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Abstract. In recent years, cloud computing providers have been work-
ing to provide highly available and scalable cloud services to keep them-
selves alive in the competitive market of various cloud services. The dif-
ficulty is that to provide such high quality services, they need to enlarge
data centers (DCs), and consequently, to increase operating costs. Hence,
leveraging cost-aware solutions to manage resources is necessary for cloud
providers to decrease the total energy consumption, while keeping their
customers satisfied with high quality services. In this paper, we consider
the cost-aware virtual machine (VM) placement across geographically
distributed DCs as a multi-criteria decision making problem and pro-
pose a novel approach to solve it by utilizing Bayesian Networks and
two algorithms for VM allocation and consolidation. The novelty of our
work lays in building the Bayesian Network according to the extracted
expert knowledge and the probabilistic dependencies among parameters
to make decisions regarding cost-aware VM placement across distributed
DCs, which can face power outages. Moreover, to evaluate the proposed
approach we design a novel simulation framework that provides the re-
quired features for simulating distributed DCs. The performance evalua-
tion results reveal that using the proposed approach can reduce operat-
ing costs by up to 45% in comparison with First-Fit-Decreasing heuristic
method as a baseline algorithm.
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1 Introduction

The emergence of big data centers (DCs) causes power consumption issues for
cloud providers while they usually use energy plans which are not optimal [1].
In other words, how to achieve cost-optimized solutions to run geographically
distributed (geo-distributed) cloud DCs is a major challenge in the era of rising
electricity costs and environmental protection on the one hand, and high ex-
pectation of cloud customers in terms of quality of service (QoS) on the other
hand [2]. From a cloud provider point of view, the designated challenge intro-
duces the necessity of a multi-criteria decision making solution involving several
external factors such as power-outages in DCs, weather conditions, and electric-
ity prices, as well as internal factors, such as resource demands and the usage
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of different cooling modes. All of these factors can influence the VM placement
decision under some levels of uncertainty.

Although various techniques have been devised for efficient cloud resource
management, an effective solution for governing cloud resources in geo-distributed
DCs is still an open issue. The current work suffers from short comings such as:
ignoring the expert knowledge and thereby loosing important information for
building efficient system models; partially addressing cloud management prob-
lems, i.e., virtual machines (VM) placement [3, 4], temperature-aware energy
usage [5], VM migration [6]. In other words, there is a lack of research that tries
to model a combination of these problems while taking into consideration their
interconnections and dependencies.

In this paper, we propose a new approach to reduce the cloud operating
costs taking the cloud provider point of view by proposing a VM placement
approach that is applied across distributed DCs. The proposed approach consists
of the VM allocation and consolidation algorithms. Each of these algorithms
uses a similar Best-Fit-Decreasing (BFD) heuristic that utilizes certain utility
function for assessments of the most optimal decision. The proposed approach
includes three steps: (i) constructing a Bayesian Network (BN) [7] to represent
expert domain knowledge on cloud infrastructure management; (ii) applying
Goal Question Metric (GQM) method [8] to define the underlying measures for
the chosen criteria based on the BN’s output; (iii) applying a method, called
multi-criteria decision aid (MCDA)[9], to create the utility function as the final
decision making indicator. For the evaluation, we compare our approach with
two VM placement baseline algorithms, namely First-Fit-Decreasing heuristic
(FFD) which supports both allocation and migration, as well as a First-Fit
VM allocation approach with no migration strategy, named NoM. Evaluation is
performed using a proposed cloud simulation framework, named CloudNet.

Contributions of the paper are twofold. First, we propose an approach to re-
duce the cloud operating cost by applying VM placement across geo-distributed
DCs. It leverages the cloud expert knowledge and models them in a BN. The
outputs of BN reasoning are further utilized in a utility function built based
on GQM and MCDA methods and used in the proposed VM allocation and
consolidation algorithms. Second, due to the lack of necessary features for eval-
uating of geo-distributed DCs, we propose and design CloudNet as a novel cloud
simulation framework.

The remainder of this paper is organized as follows. Section 2 briefly presents
the related work, while Section 3 brings up the challenges of VM placement across
geo-distributed DCs. Section 4 describes formal definition of the VM placement
problem and proposes a cost-aware solution for it. CloudNet is introduced in
Section 5. While Section 6 includes discussion on the evaluation metrics and
results, Section 7 concludes the paper.

