses
relative to the reference point (normalized value of 0.5) instead of taking the
absolute normalized QoS parameters of that service. Moreover, satisfaction is
influenced by the customer priority weight assigned to a specific quality parameter.
According to this theory, the satisfaction function should be concave for gains, and
convex for losses.
To clarify the behavior of SSF , we present the diagrams of Figure 4.6. Each
curve shows the behavior of SSF based on different priority weights for different
non-functional parameters supported either at sub-SLA or meta-SLA, for the three
defined software editions (standard, professional, and enterprise). For example,
in Figure 4.6 (b) the accepted boundaries are 99.5% as the minimum and 100%
as the maximum, so 0.4 (the normalized value of 99.7%) has different satisfaction
scores for each software edition based on the specified priority weights assigned by
customers for availability as an SLA parameter. Other diagrams of Figure 4.6 also
show the influence of customer priority weights on SSF for differing non-functional
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Figure 4.6: Satisfaction scores for sub-SLAs and meta-SLA, using prospect theory

parameters. The priority weights can also be different based on the goal of the
customer for a certain service. For example, Figure 4.6 (a) shows the several priority
weights that a customer has assigned to response time of the three application tier.
As depicted response time for the virtual machine which is dedicated to the user
interface tier is more important for the customer (having a higher priority weight)
than the virtual machine for the business logic tier.

SSF (Nik) =


0.5.(2Nik − 1)1−Wjk + 0.5 Nik > 0.5

−0.5.(−2Nik + 1)1−Wjk + 0.5 Nik ≤ 0.5
(4.7)
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meta-SLA parameter aggregate function formula
Budget Costagg =

∑
{VM+storage+traffic}

Throughput Thagg = minn
i=1Th(Si)

Reputation Repagg =
∑n

i=1 Rep(Si)
n

Latency Latagg =
∑n

i,j=1 W (Sij).Lat(Sij)∑n

i,j=1 W (Sij)

Availability Avaagg =
∏n

i=1Ava(Si)

Table 4.1: Aggregate functions of meta-SLA parameters [192]

4. Until now, we have calculated the satisfaction score for each NFi of service Si,
so we have a satisfaction score set {SCi1, · · · , SCik, · · · , SCil} calculated based
on the {NFj1, · · · , NFjk · · · , NFjl}. At this point, it is needed to compute the
final satisfaction score of each service by the combination function (CF) presented
in Equation (4.8) (line 8-10).

CF (Si, subSLAj) =
∑l

k=1 SCik.Wjk∑l
k=1Wjk

(4.8)

5. The four previous steps (line 1-10) are executed on the sub-SLA level, while from
this step on, the meta-SLA are processed. First, for all possible combinations of the
chosen services corresponding to each subSLA, the aggregate non-functional values
are calculated by using the corresponding aggregate function of each parameter,
presented as Table 4.1 [192] (line 11-16). These functions calculate the aggregate
values of composite service non-functional parameters based on its constituent
services. In Table 4.1, Lat(Sij) at the aggregate function for the latency, represents
the delay between the deployed services, which is dependent on the location where
the host cloud infrastructure is located. The details of these functions and their
corresponding evaluation values are presented in the evaluation chapter. Then, the
algorithm again follows step 1 to 4 by considering the aggregate values, meta-SLA
and all possible service combinations, which is named Composition (line 17-22).

6. For the final selection, the algorithm considers the influence of both sub-SLAs and
meta-SLA. To this aim, the average Final Satisfaction Scores of services included in
Composition is computed (line 23). Then, by Equation (4.9) in which WmetaSLA is
the customer priority weight of the meta-SLA and WsubSLA is the customer priority
weight for the sub-SLA, the Final Composition Score is calculated for the final
selection (line 24).

Scorefinal = WmetaSLA.Scoreagg +WsubSLA.Scoreave (4.9)

The first ranked composite service would be the output of the service selection
algorithm (line 27). The top ranked composite service is the one with the highest
satisfaction score. It means it includes the services that have the closest values to
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the customer requested QoS. Hence, in the proposed algorithm the services whose
have the best QoS values may not be chosen, instead the services which best satisfy
the customer requirement are selected. This is beneficial in improving the overall
service utilization, and reducing the leasing cost by not paying for the services
which have far better QoS values than the customer requested QoS level.

The proposed service selection approach is evaluated by comparing its results with a
state-of-the-art utility-based selection algorithm [101]. For this purpose, both algorithms
are implemented in Java language and a set of simulation scenarios is conducted on
these algorithms. The simulated-based evaluation results are discussed in Section 7.2 of
the evaluation chapter. The used simulation environment is enriched by realistic data
sets taken from the commercial public cloud infrastructure providers.
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CHAPTER 5
Vertical Memory Elasticity

Control

Since the owners of modern interactive cloud applications are becoming increasingly
interested in having high and predictable, if not guaranteed, performance, the need for
having robust elasticity solutions that would meet their SLAs is rising. Lack of such
solutions result in a poor service performance, in case of unexpected workload and kills
the satisfaction of end users. Several studies have shown that increased response time
reduces the revenue [136]. For instance, Amazon found every 100ms of latency costs
them 1% in sales [119]. Google found only half a second delay in search page generation
time dropped traffic by 20% [79].

A possible solution to deal with this issue is cloud elasticity. As previously explained
in the background chapter, horizontal and vertical are two types of elasticity. While
horizontal elasticity allows virtual machines to be acquired and released on-demand,
vertical elasticity allows adjusting the resources of individual virtual machines to cope
with runtime changes. The problem of supporting elasticity for cloud applications can be
categorized as an autonomic computing problem where systems make use of autonomic
controllers [96]. These autonomic controllers can be realized in several ways, including
statistical machine learning [34], and control theory [144]. As previously discussed in
the background chapter, control theory is a promising fit to deal with unpredictable
changes in systems by introducing feedback control loops [194]. Although the problem of
automated resource provisioning is among the primary application areas in which control
theory has been applied [89], cloud computing introduces many more challenges making
control-based mechanisms a more prominent solution for such problem spaces. Moreover,
in spite of the new trend of applying control theory in software systems, research on the
application of control theory for enabling elasticity mechanism to support cloud elasticity
is still in a preliminary stage [70]. In our research, we use control theory to synthesize a
controller for vertical memory elasticity of cloud applications.

63



In this chapter, we address research questions III and IV by presenting their corre-
sponding contributions III and IV, introduced in Chapter 1. We first experimentally
motivate the effect of vertical memory elasticity on the application performance at
Section 5.1. Then, we introduce a model that covers approaches that can realize cloud
elasticity (Section 5.2). We present a performance-based controller as contribution III,
using a control design process (Section 5.3) to guarantee the application performance
objectives by adjusting the allocated memory of the VM hosting the application (Sec-
tion 5.4). Afterwards, in order to enhance the resource utilization of the resource
controller, while meeting the application performance, we propose a hybrid memory
controller (Section 5.5) as contribution IV, which uses both the application performance
and the resource utilization at the same time as elasticity decision making criteria. The
hybrid memory controller allocates the right amount of memory for the cloud application
to meet the application performance objectives, while achieving a high resource utilization.
Finally, we provide the formal assessment of the two proposed controllers from the control
perspective (Section 5.6).

5.1 Motivation
Horizontal elasticity has been widely adopted by commercial clouds due to its simplicity
as it does not require any extra support from hypervisors. However, due to the static
nature and fixed virtual machine size of the horizontal elasticity, applications cannot be
provisioned with arbitrary configurations of resources based on their runtime demands.
This leads to inefficient resource utilization as well as SLA violations since the demand
cannot always exactly fit the size of the virtual machine. To efficiently utilize resources
and avoid SLA violations, horizontal elasticity should be complemented with fine-grained
resource allocations where virtual machine sizes can be dynamically adjusted to an
arbitrary value according to runtime demands. Based on a European commission report
on the future of cloud computing [160], vertical elasticity is one of the areas that is not
fully addressed by current commercial efforts, although its importance is acknowledged.
Vertical elasticity is also considered recently as a key enabling technology to realize
resource-as-a-service (RaaS) clouds, and as one of the main driving features of the
second-generation infrastructure as a service (IaaS 2.0) [138], where users pay only for the
resources they actually use, and cloud providers can use their resources more efficiently
and hereby serves more users [15, 112].

Nevertheless, from the research point of view, in the last decade, most elasticity
research has focused on horizontal, while only few research efforts have addressed vertical
elasticity [134] due to lack of support from hypervisors. However, vertical elasticity of
resources has recently started to be supported by hypervisors such as Xen and KVM.
Unlike horizontal elasticity that is widely supported by almost all commercial clouds, only
a few cloud providers such as dotCloud1 and ProfitBricks2 have started commercial support
for vertical elasticity. However, with the current rate of technological developments and

1dotCloud: https://www.dotcloud.com
2ProfitBricks: www.profitbricks.com
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user expectations, the support of vertical elasticity techniques is becoming necessary by
any public cloud service providers in the future [134].

In theory, one can make any cloud resource, like CPU or memory, vertically elastic for
a cloud application if there is a way to measure the effects of the allocated resources on
the application performance continually over time, and by at least one knob for changing
the resource size. However, the practical exploitation of vertical elasticity is challenging
due to the following reasons: (i) intrinsically dynamic and unpredictable nature of the
workloads generated by the dynamic number of users at runtime; (ii) the difficulty of
determining which resource (e.g., CPU or memory) is responsible for the application
performance degradation [93]; (iii) non-linear relationship between the performance
metrics (e.g., throughput or response time) and the amount of required resources; (iv)
difficulty of determining the right time for adjusting the amounts of resources.

Multiple tiers of a cloud application may be involved in processing user requests, thus,
requiring different resources such as CPU or memory. In our research, as we discuss in the
following, we focus on vertical memory elasticity of the business logic tier which hosting
Apache Web server. Apache Web server performance tuning point [1] emphasizes that,
"the single biggest issue affecting Web server performance is memory. The more memory
your system has, the more processes and threads Apache can allocate and use; which
directly translates into the amount of concurrent requests or clients, Apache can serve".
Note that allocating more memory to the virtual machine hosting data storage tier also
leads to cache more data into memory, therefore, increasing the probability of a cache hit
and consequent enhancement of the application response time (RT). However, due to the
lack of research on memory elasticity of the business logic tier such as Apache server, and
also the need for the further application support in case of vertical memory elasticity of
the data storage tier (e.g., for MySQL [157]), we choose to primarily concentrate on the
business logic tier. The proposed solution targets the applications that can benefit from
live memory elasticity at runtime, i.e. application with dynamic memory requirements,
and also applications in which the performance bottleneck is memory, not CPU.

In order to experimentally show that the dynamic thread creation of Apache is
working as expected in accordance to the allocated memory, and highlight the effect of
the allocated memory on the application performance, we conducted an experimental
motivation. We use ab, Apache HTTP Server benchmark tool3 for RUBBoS benchmark
application [11]. RUBBoS is a bulletin board application, which enables users to browse
and submit stories or comments. Some stories may attract a huge number of visitors in a
short period of time. Since the nature of this application may include sudden bursts or
occasionally daily or monthly peaks, the application needs to be able to quickly grow
or shrink its resources. Therefore, cloud infrastructure is a suitable environment where
the application can benefit from the cloud elasticity features. The aim of applying an
elasticity solution for such an application is to dynamically adjust the amount of memory
to keep the application performance, e.g., RT in our research, under a desired value
regardless of the variation in workloads.

3Apache benchmark tool (ab): https://httpd.apache.org/docs/2.2/programs/ab.html
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Figure 5.1: The effect of vertical memory elasticity on the application performance

To conduct the experiment, we deploy the BL and DS tiers of RUBBoS on different
VMs, while provisioning sufficient memory and CPU cores to the VM hosting the DS tier.
We also over-provisioned the VM hosting the BL tier in terms of CPU (8 CPU cores).
We configure three different values for the allocated memory (i.e. 1GB, 2GB, and 4GB)
in order to show the effect of allocated memory on the application performance under
different workloads. By using a workload generator tool, httpmon4, we define variable
workload patterns which stress the BL tier for memory during the application lifespan at
runtime by slowly increasing the number of users (i.e., requests/ Sec) from 100 to 1000
(with 100 users increment each time).

During the experiment, the number of concurrent Apache processes, effected by the
number of concurrent users and allocated memory size, is monitored by using the Apache
server status5. As shown in Figure 5.1, when more memory is allocated to the VM, a
better application performance is achieved as Apache can create more threads to process
the incoming requests in parallel. As the number of concurrent users is increased, the
difference in performance (in both throughput and response time) among the three
memory configurations becomes more apparent.

5.2 A Solution Model for Vertical Memory Elasticity

As shown in Figure 5.2, resource (e.g., memory) vertical elasticity solutions can be
modeled as performance-based, capacity-based, and hybrid approaches:

4httpmon: https://github.com/cloud-control/httpmon
5Apache server status: w3m http://VM-IP/server-status
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Figure 5.2: The solution model for vertical memory elasticity

• Capacity-based. As the most popular elasticity solution from the cloud provider
point of view, such an approach uses resource utilization as the decision making
criterion to change the amount of resource to be allocated. In other words, the
utilization data is used to estimate the required resource at runtime. Efficient use of
resources is one of the main advantages of such an approach. While decision making
solely based on resource utilization can lead to violating performance guarantees
as such decisions are oblivious to the application performances at runtime [111].
In other words, a sustained high resource utilization can tell us that the system
is suffering, but it cannot determine by how much. While the whole point of
elasticity is to figure out by how much we need to scale up to meet the current
demand or scale down to avoid the resource wastage, and consequently taking the
appropriate action [8]. In Figure 5.2, capacity-based memory controller (CMC) (the
gray module) is representative of a capacity-based solution for realizing vertical
memory elasticity. Such a capacity-based solution is used as a baseline approach to
evaluate the proposed controllers in our research.

• Performance-based. As a new trend for realizing resource elasticity, this cate-
gory of solutions decide to what extent either increase or decrease, the allocated
resource based on the application performance properties, such as response time or
throughput at runtime. In Figure 5.2, performance-based memory controller (PMC)
(the red module) represents a performance-based solution for realizing vertical
memory elasticity. This novel performance-based memory controller is proposed in
Section 5.4.

• Hybrid. In Section 5.5, we bring up the idea of a new approach named hybrid in
which we leverage from the advantages of both performance-based and capacity-
based solutions. In Figure 5.2 hybrid memory controller (HMC) (the blue module)
as a representative of hybrid elasticity solutions is depicted. While a capacity-based
approach is inadequate to ensure the application performance, a performance-based
approach may not able to provide a sufficient level of resource efficiency that
a capacity-based approach can provide. Therefore, taking both the application
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Figure 5.3: The standard feedback control loop

performance and the resource utilization as two decision making criteria results
in better performance and resource utilization. The proposed hybrid memory
controller is elaborated in Section 5.5.

5.3 Overview of the Control-Theoretical Design Process
As previously discussed in the background chapter, from the software engineering perspec-
tive a self-adaptive system is designed based on the MAPE loop reference model, while
from the control engineering perspective an adaptive system is realized via a feedback
control loop. In this chapter, we take a control theoretical perspective to design a con-
troller for realizing vertical memory elasticity of cloud applications. The main motivation
behind the choice of control theory in our work is to use this well-established theory for
modeling and designing feedback loops to make the cloud applications self-adaptive and
achieve a proper balance between fast reaction and better stability.

In the context of control theory, a standard feedback control loop is what is shown
in Figure 5.3. The system which is being controlled is labeled target system, and the
combination of the controller and the target system is labeled controlled system. It
has a desired output that needs to be achieved by tuning a control knob. The control
knob affects the controlled output at each control interval. In other words, the controller
periodically adjusts the control knob in such a way that the controlled output can stay
close to the desired output. The controller aims to maintain the difference between the
desired and the controlled output (referred to as the control error) close to zero, in spite
of the disturbances in the target system. The disturbance affect the controlled output,
while not being controllable [194].

In the remaining two sections of this chapter, we develop two memory controllers
for cloud applications exploiting the control design process proposed by Antonio Filieri
and Martina Maggio, et al. [70]. This process includes six steps that one should follow
to develop a self- adaptive system (e.g., a cloud application in our work) with control-
theoretical guarantees. These steps are depicted in Figure 5.4 and are explained in the
following section, for the design of a vertical memory controller.

1. Identify the goals. The first step is to identify the measurable goals that the con-
troller needs to achieve. In our work, we consider cloud infrastructure as the host of
interactive applications, which face variable workloads at runtime. Each application
has an SLA that stipulates a target performance expressed as mean response time.
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Figure 5.4: Steps of the control design process [70]

The controller goal is to continuously adjust the host cloud infrastructure without
any human intervention, so that to drive the applications’ performance toward their
targets. Based on Figure 5.3, the application response time is the desired output,
while the target system is a cloud application. Since the performance is the main
goal of the controller, recalling the solution model of Section 5.2, such a controller
would be either a performance-based controller or a hybrid controller.

2. Identify the control knobs. The second step is to determine the control knobs
that can change the behavior of the target system. To find a suitable control knob,
we run the motivation experiment previously presented in Section 5.1. Where we
show that the application performance (i.e., the controller’s goal) is dependent on
the size of the allocated memory of the VM-hosting the application. Hence, the
control knob in our work is the VM memory. Considering the identified control
goal (step 1) and the control knob, the controller should continuously adjust the
allocated memory of applications to meet the applications’ performance objectives.
Specifically, the desired controller should be capable of allocating just the right
amount of memory for each application at the right time, avoiding resource under-
or over-provisioning.

3. Devise the system model. The next step of the control design process is to
devise a system model for the controlled system. In general, this model should
capture the relationship between the control knob identified in step 2 and the
controller’s goal identified in step 1. Therefore, the system model should represent
the relationship between the allocated memory (control knob) and the desired
response time (controller’s goal). In our work, we use linear regression analysis [161]
as a statistical process for estimating these relationships. Building the system
model is explained separately for the two proposed controllers at Sections 5.4.2
and 5.5.2.

4. Design the controller. To design a controller various, techniques can be used
that are different in the level of required information to set up the control, and the
guarantees they offer [70]. In this chapter, we loosely follow the control synthesis
technique proposed in [68]. The main reason of using such a technique is to reduce
the need for a strong mathematical background to devise ad-hoc control solutions.
This step is explained separately in Sections 5.4.3 and 5.5.3 for the two memory
controllers of this chapter.
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Figure 5.5: The feedback control loop of the performance-based memory controller

5. Implement and integrate the controller. After designing a controller, it is
needed to be implemented and integrated with the target system. As mentioned,
our target system is a cloud application, hence in this step the memory controller
is integrated with the cloud application, and the actuator that applies for adjusting
the control knobs is implemented. In our work, the controllers are implemented
on top of the hypervisor and the actuator is the hypervisor API for adjusting the
allocated VM memory. This step is explained separately in Sections 5.4.4 and 5.5.4
for the two controllers.

6. Test and validate the controlled system. The last step includes testing and
validating the controller. This can be divided into two main parts. First, one needs
to test the controller itself and check if it works correctly, i.e., by formal assessment
of the controller’s properties. This part is presented in Section 5.6 for the proposed
controllers. Once the controller itself is verified, it can be tested as an integration
with the target system by means of running experiments. This part is discussed in
details in the evaluation chapter (Sections 7.3 and 7.4).

While steps 1 and 2 have been already defined for the controllers designed in this
chapter, in the following sections, we explain the details of steps 3–5 for the proposed
performance-based memory controller and hybrid memory controller (Section 5.5).

5.4 Performance-based Memory Controller (PMC)
In this section, we first give an overview of the proposed performance-based memory
controller, and then explain the process of devising the system model, designing and
implementing the controller.

5.4.1 PMC Overview

To realize the controller, we design a feedback control loop depicted in Figure 5.5 based
on the standard feedback loop (Figure 5.3). The controller’s output at each control
interval i is named ctli and is mapped to the memory size mi as the control knob. The
desired RT (r̃t) and the measured RT (rti) are equivalent to the desired output and
controlled output of standard feedback loop, respectively. The control error (ei) is the
difference between these two values at each interval, as shown in Equation (5.1). The
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changes in the number of requests and their patterns are considered as disturbances.
Since the controller has no control over the workload, it has to adjust the resources in
order to meet the desired RT.

ei = r̃t− rti (5.1)

5.4.2 Devising PMC System Model

The aim of this step is to find the relationship between the memory size, as the control
knob, and the response time, as the controlled output. The model building is started
when the controller passes a minimum number of control intervals to be able to gather
enough information to calculate the system model parameter α that is used in the
control designing step. To find the suitable value for α the controller traverse a range
of 0 < ctl < 1 at each interval, starting from the beginning of the range (e.g., 0.01) to
the end (e.g., 0.99). The corresponding clt and rt values of each interval are stored to
be used later in extracting the α at the end of this step. At each control interval, ctli is
mapped to the VM memory size mi ∈ [mmin,mmax] using Equation (5.2).

mi = ctli · (mmax −mmin) +mmin (5.2)

Note that based on Equation (5.2), the continuous output ctli ∈ (0, 1) is mapped to a
discrete value of memory size mi expressed by the number of memory units munit. The
memory unit munit is defined as a discrete block of memory, e.g., 64 MB. The influence of
increasing or decreasing memory can be set to be more significant with a larger memory
unit munit and less significant with a smaller munit depending on the target system. The
calculated memory size mi at each interval is used to adjust the size of VM memory, and
then the influence of the memory change is reflected in the application rti of the current
interval. At the end of this step, i.e., when ctli ≥ 1, the system model parameter for
PMC is captured by applying the linear regression analysis on the stored values of ctl and
rt. As emphasized in [68], this model is not necessary to capture the exact relationship,
but a rough estimation is enough to tune the controller for the control design step.

