Self-adaptation Challenges for Cloud-based Applications:
A Control Theoretic Perspective

Soodeh Farokhi
Faculty of Informatics
Vienna University of Tech.
soodeh.farokhi@tuwien.ac.at

Pooyan Jamshidi
Dept. of Computing,
Imperial College London
p.jamshidi@imperial.ac.uk

Ivona Brandic
Faculty of Informatics
Vienna University of Tech.
ivona.brandic@tuwien.ac.at

Erik Elmroth
Dept. of Computing Science
Umea University
erik.elmroth@cs.umu.se

ABSTRACT

Software applications accessible over the web are typically
subject to very dynamic workloads. Since cloud elasticity
provides the ability to adjust the deployed environment on
the fly, modern software systems tend to target cloud as a
fertile deployment environment. However, relying only on
native elasticity features of cloud service providers is not
sufficient for modern applications. This is because current
features rely on users’ knowledge for configuring the perfor-
mance parameters of the elasticity mechanism and in gen-
eral users cannot optimally determine such sensitive param-
eters. In order to overcome this user dependency, using ap-
proaches from autonomic computing is shown to be appro-
priate. Control theory proposes a systematic way to design
feedback control loops to handle unpredictable changes at
runtime for software applications. Although there are still
substantial challenges to effectively utilize feedback control
in self-adaptation of software systems, software engineering
and control theory communities have made recent progress
to consolidate their differences by identifying challenges that
can be addressed cooperatively. This paper is in the same
vein, but in a narrower domain given that cloud computing
is a sub-domain of software engineering. It aims to highlight
the challenges in the self-adaptation process of cloud-based
applications in the perspective of control engineers.

Categories and Subject Descriptors

H.4 [information systems applications]: miscellaneous;
c.2.4 [computer-communication networks|: distributed
systems—distributed applications

General Terms
theory, performance

Keywords
cloud computing, control theory, adaptive software, elastic-
ity, quality of service (QoS).

1. INTRODUCTION

Web applications have very dynamic workloads generated by
variable numbers of users and they face sudden peaks in the
case of unexpected events. Therefore, dynamic resource allo-
cation is necessary not only to avoid application performance
degradation but also to avoid under-utilized resources. Elas-
ticity, as a main selling point of cloud, is the ability to
rapidly adjust the allocated resource capacity for an applica-
tion according to the time-varying workload in order to meet
the quality of service (QoS) requirements. However, rely-
ing only on elasticity features provided by cloud providers
does not seem sufficient to ensure the sensitive performance
requirements of modern applications. The main reason is
that providing smooth elasticity is intrinsically hard and
native elasticity requires critical performance configurations
to be performed by users. However, in practice this is of-
ten insufficient and results in sub-optimal scaling decisions
which may negatively affect robustness, performance and
cost-efficiently, while also incurring unwanted oscillations
in resource allocations. Therefore, cloud-based applications
while utilizing the flexibility features of cloud environments,
e.g. cloud elasticity, should be entangled with an intelli-
gent software, i.e., autonomic managers, that continuously
monitors application behaviour and automatically adjusts
resource allocations to meet predefined performance targets.
Among other possible solutions for realizing such autonomic
managers, feedback control is promising for handling un-
predictable runtime changes for software applications [30].
Although automated resource provisioning is among the pri-
mary application areas in which control theory is currently
applied [18], cloud environments introduce new challenges
making control theoretical solutions even more relevant.

There are some research on self-adaptive solutions for soft-
ware systems which take software engineering point of view.
Cheng et al. [6] identify critical challenges for the system-
atic software engineering of self-adaptive systems divided by
modelling dimensions, requirements, engineering, and assur-
ances. As a continuous trend De Lemos et al. [4] bring up re-
search challenges when developing, deploying and managing
self-adaptive software systems. They focus on four essential
topics of self-adaptation: design space for self-adaptive so-
lutions, software engineering processes for self-adaptive sys-
tems, from centralized to decentralized control, and practical
run-time verification for self-adaptive systems.



disturbances

_controlled system ___________ l_ R
desired controller’s ! measured
output | output target ! output
controller ! >
' system !
I
E— L S —— !
(a) feedback| icati
eedback loop cloud-based application users
workload
controlled system L ‘
et LRl ittt '

[ target system |
desired | controller’s — - —-— _ largetsystem  ¥_ . _ l: measured
QoS ! output | ¥ ' QoS

1 controller clouc! ba_sed resource Floud »' *—>
| I'| application [~ environment "
H 1 | o e o=l
O '
(b) feedback loop

Figure 1: (a) A standard feedback control; (b) A
realization of self-adaptive cloud-based applications
via feedback control.