2 Related Work

In this section we first give an overview of existing approaches on cloud man-
agement and then focus on existing cloud simulation frameworks.
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Cloud Management Approaches. Beloglazov et al. [10] propose a green
cloud solution that allows not only to minimize operating cost but also to re-
duce environmental impact. Li et al. [2] present a consolidation and forecast-
based resource provisioning algorithm that utilizes BNs. N. Calcavecchia et al.
[11] consider dynamic nature of the incoming stream of VM allocation requests
and propose a technique called Backward Speculative Placement (BSP) that
projects the past demand behaviour of a VM on a candidate target host. Y.
Song et al. [12] state that the key improvement of resource utilization and service
throughput depends on using an optimized dynamic resource allocation method.
They propose a two-tier resource allocation mechanism consisting of local and
global resource allocation with feedback to provide capacities of concurrent ap-
plications. A recent research by D. Lučanin et al. [13] introduces the usage of
the location- and time-dependent factors to leverage them in distributed DCs to
enable flexible energy-efficient cloud management via SLA models. J. Altmann
et al. [14] propose a cost model along with a model-based service placement
optimization algorithm. Their approach takes into consideration the total cost
of all possible service placement options in federated hybrid cloud environments
and identifies the optimum placement decision.

Despite the mentioned work, there is not enough research attention on iden-
tification of causal relationships hidden in expert knowledge which can enable a
more cost-aware VM placement across geo-distributed DCs. This motivated us
to work on modeling such relationships using BNs and applied methods such as
GQM and MCDA on the designed model.
Cloud Simulation Frameworks. CloudSim [15] provides a tool kit for model-
ing and behaviour simulation of various cloud components such as DCs, physical
machines (PMs), and VMs. It includes typical cloud features, i.e., VM alloca-
tion, cloud federations, and dynamic workloads. Its main usage is the evaluation
of cloud resource provisioning strategies in a controlled simulated environment.
D-Cloud [16] is a dedicated test environment build upon Eucalyptus. It allows
to simulate different regular faults in a cloud environment, and to inject them
into host operating systems. PreFail [17] is a framework for systematic and
efficient failure exploration, and validation of correctness of cloud recovery pro-
tocols. However, none of the existing tools provides features for simulating geo-
distributed cloud DCs. Hence, we design a cloud simulation framework named
CloudNet (see Section 5) to provide such features.

3 Challenges of VM Placement across Distributed DCs

The main goal of a cloud provider is to minimize the operating costs of running
infrastructure while meeting Service Level Agreements (SLAs) with customers.
Cloud providers tend to distribute their DCs all over the world in order to
cover specific customer requirements and improve the performance of their ser-
vices. However, for supporting the VM placement across distributed DCs, cloud
providers need to handle several challenges in order to achieve a cost-aware so-
lution: (i) each region has its own electricity market that directly effects energy
costs. Global electricity price comparison [18] shows quite big price differences
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that can dynamically change in various countries. Moreover, due to the differ-
ent weather in various regions, temperature-aware management of distributed
DCs can greatly reduce energy cost, specially the cooling cost. More precisely,
DCs in cold regions have smaller partial power usage effectiveness (pPUE) rate
[5] or broadly speaking consume less energy to cool their infrastructures (e.g.,
see Figures 2a, and 2d); (ii) power outages can lead to big issues for a cloud
provider. Statistics of electrical outages [19] reports the countries with frequent
power outages in spite of a low energy price, hence, it might be impossible to
guarantee some QoS metrics such as availability in such regions; (iii) decision
making regarding the live VM migration is directly affected by factors such as
VM RAM size, bandwidth of the migration link, and Dirty Page Rate (DPR),
which effects the migration period; (iv) the trade-off between reducing the en-
ergy cost (including power and cooling) of DCs on the one hand, and keep the
customers satisfied in terms of QoS on the other hand, is a multi-criteria decision
making problem for cloud provides. For instance, switching on and off VMs, or
frequent migration of VMs can lead to SLA violations and consequently penalty
costs that can invert the effect of such actions on cost efficiency.

In general, VM placement across distributed DCs with highly dynamic envi-
ronment injects a lot of uncertainty about various internal and external factors
that makes it a challenging multi-criteria decision problem. Therefore, it needs
effective solutions to reduce the operating costs without QoS degradation.