State machine presented in Figure 5.6 shows the states on which the controller can
traverse. The initial state (i0) is representing the system model devising step. As shown
in Figure 5.6, as long as ctli < 1 the controller is still trying to capture the system model.

5.4.3 Designing PMC

At the beginning of this step, the system model parameter (α) has been extracted. By
having α, the controller is able to track the desired RT by rejecting the influence of
workload fluctuation on the measured RT at each control interval and to keep the control
error as low as possible. The control formula, as originally devised in [68], is presented
in Equation (5.3).

ctli = ctli−1 −
1− pole

α
· ei (5.3)
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Figure 5.6: The state machine of the performance-based memory controller

Where the controller’s output ctli is calculated based on its previous value ctli−1 and a
coefficient of the control error (Equation (5.1)). The coefficient is based on the value of
system model parameter α, and an input parameter pole.

The choice of pole value influences the stability of the system and determines how
fast the system approaches to its equilibrium. Based on the formal assessment provided
in [68], the stability of the synthesized controller is ensured as long as pole ∈ [0, 1). The
value of pole trades responsiveness, i.e., how fast the controller reacts, and robustness in
the face of noise. In other words, it determines how aggressive the controller can handle
the control error and reject disturbances at runtime. The higher the value of pole, the
less aggressive ctl value is changed at each control interval, so it leads to having longer
settling time, namely the time which is needed for the controlled system to reach its
desired output.

In order to develop a more stable and robust controller, we use two error smoothing
techniques in PMC. First, we apply the weighted moving average (WMA) filtering
technique [23] used in time series analysis on calculating the control error. This method
weights the history of the errors by a series of weighted decreasing factors. A weighted
factor close to one gives a large weight to the first samples and rapidly makes old
samples negligible. The main purpose of using WMA is to calculate the average of the
last few samples and not the average of all samples. Based on the chosen weighted
factor, the average can be more or less sensitive to changes (the lower the value, the
more sensitive WMA is for peaks). Second, we utilize the idea of a technique used in
machine learning named support vector regression (SVR) [30]. Instead of conducting the
control error to zero, SVR tries to keep errors within a margin defined by a threshold
representing an ignorable error. The value of this threshold depends on the sensitivity
of the desired output for the user. If the user is very sensitive, a lower value should be
assigned as the SVR threshold.

Recalling the state machine of Figure 5.6, the controller can go to one of the three
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possible final states (denoted by c+, c−, and c±) based on the value of the control error e at
each control interval. c+ (increasing state) presents a situation in which the measured RT
is larger than the desired RT (i.e., rti > r̃t), so consequently, based on Equation (5.1),
e < 0. This situation indicates that the application deployed in the VM needs more
memory, so the controller should increase the amount of the allocated memory. That
is why this state is denoted by a plus superscript. c− (decreasing state) is exactly the
opposite situation of c+, where the controller should decrease the memory of the VM
to avoid resource wastage. c± represents a no-change state in which the control error
is insignificant, so the desired RT and measured RT are close enough and there is no
need for a change. These three states are the final states of the state machine, so the
controller can stop at any of them.

At each control interval, the controller’s output ctl ∈ (0, 1) is mapped to a memory size
mi ∈ [mmin,mmax] using the previously introduced Equation (5.2). Then, the calculated
memory size mi at each interval is used to adjust the size of VM memory, and then the
influence of the memory change is reflected on the measured RT and also control error of
the current interval.

It is worth mentioning that the value of the control interval should be set considering
several factors such as: (i) the delay between applying the controller’s output on the
target system and observing its influence on the controlled output; (ii) the effect of the
controller’s output on the stability of the target system; (iii) the nature of the disturbances
on the controlled-system; (iv) the sensitivity of the user on the desired output. Generally
speaking, the control interval value should be short enough to make the controlled
system reactive and long enough to observe the effects of the new memory allocation
on the application’s performance [112]. Based on our conducted experiments, presented
in Chapter 7, using a short control interval results in oscillations of the measured RT,
since the controller reacts too quickly. On the other hand, using a long interval reduces
the oscillations, but reduces the responsiveness of the controller. Therefore, we empirically
examine the controller with a different control interval in a boundary of values and select
the best interval accordingly. Note that there is no general guideline for deriving a control
interval and the best interval varies for different workloads and applications.

5.4.4 Implementing and Integrating PMC

Performance-based memory controller is implemented in Matlab R2014a. In order
to apply the controller’s output on the target system, we need an actuator. In our
implemented feedback control loop, the KVM hypervisor memory API6 uses as the
actuator to set the allocated memory of the VM hosting the application. In KVM, live
configuration of the allocated memory for a VM is possible within a negligible delay.
On the other hand, the measured RT should be measured at each interval. In our
implementation, we use httpmon as a load generator and also a monitoring tool. The
integration of the controller, httpmon, and the KVM API is realized in Java and is
executed on a Linux server with Java SDK 1.7.

6KVM memory API: virsh setmem
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Figure 5.7: The feedback control loop of the hybrid memory controller

As the last step of the introduced control design process (Section 5.3), to test and
validate the proposed performance-based memory controller on handling unexpected
workloads, we run an experimental study using RUBBoS as the benchmark application
deployed in a virtualized environment using KVM hypervisor under two sets of real-
world workload traces (from Wikipedia [10] and FIFA WorldCup websites [5]). The
experimental results are discussed in Section 7.3 of the evaluation chapter.

5.5 Hybrid Memory Controller (HMC)

In this section, a novel hybrid approach based on the presented solution model presented
in Section 5.2 is proposed to realize the vertical memory elasticity. This approach takes
into account both the application performance and the resource utilization to leverage the
benefits of both performance-based and capacity-based approaches. We use control theory
to synthesize a feedback controller that meets the application performance objectives by
dynamically adjusting the allocated memory. Different from performance-based memory
controller presented in Section 5.4, the novelty of the proposed hybrid memory controller
is utilizing both the memory utilization and application response time as decision making
criteria, and using an adaptive system model parameter that can be updated at runtime.

In what follows, first an overview of HMC is explained, then the process of devising
the HMC system model, and its design is elaborated. In other words, steps 3–5 of the
presented control design process (Section 5.3) are explained, respectively.

5.5.1 HMC Overview

From the control theoretical perspective, the designed feedback control loop for hybrid
memory controller looks as shown in Figure 5.7. It is similar to the designed feedback
loop of performance-based memory controller (see Figure 5.5). However, the hybrid
controller takes memory utilization (Umemi) as the second input parameter.

Figure 5.8 shows the architecture of the proposed hybrid memory controller. It loosely
follows a MAPE loop (monitoring, analysis, planning, execution phases). The monitoring
phase gathers information such as the observed response time, average memory utilization
from the application and the host virtual machine at each control interval. During the
analysis phase, the memory required by the application to meet its performance objective
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Figure 5.8: The architecture of the hybrid memory controller

is computed using the proposed controller. The goal of the controller is to allocate
the right amount of memory in order to meet the application performance objective.
The proposed memory controller determines the amount of memory that should be
allocated using the application RT and VM memory utilization as decision making
criteria. The system model parameters are captured based on the stored monitoring data.
Finally, during the planning and execution phases, hypervisor is configured to enforce
the computed memory in the VM hosting the application. In the following, the main
functionality of the components depicted in Figure 5.8 are briefly described.

• Hybrid memory controller. It is an adaptive controller that dynamically tunes
the amount of memory required for the application using the values of measured RT
given by application sensor and the desired RT as well as the value of the memory
utilization (Umem) given by VM sensor. It is called adaptive since it dynamically
keeps its system model updated at runtime.

• Sensor. This component gathers the application- and VM-level real-time per-
formance information consisting mean response time and the average memory
utilization of the application and the hosting VM at each control interval.

• Actuator. At each control interval, the controller invokes this module which is
the Xen API for memory allocation, to either increase or decrease, the allocated
memory of the VM hosting the application at runtime.

While sensor and actuator are introduced later in Section 5.5.4, the design details of
hybrid memory controller are discussed in the following sections.

5.5.2 Devising HMC System Model

Similar to PMC, for HMC the system model parameter α represents a first order model
of the reaction to the controller’s output. However, the system model of HMC can
be updated at each control interval. It is calculated by applying the linear regression
technique based on the effect of ctl on rt. The model building is started when the
controller passes a minimum numbers of control intervals to be able to gather enough
information to calculate and update the value of α, e.g., 25 control intervals used in
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our experiments, before that a default value is used as the α (10 in our experiments).
Moreover, to improve the stability of the controller, we again apply the weighted moving
average filtering technique on the gathered values before calculating the value of α at
each control interval. The benefit of updating α (used at HMC) at runtime compared to
a static α (used at PMC) is the ability of the controller to better withstand the workload
changes at runtime. In other words, this way the controller is able to have a more realistic
model of the system throughout the application lifespan at runtime.

5.5.3 Designing HMC

To synthesize hybrid memory controller, we improve the control formula previously used
in performance-based memory controller (see Section 5.4.2). As shown in Equation (5.4),
the controller’s output ctli is calculated based on its previous value ctli−1 and a coefficient
of the control error. Different from PMC, the error coefficient here is based on the three
parameters α, pole, and a new parameter β.

ctli = ctli−1 −
1− pole
αi

· βi · ei (5.4)

The parameter β is a function of memory utilization Umemi ∈ [0, 1] of the VM hosting
the application and it is calculated dynamically at each control interval. The rationale
behind having such a parameter is to have more insight into the current memory required
by the application before increasing or decreasing the memory size. β is defined as shown
in Equation (5.5).

βi =
{

1− Umemi ei > 0
Umemi ei ≤ 0

(5.5)

The first case, where ei > 0 (ei = r̃t − rti) means the measured RT rti is lower than
the desired RT, r̃t, which can indicate an over-provisioning situation where the current
allocated memory is more than enough for the application to process the current workload.
Therefore, the controller should carefully decrease the memory to some extent to avoid
over-provisioning while still maintaining r̃t.

However, based on our observation while performing the experiments, there is a
period in which in spite of having a reasonable RT, memory utilization is getting very
high. Such a period is when the allocated memory is near to its saturation point, but
still the remaining memory is good enough for the application in response faster than the
desired RT. In this situation, if the controller only reacts based on the control error, it
would decrease the memory and this can cause a sudden increment in the measured RT.
To avoid this situation, β is defined as 1− Umemi when ei > 0. Therefore, β is low when
the memory utilization is relatively high, and this lessens the memory decreasing action.

On the other hand, ei ≤ 0 represents an overload condition when the application
workload is high and more memory is needed to be able to meet the desired RT, so
the controller should increase the amount of the allocated memory. Nevertheless, if the
memory utilization Umemi is low it can indicate that memory is not the main reason of
having a high RT, so the controller should be conservative on adding a large amount
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of memory in this situation. Therefore, β is defined as Umemi and consequently this
influences the change at the allocated memory.

Similar to PMC, the choice of pole determines the stability of the controlled system.
The stability of the controller is ensured as long as 0 ≤ pole < 1 [68]. To develop a more
stable and robust controller, we again apply weighted moving average filtering technique
used in time-series analysis for calculating control error before using it in Equation (5.4).
At each control interval, hybrid memory controller tracks r̃t by rejecting the influence of
workload fluctuation on rti and withstands the control error ei as long as it is insignificant.
Finally, the controller’s output ctl ∈ (0, 1) is mapped to a memory sizemi ∈ [mmin,mmax]
using the previously presented mapping formula in Equation (5.2), where mmin and
mmax are the minimum and maximum amount of VM memory sizes expressed by the
number of memory units munit, which are allowed to be allocated, and mi is the final
output of hybrid memory controller.

5.5.4 Implementing and Integrating HMC

Hybrid memory controller is implemented in Java. In our implemented feedback control
loop, the Xen hypervisor memory API7 uses as the actuator to set the memory of the
VM hosting the application. Similar to KVM hypervisor, Xen is also able to adjust the
allocated memory of a VM on demand within a negligible delay (less than a second). Two
sensors are developed for HMC: the application-level sensor, and the VM-level sensor. At
each control interval, the application-level sensor observes the average RT and the VM-
level sensor measures the average of memory utilization. The VM-level sensor monitors
the memory utilization statistics over a control interval by using /proc/meminfo, and
reports the average value of them to the controller. These monitoring values are used
as decision making criteria in hybrid memory controller for the next control interval.
Both sensors send their information via transmission control protocol/Internet protocol
(TCP/IP) connection to the controller. The integration of the controller, client, and the
sensors are realized in Java and are executed on a Linux server with Java SDK 1.7.

Experimental evaluation of HMC, are discussed in Section 7.4 of the evaluation chapter.
We conduct an experimental setup using RUBBoS application deployed on top of Xen
hypervisor. We compare and report the results achieved by HMC with performance-based
memory controller (presented in Section 5.4 and evaluated in Section 7.3) and a capacity-
based controller [134]. We validate our approach using synthetic traces generated based
on open and closed system models along with the real-world traces, i.e., Wikipedia and
FIFA WorldCup website.

5.6 Formal Assessment of the Controllers’ Properties

In this section, the theoretical assessment of the proposed controllers from the control
point of view is discussed. From the perspective of control engineer, a controller should
be able to provide the following four main properties [70]:

7Xen memory API: xm mem-set
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1. Stability. A system is stable as long as it tends to reach an equilibrium point,
regardless of the initial conditions. In other words, the system output converges to
a specific value as time goes to infinity. This equilibrium point should ideally be
the desired output value.

2. Absence of overshooting. An overshoot happens when the controlled system
exceeds the desired output before convergence. Designing controllers in a way to void
overshooting can decrease unnecessary costs. For example, in our case overshooting
represents the SLA violation, i.e., when the measured RT > desired RT.

3. Low settling time. Settling time refers to the time required for the controlled
system to reach the stable equilibrium. It can be guaranteed to be lower than a
specific value when the controller is designed.

4. Robustness to model inaccuracies. A robust control system converges to the
desired output despite errors or variations in the initial captured system model.
This property defines how well the controlled system reacts to disturbances so that
to make correct decisions with inaccurate measurements.

First, let’s consider PMC in which the system model is static, so the values of α does
not change at runtime. In this case, these four properties can be analytically guaranteed,
based on the mathematical definition of the controlled system. Since the control formula
used in PMC is the same as the one proposed and formally assessed in [68], so the control
properties are given. The choice of pole between 0 and 1 guarantees stability, absence
of overshooting, robustness (the closer the value of pole to 1, the more robust) and a
settling time (the closer the value of pole to 0, the fastest). This allows the controlled
system to trade-off robustness for settling time, which is usually done in control theory.

In the case of HMC, where we also consider adapting the system model of the
controller, what changes is the weight that is given to the error. That is indeed changed
by a factor that is given by the changes of β and α. Since moving average technique is
used for the control error values, although α values are dynamic and updated at runtime,
they are not changed too fast, so it does not affect the stability of the closed loop system.
Actually, it even improves the convergence property. This is because by using an updated
value of α, the system model is a more precise representation of what is happening
at the current time. On the other hand, the value of β in the used control formula
(Equation (5.4)) is always between 0 and 1, therefore, it affects the settling time but not
the stability. Clearly, if a controller acts on less than the error that it experiences, it is
slower in reacting in case the model is correct. However, it also increases robustness,
because the controller would take smaller steps toward the satisfaction of the goals. No
matter how β is changed, the fact that its value is between 0 and 1 makes it possible
to state that stability is preserved, settling time is increased, but with an increase in
robustness. This is preferable because apparently the model may not be very precise
around some of the operating points, e.g., due to memory saturation or some other
runtime situation that happens to software systems.
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CHAPTER 6
Coordination between Elasticity

Controllers

Cloud elasticity provides an application with the ability to maintain a specified QoS level
by automatically adjusting the host infrastructure on the fly. The most common elasticity
strategy is horizontal in which the number of allocated VMs is increased or decreased
under varying workload at runtime. However, utilizing vertical elasticity strategy in
which the size of individual virtual machines (resource-wise) is adjusted is beneficial to
achieve a higher resource utilization. In other words, while the horizontal elasticity is
course-grain in provisioning or deprovisioning resources, vertical elasticity is fine-grained;
individual fractions of a resource such as a CPU core may be allocated in a virtual
machine for as little as a few seconds [112]. In the last decade, most attention has been
given to research on the area of horizontal elasticity in cloud computing, somewhat due
to the limitation of vertical elasticity on scaling outside a single physical machine [163]
and more due to the fact that it used to require the system rebooting while hypervisors
only recently have started supporting live vertical resource scaling.

While vertical elasticity has been recognized as a key enabler for efficient resource
utilization of cloud infrastructure, only little research has been done to support vertical
elasticity [134] where the focus is mostly on a single resource, e.g., CPU vertical elas-
ticity [144, 103, 112, 170], or memory vertical elasticity [29, 49, 181, 134] but not both
at the same time. The underlying assumption made in these research efforts is that the
application is either CPU-intensive or memory-intensive, while in reality, an application
may need various types of resources at different stages of its execution. Besides, the
application performance objectives (e.g., response time) are rarely considered [53, 3].
Nonetheless, the existing techniques cannot be readily used as-is without proper co-
ordination since they may lead to either under- or over-provisioning of resources and
consequently result in undesirable behaviors such as performance disparity. Therefore,
vertical elasticity may be required for different resources of one or more application tiers.
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In this chapter, research question V is addressed by presenting contribution V. We first
propose a coordination model in which two control strategies, i.e., vertical and horizontal
elasticity, can be applied to achieve the performance objectives of a cloud application
(Section 6.1). Based on the proposed model, we introduce several abstract coordination
policies that can decide which elasticity strategy should be applied at any runtime control
interval. The main goal of each policy is to meet the performance objectives of a cloud
application by either changing the number of acquired virtual machines, or changing
the size of the individual virtual machines at each control interval. Motivated by a
motivation experiment (Section 6.2) where we show an application can need multiple
resource intensive at runtime. Finally, we propose a novel fuzzy coordination approach
at Sections 6.3 and 6.4 as the main focus on this chapter. In this approach a fuzzy
controller acts as the coordinator between a CPU vertical controller and a memory
vertical controller in order to satisfy the application response time at runtime without
over-committing any of the resources.

6.1 A Coordination Model for Elasticity Strategies

The core of any elastic system is a controller. Such a controller can be used for providing
elasticity of cloud infrastructure. Due to the scale and complexity of cloud applications,
several distributed elasticity controllers are required to be utilized. As previously discussed,
control theory is a promising fit and reliable solution to be used in autonomic controlling
and dealing with unpredictable changes in the systems by introducing a principled way of
designing feedback control loops. Each control loop can change the infrastructure based
on its own control action without considering the consequences of other actions that has
been made by other controllers.

In case of a cloud application, the coexistence of the horizontal elasticity strategy and
the vertical elasticity strategy can lead to a better resource utilization and application
performance. This can achieve by using the horizontal elasticity strategy to control the
number of acquired VMs allocated to a cloud application, while vertical elasticity strategy
is used to adjust the allocated resource (e.g. CPU, memory) of the VM. In this case, each
control action comes with different costs. While acquiring or releasing VMs, as control
actions of the horizontal elasticity strategy, can be more effective to handle the dramatic
changes of workload at runtime, they may be unnecessary as it is more expensive and
slower to be enacted in comparison with control actions of the vertical elasticity strategy.
Indeed, increasing or decreasing the amount of allocated resources within a single VM,
although may not be sufficient in some situations, is adequate to handle overload in many
occasions and can avoid the performance degradation very quickly and with a much lower
cost. Such a statement is also valid in an underload scenario when deciding which control
action is more beneficial to be enacted, whether decreasing the size of a resource within
the VMs or releasing the VMs.

This coexistence of horizontal and vertical controllers brings up the need for coordi-
nation in order to avoid in coherent control actions. For example, when a performance
degradation is detected, horizontal controller may try to acquire more VMs, while at the

80



Control
strategy

Control
tier

Vertical elasticity 
(memory-wise)

Horizontal elasticity

BL DS BL DS

performance adapting of cloud-based applications Control
Objective

Control
Coordination

Coordination Policy Management 

Cloud
Platform

A

UI BL

S

Public
Users

Cloud-Based Software

Rule base

Stakeholders

El
as

tic
ity

Po
lic

ies

Uses

Monitoring Execution

Computation,
Resource

wo
rk

lo
ad

pe
rfo

rm
an

ce

Elasticity Controller

Environment R

Sc
ala

bi
lit

y A
ct

io
n

L

Legend:
Data/Control Flow

Application
Tier

S
A

Sensor

Cloud Provider
Elasticity Actuator

Repository

Interacts

R System Resource
Actuator

DS

Analysis Planning

Application
Provider

Tenants

#VMs
added
/removed

SLA violated

P

P Port

Level 1: 
elasticity control 

strategy

Level 2:
controlled tier

vertical elasticity horizontal elasticity

BL tier DS tier

 objective: controlling performance of a cloud application 

coordination manager

Level 3:
controlled resource

DS tier

VM

BL tier

CPUCPU Memory Memory VM

1

Figure 6.1: The coordination model for elasticity strategies

same time vertical controller is adding resources to the existing VMs. Nevertheless, due
to either different control actions, or conflicting objectives, uncoordinated autonomic
loops may lead to global sub-optimal or inconsistent states of a cloud application [52].
This section aims to initiate a research direction toward supporting the coordination
of distributed autonomic controllers (elasticity controllers in our research) that all act
toward achieving a common goal. Proposing effective coordination approaches can pave
the way for autonomic control of large-scale and complex systems by using distributed
controllers. In the remaining of this section, we first present a coordination model for
elasticity control, and then briefly introduce several coordination policies that can be
applied for orchestrating the control actions of the vertical and horizontal elasticity
strategies.