Moreover, there is a new trend of applying the control the-
ory in software systems, taking the point of view of control
engineering. Filieri et al. |9] highlight potential solutions to-
wards application of control theory in construction of adap-
tive software. They focus on adaptation of a specific class
of models and control to achieve reliability properties. Mag-
gio et al. [23] study different self-adaptation strategies and
discuss that adaptive and model predictive control systems
outperform other approaches in performance aspect on a
priori unknown situations. Very recently, GI-Dagstuhl sem-
inar |2] gathered two communities of software engineering
and control theory to develop their cooperation for devis-
ing new modeling strategies to empower software engineers
with theoretical and practical skills of control engineers and
bring control to the core of adaptation. As a result of the
last seminar, in [11] they present a general control design
process for software systems which enables automatic (i)
analysis and (ii) synthesis of a controller that is guaran-
teed to have the desired properties and behavior. However,
the research regarding the application of control theory to
enable self-adaptation in software engineering, despite its
recent progress, is still in a very early stage [9].

Considering cloud computing as a sub-domain of software
engineering, there are also some research which focus more
on cloud scenarios. Patikirikorala et al. [26] investigate the
benefits and limitations of applying feedback controllers in
cloud computing platforms, and to this aim, they briefly
highlight a few system design requirements. Kihl et al.
[21] propose a new research area called Cloud Control as
a control theoretic approach to a range of cloud manage-
ment problems. They discuss major challenges for resource-
optimized cloud data centers. Their idea lead to establishing
a series of scientific meeting called Control Cloud Workshop
[1] aim to foster research in the area of cloud computing
and control theory. Current existing research on combining
cloud computing and control theory have predominantly the
perspective of cloud provider, hence their focus is more on
controlling the cloud data centers. Whereas we look at the
challenges from the cloud application’s point of view. In par-
ticular, as discussed, there are only a few research attempts
126, 21}, |1] that address the challenges of self-adaptive cloud-
based applications, so there are still open challenges which
have not been thoroughly investigated.

By combining cloud computing, modern software systems,
and control theory, the ultimate objective is to turn cloud-
based applications into self-adaptive systems which are per-
formance sensitive, robust, flexible, resource-aware and cost-

efficient. The aim of this paper is along the lines of Cloud
Control research area proposed in [21], but with a more pro-
nounced application perspective. We bring up a range of
important research challenges as a research agenda on the
way of realizing self-adaptation for cloud-based applications.

2. SELF-ADAPTIVE CLOUD APPLICATIONS

The key aspect of an elastic software is its capability to au-
tonomic ally adapt at runtime (i.e., self-adapt) in response
to changes in the operating conditions, such as fluctuations
in workload, by automatically stretching and shrinking the
resources. Cloud-based elastic software are the most com-
mon realization of elastic software. This category of soft-
ware systems exploits the ability of cloud environments to
acquire and release resources while servicing end users. For
instance, when the usage of the system increases, the allo-
cated resources may saturate and in order to avoid degra-
dation of QoS, the elastic system allocates more resources
to rectify the situation. Once the incoming workload di-
minishes and the allocated resources become under-utilized,
the elastic system consolidates the load on a portion of re-
sources and releases unused resources to reduce the costs.
In this interpretation, elasticity is a feature or a means to
avoid under or over-provisioning and allows elastic software
to service end users with acceptable QoS while minimizing
the operational costs. In the cloud citation, two elasticity
strategies are defined. Horizontal elasticity is the ability to
provision or release VMs which host the application, while
vertical elasticity is adjusting the capacity (e.g., memory
or cpu) of active individual VMs hosting the application to
cope with runtime changes on demand.