4 The VM Placement Approach

In this section, we first formalize the VM placement problem and then present the
proposed algorithms for cost-aware solution across distributed DCs by utilizing
BNs to deal with uncertainty.

4.1 Problem Formulation

In this section, we introduce a model of the cloud aspects which are used in our
proposed solution.

VM States. At each point of time t each VM can operate within two pos-
sible sets of states, either already allocated to a PM, allocated(t), or has to
be allocated, waiting(t). The set of all VMs is called all(t), where all(t) =
waiting(t)

⋃
allocated(t). The set migrated(t) defines a set of VMs that are

being migrated to other PMs at time t, where migrated(t) ⊆ allocated(t), i.e.,
all VMs of this set are currently under migration. At each execution step, a VM
placement method should find a target PM for: (i) all VMs in the set waiting(t);
(ii) the VMs from the set allocated(t) that their current allocation is not optimal
enough based on a calculated utility value.

Resources. In our modeling, a DC consists of M distinct PMs. Each PM m is
defined with a certain set of resources R. Each resource r has a known limited
capacity Cmr, where m ∈ {1..M} and r ∈ {1..R}. We define the binary variable
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xij(t) that indicates if a VM vi is allocated to a PM j at time t. Equation 1
states that each VM from the set allocated(t) is allocated exactly to one PM.

M∑
j=1

xij = 1, ∀ vi ∈ allocated(t) (1)

Each VM vi has its specifications that define upper bound of each resource
max(vrir(t)) required by it at any point of time. During each execution step,
a VM requires a certain amount of resources vrir that is considered during
decision making process of the VM placement. Since these resources will not
be necessarily provisioned for the VM, we introduce the amount of resources
vpir(t) that are provided for the VM. This value can be less (in case of the VM
downtime) or equal to the resources required by the VM vrir(t) . Equation 2
guarantees that the amount of the provisioned resources for all VMs allocated
to a PM does not exceed the overall capacity of the PM.∑

i ∈ allocated(t)

xij(t) · vpir ≤ Cjr, ∀ j = 1..M, r = 1..R (2)

Moreover, Equation 3 states how the utilization Ujr of a PM j and certain
resource r with allocated VMs can be computed:

Ujr =
∑

i∈allocated(t)

xij(t) · vpir, ∀ j = 1..M, r = 1..R (3)

Note that the resource which we more focus on in this work is CPU.

Live VM migration. In Equation 4, we define the binary variable yij(t) that
indicates a VM vi is under migration to a PM j at time t. This equation states
that each VM from the set migrated(t) can be migrated exactly to one PM.

M∑
j=1

yij = 1, ∀ vi ∈ migrated(t) (4)

In our model, we assume that the migration of a VM will not affect the resources
of a target PM until the migration is completed. Equation 5 states how DPR
depends on the RAM size of a migrated VM:

dpri(t) = f(vriram), ∀ vi ∈ migrated(t) (5)

where dpri(t) is the DPR of the VM and f is a custom defined functional de-
pendency. For simplicity we assume f is a certain linear function. The amount
of migrated RAM of VM i to another PM, migratedRAMi(t), is computed by
Equation 6, where bw(t) is a bandwidth speed rate between the source and the
target PMs and ∆(t) is the period when the VM has been under migration.

migratedRAMi(t) =
bw(t) ·∆(t)

dpri(t)
(6)
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Energy consumption and costs. We utilize a commonly used technique for
power saving, namely Dynamic Voltage and Frequency Scaling (DVFS) [20].
DVFS allows to adjust the frequency of a microprocessor and thereby to reduce
power consumption. In our model, energy consumption of a certain PM j is
defined by CPU utilization and is stated in Equation 7, where f is the power
specification of the PM:

Wj = f(UjCPU ) ·∆(t) (7)

Energy consumption of a DC is the sum of all included PM energy con-
sumptions plus energy consumption for cooling. As originally was modeled in
[5], overall DC’s energy consumption is defined in Equation 8:

WDC =

n∑
i=1

Wi · pPUEDC(T ) (8)

where pPUEDC(T ) is the pPUE rate of a DC at temperature T . Energy costs of
a DC for a given period of time depend on energy price at that period and the
amount of consumption. In our model, energy costs are defined in Equation 9,
where PDC is the energy price at the DC location.