6.1.1 Model Overview

The coordination model of elasticity strategies is depicted in Figure 6.1. The objective
of this model is to control the performance of a cloud application by utilizing different
elasticity control strategies (see Level 1 in Figure 6.1) applied to an appropriate application
tier, labeled as controlled tier (see Level 2 in Figure 6.1). In other words, multiple tiers of
a cloud application may be involved in processing user requests, thus, they may require
different cloud resources, including VMs, CPU cores, memory, or a combination of
these (see Level 3 in Figure 6.1). Therefore, horizontal or vertical elasticity may be
required to apply on the VMs hosting different application tiers. In the remaining of this
section, several policies for coordinating the vertical and horizontal elasticity strategies
(see Level 1) are introduced.

6.1.2 Coordination Policies

Horizontal elasticity has been widely adopted by commercial clouds due to its simplicity
as it does not require any extra support from the hypervisor. However, due to the static
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nature of the horizontal elasticity in terms of the fixed VM size, applications cannot be
provisioned with arbitrary configurations of resources based on their demands.

This usually leads to either inefficient resource utilization or SLA violation since the
demand cannot always exactly fits the size of the VM. To efficiently utilize resources and
avoid SLA violations, horizontal elasticity should be accompanied with a fined-grained
resource allocation, applying the vertical elasticity strategy, where the VM sizes can be
dynamically adjusted to an arbitrary value according to the runtime demands.

In this section several coordination policies are proposed, where each policy orches-
trates the actions made by the horizontal and vertical elasticity controllers at each control
interval.

• Only vertical strategy. In both overload and underload conditions, adjusting the
size of the resource (e.g., CPU or memory) of the VMs hosting the cloud application
is considered as the control action of the vertical elasticity controller. In case of
considering the application of the control action solely on a single resource, this
policy is similar to the two proposed vertical memory controllers of Chapter 5. In
case of taking multiple resources scenario and the application of multiple vertical
resource controllers, this policy also cover the fuzzy coordination approach that
is presented in Section 6.3. Such a policy is effective for handling predictable and
slow changes of workload at runtime, where the performance degradation can be
compensated very quickly and with a much lower cost by changing the size of the
VMs.

• Only horizontal strategy. Based on this policy, in both overload and underload
conditions, the control actions of the horizontal strategy, adding or removing VMs,
are applied to the infrastructure that hosts the cloud application. This policy
also needs to balance the load among the VMs after applying the appropriate
control action at runtime. Although this policy is more expensive and slower than
the previous one, it is more suitable for handling dramatic change of workload at
runtime.

• Promoting horizontal strategy. While in this policy both elasticity strategies
can be used at runtime, it favors the control actions of the horizontal strategy in
both overload and underload situations. More specifically, whenever the horizontal
strategy gets to its maximum numbers of VMs which are allowed to be acquired
at overload, or the minimum numbers of VM(s), which can be released under
underload condition, the vertical strategy is applied as an alternative elasticity
strategy.

• Promoting vertical strategy. In contrast to the previous policy, this one
promotes the control actions of the vertical strategy for both over and underload
conditions, i.e., increasing or decreasing of the allocated memory for the VMs.
Whenever the maximum or minimum amount of resource (e.g., CPU or memory) is
allocated, then the horizontal strategy is used as an alternative control strategy.

• Promoting horizontal strategy in overload, but vertical strategy in un-
derload. Based on this policy, the horizontal strategy is preferred for overload
conditions, while the control action of the vertical strategy is promoted to be
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applied in underload conditions. The rationale behind this policy is to avoid the
performance degradation by applying a more effective elasticity strategy (horizontal)
at overload, while at underload trying to slowly decrease the size of the VMs.

• Promoting vertical strategy in overload, but horizontal strategy in un-
derload. This policy is quite opposite to the previous policy in which the vertical
strategy first tries to handle the overload conditions, since it is quicker and costs
less. In the case of reaching the maximum capacity of the allocated resource for
the VMs, then the horizontal strategy is used. The situation is reversed under
underload conditions.

• Prediction-based. This policy uses a proactive approach for predicting the cloud
application workload at runtime. Each elasticity strategy has its own advantages
and disadvantages. While the horizontal elasticity is more costly and slower than
vertical elasticity, it can be the only effective solution for handling the long-term
and dramatic changes of workload. Therefore, using the proper strategy at the
right time can lead to lower cost and achieving performance objectives. Since the
booting time of the VMs is not instant and it varies between 60 to 600 seconds,
while the workload contains many short duration spikes, the horizontal elasticity
is only effective if the VM instances can be ready to use when they are needed to
serve the workload.
On the other hand, in the case of facing some long-term changes, using vertical
elasticity, despite being fast in reaction, might not be sufficient and lead to SLA
violation. Therefore, instead of making decisions based on current workload, in
this policy, the workload trend is identified by employing a time-series forecasting
technique to estimate the workload at the two future points in time, e.g., using
double exponential smoothing [173]. If the slope between the two forecasted values
are more than a specific threshold, the horizontal elasticity strategy is applied,
otherwise, the vertical elasticity strategy is used.

The focus of the rest of this chapter is on the first introduced policy that allows the
control actions of vertical elasticity strategy. In particular, we focus on the coordination
of a CPU vertical controller and a memory vertical controller that adjusts the resources
of the VM hosting the business logic tier of a cloud application. The red path of the
proposed coordination model, Figure 6.1 shows the focus of this chapter. In the next
section we experimentally motivate the need for such a coordination.

6.2 Motivation
As previously mentioned, during the lifespan of a running application, it may need
various resources intensively depending on the nature of the workload. For example, a
chat application may require techniques such as long-polling to immediately notify the
user when a new message has arrived. Long-polling essentially delays the HTTP reply
until there is an event to report, which in turn increases the number of connections on
the server, hence increasing its memory requirements, without significantly increasing
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Figure 6.2: CPU and memory utilization of RUBiS under various workload patterns

CPU utilization. On the contrary, the chat application might include a search in
chat history functionality, which is CPU intensive. Obviously, such an application
needs to be scaled both CPU- and memory-wise. However, existing techniques cannot
readily be used as-is for scaling multiple resources, e.g., both memory and CPU, at
the same time, since uncoordinated control actions by different controllers may lead to
inconsistent control actions. In this chapter, we propose a fuzzy coordination approach
that dynamically coordinate two vertical controllers for CPU and memory to meet the
performance objectives of a cloud application. In this section, we experimentally motivate
the application need for multiple resources at runtime.

To show an application may require different resource configurations at runtime, we
conduct an experiment on the RUBiS benchmark application [12] by injecting variable
workloads at different time intervals, which induce the intended behavior. We deploy the
BL and DS tiers of RUBiS on different VMs and over-provisioned both VMs (the VM
hosting BL tier: 8 CPU cores and 4 GB memory and the VM hosting DS tier: 6 CPU
cores and 10 GB memory). Then, by configuring a workload generator tool, httpmon,
we define variable workload dynamics which put stress on the VM hosting the BL tier
for either CPU, memory, or both resources during the application lifespan.

Figure 6.2 (a) and (b), respectively, depict the experimental results regarding the
CPU utilization and memory utilization of the VM hosting Apache Web server as the
representative of the BL tier. We set different configurations in httpmon to emulate
different combinations of CPU or memory demands using a closed system model. To this
aim, we vary the number of concurrent users and thinktime at each interval (i.e., every
250 seconds) shown as two values at the top of Figure 6.2, respectively. High thinktime
resembles the case where many clients are doing long-polling, while high concurrency
resembles the case where many clients are intensively interacting with the BL tier.
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Therefore, changing the number of concurrent users and thinktime is a way to emulate
variable CPU and memory requirements for the application. For example, to emulate
an application with high CPU and low memory needs, one can set both the number of
concurrent users and the thinktime to relatively low values (e.g., as in the first interval).
On the other hand, to induce high memory and low CPU characteristics, one can set
high values for both the number of concurrent users and the thinktime (e.g., as in the
second interval).

As observed in Figure 6.2, there are some intervals where RUBiS needs less of both
resources (the first and fourth intervals), more memory and less CPU (the second interval),
more CPU and low memory (the third interval) as well as more CPU and memory (the
last interval). The results clearly show that the application may need an arbitrary
combination of these resources during its execution. Thus, an approach that supports the
elasticity of multiple resources, in this case CPU and memory, to meet the application
performance objectives needs to be designed. In the remaining of this chapter, a fuzzy
coordination approach is proposed to address this need. Notice that the proposed solution
targets applications that can benefit from live memory and CPU elasticity at runtime,
i.e. application with a dynamic memory and CPU requirements.

6.3 Fuzzy Coordination Approach: Coordinating CPU
and Memory Controllers

In this section, we first give an overview of the proposed approach, then briefly explain
the two vertical controllers which are used in the proposed fuzzy coordination approach.

In order to address the deficiencies of the existing approaches, and to support the
vertical elasticity of both CPU and memory while meeting the desired response time, in
this chapter we propose fuzzy coordination approach that allocates the right amount of
both resources. Fuzzy coordination approach is composed of three sub-controllers. The
first is fuzzy controller (Section 6.4) designed based on fuzzy logic to infer the degree of
contributions of CPU and memory to applications’ performance changes. The other two
controllers, are responsible for determining of the right amount of resources using the
resource demand indicators generated by fuzzy controller. In general, fuzzy controller
acts as a coordinator by looking at application’s resource demand indicators such as the
average CPU and memory utilization and response time so that the control actions of
the vertical controllers complement each other to fulfill the application need.

6.3.1 Approach Overview

We consider a cloud infrastructure that hosts interactive applications, each with variable
workload dynamics. Each service has an SLA that stipulates a desired value expressed
as mean response time. The goal is to continuously adjust the allocated resources of
applications without any human intervention, so as to drive applications’ performance
toward their objectives. Specifically, the desired fuzzy coordination approach should
be capable of allocating just the right amount of resources for each application at
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Figure 6.3: The architecture of the fuzzy coordination approach

the right time in order to meet its performance objective, avoiding both under- and
over-provisioning.

Figure 6.3 shows the architecture of the proposed fuzzy coordination approach. The
modules in red indicate the contribution of our work. This architecture loosely follows
a MAPE loop (consisting of monitor, analysis, plan, execution) based on self-adaptive
software terminology, introduced previously. Monitoring gathers information such as the
observed RT, average CPU and memory utilization of the hosted infrastructure at each
interval. During analysis, the resources required by an application are computed using
the controllers in two steps.

In the first step, fuzzy controller infers the extent of the contributions of both CPU
and memory to applications’ performance change. More specifically, it generates a
value ∈ [-1,+1] indicating the degree of severity that the CPU and memory has on the
performance of the application. A value close to -1 indicates resource over-provisioning,
while a value close to 1 shows under-provisioning situation.

In the second step, using the values generated by fuzzy controller, the CPU and
memory controllers, respectively, determine the number of CPU core(s) and the amount of
memory that should be allocated using the application RT as a decision making criterion.
Previous monitoring data is used to fit the model parameters, which are similar to the
knowledge component of autonomic controllers, shown in Figure 6.3. Finally, during the
planning and execution phase, hypervisor is configured to enforce the computed resources.
A high level function of each component depicted in Figure 6.3 is described as follows:

• Fuzzy controller. It determines the coefficient with which CPU, memory, or both
are responsible for the application performance change. Based on the fuzzy rules
specified in the engine, it reasons about the coefficient values using the current state
of the system. The output of fuzzy controller consists of two coefficients values, one
is corresponding to the CPU and the other is related to memory, which indicates
either to increase or decrease CPU, memory, or both (See Section 6.4).
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• CPU controller. An adaptive controller that dynamically adjusts the CPU
capacity that should be allocated to an application based on the values of measured
and desired RTs as well as the CPU coefficient (Ccpu) received from fuzzy controller.
It allocates the right amount of CPU cores for the application in order to guarantee
its performance objective (See Section 6.3.2).

• Memory controller. It is an adaptive controller, similar to cpu controller, that
dynamically tunes the amount of memory required for each application using the
measured and desired RT values as well as the value of the memory coefficient (Cmem)
given by fuzzy controller. The memory controller used in fuzzy coordination approach
is hybrid memory controller previously presented in Chapter 5 (see Section 5.5
for more details), where a static value is assigned to the memory utilization
parameter (β=1) in the control formula Equation (5.4). This way the controller
decides solely based on the application response time at runtime.

• Sensor. This component gathers both the application- and VM-level performance
information, including mean response time, average CPU utilization, and average
memory utilization of the application and the allocated VMs, periodically. We refer
to this period as the control interval. These monitoring values are used as decision
making criteria in fuzzy controller for the subsequent control interval.

In the following, cpu controller is explained with more details, and fuzzy controller
as the core of fuzzy coordination approach is elaborated.

6.3.2 CPU Controller

CPU controller is based on the work presented in [112]. The inverse relationship between
mean response time rti of an application and the number of CPU cores cpui allocated to
at each control interval is modeled as Equation (6.1).

rti = β/cpui (6.1)

Where β is a model parameter. The parameter β can be estimated at runtime from
the past measurements of mean response time and allocated CPU cores. To reduce the
impact of measurement noise, we use a recursive least square (RLS) filter [120]. RLS is
an adaptive filter which recursively finds the coefficients that minimize a cost function
(control error in our case) relating to the input parameters. In essence, such a filter takes
past estimations of β as well as the current product of rti ∗ cpui in order to generate
a new value that minimizes the sum of the squares of the errors made in the results
of every single calculation. In order to trade the influence of old values for up-to-date
measurements, a forgetting factor of 0.45 is used. Note that in our experiments, based
on the available resources, we define a boundary for the minimum and the maximum
amount of allocated CPU.
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6.4 Fuzzy Controller Design

Due to the non-deterministic behavior of software systems, it is almost impossible to know
with a high degree of confidence the extent of the contributions of different resources to
performance degradation of a software application and how much of each resource should
be provisioned to alleviate the performance problem. Moreover, the measured data used
as decision making criteria in the process of resource allocation such as RT, CPU and
memory utilization may include sensory noise. If a coordinating approach does not pay
attention to such uncertainties, it may cause the oscillations in resource allocations [96, 61].
To address these issues, we utilize fuzzy control [114] as it provides a means to reason
about uncertainties using highly expressive languages where the treatment of uncertainty
and approximate reasoning is performed in a natural and efficient way. With this in
mind, in this section, we explain how we developed the fuzzy logic system (FLS) which
is responsible for coordination and reasoning of the fuzzy coordination approach.

One of the most well-known applications of fuzzy logic is fuzzy control [114], in
which the controller decides based on the defined fuzzy rules. A typical fuzzy IF-THEN
(rule 6.2) is expressed as:

R : IF x1 is F1 . . . and xp is Fp︸ ︷︷ ︸
antecedent: input variables and fuzzy linguistic terms

THEN y1 is Gl . . . and yq is Gq︸ ︷︷ ︸
consequent: output control variable

(6.2)

Where antecedent is compound of a number of input variables, and the consequent is
composed of a number of output control variables. In the case where there are multiple
input and output variables, similar to our case, the system is called multi-input multi-
output (MIMO) fuzzy system. In our approach, fuzzy rules are based on a data collection
approach from a group of technical experts who has enough knowledge on cloud resource
elasticity and application performance modeling.

6.4.1 Elasticity Reasoning using Fuzzy Logic System

A fuzzy knowledge-base has the information on how best scale the target system in terms
of a set of linguistic rules (i.e., rule (6.2)). In our fuzzy logic system, average RT, average
CPU utilization (Ucpu), and average memory utilization (Umem) are the input variables,
while CPU coefficient (Ccpu) and memory coefficient (Cmem) are the output control
variables. Therefore, the fuzzy system used in our research is a MIMO FLS. In this work,
the linguistic terms representing the values of the input variables are divided into three
levels. For response time they are: slow (S), medium (M), and fast (F). Similarly, for
CPU utilization Ucpu and memory utilization Umem they are: low (L), medium (M), and
high (H). As mentioned, the designed FLS consists of two output control variables, Ccpu

and Cmem. These values indicate two numbers ∈ [−1, 1] as the degree of severity that the
CPU and memory effect on the application performance change at each control interval.
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6.4.2 Extracting Fuzzy Rules

In general, for a fuzzy logic system, there are two ways to design a fuzzy knowledge-base
including fuzzy rules and membership functions (MFs): (i) collecting data from the
system behavior; (ii) using human experience. In our work, we follow the first based on
the approach presented by Jamshidi et al. [96] to extract the fuzzy rules from the experts
and identify the MFs and then we empirically update these values by carefully monitoring
and analyzing the behavior of the system. In other words, our fuzzy knowledge-base is
constructed based on the rules which are systematically obtained from the experts. To
design the fuzzy rules, we collect the required data by performing a data collection among
seven experts who have deep knowledge on cloud resource allocation and performance
modeling. We prepare several questions to extract the required knowledge, such as the
following sample question:

R25 : IF RT is slow and Ucpu is high and Umem is low︸ ︷︷ ︸
antecedent

THEN Ccpu is +1 and Cmem is -0.3︸ ︷︷ ︸
consequent

(6.3)

The experts are asked to determine the consequent (output control variables) using a
number ∈ [−1,1] for each fuzzy rule. We initially use the mean values from the experts’
responses for our experiments, and then we empirically tune some of the rules based on
analyzing the behavior of fuzzy controller. The final fuzzy rules used in our experiments
are presented in Table 6.1.

6.4.3 Constructing Membership Functions

A membership function defines the degree of truth with a value between 0 and 1. In
a fuzzy logic system a membership function is defined for each linguistic term used for
presenting each input variable. In our FLS, there are three linguistic terms for each input
variable, so in total we need to define nine MFs. We use both trapezoidal and triangular
membership function types, as shown in Figure 6.4. We used trapezoidal MFs to represent
“Low“ (“Fast“), and “High“ (“Slow“), and triangular MFs to represent “Medium“. Similar
to the fuzzy rules, we initially ask the experts to locate an interval ⊆ [0,100] for each
linguistic term used as input variable, and then we tune the extracted intervals empirically.
The MFs are presented in Figure 6.4 for each input variable. While CPU and memory
utilization do not need further normalization since the utilization for each resource is
expressed in percentage, response time value should be mapped to a value ∈ [0, 100].
In order to do so, we normalize the measured response time with respect to a reference
value as a coefficient of the desired RT. Measured response time values closer to this
reference which are further up away from the target value are set to a value close to 100.
On the contrary, the response time values further down are set to a value closer to 0
depending on the magnitude of the value relative to the reference.
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1 Low -1.0 -1.0
2 Medium -1.0 -0.6
3 High -1.0 0.0
4 Low -0.9 -0.9
5 Medium -0.5 -0.7
6 High -1.0 0.0
7 Low 0.1 -1.0
8 Medium 0.1 -0.7
9 High 0.1 0.1

10 Low -0.9 -0.7
11 Medium -0.8 -0.5
12 High -0.8 0.5
13 Low -0.6 -0.6
14 Medium -0.9 -0.5
15 High -0.9 0.5
16 Low 0.5 -0.8
17 Medium 0.4 -0.5
18 High 0.5 0.5
19 Low -1.0 -0.3
20 Medium -1.0 0.7
21 High -1.0 1.0
22 Low 0.6 -0.2
23 Medium 0.5 0.5
24 High 0.4 1.0
25 Low 1.0 -0.3
26 Medium 1.0 0.5
27 High 1.0 1.0

  UmemUcpuRT
antecedents 

Cmem    Ccpu
consequent (mean value)fuzzy rule               

(R)

Slow

 Low

Medium

High

 Low

Medium

High

 Low

Medium

High

Medium

 Fast

Table 6.1: The extracted fuzzy rules

start (a) end (b) start (σa) end (σb)
Fast 0 32 0 17

Medium 24 66 13 12
Slow 59 100 23 0
Low 0 41 0 17

Medium 35 74 19 7
High 68 100 24 0
Low 0 45 0 22

Medium 39 75 23 13
High 69 100 27 0

CPU utilization [0,100]

memory utilization [0,100]

mean value standard deviation
input variable [range] linguistic term

response time [0,100]

Table 6.2: The fuzzy data regarding the used linguistic terms

triangular MF trapezoidal MF
 left       = (a - σa) , 0)  lower left   = (a - σa , 0)
 middle = ((a + b) / 2), 1)  upper left   = (a , 1)

 upper right = (b , 1)
 lower right = (b + σb , 0)

 right     = (b + σb , 0)

Table 6.3: Locations of the main points of the used membership functions [96]
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Figure 6.4: Membership function of each linguistic term for the three input variables

6.4.4 Reasoning with the Fuzzy Controller

Having designed the fuzzy logic system with the membership functions and the fuzzy
rules, the controller can then perform the elasticity reasoning. Fuzzy controller works
based on the following steps: (i) the measured values of input variables (i.e., RT, Ucpu,
and Umem) are first fuzzified using the defined MFs (shown in Figure 6.4); (ii) the FLS
inferences and reasons according to the given fuzzified input variables using the designed
fuzzy rules (Table 6.1) to produce the outputs consisting Ccpu and Cmem; (iii) the output
control variables, Ccpu and Cmem, are fed into cpu controller and memory controller,
respectively, to compute CPU cpui and memory memi for the next control interval.
Figure 6.5 (a) and (b) show the outputs of fuzzy controller (Ccpu and Cmem ∈ [-1, 1])
results in a hyper-surface corresponding to all possible normalized values of the input
variables (RT, Ucpu, and Umem ∈ [0,100]). Notice that the three inputs are modeled
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Figure 6.5: The fuzzy controller’s output variables according to the input variables

in two the separated diagrams each with two inputs, for the sake of visibility. These
diagrams reveal a more conservative behavior of fuzzy controller for controlling the
memory allocation in comparison with CPU due to the fact that the application may
crash as a result of memory shortage.

As shown in Table 6.2, we receive seven different intervals from the seven experts. We
then calculate the mean and deviation values of the end points as presented in Table 6.2.
We use these values to construct the MFs based on the guideline given in [96]. In this
table, consider a and b as the mean values of the linguistic term end points, while σa

and σb are the standard derivations of them correspondingly. The locations of the main
points of each MFs are calculated based on the formulas presented in Table 6.3, using
the values in Table 6.2.