In the context of control theory, a standard feedback control
loop roughly looks as shown in Figure[Th. The system which
is being controlled is labeled target system and the com-
bination of the controller and the target system is labeled
controlled system. It has a desired output that needs to be
achieved by tuning a controller’s output which can be one
or more configurable parameters of the target system. The
controller periodically adjusts the value of the controller’s
output (often named control knob) at runtime in such a way
to ensure continuous satisfaction of the desired output de-
spite disturbances in the target system |9]. The disturbances
are what can affect the measured output, but they are not
controllable [30]. The main goals of the controller is to min-
imize the effect of the disturbances on the behavior of the
target system.

Self-adaptive cloud-based software application can be real-
ized via a feedback control loop architecture (named MAPE
loop comnsisting monitoring, analysis, planning, and execu-
tion, in self-adaptive software terminology [20]). Figure
illustrates a reference architecture, where a controller super-
vises a software application. The target system is an appli-
cation deployed in a cloud environment (named cloud-based
application). The desired output is one or more desired QoS
attributes, such as application throughput or latency, which
are monitored preodicly as the measured output. The num-
ber of user requests (workload) for a cloud-based application
is considered as the disturbances which are unpredictably
varying at runtime. Since the controller cannot control the
workload, it should apply corrective actions and change the
cloud environment in a way to meet the desired QoS.

More specifically, the controller implements a logic that ad-
justs the resources consumed by the application to accom-



Challenges of synthesizing controllers for software applications

[ Uncertainty (e.g., due to measurement imprecision and noises) ]

[ Developing methodological procedures to synthesize controllers ]

Challenges of deploying software applications on cloud environments

[ Heterogeneous interfaces of cloud services (e.g., due to control level)

Unpredictable workloads

Controlling multi-tier applications

Detecting applications’ resource bottlenecks l
Using resources from multiple clouds ]

Scalability (e.g., need for distributed controllers and coordination) ]

Figure 2: Summary of self~-adaptation challenges for
cloud-based applications.

modate user requests. The controller monitors the opera-
tional condition of the cloud-based application. Based on
the controllers’ output, the controller instantiates new vir-
tual machines (VM) or terminates existing ones, or adjusts
the capacity of individual active VMs hosting the applica-
tion to cope with runtime changes on demand. Application
end users access the target system through its public end
point. Finally, the cloud provider calculates the total usage
and bills the application owners for the cost of their appli-
cations deployed and running on the cloud environment. In
order to design and maintain an effective feedback control
loop for cloud-based applications, there are still several chal-
lenges remaining which will be discussed in the next section.
To exemplify the challenges, consider a multi-tenant web
application, a bulletin board applicatiorﬂ that enables users
(tenants) to browse and submit stories or comments. Some
stories may attract a huge number of visitors in a short
period of time. Therefore, as the nature of this web ap-
plication may include sudden bursts or occasionally daily
or monthly peaks, the application must be able to quickly
adjust the deployment infrastructure. To achieve a desired
level of performance requirements, this application can be
implemented as a cloud-based application and employed a
self-adaptive solution. In other words, the application owner
decides to adopt a controller in order to be able to satisfy the
performance requirements of the application users in spite
of dynamic workload at runtime.

3. RESEARCH CHALLENGES

In this section we scratch the surface by exploring the most
important challenges of making a cloud-based application
self-adaptive and briefly propose some hints to pave the way
for this potentially valuable research direction. In order to
have a structure, we take into account the following defini-
tion of cloud-based application. According to NIST [24], a
cloud-based application is a piece of software system that
is deployed over a shared pool of configurable and virtual
resources (e.g. cpu, memory) that can be auto-scaled. As
shown in Figure [2| we start with the relevant challenges for
designing a controller for a software application, then extend
them by bring up challenges when deploying the application
on the cloud and finally more long-term challenges will be
presented that arise due to the cloud computing trend and

le.g., http://slashdot.org

hence are future requirements for cloud-based applications.
Throughout this section, consider the scenario in which the
owner of multi-tenant web application as a cloud-based ap-
plication aims to use or design a controller in order to be
able to satisfy the performance requirements of the users in
spite of dynamic workload at runtime.