CDC =WDC · PDC (9)

4.2 Decision Model

Building a decision model is started with the definition of objectives and an
appropriate set of actions that allow to achieve the goal. The goal of a cloud
provider is to reduce its operating cost while satisfying its customers in terms of
QoS. In our model, the set of possible decision actions are Allocate VM, Migrate
VM, Switch-on PM, and Switch-off PM. Afterwards, we identify a set of criteria
which are important to be considered from the cloud provider’s point of view
during the VM Placement. Each criterion is a function of a certain quantitative
measurement of a cloud infrastructure. Table 1 contains the list of criteria used
in our model.

There are several assumptions based on which we define the migrated list,
migrated(t). We assume that penalty costs are relatively high for all requests
(e.g., see Table 4), hence the cloud provider should avoid placement of VMs
to PMs where their SLAs can be violated with a high possibility. Therefore we
define VM unavailability (g1) that can be computed according to Equation 10:

g1 =

∑
(downtime duration v)i

billing period
, where v ∈ allocated(t) (10)

where the numerator is the duration of VM downtime i during the billing period.
Higher value of this criterion increases the possibility of SLA violation.

The second criterion, PM power consumption (g2), directly influences energy
costs of the cloud provider. Equation 11 states the calculation of g2 for a certain
PM j:

g2 = (Wmax −Wj · pPUEDC(T ))/Wmax (11)

where Wmax is a constant that defines the maximal utilized power of a PM
by considering of energy consumption for cooling. While Wj is the PM power
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consumption (Equation 7), pPUEDC(T ), as introduced in Equation 8, is the
pPUE rate of the DC at temperature T . Equation 11 utilizes the pPUE rate of
a DC where a certain PM is hosted. Indeed, we define g2 as a function where
values closer to 1 are preferred over the values close to 0.

PM CPU utilization (g3) is an indicator for efficient energy consumption.
Although a cloud provider tends to utilize as less resources as possible, it should
consider the risk of higher CPU demands than the PM capacity which may lead
to QoS degradation.

Runtime load balancing in the cloud is performed via live VM migration.
Since lower VM migration duration (g4) value decreases the period of VM re-
allocation, it allows more efficient usage of cloud resources.

We define Energy price (g5) as another factor that explicitly impacts energy
costs of a cloud provider. Equation 12 defines the calculation of this criterion:

g5 = (Pmax − Ptarget PM )/Pmax (12)

where Pmax defines the maximal energy price over all geo-distributed DCs
Table 1: The list of criteria used for the VM placement problem in our model.

criteria abbreviation related equations
VM unavailability g1 Eq. 10
PM power consumption (incl. cooling) g2 Eqs. 7, 11
PM CPU utilization g3 Eqs. 1, 2, 3
VM migration duration g4 Eqs. 4, 5, 6
Energy price g5 Eq. 12

managed by a certain cloud provider, and Ptarget PM is the energy price of a
DC which hosts the target PM where the VM is going to be migrated to.

In summary, while some of these criteria can be directly measured or observed
(e.g., g2, g3, g5), others may depend on hidden factors (e.g., g1, g4). Since some
criteria may depend on hidden factors, this induces a level of uncertainty during
the decision making process from the cloud provider’s point of view. Therefore
utilizing BNs would be a proper way to handle such issues and reason about these
levels of uncertainty. In the remaining of this section, BN model and MCDA
technique, which are used in decision making process of our approach, will be
introduced.

Bayesian Network. Bayesian Networks are graphical models that represent
variables of interest (e.g., object features, event occurrences) and probabilistic
dependencies among them via direct acyclic graph. The main benefit of such
models lays in possibility to simulate the mechanism of exploring causal relations
between key factors using Bayes theorem. This theorem explains the probability
of an event based on the conditions related to the event [21].

MCDA. Although a BN model can be efficiently used to aid decision mak-
ing by observing the value of uncertainty corresponding to each node, the VM
placement problem, which is addressed in this work, is a multi-criteria decision
problem, so utilizing the BNs alone is insufficient and using methods such as
MCDA is necessary. While deciding about multiple criteria, each alternative can



8 Dmytro Grygorenko, Soodeh Farokhi, and Ivona Brandic

Last SLA 
violation

Last SLA 
violation

Data center
location

Bandwidth

VM CPU

PM CPU

VM RAM
workload

Accumulative
SLA violation

Last SLA 
violation

PM 
CPU workload

Cooling  
mode

Temperature

pPUE

Energy pricePM power 
consumption

VM migration 
duration

PM CPU 
utilization

Bandwidth VM RAM 
workload

DPR

Outage 
duration

VM 
downtime

VM 
unavailability

Data center
location

Power
outage freq.