6.4.5 Coordination Process

CPU and memory are allocated to each virtual machine with seamless coordination
of the two controllers. Fuzzy controller generates coefficients that signify the extent
to which each resource is needed by the application. Using CPU coefficient Ccpu and
memory coefficient Cmem, the other two controllers determine the actual amount of
each resource that should be allocated to meet the application’s performance objective.
Afterwards, cpu controller and memory controller first compute the values of cpui, and
memi. Finally, both controllers apply the coefficient values to calculate the respective
resource using Equations (6.4) and (6.5). In these equations, memi and cpui are the
outputs of memory controller and cpu controller, respectively, while CPUi, and MEMi

are the final amount of resources that should be allocated at the control interval i. Indeed,
fuzzy controller mitigates the change on the number of CPU cores or the amount of
memory, as the direct outputs of cpu controller and memory controller, at the current
interval relative to the previous one by looking at the utilization of both resources as
well as the measured RT at the same time.
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CPUi = CPUi−1 + Ccpu · |cpui − CPUi−1| (6.4)

MEMi = MEMi−1 + Cmem · |memi −MEMi−1| (6.5)

To clarify the reasoning behind values of Ccpu or Cmem, a brief highlight is provided.
Zero value for Ccpu or Cmem implies that the performance objective is met, thus, there
is no need to change resources and the actions made by cpu controller and memory
controller are bypassed. A value of 1 or -1 for Ccpu or Cmem indicates that the values
computed by these two controllers should be fully allocated to the VM hosting the
application. However, when −1 < Ccpu < 1, or −1 < Cmem < 1, the actual CPU core(s)
or memory size allocated to the VM is proportional to the respective coefficient values
produced by fuzzy controller instead of allocating the amount of resources computed by
these controllers directly. In general, a positive coefficient value indicates the need for
additional resources, while a negative coefficient value indicates that the need to reduce
resources.

6.4.6 Implementation and Integration

The proposed fuzzy coordination approach and its included cpu controller are implemented
in c++, while fuzzy controller is implemented using fuzzylite library [7]. Memory
controller is implemented in Java. The application- and VM-level sensors are both
implemented in Linux shell scripts. Both sensors send their information via TCP/IP
connection to fuzzy controller at each control interval. The Xen API for CPU and
memory are used as actuators for cpu controller and memory controller, respectively.
The integration of the three controllers, client, actuators, and the sensors are realized in
c++ and are executed on a Linux server with Java SDK 1.7.

The proposed approach is evaluated in an experimental setup using three different
interactive benchmark applications under workload traces generated based on open and
closed system models. The results are compared with a baseline approach which supports
vertical memory and CPU elasticity. The evaluation results are discussed in Section 7.5
of the evaluation chapter.
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CHAPTER 7
Evaluation

In this chapter, we present the evaluations of the contributions proposed in the scope of
this thesis, elaborated in Chapters 3 to 6.

Section 7.1 covers the evaluation of the proposed cost-aware VM placement approach
used for managing geographically distributed data centers (explained in Chapter 3). To
this aim, we first introduce the simulation setup, and then discuss and compare the
achieved results of the proposed approach with the results of the two baseline algorithms.

In Section 7.2, we follow a simulated-based evaluation of the proposed multi-cloud
service selection approach (presented in Chapter 4) by modeling a realistic environment
using a CAD application as the use case scenario. Since prospect theory as the used
theory in our approach, is the alternative of utility theory, we compare and discuss
the results of the multi-cloud service selection algorithm with the results achieved by a
utility-based selection algorithm.

Sections 7.3 and 7.4 present the experimental evaluation of the two proposed vertical
memory elasticity controllers, elaborated in Chapter 5. First, the experimental setup
of each controller is explained. It then follows with a detailed discussion of the results
achieved by each controller based on the time-series and aggregate analysis in comparison
with the baseline controllers. RUBBoS as an interactive benchmark application and a set
of synthetic and real-world workload traces are used for the experiments.

Section 7.5 reports the experimental evaluation of the proposed fuzzy coordination
approach (presented in Chapter 6). A thorough experimental evaluation is performed and
the results are discussed, using the three different interactive benchmark applications,
RUBBoS, RUBiS, and Olio [9], under workload traces generated based on open and
closed system models.
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#DCs #PMs #VMs Bronze (penalty) Silver (penalty) Gold (penalty)
5 25 25 0.05$/% violation 0.1$/% violation 0.2$/% violation

Table 7.1: CloudNet configuration parameters

policy name (abbreviation) definition of the policy
last workload (BN-LW) next value is estimated equal to the last one
trend workload (BN-TW) next value estimation follows a certain linear trend
linear regression WL (BN-LRW) applying linear regression on the historical data

Table 7.2: Workload prediction policies used in the VM placement approach

7.1 VM Placement across Geographically Distributed
Cloud Infrastructures

In this section, the proposed VM placement approach (contribution I), presented in Chap-
ter 3, is evaluated using the designed Bayesian network based on the data extracted from
the real-world traces.

7.1.1 Setting up the Simulation Framework (CloudNet)

To evaluate the proposed algorithms based on the regional electricity prices and tem-
perature differences, we first configure the previously introduced simulation framework,
CloudNet, with the values presented in Table 7.1. In our simulation, we have one virtual
machine type (1000 MIPS, 768 MB of memory) and one physical machine type in terms
of the resource capacity (3000 MIPS, 4 GB of memory). Furthermore, each VM has an
availability-related SLA metric which is defined as the time of the overall downtime per
billing period. Note that the used billing period is one month in our evaluation. As
shown in Table 7.1, our approach supports three SLA priority levels, namely Gold, Silver,
Bronze, with different SLA penalty costs.

In order to evaluate the proposed algorithms, we consider a combination of various real-
world time- and location-dependent inputs such as electricity price, power outage statistics,
cooling models, and temperature (introduced previously in Chapter 3). Conducting the
evaluations, we simulate one month (Jan-Feb 2013) operation of running data centers,
geographically distributed in five locations (i.e., Brazil, Canada, Norway, Austria, Japan),
with the management interval of one hour.

7.1.2 Baseline Algorithms

The proposed VM placement approach use the three previously workload prediction
policies, summarized in Table 7.2. The proposed approach is evaluated in comparison
with the two baseline approaches: (i) a heuristic first fit decreasing (FFD) approach
that supports both VM allocation and migration. To get comparison results with FFD
approach, we use it under two resource allocation policies. The first policy, first fit
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Figure 7.1: Aggregate results throughout one month of simulated evaluation

decreasing agreed (FFD-A), statistically allocates the amount of resources agreed by the
SLA, while the second policy, first fit decreasing requested (FFD-R), is more dynamic
in allocating the amount of resources required by the VM at runtime; (ii) an approach
named NoM that follows a first fit VM allocation strategy, without supporting the VM
migration. The rationale behind having such a baseline is to show whether the migration
strategy can have an inverse effect on the VM placement in terms of SLA violation.

All approaches have the same set of input parameters and simulated configurations.
The goal of the evaluation is to show the ability of the proposed approach to use the
designed Bayesian network model which includes the extracted information about the
cloud infrastructure in order to perform more efficient decisions concerning placement of
VMs across geographically distributed data centers. An approach is said to be better
if the total cost, including the energy cost and the penalty cost of the SLA violation is
minimized.

7.1.3 Cost and QoS as Evaluation Metrics

The following metrics are considered as the evaluation metrics that represent the cost
and QoS aspects of each approach:

• Energy cost presents the total operating costs, including the computational cost
and the cooling cost of all data centers.

• SLA violation penalty cost is a cost that has to be paid by the cloud provider
in the case of SLA violation. We define an SLA violation on a case that the VM
unavailability exceeds a certain time threshold throughout a billing period.

• Number of migrations that represent the migration actions triggered during the
evaluation whether to avoid the SLA violation due to the power outage or due to
the consolidation. In general, the migration action should be applied by a cloud
provider in a case that it has an appreciable impact on the operating costs. A lower
value of this metric is preferable if it has a negative effect on the SLA violation
and consequently the penalty cost.

7.1.4 Aggregate Results

Figure 7.1 shows the aggregate evaluation results obtained during the whole simulation
run. The usage of the proposed approach (reddish plots) leads to better results with
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all the three used policies, while under BN-TW policy the proposed approach achieves
the best result. BN-TW policy decreases the total cost by up to 69% (124$ vs. 407$) in
comparison with NoM approach. This improvement is by up to 45% (225$ vs. 124$ total
cost) in comparison with FFD-R, which has the lowest number of migrations, and by up
to 18% (151$ vs. 124$ total cost) in comparison with FFD-A, which has a higher number
of migrations.

The results reveal that the usage of a more enhanced prediction policy, e.g., linear
regression (BN-LRW policy) in our approach, increases the cost efficiency in the terms of
energy cost. However, it causes more SLA violations in comparison with the other used
policies (i.e., BN-LW, BN-TW). Moreover, the results in the case of NoM approach in
comparison with FFD and the proposed approach to highlight the necessity of supporting
migration strategy while managing distributed data centers in order to decrease the
operating costs. The reduction of operating costs is achieved because of taking into
account the time- and location-dependent input parameters for the management decisions
such as applying the migration actions at a suitable time of the day or to a proper data
center location. Furthermore, since by using CloudNet we simulate data centers with
frequent power outages, approaches like NoM not only suffer from a high energy cost,
but also leads to a high number of SLA violation as they cannot handle situations like a
power outage.

In comparison with the FFD approach (i.e., FFD-A and FFD-R), the proposed VM
placement approach gains less energy cost while keeping the penalty cost under control
in a way that the achieved total operating costs is less for all the three used policies,
as shown in Figure 7.1. The reason is due to the utilization of the prediction workload
policies, using the extracted knowledge of cloud management, and considering the input
parameters such as power outage statistics of cloud data centers modeled as Bayesian
networks, the effectiveness of multi-criteria decision analysis method applied on Bayesian
network reasoning, and supporting different SLA models. In summary, the proposed
cost-aware VM placement approach under all workload prediction policies achieves better
results in terms of both operating costs in comparison with the two baseline approaches.

7.2 SLA-based Multi-Cloud Service Selection

In this section, we evaluate the proposed multi-cloud service selection approach (contri-
bution II), explained in Chapter 4, in comparison with a utility-based selection algorithm.
The evaluation setup along with the discussion of the results are presented in this section.

7.2.1 Simulation Setup

In order to model heterogeneous cloud service offerings in a multi-cloud environment, we
simulate 12 commercial IaaS providers, each with one or multiple data centers distributed
along different geographical locations (four continents). In our simulation environment,
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parameter definition unit or range
IaaS type VMsmall/medium/large , Storage -
Location data center region 1-4
Reputation provider reputation rank 1-10
Availability up-time of service % in three months
Response Time time to fully receive an answer sec
Throughput download a few large files Mb/sec
CostVM leased VMsmall/medium/large $/one small per hour
Coststorage stored data $/one GB per month
Costtraffic download rate $/one GB per month

Table 7.3: Functional and non-functional parameters offered by IaaS providers

(millisecond) USA Europe Asia Australia
USA 25 150 250 100
Europe 150 25 150 200
Asia 250 150 25 500
Australia 100 200 500 25

Table 7.4: Latency matrix

each provider offers a set of functional and non-functional parameters as well as pricing
models for the offered services. As depicted in Table 7.3, each provider either provides
cloud storage, or cloud virtual machine with three sizes: small, medium, and large. The
VM budget is given based on its computation units. One, two and four computation
units are respectively assigned to the small, medium and large VM size. We assume that
the computation units of different IaaS providers for the same VM size are similar. The
pricing model for each provider is acquired by using the pricing model of the corresponding
real-world IaaS provider, while the values of QoS attributes are gathered experimentally
by running a set of cloud tests using CloudHarmony Web service1 on the chosen public
cloud providers using a single client hosted in Austria. This specification allows us to
model a realistic simulation environment.

Furthermore, the reputation value for each provider is simulated considering the
reputation ranking model introduced in [94]. Due to lack of free access to the information
regarding the latency between different data centers (available on CloudHarmony), a
latency matrix are defined with synthesized values by considering the geographical
distances, shown in Table 7.4. The latency between host services within the same data
center is assumed to be 10ms.

Supported meta-SLA parameters as well as their aggregate function are presented
in Table 7.5. In this table, budget is the customer willingness to pay for leasing the cloud
infrastructure including the leasing virtual machine and storage cost, as well as the data

1CloudHarmony Web service: http://cloudharmony.com
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SLA parameter unit definition aggregate function
Budget $ total cost Costagg =

∑
{VM+storage+traffic}

Availability % up-time Avaagg =
∏n

i=1Ava(Si)
Throughput Mb/s downloaded data Thagg = minn

i=1Th(Si)

Latency ms latency Latagg =
∑n

i,j=1 W (Sij).Lat(Sij)∑n

i,j=1 W (Sij)

Reputation 1-10 providers’ rank Repagg =
∑n

i=1 Rep(Si)
n

Table 7.5: Meta-SLA parameters and their aggregate functions

parameter unit standard professional enterprise
contract duration hour 720 720 720
Budget for VM (small) $/hour 0.07 0.1 0.14
Budget for storage (1 GB) $/month 0.1 0.12 0.15
Budget for traffic (1 GB) $/month 0.1 0.12 0.15
Availability % 96 98 99.8
Throughput Mb/sec 5 5 15
Latency ms 100 100 40
Reputation 1-10 3 3 5

Table 7.6: Meta-SLA requested values for the three different software editions

parameter sub-SLAUI sub-SLABL sub-SLADS

Edition sand./ prof./ enter. sand./ prof./ enter. sand./ prof./ enter.
Type virtual machine virtual machine storage
Size small/ medium/ large large/ large/ large 100 / 500 / 1000 (GB)
Number 1 / 1 / 1 1 / 2 / 5 1 / 1 / 2
Location - - Europe

Table 7.7: Sub-SLA requested values for the three different software editions

traffic cost based on the defined units. For the virtual machine, a cost unit is expressed
based on the coefficient value of a small VM per hour, while for the storage and traffic, a
cost unit is represented based on the coefficient value of storing or transferring 1GB data
per month. The calculation of the total budget in our simulation is based on these three
cost units as well as the duration of the contract.

As depicted in Table 7.5 (previously introduced in Chapter 4), for each non-functional
parameter of meta-SLA, there is a corresponding aggregation function, which calculates
the aggregate values of composite service non-functional parameters based on its con-
stituent services. In the aggregate latency formula W (Sij) is the connectivity value of
each edge in the connectivity graph, shown in Figure 7.2. While Lat(Sij) is gathered from
the latency matrix, showed in Table 7.4, based on the data center geographical location
of the included services of the composite service. In order to show the different aspects of
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Figure 7.2: Connectivity graph of the CAD-aaS use case

our approach, we run the experiments of three sets of SLAs for three CAD-as-a-service
software editions (standard, professional, and enterprise), each with different meta-SLAs
and sub-SLAs as depicted in Tables 7.6 and 7.7, respectively.

Recalling the CAD-aaS use case (Figure 7.2) and its three application tiers, we divide
the sub-SLAs into three logical groups. The first group of requested services belongs to
the infrastructures that hosts the application UI, called sub-SLAUI. The second group
is related to the infrastructures that hosts the BL tier of the application for computing
and rendering the images of CAD-aaS, called sub-SLABL. Finally, data storage tier is
hosted in the cloud storage that stores and maintains the CAD models, called sub-SLADS.
Although our approach is flexible enough to receive three different sets of sub-SLAs
{sub-SLAUI, sub-SLABL, sub-SLADS} for each software edition, we consider the same set
for all editions. The rationale behind it is that each sub-SLA expresses the functional and
non-functional requirements related to the application tiers (UI, BL, and DS). While it
is possible to have different functional needs such as type, size and number of requested
infrastructure services for each application tier, the non-functional requirements of various
components in different software editions are almost the same.

7.2.2 Utility-based Selection Algorithm as the Baseline

In this section, we first introduce a utility-based algorithm [101] as the baseline approach.
Then, we compare the features of the proposed approach, named as a prospect-based,
with the so called utility-based baseline approach, the discussion of the evaluation results
are given in the following sections.

The utility-based algorithm uses a quasi-linear utility-function adopted from the
multi-attribute auction theory [25] to calculate the customer utility, taking the cloud
customer leasing budget in focus. The utility for each composite service is calculated
by subtracting the total service usage costs (including virtual machine, traffic, and
storage) from its monetized usage benefit. The former is calculated for each customer by
multiplying the overall score for the SLAs with the maximal payment for a perfect service.
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factor prospect-based algorithm utility-based algorithm
cost impact predefined customer weight similar to QoS
weighting method dependent W:

∑
WQoS = 1 independent W: WQoS ∈ (0, 1]

selection strategy maximize customer utility maximize customer satisfaction
fitting function customer value for each QoS gain and loss (flexible scoring)
SLA support only meta-SLA meta-SLA and sub-SLA

Table 7.8: Comparison between prospect-based and utility-based algorithms

The overall SLA scores (a normalized value between 0 and 1), is defined as the sum of
the weighted single SLA parameter scores, express the overall customer satisfaction for a
certain service quality. For the calculation of the SLA score, the algorithm uses so called
fitting functions that map each SLA metric value to a satisfaction level between 0 and 1.

A Theoretical Comparison: Utility-based vs. Prospect-based Algorithms

The key differences of the proposed prospect-based algorithm, with the utility-based
algorithm is summarized in Table 7.8 and are explained as follows:

• Cost impact. The two algorithms have a different perspective on the cost. In the
prospect-based algorithm, the cost has a flexible impact on service scoring based on
the weight that each customer can assign, similar to other QoS parameters. While
in the utility-based algorithm, the cost has a fixed influence with a predefined
impact, which cannot be defined by each customer.

• Weighting method. The weighting model of these two algorithms is different. In
the prospect-based algorithm, the weight of each QoS parameter is chosen within
(0,1] independent of other parameters. However, in the utility-based algorithm the
weights are dependent to each other within (0,1] and the sum of them should be 1.

• Selection strategy. The utility-based algorithm selects a composite service as
the target, which maximize the customer utility. While, our algorithm selects a
composite service that best satisfies both the meta-SLA and the sub-SLAs, i.e.,
maximize the customer satisfaction. In both algorithms, functional parameters must
be fulfilled and both aim to find the best set of non-functional parameters. However,
contrary to the utility-based algorithm, our algorithm can also support hard non-
functional parameters that can be treated as the same way as the functional
parameters.

• Fitting function. The fitting function used in the utility-based algorithm is
quite similar to the satisfaction scoring function used in our algorithm. However,
our algorithm is more flexible as it is based on the weights, while the utility-
based algorithm needs to define separated fitting function for each QoS. Therefore,
supporting more SLA parameters in our algorithm needs less effort.

• SLA support. The fitting functions in utility-based algorithm is only used to score
the aggregated QoS based on the SLA for the composite service, while our algorithm
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Figure 7.3: Meta-SLA of standard edition and aggregate results: QoS of selected services
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Figure 7.4: Meta-SLA of standard edition and aggregate results: Cost of selected services

supports scoring each single service based on the proposed concept of sub-SLA,
and composite service based on the concept of meta-SLA using the satisfaction
scoring function.

7.2.3 Evaluation Results

In this section, the service selection results achieved by both algorithms are discussed
using several evaluation scenarios. The requested values for the meta-SLA and sub-SLAs
parameters are shown in Tables 7.6 and 7.7, discussed previously. These values are
different for three software editions of the CAD-aaS use case. The scenarios in this
section are designed in a way to highlight the different aspects of the proposed approach.

Impact of cost

As the first scenario, minimizing the cost is the main objective of the customer and
the QoS of the composite service is more important than the quality of individual
services. To simulate this scenario, we assign the weights as: WsubSLA = 0.1 and
WmetaSLA = 0.9, to dominate the influence of meta-SLA on sub-SLAs in the service
selection algorithm. Furthermore, in meta-SLA, WCost = 0.8 and for other non-functional
parameters WNF = 0.25 to make cost as the most influential factor for selecting services.
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Figure 7.5: Meta-SLA of enterprise edition and aggregate results: QoS and total cost of
selected services

Figure 7.3aggregate depicts the aggregate results of the achieved QoS values for the
chosen services in the both algorithms. In this scenario, the selected services of the
prospect-based algorithm are exactly the same as the selected services of the utility-based
algorithm, i.e., both set of services are chosen from the same cloud provider and located
at the same data center, so the achieved latency is 10ms, as shown in Figure 7.3aggregate.
Furthermore, both algorithms are successful in satisfying the requested non-functional pa-
rameters of meta-SLA including cost (virtual machine, storage, and traffic), as illustrated
in Figure 7.4.

The results of the first scenario demonstrate the tendency of both algorithms to
select services from a single cloud provider data center, if this does not lead to SLA
violations. The first ranked services of the prospect-based algorithm are chosen from
AmazonEC2 (Europe data center) while the utility-based algorithm and our algorithm
(the 2nd round) select all services from the Voxel2 (Europe). This is reasonable, since the
data traffic is free of charge and latency is negligible when all the services are located at
the same data center. Note that in this scenario, the results achieved in the professional
and enterprise editions are also similar to the achieved results of the standard edition.

Impact of meta-SLA

As the second scenario, we evaluate the proposed algorithm in a condition that the
importance of a QoS parameter (availability) is equal to the importance of the cost to the
customer, i.e., both have assigned by higher priorities compared to other non-functional
parameters. We realize this scenario by setting the weight of availability more than the
weights of other meta-SLA parameters (i.e., throughput, latency, and reputation) for
the enterprise software edition. Moreover, in the utility-based algorithm, we set the
weight equal to 0.5 for the availability and 0.25 for latency and throughput. By applying
these settings, we achieve the results depicted in Figure 7.5. Our algorithm chooses
AmazonEC2 (Europe), while the utility-based algorithm selected Voxel (Europe) for
all requested infrastructure services. The plots of Figure 7.5 show that our algorithm

2Voxel IaaS provider: http://www.voxel.net
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performs well in terms of: (i) not violating any SLA parameters; (ii) giving the priority
to the parameters that are most important for the customer (cost and availability).