Uncertainty. Designing auto-scaling mechanisms pose com-
plexity challenges because of uncertainty |12} [22] [19] that is
likely to be present in every facet of elasticity reasoning. For
instance, users often find it difficult to accurately describe
elasticity policies, or knowledge used for elasticity reasoning
may not be accurate. Moreover, in order to make decisions
about corrective control actions, monitoring tools (or sen-
sors in general) provide input data for auto-scaling decision
making. These measurements are usually not free of noise
and contains random and persistent disturbances that can
affect the clarity of a given property, especially in cloud envi-
ronments. They may also contain irrelevant or meaningless
data. This will affect elastic systems in a way that they
are not be able to replicate a given measurement consis-
tently throughout the control period. These are some of the
potential sources of uncertainty in elastic systems. These
sources, if not explicitly taken into account in elasticity rea-
soning, impact on runtime scaling decisions, often resulting
in unreliability. Theoretically, elasticity should accommo-
date even unexpected changes in capacity, adding resources
when needed and reducing them during periods of low de-
mand, but the decisions to adjust capacity must be made
automatically and accurately to be cost effective. If elastic-
ity decisions are made without considering uncertainty, then
available resources may not be sufficient or cost-effective at
a certain point in time. Several approaches are used in prac-
tice to cope with uncertainty, e.g., in software engineering
|14] or self-adaptive software [8]. However, as discussed in
|19} [22], uncertainty in the context of dynamic resource pro-
visioning for cloud-based application [12] is still unclear.

Developing methodological procedures to synthesize
controllers. A Cloud is not a deployment environment to
which existing software solutions can be transferred easily.
Instead, it offers novel characteristics not existing in tradi-
tional deployment environments like seemingly endless re-
source pool [15]. Therefore, the advantages of using cloud
as a deployment environment for a software systems is lever-
aging such characteristics. For instance, cloud elasticity can
provide consistent performance while minimizing resource
costs for application owners. Horizontal and Vertical elas-
ticity, as two possible elasticity strategies in cloud, have
their own pros and cons to be adopted as control knobs and
should be used in accordance to the application require-
ments at runtime. From the cloud provider’s perspective,
the details of the applications that they host are basically
black-box and not visible. This makes it difficult to accu-
rately devise optimal set of corrective actions (i.e., adopting
a proper auto-scaling controller at runtime or defining auto-
scaling thresholds). Thus, the burden of such tasks falls on
application owner as a cloud user [13], which do not have
deep knowledge about the application workloads, cloud en-
vironment characteristics, and performance modelling. To
address this challenge, the control community can provide
certain generic methodological solutions to facilitate the de-
sign of controllers for software systems and consequently
cloud-based applications. A solution in which the applica-


http://slashdot.org

tion owner is only required to define a desired level of QoS
attributes and put the decision making responsibility on a
smart controller at runtime. As a recent and promising re-
search work, Filieri et al. |10} [11] propose a generic and yet
practical methodology to synthesis controllers for software
systems. The main benefit of their methodology is to re-
duce the need for a strong mathematical background as a
software engineer to devise ad-hoc control solutions. Based
on this, having chosen a target system, one only needs to in-
dicate a controller’s output which can change the behavior
of the target system as well as specifying a desired output to
be achieved by the controller.

Some common issues that should be addressed while design-
ing and maintaining elasticity controllers are as follows: (i)
determining when a resource is insufficient; (ii) quantify-
ing requirements according to application environment; (iii)
identifying when and how much of resource can be added
or removed without degrading the application performance;
(iv) finding a safe adjustment granularity at runtime as the
reaction of the application deployed on cloud for the applied
controller’s outputs is not deterministic.

Heterogeneous interfaces of cloud services. A cloud
application can be deployed either in an infrastructure-as-
a-Service (IaaS) or platform-as-a-service (PaaS). These two
delivery models provide different levels of control on the en-
vironment which hosts the application such as the interface
for monitoring and the interface for a reactive control knobs.
For instance, while the amount of resources (e.g., memory or
cpu) can be adjusted at runtime using an IaaS, such levels
of control on resources are not yet possible for a PaaS. As a
result, from a control perspective, applying certain control
actions or monitoring some QoS attributes might not be pos-
sible in some cloud environments, so the interface between
could-based applications and cloud services can be a chal-
lenging point. Therefore, both interfaces must be designed
cooperatively by taking into account the control level of the
deployed environment to meet application scaling require-
ments while efficiently supportable by the cloud provider.