PM CPU
over-usage

VM CPU 
workload

Allocated 
PM CPU

measurable parameters 
hidden or indirect factors 
decision criteria (Table I)

Fig. 1: A snapshot of the designed Bayesian Network.

be in conflict with the others, therefore all criteria should be combined simulta-
neously and be evaluated considering their preferences. More specifically, MCDA
is a mean to combine measured results and rank all alternatives. These alterna-
tives are evaluated based on a set of criteria. MCDA allows sophisticated and
flexible utilization of BNs in decision making analysis [22].

4.3 Phases

The proposed VM placement approach works in the following three phases which
will be explained in this section:

1. designing the BN to represent expert domain knowledge on cloud infrastruc-
ture management;

2. using GQM method to define the underlying measures for the chosen criteria
based on the BN’s output;

3. applying MCDA method to create the utility function as the final decision
making indicator.

Phase 1: designing Bayesian Network. As the first phase of the proposed
approach, a BN depicted in Figure 1 is constructed. This figure represents a
simplified snapshot2 of the BN. The structure of the BN was defined based on
the extracted knowledge of cloud management experts. There are three types of
nodes in this network. The white nodes define the parameters that can be directly
measured at runtime. The red nodes denote the criteria which were presented in
Table 1 and influence on the VM placement decision making. The values of the
red nodes are further used as the inputs of the utility function. The blue nodes are
the hidden factors that indirectly affect the decision making. The probabilistic
dependencies between nodes are determined based on the experts knowledge,
PM specifications, and the provided temperature and outage statistics.

Furthermore, in order to react earlier to runtime situation (i.e., having proac-
tive behavior) and to make the optimum decision about each action in the cloud
environment, predicted resource workload values are used in the BN model (Fig-
ure 1). For forecasting of these data, we use the three policies introduced in
Table 2. As defined in this table, each policy use a different technique to predict
the future workload.
2 A complete snapshot of the designed BN: https://goo.gl/Gt4DX6

https://goo.gl/Gt4DX6
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Table 2: The workload prediction policies used in BN as input.

policy name abbrev. definition
Last Workload BN-LW next workload value equals to the last one
Trend Workload BN-TW values follows a certain linear trend
Linear Regression Workload BN-LRW applying linear regression on historical data

Phase 2: using GQM method. While the BN was constructed at the first
phase, the second phase is utilizing GQM method to define the underlying mea-
sures for the chosen criteria. Table 3 represents the mapping of each criterion
value ∈ [0, 100] to its corresponding utility value ∈ [0, 1], where 0 denotes the
worst value and 1 indicates the best value. The mapping for g3 was found em-
pirically, while for the other criteria, we consider 10% increment of their value
as 0.1 increment of the corresponding utility value. In case of g3, if the value
exceeds 100% (i.e., over-usage of CPU), the selected action which leads to this
condition will be immediately rejected.

Table 3: Mapping the criteria values ∈ [0, 100] to the utility values ∈ [0, 1].

g1,g2,g4,g5 [%] 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
utility value 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

g3 [%] 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
utility value 0.125 0.25 0.375 0.5 0.625 0.750 0.875 1 0.66 0.33

Phase 3: applying MCDA. As the third phase, once values for each cri-
terion are computed, MCDA is applied in order to combine the values for each
possible action, namely allocation or migration to some PM, and rank the re-
sults. Each criterion gi is defined with a weight wi that represents its relative
importance in the context of the given decision problem. Equation 13 defines the
utility function U(a) of an action a:

U(a) =
∑

wi · gi(a) (13)

The utility function U(a) is used to evaluate the benefits of the possible actions.
A VM is either allocated or migrated to a PM with the highest utility value.