Moreover, our algorithm chooses the services that have the closest quality values
to the requested values by the customer to maximize the satisfaction. This can justify
the idea of applying prospect theory in the service selection. It other words, the best
score is given to a service that more closely satisfy the requested SLA parameters with
higher weights, contrary to the services that have the best quality. The throughout plot
of Figure 7.5 demonstrates that the utility-based algorithm tries to maximize the values
of throughput, while the requested availability is violated. This scenario shows that the
utility-based algorithm focuses more on keeping the cost under the requested budget
as the cost impact is not configurable in the algorithm. While in the prospect-based
algorithm by assigning suitable weights and accepted boundaries for each SLA parameters,
we can obtain the ranking score that maximizes the customer’s satisfaction.

Impact of sub-SLA

As the last scenario, we consider that the CAD-aaS provider (i.e., the cloud customer) has
specific non-functional requirements for each tier (UI, BL, DS) of the CAD application.
The CAD-aaS provider wants to provide a professional software edition in which, for
the security reasons, it is required to use cloud storage that: (i) the location of the data
center providing the service is in Europe; (ii) the service is offered by a high reputed
cloud provider (i.e., location = EU and reputation=6 in sub-SLADS). Furthermore,
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the CAD-aaS provider wants to keep the response time of the deployed UI tier under
3sec, and makes it highly available (response time = 3sec and availability = 99.98% in
sub-SLAUI) with a high priority weight (0.75). The priority weights of other meta-SLA
parameters are as default (W=0.5).

The plots shown in Figure 7.6 depict the comparison results between the QoS
parameters requested in the meta-SLA and sub-SLAs, and the QoS values of the selected
services (Rackspace3 for deploying the UI and DS tiers, Citycloud4 for deploying the BL
tier both in Europe) by the prospect-based algorithm. As shown, the algorithm finds a
suitable set of services that satisfies not only the requested meta-SLA parameters for the
composite service, but also all the requested sub-SLAs’ parameters are satisfied.

7.2.4 Discussion

From the first scenario, we conclude that although the impact of cost in the prospect-based
algorithm is not a predefined like the utility-based algorithm, by assigning proportional
weights to the service selection factors, the proposed algorithm can behave the same
as a utility-based method which is a widely accepted cloud service selection from the
efficiency point of view.

The second scenario, in which another QoS parameter is as important as the cost
for the customer, shows that the prospect-based algorithm outperforms the utility-based
algorithm. It selects a more suitable set of services which do not violate any requested
meta-SLA parameters. Moreover, it chooses the services with the closest quality values
to what are requested by the customer.

The third scenario highlights one of the main features of the proposed algorithm. The
proposed algorithm not only tries to find an optimum composite service with accepted
aggregated QoS values to satisfy the meta-SLA but also consider the sub-SLA satisfaction
for the services that host the distributed application tiers. Nevertheless, existing service
selection algorithms that support composite service selection, only focus on finding a
set of services that satisfies the aggregated QoS parameters and neglect the individual
included services. We can cover this need easily by the proposed sub-SLA concept, as
represented at the third scenario.

To sum up, according to the evaluation results, when we are dealing with the quality
parameters of a service as a whole, any algorithms may be adequate to find the most
suitable services among the candidates. The main problem here is that in such a situation,
the services provided by the same provider are preferred. This diminishes the benefits of
a multi-cloud environment. Our algorithm comes into play when cloud customers want
to take the advantage of being able to combine the services offered by different providers
available in a multi-cloud. By introducing the sub-SLA concept, so the customer can
defines more details regarding each individual service inside a composite service. Thus, as
can be seen in the results, leads to a better customer satisfaction. It is worth mentioning
that supporting parameters such as reputation is also significant in our work.

3Rackspace IaaS provider: http://www.rackspace.com
4Citycloud IaaS provider: https://www.citycloud.com
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7.3 Performance-based Memory Elasticity Controller
In this section, we illustrate the experimental evaluation to show the potential of the
implemented PMC, performance-based memory controller, explained in Chapter 5 as
contribution III. In what it follows, we first describe the experimental setup, then we
discuss the evaluation results.

7.3.1 Experimental Setup

Figure 7.7 depicts the overview of the experimental setup. The experiments are conducted
on a single physical machine, Linux Ubuntu 14.04 server, equipped with 16 processors5
and 32 GB of memory. To emulate a virtualized environment and perform vertical
memory elasticity, we use KVM hypervisor. The used benchmark application is deployed
in two VMs. As shown in Figure 7.7, VM1 runs Apache 2.0 Web server with PHP enabled,
and VM2 runs the application database, MySQL.

Apache configuration. To emulate long connections that induce memory-intensive
behavior on VM1, as would be the case with techniques such as long-polling, we set the
Apache parameters keep alive timeout to 10 seconds. To avoid VM2 being a bottleneck,
we provide sufficient memory and CPU cores for that during the experiments. Besides,
we set our experimental setup in a way that there is no memory consumption limit for
Apache running on VM1 and the amount of allocated memory to this VM is dynamic and
is managed by the controller. We use Apache multi-processing module (MPM) prefork,
which is thread safe and therefore suitable to be used with PHP applications. We set the
values of parameters regarding the Apache processes to relatively high values (2000 in
our experiments), for example MaxClients6 and ServerLimit7. These values need to be
well above the number of concurrent requests that Apache has to deal with during any
of the experiments in our work.

Benchmark application. We use RUBBoS, an open source, multi-tier benchmark
application previously introduced in Chapter 5. It provides the essential bulletin board
features of Slashdot site8 and has been widely used in cloud research [49, 76]. It includes
two tiers: business logic tier, which is a Web server using PHP server side scripts; a data
storage tier that stores user information, stories, and related comments. The benchmark
application includes two kinds of workload modes: browse-only and write interaction. We
use browse-only workload in our experiments to more greatly put stress on the business
logic tier by sending read-only HTTP GET requests.

Client. User interaction with RUBBoS is emulated using the previously introduced
tool, httpmon, by sending or receiving HTTP requests. By utilizing the features of
this tool, such as the ability to set the number of concurrent users at runtime, we
configure httpmon so that in each interval, a specific number of concurrent users request
random stories. To this aim, we dynamically set the concurrency option at runtime to

5Intel Xeon E31220
6Max number of child processes that are launched to serve requests
7Max value of MaxRequestWorkers for the lifetime of the Apache process
8Slashdot website: http://slashdot.org

107

http://slashdot.org


RUBBoS
BL tier

(Apache 2.0)

OS (Ubuntu)

KVM hypervisor
performance-based 
memory controller

server side

memory (fixed)

RUBBoS
DS tier
(MySQL)

OS (Ubuntu)

VM2 VM1

CPU (fixed) CPU (fixed)

client side

HTTP GET request

response time

PM (32 GB memory, 16 processors)

< Java + Matlab >

control side

elastic memory

httpmon
client + monitoring

workload

Thesis: PMC

123

4

elastic memory

5

Figure 7.7: Overview of the experimental setup for evaluating PMC

emulate the used workload patterns. As for the monitoring, httpmon is also used in
our experiments. A master thread at each interval collects data from the concurrent
clients and periodically measures and sends statistics for the previously elapsed seconds
of execution to performance-based memory controller via a TCP/IP socket.

Performance metric. In our experiments with RUBBoS, we focus on response time
as a performance metric. Since users of such applications often base their Web experience
consideration on how long it takes to browse stories, response time has a great influence
on Web user satisfaction [108, 76]. In our scenario, response time is defined as the time
difference between sending the first byte of the HTTP request to receiving the last byte
for each user request. The mean, 95th percentile, or maximum response time values can
be also configured and used in performance-based memory controller, depending on the
user requirements. In our experiments of this section, we use the mean response time as
the performance metric.

Workload preparation. In our evaluation, we use Wikipedia and FIFA WorldCup
website workload traces. Figure 7.8 depicts the scaled patterns of these traces; see the
workload details in Table 7.9. Horizontal and vertical scaling of these workload traces are
done according to the capacity of our experimental setup, while still keeping the original
patterns. These two patterns then are mapped to the concurrent users that send HTTP
GET request. To facilitate the reproducibility of our research, we release the source code
(in Python) that prepares these two traces9.

Experiment process. As shown in Figure 7.7, the experiment is started from the
client side, httpmon tool, which is responsible for the load generating and monitoring. The
server side is RUBBoS application controlled by the control side consists of performance-
based memory controller. In this figure, the numbers indicate the sequence of the
experiment process. After feeding the workload traces into httpmon (1), and based
on the workload values at each control interval, httpmon emulates a specific number

9The preparation code of Wikipedia http://goo.gl/iy36Pg, FIFA http://goo.gl/iUGF6O
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workload duration H-scale V-scale ratio details
Wikipedia 24 hour 1000 sec 1000 users 10% of all req. German language
FIFA 40 days 1000 sec 1000 users all requests WorldCup 1998

Table 7.9: Specification of the Wikipedia and FIFA WorldCup website workload traces

evaluation workload r̃t (ms) pole intervalcontrol (s) intervalWMA (s)

experiment Wikipedia 600 0.99 10 10
FIFA 300 0.999 5 5

simulation Wikipedia 500 0.5 10 10
FIFA 300 0.999 10 20

Table 7.10: Configuration parameters for different evaluation scenarios
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Figure 7.8: Wikipedia and FIFA WorldCup website workload traces

of concurrent users to send the HTTP GET requests to RUBBoS (2), and meanwhile
measures RT of the sent requests (3). A control loop is triggered at this point after
receiving the measured RT by httpmon at each control interval (4). The aim of our
experiment is to evaluate the effect of memory elasticity on the application RT. Therefore,
at each control interval, the controller calculates the control error and based on that, it
measures the required memory to meet the application desired RT, and then it invokes
the KVM memory API as the actuator to either increase or decrease memory size of
VM1 at runtime (5).

A thorough evaluation should be done under a variety of conditions, and then statistical
analysis be applied to the achieved results. However, relying only on statistical results
may hide details about the behavior of the system in different phases; therefore, in the
following sections, we first explain the time-series analysis of the controller under different
evaluation scenarios and then discuss the aggregate analysis to show the effectiveness of
the controller. We compare the results of a self-adaptive RUBBoS (i.e., equipped with
the controller) with two non-adaptive RUBBoS (i.e., without using the controller) under
two provisioning policies: over-provisioning and under-provisioning. Table 7.10 shows
the experimental setting parameters for all the scenarios, including the desired RT, pole
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value, control interval, and the weighted moving average period (controlWMA).

7.3.2 Experimental Results: Time-Series Analysis

In this section, for each workload trace, we explain time-series analysis of the results,
depicted in Figures 7.9 and 7.10. We discuss how performance-based memory controller
adjusts the allocated memory of the VM hosting the application business logic tier at
each control interval to maintain the desired response time.

Wikipedia workload traces

Diagrams of Figure 7.9 show the behavior of RUBBoS under Wikipedia workload traces.
The first two diagrams are related to non-adaptive scenarios. The aim of these two
scenarios is to show the application response time under the runtime workload change
with over-provisioning and under-provisioning of memory. The first diagram shows that
over-provisioning the memory, i.e., allocating 6GB (96 units of memory), is enough to
handle the workload peak, denoted by marker 1, and the measured RT stays lower than
the desired RT throughout the entire experiment. On the other hand, the result shown
in the second diagram as a representation of the under-provisioning scenario, allocating
1GB (16 units of memory) reveals that the application is unable to respond quickly
and handle the peak periods, so all requests are timed-out, denoted by marker 2. More
precisely, under sever lack of memory and a large amount of user requests, the Apache
server enters a state where it is unable to respond to any single request, i.e., seems
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freezing. If this happens, the reaction of the VM hosting BL tier to any change in the
allocated memory is much slower than normal. Avoiding this situation is a challenge for
the memory controller.

The third diagram depicts the result of a self-adaptive RUBBoS in which the allocated
memory is adjusted according to the workload change at runtime in a way to keep the
measured RT under the desired RT. Note that the workload is the same as two previous
diagrams, but for the sake of readability we does not show it in the last diagram. The
first 100sec is the period that the controller is learning the behavior of the application,
denoted by marker 3. During this period, the controller is exploring the effect of memory
increment on the measured RT to capture the system model. Afterward, the controller
has the system model and is able to calculate the suitable amount of allocated memory
at each control interval. Marker 4 shows the period when the workload is still low;
therefore, the controller assigns the minimum amount of memory to VM1 while keeping
the measured RT less than the desired RT (r̃t = 600ms). At the time 450sec, the
workload is increasing, so the controller increases the allocated memory, denoted by
marker 5, until the measured RT becomes less or equal to the desired RT. Marker 6 shows
the situation in which the system is under the workload peak, and the maximum amount
of memory has been allocated. Even though all of memory is allocated, for a short period
(from time 700sec till 780sec), the measured RT is higher than the desired RT.

The behavior of the controller at the time 800sec, shows that it is fully capable
of reacting to decrease the allocated memory which is not necessary any more while
keeping the measured RT within range of the desired RT. Notice that in this scenario,
as the workload change is slow and almost persistent, we set the controller in a way to
react more slowly in a more stable manner. Hence, we configure the controller with the
following parameters, shown in Table 7.10: pole = 0.99; the control interval of 10sec;
the moving average period of 10sec. The values of these configuration parameters are
extracted empirically after carefully examining the controller’s behavior with a range of
values.

FIFA workload traces

Similarly, Figure 7.10 depicts the results regarding the FIFA workload traces in three
scenarios. The first diagram shows that the over-provisioning policy (2GB memory) is
quite enough for VM1 to process all user requests in less than the desired RT (r̃t = 300ms).
The second diagram reveals that the application cannot handle the frequent and sudden
peaks in workload, denoted by marker 7, while following under-provisioning policy (512MB
memory); therefore, all measured RTs are timed-out, i.e., rti > 4sec after this time. The
last diagram shows the result of a self-adaptive RUBBoS equipped with PMC configured
by values mentioned in Table 7.10 such as pole = 0.999, control interval and moving
average period both are 5sec. These values are chosen empirically after examining the
results with several values for the situation in which the workload fluctuations are high
and temporal in comparison with the previous scenario. With a shorter control interval
the controller is more sensitive to react to sudden changes, and with a higher pole value,
it reacts less aggressively. As depicted, after capturing the system model of the controller,
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Figure 7.10: Time-series analysis results of non-adaptive and self-adaptive RUBBoS
under FIFA workload

denoted by marker 8, as far as the measured RT is less than the desired RT or even
more than it, but for a temporary short period (e.g., at 360sec), the minimum memory is
allocated to VM1 by the controller. At 800sec, denoted by marker 9, the measured RT
is more than the desired RT for a relatively longer period than other violation periods,
so the controller reacts quickly and increases the allocated memory to some extent to
handle the workload peaks. Lighter scenarios are repeated at 710sec and 900sec, and the
controller reacts very well, according to the measured RT at each period.

7.3.3 Experimental Results: Aggregate Analysis

In this section, we aim to show the effectiveness of PMC on satisfying the desired RT
and minimizing the resource cost via a set of experiments. As factors for measuring the
effectiveness of the controller, we consider: (i) the average of all measured RTs, which
represents our performance metric; (ii) the average number of memory units used over
time, which in our case, determines the variable part of the ownership cost. These criteria
cover the main aspects of elasticity comprising: scalability; cost; and time efficiency. The
goal is to meet the desired RT, which is set as r̃t = 600ms in the experiment associated
with the Wikipedia and r̃t = 300ms for the FIFA, while keeping the memory usage
as low as possible. The drop in memory usage represents the potential capacity to be
released back to the cloud to save on cost. To this aim, we compare the experimental
results of a self-adaptive RUBBoS equipped with the controller, with two introduced
non-adaptive scenarios, under the workload traces. A visual summary of the aggregate
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Figure 7.11: Aggregate results of non-adaptive and self-adaptive RUBBoS under
Wikipedia and FIFA workloads

results is depicted in the diagrams of Figure 7.11 and is discussed in the following sections,
categorized by the workload traces.

Wikipedia workload traces

As shown in Figure 7.11 (a), in comparison with the over-provisioning policy, the controller
acquires less memory as the representative of cost, so decreasing the cost by 47% (51
memory unit vs. 96 memory unit). In comparison with the under-provisioning policy, the
controller is significantly better in terms of the achieved RT (490ms vs. 2109ms), giving
the cloud application’ owner a better chance to guarantee the performance metric. To be
more precise, beside the total average of measured RT, we also show the percentile of time
in which the violation is occurring during the experiment, shown as RT violation-rate
in Figure 7.11 (a). Figure 7.11 (c) depicts the distance between the desired RT and the
measured RT when the violation is occurring throughout the whole experiment. In other
words, this diagram projects the area of the last diagram of Figure 7.9 in which the
measured RT is above the desired RT. In an ideal situation, a controller should be able
to minimize this area and keep the violation rate close to zero. As shown, although the
controller is able to keep the total average of the measured RT less than the desired RT
(490ms vs. 600ms), at 18% of the time, the measured RT is larger than 600ms.

FIFA workload traces

For the results shown in Figure 7.10 (b), the situation is much better. In comparison
with the over-provisioning policy, the controller has allocated less memory, so consequen-
tially decreasing the memory usage by 57% (14 memory unit vs. 32 memory unit). In
comparison with the under-provisioning policy, it behaves better in terms of the average
of measured RT (61ms vs. 1963ms). As for the violation rate during the experiment, Fig-
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Figure 7.12: Simulation results of the controller’s behavior under Wikipedia workload
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Figure 7.13: Simulation results of the controller’s behavior under FIFA workload

ure 7.11 (d) depicts the comparison of the percentile of time in which there is a violation
among self-adaptive and non-adaptive scenarios. In this workload, the violation rate is
much less (4%), so in total, the benefit of the controller can be more significant for this
type of workload that has temporal peaks.

7.3.4 Simulation Results

Although our evaluation is based on the discussed experiments, in order to fine-tune
performance-based memory controller, figure out its behavior, and make it ready for
the real experiments, we first run two sets of simulations under the same workload
traces. The controller used in the simulation is the same as in the one used in the
real experiment. We define a method to estimate the measured RT as a function of
the allocated memory and the number of user requests at each interval during 1000sec
simulation run. Figures 7.12 and 7.13 show the corresponding results of a non-adaptive
versus a self-adaptive simulated application under the used workload traces. Note that
in non-adaptive scenarios, the allocated memory is fixed, so the workload is the only
variable factor which influences the estimated measured RT; therefore, the diagrams
of the measured RT (Figures 7.12 and 7.13 (a)) look similar to the used workload
patterns. Figures 7.12 and 7.13 (a) show the estimated measured RT of the simulated
application at each iteration, while Figures 7.12 and 7.13 (b) represent the memory
units allocated by the controller at each iteration; see Table 7.10 (simulation part) for
the configuration parameters. Based on the simulation results, we can see, apart from
the instabilities that happen in a real environment, the stability, responsiveness and
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robustness of the controller is sufficient to cope with the used workload patterns. Similarly,
the first 100sec is the period that the controller is capturing the system model, then the
controller allocates the proper amount of memory to cope with the varying number of
users during the simulation run. The root mean square error (RMSE), Equation (7.1), is
a frequently used measure as the evaluation factor in the control theory domain which
also is reported in the following simulation results. It represents the sample standard
deviation of the differences between measured RT and desired RT.

RMSE =

√√√√ 1
n

n∑
i=1

(r̃t− rti)2 (7.1)

The RMSE of performance-based memory controller for the presented simulation results
are 0.101 (Wikipedia) and 0.057 (FIFA), which are quite good in the control context.

7.3.5 Discussions

The aggregate results, recalling diagrams of Figure 7.11, show the benefit of the controller
to save the memory usage (cost) by 47% in the case of Wikipedia, and 57% in the case of
FIFA workload traces in comparison with the over-provisioning policy. In both cases, the
controller could satisfy the desired RT with the total average of measured RT (490ms
vs. 600ms, and 61ms vs. 300ms). However, as we use the real-world workload instead of
using simple step workload, which is quite common to benchmark a controller, at 18% of
the time the measured RT is more than the desired RT in the case of Wikipedia, and 4%
in the case of FIFA workload traces. The trade-off between the importance of saving
more at memory usage or having less violation is subjective and up to the owner of the
cloud application. Moreover, the behavior of the controller under two sets of experiments
as well as the simulation run, reveals that performance-based memory controller behaves
as intended. After identifying the system model during the learning phase, at the control
phase the proper amount of memory for the VM hosting BL tier is adjusted in order
to keep the measured RT close to the desired RT. Regarding the experimental results,
the two used error smoothing techniques in our controller, support vector regression and
weighted moving average, previously explained, helped the controller to be able to cope
with the workload fluctuations at runtime.

The evaluated performance-based memory controller utilizes a static system model that
does not support any explicit update mechanism during the control phase. Therefore,
if the application enters a new phase with a different load pattern, it is required to
continually update the system model. Moreover, while increasing or decreasing the
memory, performance-based memory controller does not have an insight to the current
value of resource utilization, there it may lead to over-committing memory under some
runtime conditions. These limitations are addressed in the scope of this thesis by the
proposed hybrid memory controller, which is evaluated in the next section.
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7.4 Hybrid Memory Elasticity Controller

In this section, we present the experimental evaluation of the implemented HMC, hybrid
memory controller, presented in Chapter 5 as contribution IV, and compare it against
two baseline controllers. In the following, we first describe the baseline approaches, then
the experimental setup, and finally discuss the evaluation results.