Unpredictable workloads. Typically, a variety of differ-
ent application types can face different workloads, or even
for a certain cloud-based application, different users usu-
ally have different usage patterns [3]. Self-adaption of such
applications is realized by using controllers that dynami-
cally tune the amount of allocated resources. The change
of the resources should be accordance to the changing work-
load (i.e., disturbances in control lexicon) at runtime. Such
changes are sometimes very sudden and unpredictable with
sporadic runtime peaks. Since controlling the workload is
unrealistic, classification and using workload analyzing tools
can improve workload predictions and then synthesizing con-
trollers to target them more effectively. This knowledge is
also beneficial at runtime for dynamically adopting a number
of controllers to cope with various situations. Ali-Eldin et
al. [3] address this research challenge by propose a workload
analysis and classification tool to analyzes workloads and
assign them to the most suitable elasticity controllers. In a
more generic view, in order to have an effective adaptive so-
lutions for cloud-based applications, selection of a controller
among a set of synthesized controllers based on runtime sit-
uations (e.g., workload) is inevitable. For instance, during
the runtime different vertical elasticity controllers (adjusting
different cloud resources, e.g., memory or cpu) or horizon-

tal elasticity controller can be adopted for a cloud-based
application. Therefore, investigating on solutions in which
dynamic switching among various controllers are doable at
runtime is a valuable research direction.

Detecting applications’ resource bottlenecks. The
host cloud environment should be able to well provide re-
sources which are critical for the application at runtime.
However, in spite of the importance of identifying the na-
ture of application and its resource bottleneck before de-
ployment on cloud environments, application owners do not
pay attention to this issue while choosing a cloud environ-
ment. Without enough knowledge of what is the applica-
tion bottleneck, designing corrective actions (control knob)
is impossible. Different resources can be the main reasons
of performance degradation for an application at runtime.
For instance, an application can be cpu-intensive, memory-
intensive, [O-intensive, or a combination of them. An auto-
scaling controller should be able to adjust the allocation
amount of such resources. To this aim, (i) bottleneck de-
tection should be applied on an application before synthe-
sizing the controller; (ii) application should be deployed on
a cloud environments which can provide elasticity and con-
trol permission on the detected resources. Although, utiliz-
ing methods such as the trigger-less black-box bottleneck
detector” presented in [29] or familiarity with the poten-
tial cloud-based application categories [25] are possible so-
lutions, software engineering community can still provide
clearer guidelines or more effective tools to facilitate this
process for cloud community.

Controlling multi-tier applications. The pervasive and
popular architectural patterns for a cloud-based application
is the 3-tier pattern [15]. It comprises presentation tier
(representing user interface), business tier (featuring the
main business logic), and data tier (managing the persistent
data). Realizing self-adaptation of a multi-tier application
deployed in cloud environment arises new challenges and ac-
quire research attention. In a multi-tier application, every
tier can be the main reason of performance degradation in
a specific period of time; therefore, a possible solution can
be adopting separated controllers for each tier and then use
coordination methods such as message passing techniques
among these tiers to make them isolate and avoid cascading
effects. Each controller can pass the monitored data of its
own tier as part of the input for controllers at other tiers.

Using resources from multiple clouds. The traditional
approach of using a single cloud as the only deployment en-
vironment for an application has several limitations in terms
of QoS (e.g., availability, delay), vendor lock-in, unoptimized
renting cost for worldwide users [27]. Therefore, using re-
sources from multiple clouds has envisioned as a future trend
for cloud community. In such a model, dependent tiers of
a single application can be distributivity deployed across
multiple cloud environments. Therefore, the previous in-
troduced challenges pose more complexity and enlightening
solutions for interoperability and distributed controllers is
getting necessary. As a recent work, Copil et al. 5] propose
control mechanisms to address the elasticity of a multiple
clouds deployment model.

Scalability. On one hand, software applications tend to be
more large-scale and distributed; therefore, cloud environ-
ments are the most suitable environment to host such dis-
tributed applications. On the other hand, centralized con-



trol of a large-scale distributed system is seldom feasible.
A solution which proposes a hierarchical control and lever-
ages distributed controllers seems practical. However, this
causes a problem of co-existence and possible inconsisten-
cies and interferences between controllers. Hence, coordina-
tion is recognized as an important challenge, not completely
solved by existing research |7} (17, 28], and requiring special
attention |16].