4.4 Algorithms

We propose a VM Placement algorithm based on the defined utility function
(Equation 13) to leverage the most important criteria of cloud infrastructures
such as energy prices, resources consumption, VM availability, and penalty costs
of SLA violation. VM placement algorithm implies the usage of the BN model
based on the application of MCDA approach. VM placement can be divided
into allocation of incoming VM requests to PMs (i.e., the Allocate VM action)
and consolidation of the current running VMs (i.e., the Migrate VM action).
The VM allocation is triggered when a new VM request arrives, while the VM
consolidation is applied periodically on running infrastructure at each interval.
Both VM allocation and consolidation problems can be reduced to a Bin-Packing
problem. In our work, we use a modification of BFD heuristic [23] that will be
introduced in this section.
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Allocation Algorithm. As presented in Algorithm 1, first VMs ∈ waiting(t)
are sorted in decreasing order by their SLA priorities. In our approach we support
three SLA priority levels, namely Gold, Silver, Bronze, which define the priority
of resource allocation for a VM. A VM with a Gold SLA has the highest priority
for the resource allocation and consequently has the highest penalty cost (e.g.,
see Table 4) in case of SLA violation. Afterwards, based on the computed utility
value for each PM according to Equation 13, a PM with the highest utility value
is chosen as the target PM for allocating the VM. If the chosen PM is off, the
action Switch-on PM is applied (Lines 12-13).

Algorithm 1: allocation algorithm.
input : pmList, vmList: vm ∈ waiting(t)
output: vmAllocationMap

1 vmList.sortDecreasingSLAPenalty();
2 foreach vm ∈ vmList do
3 maxUtility← 0 ;
4 allocateToPm← NULL;
5 foreach pm ∈ pmList do
6 utility← computeUtility(pm,vm); . Eq. 13
7 if utility > maxUtility then
8 allocateToPm← pm;
9 maxUtility← utility;

10 if allocateToPm 6= NULL then
11 vmAllocationMap.put(vm, allocateToPm);
12 if allocateToPm.isSwitchedOff() then
13 allocateToPm.switchOn();

14 return vmAllocationMap;

Consolidation Algorithm. The consolidation of the running VMs is per-
formed in two phases. First, we detect the VMs that need to be consolidated,
based on the calculated utility value for each PM using different prediction work-
load policies introduced in Table 2. Second, we migrate them according to Algo-
rithm 2 similar to the allocation algorithm (Algorithm 1). Migration of a VM to
a certain PM is triggered, if the utility value of that PM is higher than the utility
value of the PM where the VM is currently allocated in. Algorithm 2 triggers
Switch-off PM action, if there is no allocated VMs on this PM (Lines 13-15).

5 CloudNet, a Novel Simulation Framework

CloudNet is a novel framework, proposed in this work, which allows cloud
providers to simulate their infrastructure in a repeatable and controllable way,
in order to find the performance bottlenecks, and evaluate the different man-
agement scenarios under real world data traces. The most important feature of
CloudNet that distinguishes it from the other similar frameworks is the ability
of simulating distributed DCs while taking into consideration the energy and



Cost-Aware VM Placement across Distributed DCs using BNs 11

Algorithm 2: consolidation algorithm.
input : pmList, vmList: vm ∈ allocated(t) \ migrated(t), vmAllocationMap
output: vmMigrationMap

1 vmList.sortDecreasingSLAPenalty();
2 foreach vm ∈ vmList do
3 maxUtility← 0 ;
4 migrateToPm← NULL;
5 foreach pm in pmList do
6 utility ← computeUtility(pm,vm); . Eq. 13
7 if utility > maxUtility then
8 migrateToPm← pm;
9 maxUtility← utility;

10 currentPm← vmAllocationMap.get(vm);
11 if migrateToPm 6= currentPm then
12 vmMigrationMap.put(vm, migrateToPm);

13 foreach pm ∈ pmList do
14 if pm.hasNoVMs() then
15 pm.switchOff();

16 return vmMigrationMap;

cooling costs, power outages, weather temperature, and energy prices. It also
supports several SLA priority levels with different penalty costs. For the eval-

Table 4: CloudNet general configuration.

#DCs #PMs #VMs Bronze.SLA penalty Silver.SLA penalty Gold.SLA penalty
5 25 25 0.05$/% violation 0.1$/% violation 0.2$/% violation

Table 5: CloudNet geo-temporal input parameters for each DC.