7.4.1 Baseline Approaches

In this section, we briefly introduce the two baseline controllers, performance-based and
capacity-based memory controllers for evaluating the proposed HMC.

Performance-based memory controller (PMC)

The memory controller used as the baseline is performance-based memory controller
previously presented in Chapter 5 (see Section 5.4 for more details), and evaluated in Sec-
tion 7.3. As a brief recalling, it follows a control synthesis technique. At each control inter-
val, PMC’s output ctl ∈ [0, 1] is mapped to a memory size memi ∈ [memmin,memmax].
The controller takes the application response time as the decision making criterion to
adjust the amount of allocated memory.

Capacity-based memory controller (CMC)

As a capacity-based approach, CMC [134] uses memory utilization as the decision criterion
to adjust the allocated resource. CMC consists of one elasticity rule that is applied
based on memory overprovisioning percentage (MOP) ∈ [0, 1]. The idea behind MOP
is to avoid thrashing so that to keep the VM memory size beyond the memory used
by the application. The used elasticity rule enables CMC to decide when to scale up
or scale down by monitoring the value of memory usage (memused ∈ [0, 1]), and the
corresponding calculated MOP at each control interval (every 5 sec in our experiment).
As shown in Equation (7.2), memused is estimated by using the values reported at
meminfo10 file, which includes the information about the Linux system’s memory at
runtime. Similar to HMC and PMC, we define a minimum amount of memory where the
controllers cannot shrink the VM memory size below this amount. This allows the guest
operating system to properly operate and avoid experiencing unexpected application
crashes due to the lack of memory.

memused = memtotal − (memfree +memcached +membuffers) (7.2)

The elasticity rule is applied if the free virtual machine memory (memfree =
1 − memused), is smaller than 80% or greater than 120% of the MOP. Under such
conditions, CMC dynamically adjusts the memory size of the virtual machine using Equa-
tion (7.3).

memsize = memused · (1 + MOP) (7.3)

10Linux memory information file: /proc/meminfo

116



Thesis: HMC

Xen hypervisor

server side
VM1

client side

PM (56 GB memory, 32 processors) 

OS (Ubuntu)

RUBBoS 
BL tier 

(Apache 2.0)

hybrid memory controller

control side
VM2

memory (fixed)

RUBBoS
DS tier 

(MySQL)

OS (Ubuntu)

CPU (fixed)

HTTP GET request 
measured RT
memory utilization (Umem)

CPU (fixed)

elastic memory 3 2

httpmon
(client) 4

workload

1
< Java >

App / VM
 sensors

Figure 7.14: Overview of the experimental setup for evaluating HMC

This rule implies decreasing or increasing the memory size depends on the behavior of
the application deployed in the VM, and the magnitude of the memory changes depends
on how fast or slow the application requests or releases the memory. A lower value of
MOP aims at reducing the unused memory of the VM, i.e., achieving higher utilization,
but has a higher chance to incur thrashing (rapidly exchanging data in memory for
data on disk, to the exclusion of most application-level processing), if the application
memory consumption grows faster than the rate at which CMC increases the memory
size. In contrast, a higher MOP aims at reducing the chance of thrashing if the memory
consumption grows rapidly, but surely at the expense of wasting more memory. Based
on our experimental results and the type of the application used in our evaluation, we
set 0.1 as a value for MOP, as a suggested value in the original work [134].

7.4.2 Experimental Setup

As shown in Figure 7.14, the experiments are conducted on a physical machine equipped
with 32 cores11 and 56 GB of memory. To emulate a typical virtualized environment and
apply the vertical memory elasticity, we use Xen hypervisor. The benchmark application
is deployed in two separate VMs, where VM1 runs a Web server, Apache 2.0 with PHP
enabled, and VM2 runs MySQL as the application database. VM2 is provisioned by
sufficient memory and CPU cores to avoid becoming a bottleneck during the experiments.
The Apache configuration is exactly as what was described previously in Section 7.3.1,
so it is not repeated here.

Benchmark application. Similar to the evaluation of PMC, we again use RUBBoS
as the benchmark application, introduced previously in Section 7.3.1.

Workloads. Experiments are performed using different workloads to characterize
the controller’s responses to performance changes. We evaluate HMC by using workload

11Two AMD Opteron™6272 processors, 2100 MHz, 16 cores each, no hyper-threading.
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generated based on the open and closed system models [159]. A closed system model is
defined when the arrival of new requests is only triggered by previous request completions,
followed by thinktime. While, an open system model is defined when new requests arrive
independently of the previous request completions. For open clients, we change the
arrival rate and inter-arrival time during the course of the experiments as required to
stress the system. For the closed model, thinktime of each client as well as the number
of concurrent users are varied. The change in arrival rate or number of users is made
instantly. This makes it possible to meaningfully compare the system behavior under
these two client models.

To emulate the users accessing the applications, under the generated workload, we
use the previously introduced workload generator tool, httpmon, which is able to generate
both open and closed system model client behaviors. By using httpmon, a large value
of thinktime with a high number of concurrent users would induce a high memory
utilization while keeping the CPU utilization low. We also keep constant the number
of requests for some time to study the behavior of the models under both the steady
and transient states. In addition, to validate the applicability of our approach against
real-life situations, we also use real-world workload traces extracted from Wikipedia and
FIFA WorldCup website. These traces are selected due to their complementary nature.
While the Wikipedia workload shows a steady and predictable trend, the used FIFA
workload has a bursty and an unpredictable pattern. Figure 7.15 depicts the patterns of
these traces. Then, these two patterns map to concurrent users who send HTTP GET
requests.

Performance metric. The response time of a request is defined as the time elapsed
from sending the first byte of the request to receiving the last byte of the reply. In this
work, we are mostly interested in the mean response time over 20 seconds (4 control
intervals), which is a long enough period to filter measurement noise, but short enough
to highlight the transient behavior of an application. As pointed in [8], good elasticity
metrics are the ones which are related to a single application tier. Such metrics can be
tracked, their patterns can be learned, their statistics can be calculated, and then an
intelligent elasticity controller can use them to ensure the user satisfactions in terms of
QoS. This is one of the reasons that in our work we only focus on the BL tier of the
application; therefore, based on the presented experimental setup, the defined evaluation
metric is only dependent on the memory resource of the VM hosting BL tier of the
application.

Experiment process. Figure 7.14 depicts the experimental setup for evaluating
HMC. Numbers in this figure indicate the experiment’s process. The experiment starts
when the workload traces are fed into httpmon (1), and based on the values of workload
traces at each control interval, httpmon emulates a specific number of concurrent users
to send HTTP GET requests to the application under test (2). At each control interval,
5 seconds in our experiments, the application sensor observes the mean response time
and the VM sensor measures the average of memory utilization in the course of this
period. Both sensors send their monitored information via TCP/IP connection to the
controller (3). Hybrid memory controller dynamically determines the required memory
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size of VM1 in order to meet the desired RT. Finally, the controller invokes the memory
actuator, i.e., the Xen API for memory allocation, to either increase or decrease memory
size of VM1 at runtime (4).

7.4.3 Experimental Results

In this section, the evaluation results are presented and discussed as follows:

• Non-adaptive scenarios. Analyzing the time-series results of a non-adaptive
RUBBoS, i.e., without any controllers, under Wikipedia workload. Non-adaptive
scenarios consist of both memory over- and under-provisioning.

• HMC time-series analysis. Analyzing the time-series results of HMC under
various workload traces, including open, and closed system models, Wikipedia,
and FIFA WorldCup website traces. The goal here is to show that the proposed
controller is able to meet the desired RT without over-provisioning while achieving
relatively high memory utilization.

• Time-series comparison. Presenting the results related to the behavior of CMC
and PMC under Wikipedia workload traces and comparing them with the results
achieved by the proposed controller, HMC, in a similar experimental setup.

• Aggregate analysis. Reporting the aggregate results related to a self-adaptive
RUBBoS equipped with the three controllers under different scenarios as well
as a non-adaptive RUBBoS covering both memory under- and over-provisioned
scenarios.

All diagrams presented in this section are structured as follows. Each figure consists three
diagrams which show the results of a single experiment. Note that we perform a number
of experiments and find similar patterns in the results and then presents one of them.
The bottom x-axis represents the time elapsed since the start of the experiment. In
each figure, the upper diagram plots mean response times, the bottom diagram plots the
memory and CPU utilization of the VM hosting the BL tier (i.e., VM1) of the application
under test. The rationale behind reporting the CPU utilization is to show that in all
experiments, the CPU has not been the bottleneck resource. Finally, the middle diagram
plots the amount of memory required in GB computed by the respective controller and
allocated to VM1 over the next 5 seconds as the default control interval.
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Figure 7.16: Non-adaptive RUBBoS, under Wikipedia workload, 20ms desired RT

Non-adaptive scenarios

Figures 7.16 (a) and (b) present the behavior of a non-adaptive RUBBoS, under over-
provisioning and under-provisioning of allocated memory, respectively. The aim of these
two scenarios is to show the application measured RT when the allocated memory is
static and no controller is involved. It can be observed that in the over-provisioning case,
Figure 7.16 (a), the desired RT (r̃t = 20ms) is easily met with allocating 4 GB of memory,
but with the expenses of wasting the memory during the experiments and consequently
causing a high resource cost, while achieving a low resource utilization. On the other
hand, in the case of under-provisioning experiment, Figure 7.16 (b), the measured RT
roughly follows the workload pattern and it is much higher than the desired RT from
when the workload started to increase (time 2000 sec), while achieving a very high
resource utilization. However, the application is unable to respond quickly and handle
the peak periods, so all requests after this time have higher measured RTs values than
the desired RT. In general, these results reveal the need for self-adaptive solutions, i.e.,
using memory controllers that dynamically adjusts the allocated memory.
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(b) FIFA workload, 15ms desired RT, 0.9 pole

desired RT
measured  RT

allocated memory
memory utilization

CPU utilization

 0

 20

 40

 60

re
sp

on
se

 ti
m

e
[m

s]

 0
 1
 2
 3
 4

ca
pa

ci
ty

[G
B]

 0
 20
 40
 60
 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ut
iliz

at
io

n[
%

]

Time [sec]

Figure 7.17: Self-adaptive RUBBoS equipped with HMC, under real-world workload
traces, 5sec control interval

HMC time-series analysis

To show the behavior of HMC under various conditions, Figures 7.17 and 7.18 show the
results for scenarios in which RUBBoS is equipped with HMC under different workloads:
open and closed system models (r̃t = 30ms), as well as the Wikipedia (r̃t = 20ms) and
FIFA (r̃t = 15ms) traces. In general, the measured RTs remain lower than or relatively
close to the desired values under both system models (see diagrams of Figure 7.18) and
the measured RTs converge to the desired RT immediately, mostly without being noticed,
after detecting a sudden increase or decrease in the workload, e.g., from the first interval
(200 requests/ sec) to the second interval (500 requests/ sec). This can be also seen in
scenarios with real-world workloads (see diagrams of Figure 7.17, taking Figure 7.15 as
the workload patterns). The used pole value for all scenarios is 0.9, except the Wikipedia.
In the case of Wikipedia workload due to its slow incremental nature, it is not required
to have a quick reaction, so the pole value is set to 0.99. Empirically, we observe having
this value leads to a lower control error for this workload type.
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Figure 7.18: Self-adaptive RUBBoS equipped with HMC, under synthetic workload traces,
30ms desired RT, 0.9 pole, 5sec control interval

The other important point to note is that HMC properly detects and adapts to the
memory capacity required to meet the desired RTs for both open and closed system
models. Indeed, as it can be observed from the plots presented in Figure 7.18, a close
observation of the results reveals that the allocated memory is slightly higher under the
open system model compared to the closed system model for the similar configurations
(i.e., under the same workload that is labeled on top of each interval for the first diagram
in Figure 7.18 (a) and (b)). This is because the number of created Apache processes is
slightly higher under the open system model than the closed system model. Moreover,
there is a slight increase in memory usage as the number of users or arrival rates increase
because of the equivalent number Apache processes created. However, memory is not
immediately released unlike CPU cores as the number of users or arrival rates decrease,
since the idle Apache processes are not garbage collected, immediately.

122



(a) PMC: 20ms desired RT, 0.99 pole
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(b) CMC: MOP 0.1
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Figure 7.19: Self-adaptive RUBBoS equipped with PMC and CMC, under Wikipedia
workload, 5sec control interval

Time–series comparison of CMC, PMC, and HMC

To compare the behavior of the proposed hybrid memory controller with the two baseline
controllers, Figures 7.19 (a), (b), and Figure 7.17 (a), present the best results achieved
by using these three controllers with the same benchmark application under Wikipedia
workload traces. As shown in Figure 7.19 (a), while CMC, as a capacity-based controller, is
able to highly utilize the allocated memory, this amount of memory is obviously inadequate
to ensure the application performance. Based on the results of Figure 7.19 (b), the values
of the measured RT exactly follow the application workload pattern (see Figure 7.15 for
the Wikipedia workload pattern). This is because the capacity-based approaches are
oblivious to the observed performance of services and only try to adjust the resources in
a way to achieve high resource utilization. Therefore, such a controller may lead to SLA
violations, and it is not appropriate to be used for applications with sensitive performance
requirements such as interactive applications.
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The result of PMC, Figure 7.19 (a), reveals that taking the application response time
as an indicator of the memory scarcity is enough to meet the application performance
requirements. However, a performance-based approach such as PMC sometimes decides
inefficiently as it does not have any insight into the resource utilization at runtime. This
can cause either over- or under-provisioning the resource. A common problem of such
approaches is when the application performance is close to the saturation point, but
still the measured RT is far better that the desired RT, therefore, a performance-based
approach such as PMC decides to decrease the allocated memory to avoid the memory
wastage. While the controller in this situation is oblivious about the memory utilization,
depends on the intensity of the workload at that moment, any decrements of memory can
suddenly enter the application into a memory saturation circumstance. Consequently, it
can cause a sudden peak at the measured RT and sometimes cause the SLA violation.
Indeed, the explained scenario is observed in Figure 7.19 (a) at the time 4200sec while
the application measured response times face a sudden peak.

Nevertheless, results of Figure 7.17 (a) show that HMC remains stable in terms of
both maintaining the application performance objectives and avoiding resource over-
and under-provisioning. In compared to CMC, based on the utilization diagrams (the
last diagram of Figure 7.19 (b) and Figure 7.17 (a)), while it is clear that the memory
utilization achieved by using HMC is relatively lower than by the one by using CMC
but only in the case of HMC the measured RT is maintained lower than the desired RT.
In comparison with PMC (Figure 7.19 (a)), HMC is able to meet the desired RT with
less oscillations, low values for the standard deviation of response time as reported
in Table 7.11, and achieving a higher memory utilization. These comparisons are more
obvious when analyzing the aggregate results at the following section.

Aggregate analysis

To assess the aggregate behaviors of HMC in comparison with PMC, and CMC over
the course of the experiments, in Table 7.12 we report the mean values of the allocated
memory, memory utilization, and CPU utilization, as well as the values for the mean and
standard deviation of response time for different scenarios. Moreover, we also present
two control theoretic metrics, integral of squared error (ISE) and integral squared of
timed error (ISTE), which represent the observed error during the life span of the system
under test. These metrics are computed as shown in Equations (7.4) and (7.5) [125],
where e (t) = r̃t − rt (t). ISE metric reports how much the measured RT is close to the
desired RT. ISTE is a timed variant of the ISE, which weights the error over time and
reduces the effect of the initial transient phase. ISTE would result in better values for a
control theoretical solution, where the transient phase is the price to pay for modeling
and controlling the system [125]. Note that although achieving a lower measured RT
seems preferable from the end users’ point of views, an ideal elasticity controller should
be able to achieve a measured RT that is close to the desired RT, not far better since
this can implicitly indicate the resources over-provisioning.

ISE = 1
n

∑
(e (t))2 (7.4)
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scenario workload
(r̃t) controller ISE ISTE

mem
(mean)
[GB]

RT
(mean)
[sec]

RT
(SD)
[sec]

Ucpu

[%]
Umem

[%]

non-adap. Wiki (20ms) over-pro 0.0286 0.019 4 0.0087 0.0007 27.97 33.67
under-pro 0.0944 0.0856 1 0.234 0.3053 60.45 85.97

HMC
open (30ms)

HMC
0.0816 0.056 2.42 0.015 0.014 34.63 69.62

closed (30ms) 0.0825 0.055 2.15 0.013 0.011 34.91 68.85
FIFA (15ms) 0.0396 0.0245 2.098 0.014 0.0713 21.04 70.91

comparison Wiki (20ms)
HMC 0.0364 0.0235 1.595 0.0105 0.0069 31.05 83.36
PMC 0.0381 0.0253 2.3219 0.015 0.0647 19.47 59.74
CMC 0.0305 0.0223 2.0569 0.176 0.1732 42.02 90.97

Table 7.11: Self-adaptive and non-adaptive aggregate results

ISTE = 1
n

∑
(t · e (t))2∑

t
(7.5)

Table 7.11 shows these aggregate results of non-adaptive RUBBoS application without
using any controller, as well as self-adaptive RUBBoS equipped with the three different
controllers under various workload scenarios. As shown, the first set of results is related
to non-adaptive experiments where no controller is used. The goal of such experiments is
to show that with a static memory allocation policy, i.e., over- or under-provisioning the
memory, either the application performance should be sacrificed (see under-provisioning
results), or the desired performance can be met with the expense of memory wastage to be
able to handle the workload peak (see the over-provisioning results). The rationale behind
having a relatively high CPU utilization in the case of under-provisioning in compared
to all other scenarios is that, when the memory is not sufficient for the application to
handle the workload, the VM starts using thrashing which is a CPU intensive task.

The second set of scenarios (the second row of Table 7.11) is related to HMC under
open and closed system models as well as the FIFA workload. The aggregate results
using HMC reveal that hybrid memory controller is able to keep the measured RT lower
than the desired RT, while it uses a reasonable memory with relatively lower error
values, and high memory utilization (close to 70% in all three experiments). Note that
achieving low CPU utilization in all scenarios indicates that the CPU is not a resource
bottleneck in any of the scenarios (i.e., based on the experimental setup CPU has been
over-provisioned).

The last set of experiments (the last row of Table 7.11), compare the aggregate results
of HMC to the two baseline controllers, PMC, and CMC, under the Wikipedia workload
with similar test conditions. A controller is said to be better if the desired RT is met with
lower error and without memory over-provisioning. Note that, except the other metrics
in this figure, in the case of memory utilization achieving a higher value is preferable.
Based on the results of these three experiments, while HMC uses the lease amount of
memory (1.59 GB), it can meet the application desired performance with low control
errors and high memory utilization (83%). Although among all, CMC achieves the
highest value of memory utilization (90.97%), the measured RT is very high in this case
(220ms) compared to the desired RT (20ms), and it even uses more memory (2.06 GB)
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Figure 7.20: Aggregate results of self-adaptive and non-adaptive RUBBoS, under
Wikipedia workload

than the proposed HMC.
Figure 7.20 visualizes the aggregate results, reported in Table 7.11, and explained

above. Specifically, this diagram depicts the aggregate results obtained under Wikipedia
workload for five different experiments, including self-adaptive scenarios, (using HMC, CMC,
and PMC presented with reddish plots), as well as non-adaptive scenarios (under- and
over-provisioning, presented with black/ gray plots) in terms of either performance-related
metrics, or cost-related metrics. Figure 7.20 is illustrated in details in the following
discussion section.

7.4.4 Discussions

Recalling Figure 7.20, in general, the usage of the proposed hybrid memory controller
(the dark red plots) leads to better results in both performance and cost aspects. More
precisely, the results achieved by HMC compared to the results using one of the baseline
controllers reveal that while the observed control error (ISTE) is almost comparable
throughout the experiment, the stability of RT is lower for CMC compared to HMC
(0.173 SD vs. 0.0069 SD) by even allocating more memory (2.05 GB vs. 1.59 GB), leading
to SLA violation. This shows that a capacity-based approach such as CMC in spite of
achieving a higher resource utilization (90.97 % vs. 83.36%) compared to our proposed
hybrid-approach, is oblivious to the application performance, achieving at least 10 times
higher measured RT compared to HMC (0.176sec vs. 0.01sec), and it obviously violates
the SLA (r̃t = 20ms).

On the other hand, a performance-based approach such as PMC can achieve almost
the same measured RT compared to the proposed hybrid approach with comparable
control error (0.023 vs. 0.025), but with higher memory usage (2.32 GB vs. 1.59 GB),
lower memory utilization (59.74% vs. 83.36%), and much lower stability in measured RT
based on the value of SD (0.065sec vs. 0.006sec). The most stability is achieved by the
hybrid approach in comparison with the performance-based approach due to the insight
that it has into resource utilization, while PMC only decides based on the application
performance, i.e., response time, at runtime. That is why HMC achieves the best stability
(i.e., the lowest SD value) in RT among all other baseline approaches.

Results related to the comparison between two non-adaptive scenarios and self-
adaptive RUBBoS equipped HMC show the benefit of leveraging elasticity controllers
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that dynamically adjusts the allocated resources, rather than allocating static amount
of resources. Compared to HMC, under the over-provisioning scenario, the memory
utilization is lower (33.67% vs. 83.36%), and much more memory is allocated on average
(4 GB vs. 1.59 GB). Meanwhile, it achieves the lowest average RT (9ms), which is far
better than the desired RT (20ms), with the expense of wasting resources. On the other
hand, in the under-provisioning experiment only 1 GB of memory is allocated statically
achieving a high utilization (90.97%), but due to the lack of memory during the workload
peak, the mean and standard deviation values of the measured RT are not acceptable
(see Figure 7.20) and it causes an SLA violation.