Data center Brazil Canada Norway Austria Japan
Day/Night switch hours (hour) 8-23 8-23 8-23 6-22 8-23
Day energy price ($/kWh) 0.162 0.117 0.159 0.2484 0.24
Night energy price ($/kWh) 0.162 0.117 0.1113 0.1678 0.20
SAIDI (min/month) 1101.6 220 218 39 6

uation of our VM placement approach, we designed CloudNet to be able to
simulate the management of geo-distributed DCs with frequent power outages.
To facilitate the reproduction of our research, we released the source code of
CloudNet3. More implementation details can be also found in [25].

To evaluate the proposed algorithms based on the regional electricity prices
and temperature differences, we first configured CloudNet as summarised in
Table 4. In our simulation, we have one VM type (1000MIPS, 768MB RAM) and
3 https://github.com/dmitrygrig/CloudNet

https://github.com/dmitrygrig/CloudNet
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Fig. 2: Real world data traces used as inputs for the chosen DCs and evaluation period.
The sources of the exposed data are as follows: a [24], b [18], c and d [5].

one PM type in terms of resource capacity (3000MIPS, 4GB RAM). Furthermore,
each VM has an availability-related SLA metric which is defined as the time of
the overall downtime per billing period. Note that the used billing period is
one month in our work. As mentioned before, our approach supports three SLA
priority levels, namely Gold, Silver, Bronze, with different SLA penalty costs
which are shown in Table 4.

For the evaluation, we setup CloudNet with five distributed DCs in different
time zones. Each location has regional electricity prices and temperature values
which are time-dependent. The temperature changes can cause the necessity
of using different cooling modes and directly effect the pPUE rate. The geo-
temporal input parameters for each DC are shown in Table 5.

The chosen locations for DCs allow to evaluate the proposed algorithms con-
sidering a combination of various real world input data such as electricity price,
power outage statistics, cooling models, and temperature. Conducting the evalu-
ations, we simulate one month (from January 1 till February 1, 2013) operation
of running distributed DCs, with management interval of 1 hour. We use the
following real data traces as the input parameters of CloudNet :

– Temperature data. We retrieved the real temperature data traces for the
chosen period and locations from the public web service, Forecast.IO [24]
with the granularity of 1 hour (see Figure 2a).
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– Cooling modes. We simulated Emerson’s DSETM cooling system, described
in [5]. This system has three different cooling modes: Air, Mechanical, and
Mixed. One mode is switched to another one when the outside temperature is
changed. In our evaluation, we switch Air mode to Mixed after temperature
exceeds 12°C and Mixed to Mechanical after exceeds 18°C. Figure 2b depicts
the switching between various modes of cooling system.

– Electricity prices. Electricity prices for the chosen locations are defined
using statistics in [18]. Some locations such as Austria have different pricing
models for day and night as shown in Table 5. Figure 2c shows changes of
electricity prices for different locations.

– Power outage statistics. We obtained the data traces of the power outages
corresponding to the chosen locations and period for our simulation from [19].
As shown in Table 5, the electric measure system average interruption duration
index (SAIDI) is utilized. Note that we used the real values of a year for
the simulation period of a month in order to better show the ability of our
approach in handling more unreliable DCs in terms of power outage.

– PM power specification. We use data traces of SPECpower benchmark (HP
ML1104) to define power specification for each PM in simulated DCs.

Figure 2d shows the values of the pPUE rate of the chosen DCs. In general,
as shown in Figures 2a, and 2d, a lower temperature drastically decreases pPUE
and hence is more energy efficient due to the lower cooling cost.

6 Evaluation

In this section the proposed cost-aware VM placement approach is evaluated
using the designed BN based on data extracted from the real-world traces in the
presented simulated environment (Section 5).

6.1 Baseline Algorithms

The proposed VM placement approach under three introduced workload pre-
diction policies (see Table 2) is evaluated in comparison with the two baseline
approaches, FFD and an approach named NoM that follows a First-Fit VM
allocation strategy, but does not support VM migration. The rationale behind
having such a baseline is to show that the migration does not have inverse ef-
fect on a cost-aware VM placement algorithm in terms of SLA violation. All
approaches have the same input parameters and configurations. The goal of the
evaluation is to show the ability of the proposed approach to use the designed BN
model which includes the extracted information about the cloud infrastructure
in order to perform more efficient decisions concerning placement of VMs across
distributed DCs. An approach is said to be better if the total cost including
the energy cost and the penalty cost of the SLA violation is minimised. To get
comparison results with FFD approach, we used it under two resource alloca-
tion policies. The first policy, First-Fit-Decreasing Agreed (FFD-A), statistically
4 https://goo.gl/ZvmK6o

https://goo.gl/ZvmK6o
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Fig. 3: Aggregated evaluation results throughout one month of simulation.

allocates the amount of resources agreed by the SLA, while the second policy,
First-Fit-Decreasing Requested (FFD-R), is more dynamic and it allocates the
amount of resources which are required by the VM at runtime.

6.2 Evaluation Metrics

The following metrics are considered as the evaluation metrics: (i) energy cost
that presents the total operating costs includes the computation cost and the
cooling costs of all DCs; (ii) SLA Violation penalty cost that is a penalty cost
and has to be paid by the cloud provider in case of SLA violation; (iii) number of
migrations that represents the migration actions triggered during the simulation
whether to avoid the SLA violation due to the power outage or due to the
consolidation. In general, the migration action should be applied by a cloud
provider if it has appreciable impact on the operating cost.

6.3 Results

Figure 3 shows the aggregated evaluation results obtained during the whole
simulation run, one month. The usage of the proposed approach (reddish plots)
leads to better results with all the three used policies, while under BN-TW policy
it has the best results. BN-TW policy improves costs usage by up to 69% (124$
vs. 407$ total cost) in comparison with NoM approach. This improvement is by
up to 45% (225$ vs. 124$ total cost) in comparison with FFD-R which has less
number of migrations, and by up to 18% (151$ vs. 124$ total cost) in comparison
with FFD-A which has more number of migrations.

The results reveal that the usage of a more enhanced prediction policy, e.g.
linear regression (BN-LRW policy) in our approach, increases the cost efficiency
in the terms of energy costs (incl. computation and cooling), however it has more
SLA violations in comparison with other used policies (i.e., BN-LW, BN-TW).

Moreover, the results in the case of NoM approach in comparison with FFD
and the proposed approach indicate the necessity of supporting migration strat-
egy while managing distributed DCs in order to decrease the operating cost. This
is because of including the knowledge about the dynamic geo-temporal input pa-
rameters and their influence on the energy cost such as temperature, electricity
price, etc. Furthermore, since by using CloudNet we could simulate DCs with
frequent power outages, approaches like NoM even with a high energy cost, still
suffer from SLA violation as they cannot handle situations like a power outage.

In comparison with FFD approach (i.e., FFD-A and FFD-R) the proposed
VM placement approach gained less energy cost while keeping the penalty cost
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under control in a way that the total operating cost is less under all used policies.
The reason is due to the utilization of the prediction workload policies, using
the extracted knowledge about the cloud management (i.e., modeling power
outage in cloud DCs) modeled as BN, the effectiveness of MCDA applied on BN
reasoning, and supporting different SLA models. In summary, the proposed cost-
aware VM placement approach under all workload prediction policies achieved
better results in terms of both energy and total costs in comparison with the
two baseline approaches.

7 Conclusion and Future Work

In this paper, we proposed a novel approach for cost-aware VM placement across
distributed DCs to reduce the energy and penalty costs paid by a cloud provider.
This approach creates a decision model using Bayesian Networks, and then ap-
plies an MCDA method along with two proposed algorithms for the VM al-
location and consolidation. For the evaluation, we focused on geographically
distributed DCs where the cloud infrastructure experiences frequent power out-
ages, and the cloud provider aims to decrease the total cloud operating cost (i.e.,
power, cooling, and violation penalty) while keeping the customers satisfied in
terms of less SLA violation. The proposed approach was evaluated in a novel
simulation framework, which provides the features of distributed DCs, by com-
paring the results with two baseline algorithms, namely NoM and FFD. The
simulation results showed that the proposed approach decreased the energy cost
by up to 69% in comparison with NoM approach and by up to 45% compared
to the FFD approach.

We plan to extend this work along several directions: (i) enhancing VM
placement by using Kalman Filtering as a workload prediction technique; (ii)
utilizing hybrid Bayesian Networks to be able to use the analogous data and
make the BNs’ parameters more precise. The future extensions will lead to make
even more cost-optimized VM placement decisions.
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