In summary, the trade-off between the importance of saving more at memory usage
(i.e., achieving a higher memory utilization) or having less performance violation is
subjective and is up to the owner of the cloud application. Moreover, the behavior of the
hybrid controller under all experiments reveals that HMC behaves as intended. After
identifying the system model and updating it, if it is required, at each control interval,
it adjusts the right amount of memory in order to keep the measured RT close to the
desired RT without over-committing the memory. It takes into account both the memory
utilization and the application response time as decision making indicators.

7.5 Coordinating CPU and Memory Elasticity
Controllers using Fuzzy Control

In this section, we present the experimental evaluation of the proposed fuzzy coordination
approach, presented in Chapter 6 as contribution V. To this aim, we compare the results
of our approach using fuzzy controller (FC) to an approach that does not have such a
coordinator, i.e., non-fuzzy controller (NFC). NFC is based on by simply running the
previously introduced independent work for cpu controller [112] and memory controller
(see Chapter 6 for more details) in parallel without having any synchronization between
the two controllers during the resource provisioning decision. Indeed, the outputs of these
two controllers are directly applied on the VM without any influence of fuzzy controller ’s
outputs. In this case, the inputs for both cpu controller and memory controller are
only the desired RT and the measured RT. In the evaluation scenario for NFC, it is
assumed that an application is either CPU- or memory-intensive, so there is no need
for coordination between the controllers which control these resources separately. The
goal of the evaluation is to show which approach, FC or NFC, meet the desired RT by
predicting the right amount of resources and avoiding under- or over-provisioning. A
controller is said to be better if the desired RT is met without over-provisioning any of
the resources. In what it follows, we first describe the experimental setup and then, we
report and discuss the evaluation results.
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Figure 7.21: Overview of the experimental setup for evaluating the fuzzy coordination
approach

7.5.1 Experimental Setup

The experiments are conducted on a physical machine equipped with 32 cores and 56 GB
of memory. To emulate a typical cloud environment, and apply the vertical elasticity
action, we use Xen hypervisor. Benchmark applications, as shown in Figure 7.21, are
deployed in two separate VMs. VM1 runs the application BL tier, Apache 2.0 with
PHP enabled, and VM2 runs the application DS tier, MySQL. To avoid VM2 being
a bottleneck for any resources, sufficient memory and CPU cores are allocated during
the experiments. The Apache configuration is similar to what was previously described
in Section 7.3.1.

Benchmark applications. To test the applicability of the proposed approach with
a wide range of interactive applications, we perform experiments using three benchmark
applications: RUBiS, RUBBoS, and Olio [9]. These applications are widely-used cloud
benchmarks (see [78, 165, 176]) and represent an eBay-like e-commerce application, a
Slashdot-like bulletin board, and an Amazon-like book store, respectively.

Workloads. Experiments are performed using different workloads to characterize
the controller’s responses to performance changes. We evaluate the controller using
workload generated based on the open and closed system models, previously explained.
The generated workloads gave us freedom of evaluating different parameters. For instance,
to increase the number of requests by five-folds or ten-folds to understand the behavior
of our solution; to induce memory and/or CPU intensive behavior by varying different
parameters such as thinktime, and the number of concurrent users accessing the systems.
To emulate the users accessing the applications, based on the generated workload, httpmon,
previously introduced, is utilized. By using httpmon, a low thinktime would induce high
CPU utilization. On the contrary, a long thinktime with a high number of concurrent
users would induce a high memory utilization while keeping the CPU utilization low.
We test the controller under more extreme scenarios than can be found in real-world
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traces to more stress-test the system. For open clients, the arrival rate and inter-arrival
time are changed. For the closed model, thinktime of each client as well as the number of
concurrent users are varied.

Performance metrics. In our evaluation, we are interested in the mean response
time over 20 seconds that is equal to 4 control intervals, which is long enough to filter the
measurement noise, and at the same time short enough to reveal the transient behavior
of the application.

Experiment process. As shown in Figure 7.21, the experiment starts with feeding
the workload into httpmon (1), and based on the workload at each control interval,
httpmon emulates a specific number of concurrent users to send HTTP GET requests to
the benchmark application (2). At each control interval, 5 seconds in our experiments,
the application-level sensor observes the average of measured RT (3), while the VM-level
sensor measures the average of CPU and memory utilization (4). These sensors send
their monitored information via TCP/IP connection to the controller. Fuzzy controller
computes the corresponding coefficients for CPU Ccpu and memory Cmem, and they are
fed to the respective controllers (5). Then the CPU and memory controllers compute
the amount of the respective resource. Finally, each controller invokes the corresponding
actuator, i.e., the Xen API for CPU and memory allocation, to adjust size of memory or
CPU of VM1 at runtime (6, 6’).

7.5.2 Experimental Results

To evaluate the controllers, we inject a variable load, so as to test how each controller
reacts during sudden workload spikes (i.e., under extreme conditions) under both open
and closed system models. Furthermore, the desired RTs used in the experiments are
varied from relatively high to small target values in order to assess the controller’s
behavior under different scenarios. We discuss the results based on time-series analysis
and aggregate analysis in the following sections.

Time-series analysis

The plots in this section are structured as follows. Each figure shows the results of a single
experiment. Note that we perform a number of experiments and find similar patterns
in the results and then presents one of them. The bottom x-axis represents the time
elapsed since the start of the experiment. The upper graph in each figure plots mean
response time, while the lower graphs plot the number of CPU cores and the amount
of memory required in GB as are computed by the respective controllers and allocated
to the VM hosting the BL tier (i.e., VM1) of the application under test over the next
5 seconds as the control interval.

Figures 7.22 to 7.24 show the results for FC and NFC scenarios with different
desired RTs under open and closed system models for Olio application. In general, the
measured RTs remain stable and close to the desired values under both system models.
Moreover, the RTs converge to the desired values immediately, mostly without being
noticed, after detecting a sudden increase or decrease in workload for FC and NFC
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(b) Closed system model
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Figure 7.22: Olio, under open and closed system models with 0.5sec desired RT

scenarios. However, NFC most of the time over-provisions both memory and CPU. This
is due to asynchronous decision making by the CPU and memory controllers. As a result,
each controller assumes that the performance degradation is due to the lack of resource
controlled by itself. Since cpu controller is more reactive than memory controller due to
the different nature of the controlled resources, it can adapt the allocated CPU more
quickly with the right number of cores. While memory controller is more conservative for
memory adjustment and it remains in over-provisioning state because it needs to consider
the performance stability of its decision. In general, FC allocates the right amount of
both resources without over- or under-provisioning any of the resources.

The other important point to note is that both FC and NFC properly detect and
adapt to the CPU capacity required to meet the target RTs for both open and closed
model systems. Indeed, as it can be observed from the plots presented in Figures 7.22
to 7.24, the open system model requires more capacity compared to the closed system
model for similar configurations. This is because the closed system model waits for the
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(b) Closed system model
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Figure 7.23: Olio, under open and closed system models with 1.0sec desired RT

thinktime after getting a response from the system which reduces the intensity of the
workload. However, memory is over-provisioned under NFC for the reason explained
above. On the contrary, FC allocates the right amount of memory required to meet
the target RT for both open and closed system models due to the coordination of the
memory and CPU controllers.

We also run the experiments with RUBiS and RUBBoS applications to observe the
behavior of the proposed coordination approach with applications which have different
types of resource needs. However, we only present time-series plots for desired RT of 0.5sec
and 1.0sec for RUBiS and RUBBoS, respectively. As can be observed from Figures 7.25
and 7.26, while NFC does not behave well, since it over-provisions memory for RUBiS
application, FC remains stable since provisioning of the resources is synchronized. The
over-provisioning of both CPU and memory is lower in the case of RUBBoS.

In general, FC remains stable both in terms of achieving performance targets and
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(a) Open system model
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(b) Closed system model
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Figure 7.24: Olio, under open and closed system models with 1.5sec desired RT

avoiding resource over- and under-provisioning irrespective of the target values under
both system models. On the other hand, most of the time, NFC makes inconsistent
decisions. In general, it is only cpu controller that does its job under NFC while memory
controller is usually over-provisioning the memory because of its slow reaction due to
the fact that memory is released or reclaimed by the application slowly. Moreover, there
are some instances where the experiments are not able to be completed under NFC as
a result of the application crashing due to low memory allocation (under-provisioning).
Thus, the behavior of NFC is non-deterministic from one run to the other for the same
workload pattern and with the same configurations.
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(a) Open system model
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(b) Closed system model
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Figure 7.25: RUBiS, under open and closed system models with 0.5sec desired RT

Aggregate analysis

To assess the aggregate behaviors of FC in comparison with NFC over the course of the
experiments, we report the mean values for the CPU and memory allocations along with
the values for the mean and standard deviation of RT. Moreover, we also present two
control theoretic metrics which measure the total error observed during the lifespan of
the system under test. These metrics are ISE, presented previously in Equation (7.4),
and integral of the absolute error (IAE) computed as shown in Equation (7.6), where
e (t) = r̃t− rt (t).

IAE =
∑
|e (t)| (7.6)

Table 7.12 shows the aggregate results of the three applications under different desired RTs
and system models. As reported in Table 7.12, for almost all the benchmark applications
the ISE and IAE are relatively smaller for FC compared to NFC under both system
models. This implies that our novel FC takes better decisions than NFC. In some
of the instances where NFC has smaller values of the aggregate errors, it has higher
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(a) Open system model
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(b) Closed system model
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Figure 7.26: RUBBoS, under open and closed system models with 1sec desired RT

resource allocations and standard deviation indicating that the allocations are either
over-provisioned or under-provisioned during the experiment. Generally, the average
resources allocated under FC are almost always less than under NFC. This difference
is significant in some experiments for either of the resources under FC in comparison
with NFC. Figure 7.27 presents the percentage of improvement for FC compared to
NFC in terms of allocated resources and stability of the RT, i.e., lower value of the
standard deviation. In general, it shows that FC is more stable and allocates less resources
compared to NFC.

As shown in Figure 7.27, under RUBiS open system model experiment, the allocated
memory under FC is less by 60.76% (2.67 GB vs. 6.81 GB) compared to NFC for similar
workload pattern while having 64.78% more stability in measured RT. In the case of
CPU, while the values for both FC and NFC are comparable, we observe less CPU cores
in some experiments under FC such as Olio (0.5 sec, open model) which is allocated
56.51% (4.44 CPU cores vs. 10.21 CPU cores) less CPU cores compared to NFC while
again having improved in both allocated memory (18.98%) and stability of RT (29.68%).
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application (r̃t) system
model

control
mode ISE IAE mem

[GB]
CPU
[core]

RT
[sec]

RT
(SD) [sec]

Olio (0.5sec)
open FC 16.65 41.68 3.70 4.44 0.56 0.22

NFC 34.69 56.10 4.57 10.21 0.59 0.32

closed FC 14.32 34.50 4 1.99 0.50 0.21
NFC 24.03 52.47 4.73 2.04 0.52 0.27

Olio (1sec)
open FC 7.60 38.15 3.70 2.21 0.98 0.15

NFC 37.39 48.15 4.57 2.34 1.01 1.29

closed FC 28.12 66.11 4.00 1.39 0.98 0.29
NFC 34.90 75.21 4.73 1.37 1.04 0.33

Olio (1.5sec)
open FC 40.45 86.24 3.93 1.86 1.46 0.35

NFC 34.07 74.91 8.08 1.92 1.50 0.32

closed FC 42.36 89.69 2.25 1.80 1.47 0.36
NFC 39.48 84.17 4.81 1.86 1.51 0.35

RUBiS (0.5sec)
open FC 25.25 42.43 2.67 1.70 0.55 0.27

NFC 190.66 60.10 6.81 1.75 0.56 0.76

closed FC 16.52 43.15 2.19 0.91 0.50 0.22
NFC 355.89 81.94 4.19 0.90 0.56 1.04

RUBBoS (1sec)
open FC 7.04 32.51 1.78 3.50 0.93 0.14

NFC 10.95 21.32 2.23 3.50 1.02 0.18

closed FC 13.04 40.52 1.76 2.16 0.95 0.20
NFC 15.61 39.45 1.83 2.33 0.98 0.22

Table 7.12: Aggregate results under the two system models for Olio, RUBiS and RUBBoS

Besides, even though the aggregate mean RTs are relatively comparable for both FC and
NFC, the standard deviation for FC is relatively smaller than NFC, i.e., more stability
in the case of RT. This implies that the resources allocated under NFC are less well
matched with the needs compared to FC. Moreover, it also indicates that there are more
oscillations under NFC than FC due to improper predictions of the resources.

In general, in all scenarios under NFC, more CPU and memory are allocated on
average during the experiment than with FC under similar configurations despite the fact
that the aggregate mean RTs are comparable. These results clearly reveal that by using
our novel FC the target RTs are met with lower oscillation (lower values for the standard
deviation of RT) while avoiding under- and over-provisioning of either of the resources.
This happens due to fuzzy controller that coordinated the level of requirements of each
resource. Thus, FC is an effective approach that meets the target RTs slightly better,
using a substantially lower amount resources.

7.5.3 Discussion

Experiments highlight the need for coordination of the two vertical controllers acting on
different resources for the same goal, i.e., meeting the application performance objectives.
Specifically, coordination among different controllers prevents conflicting decisions such
as under- or over-provisioning of one or more of the resources while avoiding performance
violations. The experimental results reveal that under the open system model relatively
more improvement is achieved in terms of allocation of both resources and stability
in term of application RT (see Figure 7.27). On the contrary, uncoordinated decision
making can lead to non-deterministic behavior due to the fact that each controller makes a
decision in isolation without considering the effect of the other. That is why the novel FC
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Figure 7.27: Aggregate results: Improvement achieved by using FC compared to NFC

is able to predict the right amount of resources required to satisfy applications’ demands
under a variety extreme conditions using workloads generated based on open and closed
system models. On the other hand, the behavior of NFC, as a baseline approach, is
non-deterministic leading to either resource over-provisioning or under-provisioning. In
general, FC is able to adapt the resources by observing the applications’ performance,
and resources utilization without needing to be explicitly notified about changes in the
workload patterns. In summary, the experimental results reveal these key findings:

• The behavior of NFC is non-deterministic leading to either over provisioning or
under-provisioning of memory. The application performance is met during over-
provisioning of memory as the application performance is literally controlled by
cpu controller. However, this leaves ample unused memory that could have been
used by other VMs of the same PM. On the other hand, the most serious issue is
when memory is under-provisioned which leads the application to crash.

• FC is able to meet the application performance while resources are efficiently utilized.
This is because FC is able to reason about the contribution of each resource under
uncertainty (using fuzzy logic) by observing the corresponding average utilization
values and application RT.

• FC maintains a high utilization of resources. The proposed FC not only guarantees
the application performance, but also achieves high utilization of resources as they
are used as the decision making criteria. Thus FC provides a win-win scenario for
both application owners and also cloud infrastructure providers.

In summary, depending on the nature of the workload, an application can intensively
need arbitrary combinations of resources (e.g., CPU or memory) at different stages of
its execution. Therefore, uncoordinated deployment of resource elasticity controllers
that control different resources for the same application may lead to unpredictable
behavior such as resource over-provisioning, which forces customers to pay for unused
resources, or application crashing due to severe resource shortage as a result of conflicting
decisions. To overcome such issues, careful coordination of controllers ensures achieving
the application performance objective with optimal amount of resources, preventing over-
and under-provisioning.
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CHAPTER 8
Related Work

In this chapter, we present the related work, organized into the following structure:
Section 8.1 presents the literature on managing cloud data centers as well as the simulation
tools that can be used in this area. Section 8.2 describes the existing work related to
the service selection and SLA management in a cloud environment and in particular
multi-cloud. Section 8.3 presents related work on cloud resource elasticity, including
vertical elasticity of CPU, memory and multiple resources. Since control theory is used
in our work to realize the resource elasticity, in Section 8.4, we carefully explore the most
relevant control-theoretic approaches, including fuzzy control that have been applied to
enable resource elasticity in the cloud computing domain.

8.1 Cloud Infrastructure Management

In this section we first give an overview of existing approaches on cloud management and
then focus on existing cloud simulation frameworks.

Although various techniques have been devised for efficient cloud resource management,
an effective solution for governing cloud resources in geographically distributed data
centers is still an open issue. The current work suffers from shortcomings such as:
ignoring the expert knowledge and thereby loosing important information for building
efficient system models; not fully addressing cloud management problems, i.e., VM
placement [117, 129], temperature-aware energy usage [188], and VM migration [16].
In other words, there is a lack of research that tries to model a combination of these
problems while taking into consideration their interconnections and dependencies.

Beloglazov et al. [32] propose a green cloud solution that not only allows to minimize
operating cost but also to reduce the environmental impact. Li et al. [116] present a
consolidation and forecast-based resource provisioning algorithm that utilizes Bayesian
networks. Calcavecchia et al. [38] consider dynamic nature of the incoming stream of
VM allocation requests and propose a technique called backward speculative placement
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(BSP) that projects the past demand behavior of a VM on a candidate target host.
Song et al. [168] state that the key improvement of resource utilization and service
throughput depends on using an optimized dynamic resource allocation method. They
propose a two-tier resource allocation mechanism consisting of local and global resource
allocation with feedback to provide capacities of concurrent applications. A recent
research by Lućanin et al. [124] propose the usage of location- and time-dependent
factors to in controlling distributed data centers to enable flexible energy-efficient cloud
management via SLA models. Altmann et al. [21] propose a cost model along with
a model-based service placement optimization algorithm. Their approach takes into
consideration the total cost of all possible service placement options in federated hybrid
cloud environments and identifies the optimum placement decision.

Despite the mentioned work, there is not enough research attention on the identi-
fication of causal relationships hidden in expert knowledge which can enable a more
cost-aware VM placement across geographically distributed data centers. This is the
motivation behind modeling such relationships using Bayesian networks and applying
multi-criteria decision analysis method to be able to make management decisions under
uncertainty.

Cloud infrastructure simulation frameworks

CloudSim [39] provides a tool-kit for modeling and behavior simulation of various cloud
components such as data centers, PMs, and VMs. It includes typical cloud features,
i.e., VM allocation, cloud federations, and dynamic workloads. It is mainly used to
evaluate cloud resource provisioning strategies in a controlled simulated environment.
D-Cloud [27] is a dedicated test environment, build upon Eucalyptus [140], an open-source
software for building cloud computing environments. D-Cloud allows to simulate different
regular faults in a cloud environment, and to inject them into host operating systems.
PreFail [99] is a framework for systematic and efficient failure exploration, and validation
of correctness of cloud recovery protocols. In comparison with D-Cloud that provides
simulated actual faults, PreFail inserts a failure into the target system or the operating
system library. Using such frameworks, cloud testers can flexibly set up different failure
scenarios, which is addressed in the scope of this thesis. However, none of the existing
tools support features for simulating geographically distributed cloud data centers.

8.2 Multi-Cloud Service Selection

The issues of SLA-based service selection has been widely investigated in both Web
service and cloud computing domains in recent years. A thorough comparison of existing
approaches dealing with SLA in cloud computing has been done in [110]. Among the
research projects introduced in this report, the Contrail project [40, 45] has similar
goals to our research on SLA management for composite services in a multiple cloud
environment with different resource types. However, our focus is on multi-cloud, while
this project works on the federated-cloud model. Moreover, aside the different needs
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for SLA interoperability in these two models, the main goal of the Contrail project is
to allow cloud providers to seamlessly integrate resources from other clouds with their
own infrastructures, and breaks the current customer lock-in situation by allowing live
application migration from one cloud to another. However, our goal is to provide a
framework, as a middleware for cloud customers, for minimizing the infrastructure leasing
cost and SLA violation rate as well as maximizing the customer satisfaction level by
utilizing the infrastructure services from a multi-cloud environment.

A comparative review of existing approaches on service selection for composite Web
services is given in [133]. In Web service domain, Stephen et al. [190] propose a QoS-based
Web service ranking and selection approach. Their approach calculates the satisfaction
score of the user for each QoS parameter based on the basis of prospect theory and then
aggregates the scores in order to select the service with the highest overall score. Their
approach has some significant advantages over other existing work, such as selecting the
service that best satisfies QoS requirements concerning by the user, instead of the service
with the best QoS, which may lead to an over-qualification and can improve utilization
of services. Moreover, by using prospect theory, they model the relation between service
QoS parameters and the user satisfaction more precisely. However, in their work, they
only focus on a single service selection. In the research carried out in this thesis, we
similarly use the principle of prospect theory, but to rank both single cloud services and
the composite cloud services.

For a proper service selection in multi-cloud, a methodology is needed to compare cloud
services based on the various criteria such as the cost and QoS parameters for different
user profiles [148]. In addition, because of the SLA heterogeneity in this environment,
SLA management from both customer and provider perspectives is challenging.

Most of the research efforts that focus on the SLA-based service selection and
allocation in clouds are focused only on maximizing the customer profit [48] and [44] or
cloud infrastructure provider profit [115]. The work in [184] is one of the first research
attempts dealing with resource allocation from the cloud customer’s perspective. This
work is enhanced to support both the end user and the cloud customer (e.g., the
application owner) profits in [185]. The authors propose an allocation strategy for the
cloud customers to maximize their profit and satisfaction level when deploying their
applications in cloud infrastructure services. Their approach also supports the dynamic
changing of customer requests with the goal to minimize the number of used VMs.
However, response time and service initialization time are the only parameters considered
in their proposed SLA used in the service selection. In addition, their evaluation is
limited to one cloud with a single requested VM per Service.

Similar work has investigated service allocation in the cloud [166, 58] by providing an
SLA-driven resource allocation scheme that selects a proper data center among globally
distributed data centers operated by a provider. In contrast, in the research carried out
in this thesis, the composite multi-cloud services are proposed which supports more SLA
parameters such as availability, latency, reputation, throughput, and cost. The concept
of sub-SLA and meta-SLA are first mentioned in the Grid computing domain [143]. The
authors use these concepts to schedule jobs in Grids by utilizing a multi-agent system
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and an SLA negotiation protocol. The usage of these concepts in a multi-cloud, as the
focus of this thesis, significantly differs from this one due to the differences between Grid
and cloud business models.

Compared to the previous research approaches, in the scope of this thesis, we propose
an approach to assist the cloud customer (an application owner) to select the most
suitable cloud infrastructure services from a multi-cloud model while handling the SLA
hierarchy and heterogeneity. Here goal is to maximize the cloud customer profit by
maximizing its SLA satisfaction level, which can be achieved by utilizing prospect theory
in the computation of customer satisfaction.

8.3 Vertical Resource Elasticity

The field of elastic systems in general and elasticity approaches, in particular has been
gaining momentum in cloud computing [96], and several approaches based on different
frameworks, models and techniques have been applied, turning it into a mature field.
In this section, instead of reviewing the breadth of this field, which has been reviewed
in [73, 75, 50, 41], we summarize the work on vertical elasticity in cloud computing. In
theory, any resource could be elastic, however, the practical exploitation depends on the
type of the resource, cost and complexity of the implementation. Since the focus of this
thesis is on the vertical elasticity of memory and CPU, in this section, we review work
related to these resources.

8.3.1 Memory Elasticity

Baruchi et al. [29] compare two techniques for memory elasticity: (i) based on the concept
of moving average (ii) based on Page Faults. They experimentally show that when Page
Faults are used to scale memory, the performance is improved in comparison with the
exponential moving average technique. Dawoud et al. [49] propose the concept of Elastic
VM that supports dynamic resource elasticity feature without rebooting the system. They
experimentally demonstrated that Elastic VM architecture requires less consumption
of resources and avoids scaling-up overhead while guaranteeing SLAs. The method is
claimed to be more suitable for memory elasticity with lower costs and complexity.

Wang et al. [181] use the ability of dynamic memory scaling to improve the performance
of data deduplication (a specialized data compression technique for eliminating duplicate
copies of repeating data). The amount of memory is dynamically set in accordance to
a sampling technique to guarantee the performance of the whole system. Germán et
al. [134] use elasticity rules to adapt the VM memory size of the application need. A
mechanism is proposed to monitor the VM memory and apply vertical elasticity rules in
order to dynamically change the memory size by using the memory ballooning technique
provided by KVM hypervisor. Similar to our research in this thesis, their method shows
that by adapting the VM memory size, the performance level of the running application
can be met. Molto et al. [134] present a mechanism for adapting the VM memory size
to the memory consumption pattern of the application by using a simple elasticity rule.
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Spinner et al. [169] proposes a proactive vertical memory approach which takes the
application performance and the change at the workload in order to adjust the allocated
memory at runtime.

The proposed approaches on vertical memory elasticity in this thesis have several
distinguishing aspects: (i) because of the special challenges in memory elasticity, research
on this topic is scarce compared to other resource elasticity research; (ii) among the
work exploring memory elasticity, most of them [85, 118] look at the data storage tier,
as the effect of memory on retrieving data is clear; therefore, being concerned with the
memory elasticity of the business logic tier (e.g., Apache Web server) has not yet been
well investigated; (iii) we look at memory elasticity from different point of view, taking
the application response time, instead of memory utilization as the most commonly
used indicator of the memory scarcity [29]. In other words, we consider the application
performance as a decision making criterion to scale up or down the memory; (iv) applying
a generic control design process that guarantees the stability of a controlled system to
realize vertical memory elasticity.

8.3.2 CPU Elasticity

Yazdanov and Fetzer [191] develop a specific solution for vertical elasticity of CPU
resources. Their solution is built on top of Xen hypervisor using the combination of
on-the-fly plugging CPU and tuning virtual CPU power to provide a finer grain control
on the physical resources associated to the virtual machine. Spinner et al. [170] propose a
model-based approach that uses the relationship between the resource allocation and the
observed application performance to automatically extract and update the model using
resource demand estimation techniques. This model is then used in a feedback controller
to dynamically adapt the number of virtual CPUs of individual virtual machines.

Kalyvianaki et al. [103] supports vertical elasticity by adopting Kalman filtering and
statistical approaches to track and control the CPU utilization in virtualized environments
in order to realize capacity allocation. Pradeep et al. [144] use two layers of controllers,
one to regulate the relative utilization for each tier of a Web application, and a second
one to further adjust the allocations in cases of CPU contention. Lakwe et al. [112]
present two generic response time performance models, queue length based and inverted
response time, which map performance to capacity and provide performance guarantees
for interactive applications deployed in the cloud. Their proposed requires only minimal
training or knowledge about the hosted applications while simultaneously reacting as
quickly as possible to changes in workloads.

8.3.3 CPU and Memory Elasticity

Lu et al. [121] develop a tool to automatically set resource control for both VMs and
resource pools to meet performance of the application level, as well as resource pool level.
For the former, they translate performance objectives into the appropriate resources,
consisting memory and CPU, by controlling the setting of the individual VMs hosting
the application. At the resource pool level, they ensure that all important applications
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within the resource pool can meet their performance targets by adjusting controls at the
resource pool level.

Yixin et al. [53] design a MIMO controller to regulate server CPU and memory
utilization within specified QoS value for Apache Web server. They show that the MIMO
control technique is able to handle the trade-offs between the speed of metric convergence
and sensitivity to random fluctuations while enforcing the desired policies. Apache
CloudStack [3], as a recent open source software, tries to add the ability to scale up CPU
or memory for running virtual machines based on the predefined compute offerings for
different hypervisors (Xen, VMware [156], and KVM).

Some more recent approaches which consider both CPU and memory [53, 3] use
resource utilization as a decision making criteria which is oblivious to application per-
formance. Although, Lei et al. [121] propose an application-driven model that tries to
ensure response time below a certain threshold, their proposed approach may lead to
resource over-provisioning.

8.4 Control-Theoretic Approaches for Cloud Elasticity

Since control theory is the main solution domain that is used to realize vertical elasticity
in this thesis, in this section we carefully look at the most relevant control-theoretic
approaches that have been applied to enable elasticity for cloud applications. By following
this approach, not only can we position the research done in the scope of this thesis into
this narrow filed in cloud computing, but we can also provide a clear view of the impact
of control theory in this field. Moreover, we briefly introduce work on fuzzy control used
in this thesis.

Controller synthesis

A simple yet general controller synthesis approach proposes in [68, 70], which reduces the
need for strong mathematical background to devise ad-hoc control solutions. Filieri et
al. [67] highlight potential solutions toward application of control theory in construction
of adaptive software. They focus on adaptation of a specific class of models and control
to achieve reliability properties. Maggio et al. [126] study different self-adaptation
strategies and discuss that adaptive and model predictive control systems outperform
other approaches in performance aspect on a-priori unknown situations. There are some
approaches based on control theory (e.g., [55, 108]) that can enhance cloud applications
with the capability to adjust their resources based on changing environmental conditions.
Patikirikorala et al. [146] investigate the benefits and limitations of applying feedback
controllers in cloud computing platforms, and to this aim, they briefly highlight a few
system design requirements. These approaches typically synthesize an elasticity controller
to automatically decide when to activate some optional features. The benefit of such
approaches is that they allow guaranteeing some specific desirable properties. Although
such controllers are resilient against stationary noises, they are proved to be robust
against non-stationary uncertainties.
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Classic control

Some approaches (e.g., [127, 194]) employ classic control techniques, such as proportional
integral derivative (PID), to construct autonomic controllers for adjusting resources.
These controllers depend on simple mathematical models and provide formal guarantees
on the properties of the controller, but they need to consider some assumptions that
constrain their adoption in highly dynamic and volatile environments such as cloud.

Advanced control

Other approaches (e.g., [76, 125, 145]) try to build on classic control theory or classic
queuing models, by proposing parametric models where part of the parameters are
unknown at design time and can be adjusted by adopting adaptive filters such as Kalman
filtering.

Adaptive control

Adaptive control addresses some of the shortcomings of fixed gain controllers by dynami-
cally estimating the model parameters and adjusting the gains of the controller to better
estimate the control reference. Therefore, changes in the system model are detected
on the fly and incorporated into the controller. A relevant example of such adaptive
controller has been employed in [147].

Black box control

Classic control approaches rely on the use of mathematical models that is inherently
limited to the domain where it is possible to accurately define a model structure and
estimate model parameters. Black box and surrogate models address this challenge by
constructing the models from input-output data collected over time, and thus obtaining
models that resemble the system by construction. Interestingly such black box approaches
has been adopted quite a lot in the context of cloud elasticity, e.g., [172, 74].

Online learning approaches

Some other established techniques, such as machine learning, have been exploited to
enhance classic controllers. Classic controllers augmented with learning capabilities
increase the adaptability of the underlying static technique. Such an approach allows
the control solutions to deal with unseen and emerging behaviors that may differ from
the design-time assumptions. Machine learning approaches can be categorized as model-
based and model-free, depending on the use of analytical models. The most popular
model-based approaches use artificial neural networks [125], while popular model-free
techniques use clustering to discover new control rules [189]. In model-based approaches,
the accuracy of the control actions is proportionally related to the model structure and
the training data [125]. In model-free solutions, the accuracy depends on the learning
rate and the size of the action-configuration space [75].
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Fuzzy control

The main difference between the traditional model-based control theory approaches and
knowledge-based control approaches is that model-based approaches assume that a precise
mathematical model of the system to be controlled is explicitly available. Whereas, the
knowledge-based control does not make such an assumption but rely on expert knowledge
[96]. Deriving an accurate mathematical model of the underlying software is a daunting
task due the non-linear dynamics of real systems [89, 194]. Fuzzy control is a known
knowledge-based control approach which has been applied for dynamic resource allocation
in cloud [189]. In fuzzy control, which is typically called as model-free approach, such
non-linear functions of the target system is implicitly constructed through fuzzy rules
and fuzzy inference by imitating human control knowledge. Although this facilitate
knowledge elicitation from users, such approaches are still dependent on users’ inputs.
Some approaches tackle this problem by entangling the fuzzy control with machine
learning techniques [154, 113].
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CHAPTER 9
Conclusion

In this chapter, we present the main conclusion of our research by highlighting the
significance of this thesis in terms of summarizing the contributions and their implications
for the advancement of QoS control in cloud environments (Section 9.1). The limitations of
the thesis are discussed in Section 9.2. Finally, Section 9.3, states the ongoing trends and
open topics in related research areas for future research to build upon the contributions
presented in this work.

9.1 Summary

This thesis addresses controlling the trade-off between QoS and cost in cloud environments
from two different perspectives: (i) the cloud infrastructure provider, who aims to provide
high quality services while trying to minimize the operating costs of cloud infrastructure;
(ii) the cloud customer, who targets the cloud to achieve the cost and QoS benefits. The
introduced contributions of this thesis are aligned with these two perspectives.

First, we tackle the problem of managing geographically distributed cloud infras-
tructures in a QoS-aware and cost-effective manner, taking into account the time- and
location-based parameters in such infrastructures, such as regional electricity prices and
temperature. To this aim, a VM placement approach consisting of VM allocation and
consolidation algorithms is proposed to enable cloud providers in reducing the operating
costs while providing high QoS for their customers. Then, by taking the cloud customer
viewpoint, e.g., an application owner, we propose a multi-cloud service selection approach,
which aims to maximize the benefit of the customer in terms of QoS and cost. To
this aim, the proposed approach selects and composes the best combination of services
in a multi-cloud model. Furthermore, we argue that the existing cloud providers do
not offer any performance guarantees for their services, while for a cloud customer a
poor application performance can easily reduce the revenue by killing the satisfaction
of end users [136, 79, 119]. We address this gap by proposing solutions in which the
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cloud application can become self-adaptive. This is realized by coupling the application
with elasticity controllers, which continuously monitors the application performance and
dynamically adjusts the resource allocations according to the varying workload in order
to meet the application performance objectives.

In the remaining of this section, we provide more details in order to summarized the 
contributions that previously elaborated in Chapters 3 to 6, and evaluated in Chapter 7.

Controlling the trade-off between QoS and cost for the cloud provider

We propose and implement a novel virtual machine placement approach that enable the
provider who operates geographically distributed infrastructures to control the operating
costs (i.e., power, cooling, and SLA violation penalty) while keeping the customers
satisfied in terms of the provided QoS. This approach creates a decision model using
Bayesian networks, and applies multi-criteria decision analysis method along with two
proposed algorithms for the VM allocation and consolidation. For the evaluation, we
focus on geographically distributed cloud data centers that experience frequent power
outages. The proposed approach is evaluated in a simulation setup in comparison with
two state-of-the-art baseline algorithms. The results show that the proposed approach
decreases the energy cost by up to 69% in comparison with the first baseline approach,
and by up to 45% compared to the second baseline approach.

Controlling the trade-off between QoS and cost for the cloud customer

To enable the cloud customer to have a wider range of QoS and cost, we propose a
multi-cloud service allocation framework includes both design-time and runtime activities.
In the scope of this thesis, we mainly focus on developing a design-time multi-cloud
service selection approach. By using the proposed approach, the cloud customer can find
and compose the best set of services from multiple cloud providers with respect to the
QoS and cost requirements. The proposed service selection approach utilizes prospect
theory to score the alternative service offerings based on the given customer SLA. For
the evaluation, the proposed algorithm is compared with a state-of-the-art utility-based
algorithm as the baseline in a realistic simulation environment using a computer-aided
design application use case. The evaluation results show that the proposed approach
effectively selects and composes a set of services that best satisfy the SLA within a
specified leasing budget, requested by the cloud customer.

In order to make cloud applications self-adaptive, we follow a control design process
used in the control theory domain, to synthesize a feedback loop controller, named as
memory controller. The designed memory controller auto-scale the allocated memory of
the virtual machine hosting the cloud applications to guarantee the application perfor-
mance objectives while provisioning memory as the required cloud resource according the
application demands at runtime. We experimentally evaluate the designed controller in a
virtualized environment using a cloud benchmark interactive application. We conduct a
set of experiments under two real-world workload traces. We compare the application
response time and the resource usage of a self-adaptive application (equipped with the
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proposed controller) with a non-adaptive application (under- and over-provisioned the
memory). The experimental results reveal that the controller is able to efficiently save at
least 47% memory usage while meeting the application performance objectives.

Furthermore, following the same control design process, we improve the memory
controller by the idea of taking both application performance and resource utilization
at runtime as decision making criteria for auto-scaling the allocated memory, named as
hybrid memory controller. The aim of the hybrid memory controller is to satisfy the
application performance objectives while achieving a high resource utilization at runtime
in spite of varying workloads. For the evaluation, the results achieved by the hybrid
controller are compared in an experimental setup with the results of two baseline controller
using a cloud benchmark interactive application deployed in a virtualized environment.
The results reveal that the hybrid memory controller achieves a relatively high memory
utilization (close to 84%), while allocating the lowest amount of memory, and having a
high performance stability (i.e., standard deviation of response time) compared to the two
baseline controllers. Generally speaking, such a controller can be used to make a cloud
application self-adaptive and to guarantee the application performance objectives while
decreasing the cost in terms of resource usage, i.e., achieving a high resource utilization
for the application owner.

Afterwards, in order to meet the application performance objectives by auto-scaling
of multiple resources at runtime, we propose a fuzzy coordination approach encompasses
three sub-controllers: fuzzy controller, CPU controller, and memory controller. The
fuzzy controller acts as a coordinator so that the control actions of the CPU and
memory controllers complement each other in order to fulfill the application’s performance
objectives. The CPU controller and memory controller determine the right amount of
CPU and memory, respectively taking the fuzzy controller’s output as an indicator. We
evaluate the proposed solution using three widely used cloud benchmark interactive
applications in a virtualized environment. Different experiments are conducted under
workload traces generated based on open and closed system models. The results show
that the proposed coordination solution is able to maintain the desired performance
with fewer control errors and more efficient resource usage, e.g., up-to 60% less memory
usage in one scenario, and up-to 56% less CPU usage in another scenario compared to
a non-fuzzy approach used as a baseline. Although the proposed fuzzy coordination
approach is applied for coordinating CPU and memory controllers in our research, it is
generic and can be used for any other cloud resources. Moreover, the proposed approach
can be also support the coordination of more than two controllers.

9.2 Limitations of this Thesis

Although some significant results of our proposed solutions have been demonstrated,
it is important to pinpoint the limitations of this thesis. In this section, we state a
number of notable limitations, which highlight observations that are out of scope in our
considerations and remain for future research.
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• As for the proposed solution addressing the cloud infrastructure management, the
current designed Bayesian network only supports the discrete values; therefore all
the continuous input parameters need to be discretized. Such conversions may lead
to losing the accuracy of the output, and consequently can cause making inefficient
virtual machine placement decisions in some circumstance.

• The proposed multi-cloud service allocation framework includes both design-time
and runtime activities, while in the scope of this thesis, we cover mainly the
design-time part. While having the best set of selected services, activities such as
monitoring the running services, detecting the SLA violation, and handling the
interoperability issues are challenging in a multi-cloud environment, but they are
out of the scope of this thesis. Moreover, although prospect theory has been widely
accepted and used in economics, the evaluation of its effectiveness and accuracy
in regarding to its influence on cloud service ranking still needs more studies and
investigation.

• In the scope of this thesis, we argue that vertical elasticity, and in particular
memory elasticity, is a topic that is not well explored by the state-of-the-art
research work. Moreover, our research is among the first attempts in applying
control theoretical approaches to realize vertical resource elasticity where the
priority is about guaranteeing the application performance. However, relying only
on vertical resource elasticity may be insufficient for accommodating large change
of runtime workload. In such case, utilizing horizontal elasticity can be a more
reliable solution, which is out of the scope of our research in this thesis.

• Although the achieved performance violation rate by using the proposed memory
controllers as reactive approaches, are very low, even this amount might be un-
acceptable for the industrial usages, as the money which can be saved by using
such controllers may not compensate the degradation in the satisfactions of users.
Therefore, using a proactive approach that utilizes some estimation methods for the
workloads, to address this concern would be superior. However, one can configure
these controllers with a value lower than the desired output. This way, before
the controlled output goes outside of its desired regime, corrective action can be
triggered by the controller. i.e., explicitly, the controller can behave proactively.
Moreover, the system model used in these controllers is not necessary has to capture
the exact relationship between the controller’s output and the measured output,
and a rough estimation is enough to tune the controller [68]. However, the fact that
the used model rebuilding mechanism in these controllers is linear regression may
limit their abilities in highly dynamic runtime situations such as bursty workload.

• Apart from the challenges addressed throughout the controller designing process,
there are still several technical constraints that should be carefully considered
while focusing on the memory elasticity: (i) depending on the memory allocation
strategy used in hypervisors, reducing memory size may not be beneficial for the
host operating system. However, in the case of the used hypervisors and using
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ballooning mechanism, the released virtual machine memory size can be used for
other co-located virtual machines; (ii) even when the memory size can be changed
at the operating system level, some applications cannot still support the dynamic
memory allocation and eventually need to be restarted to take advantages of the
new allocated memory, such as Java virtual machine (JVM) applications. However,
in the scope of this thesis, we focus on the business logic tier that host the Web
server, which can leverage the new allocated memory in a dynamic and live manner.

• The fuzzy coordination approach presented in this thesis for coordinating multiple
controllers toward the same performance goal, uses a fuzzy knowledge-based,
including the fuzzy rules and membership functions, which are extracted at design
time and are not updated at runtime. Therefore, the proposed approach may not
able to act as expected if the system enters a new circumstance, e.g., sudden and
unexpected change in the nature of the application workload at runtime.

9.3 Future Work

As discussed in the previous section, it can be observed that some important issues are
out of the scope of our proposed solutions in this thesis. These issues imply the following
open research directions.

• To more efficiency conduct virtual machine placement across geographically dis-
tributed cloud infrastructures, utilizing a hybrid Bayesian networks can be con-
sidered. The hybrid Bayesian networks can support both continuous and discrete
input parameters, so it can more realistically analysis the input parameters and
thereby generate a more accurate output. This can eventually lead to make more
precise virtual machine placement decisions.

• Following the runtime activities of the proposed multi-cloud service allocation
framework, including SLA monitoring, and SLA violation detection, is a future
research direction in our work. More specifically, possible monitoring strategies can
be used in this phase, including developing APIs to provide a unified monitoring
on multiple cloud providers, or enabling trusted third parties (TTP) to undertake
the monitoring responsibilities [110]. SLA validation tracking can be done by
utilizing abstract behavioral specification (ABS) language [98]. ABS is a high-level,
executable programming languages, which is used to support full code generation
and timed validation of models [17]. At runtime phase, ABS language can be used
for the validation of SLAs in a multi-cloud environment. SLA violation detection
or proactively detecting the future violations can be done by reasoning on the
monitored information. Modeling the SLA detection problem as a root cause
analysis problem in Bayesian networks [153] seems a promising solution. Strategies
such as migrating to another cloud service provider, or defining a penalty model to
decrease the provider’s reputation can be applied as a compensation model.
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• The proposed memory controllers can be enriched by these future directions: (i)
using techniques such as Kalman Filtering to more precisely rebuild the system
model and hereby be able to more robustly handle the workload fluctuating; (ii)
taking into account the application workload prediction to proactively support
the resource elasticity; (iii) applying the designed controllers on a multiple cloud
environment.

• The proposed fuzzy coordination approach can be improved in various ways such
as: (i) enhancing the fuzzy controller with features such as online learning, e.g.,
using reinforcement learning, for adaptation of the fuzzy rules and membership
functions at runtime; (ii) extending the proposed solution to complement vertical
elasticity with horizontal elasticity; (iii) extending the coordination approach to be
able to dynamically support more distributed controllers in order to pave the way
for complex, and large-scale self-adaptive systems.
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