4. CONCLUSION

Although feedback control is a powerful approach to con-
struct any adaptive software system, in this paper our focus,
as a member of cloud community, was on self-adaptive cloud-
based applications. We highlighted the potential research
challenges in the self-adaptation process of cloud applica-
tions in the perspective of control engineers. We first dis-
cussed the research challenges which cause due to the nature
of software applications and then we extended them consid-
ering cloud services as a deployment environment for such
applications. Along with the discussion of these challenges,
we briefly proposed possible solutions. The listed challenges
are not meant to be comprehensive but rather aim to help
early researchers to find appropriate topics worth investi-
gating on both communities, or for those who have little
knowledge of the other community. There are still some
open issues which were not covered in this paper such as the
need of model-based controllers for design-time training and
runtime model tuning, or the lack of benchmark application
for comparing different controllers. We hope the paper can
attract the attentions of cloud, software and control engi-
neering communities to address these challenges which can
potentially be the important research directions and barriers
in the achieving self-adaptive cloud-based applications.

Acknowledgment

This work was partially supported by the doctoral college
?Adaptive Distributed Systems”, HALEY project, and the
Vienna Science and Technology Fund (WWTF) through grant
PROSEED.

5. REFERENCES
[1] Cloud Control Workshop Series, ONLINE:

http://cloudresearch.org/workshops, 2015.

Control Theory meets Software Engineering Seminar,

ONLINE: http://www.martinamaggio.com/dagstuhl, 2014,.

[3] A. Ali-Eldin, J. Tordsson, E. Elmroth, and M. Kihl.
‘Workload classification for efficient autoscaling of cloud
resources. Technical report, 2013.

[4] B. H. Cheng, R. De Lemos, H. Giese, P. Inverardi,

J. Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, et al. Software engineering for self-adaptive
systems: A research roadmap. In Software engineering for
self-adaptive systems, pages 1-26. Springer, 2009.

[5] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar. On
controlling cloud services elasticity in heterogeneous clouds.
2014.

[6] R. De Lemos, H. Giese, H. A. Miiller, M. Shaw,

J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M.
Villegas, T. Vogel, et al. Software engineering for
self-adaptive systems: A second research roadmap. In
Software Engineering for Self-Adaptive Systems I, pages
1-32. Springer, 2013.

[7] F. A. de Oliveira, T. Ledoux, and R. Sharrock. A
framework for the coordination of multiple autonomic
managers in cloud environments. In SASO, pages 179-188,
2013.

[8] N. Esfahani and S. Malek. Uncertainty in self-adaptive
software systems. In Software Engineering for Self-Adaptive

[2

9

[10]

(11]

(12]

(13]

14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

24]

(25]

[26]

27]

28]

29]

(30]

Systems 11, pages 214-238. Springer, 2013.

A. Filieri, C. Ghezzi, A. Leva, and M. Maggio.
Self-adaptive software meets control theory: A preliminary
approach supporting reliability requirements. In 26th
International Conference on Automated Software
FEngineering, pages 283-292, 2011.

A. Filieri, H. Hoffmann, and M. Maggio. Automated Design
of Self-Adaptive Software with Control-Theoretical Formal
Guarantees. In ICSE, 2014.

A. Filieri, Maggio, et al. Software engineering meets control
theory. In SEAMS, 2015.

A. Gambi, G. Toffetti, and M. Pezzé. Assurance of
self-adaptive controllers for the cloud. In Assurances for
Self-Adaptive Systems, pages 311-339. Springer, 2013.

A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang.
Adaptive, Model-driven Autoscaling for Cloud
Applications. In ICAC, pages 57-64, 2014.

D. Garlan. Software engineering in an uncertain world. In
FSE/SDP workshop on Future of software engineering
research, pages 125—128. ACM, 2010.

N. Grozev and R. Buyya. Multi-cloud provisioning and load
distribution for three-tier applications. TAAS, 9(3):13,
2014.

S. Gueye, N. De Palma, and E. Rutten. Component-based
autonomic managers for coordination control. In
Coordination Models and Languages, pages 75-89, 2013.

S. Gueye, N. De Palma, E. Rutten, A. Tchana, and

N. Berthier. Coordinating self-sizing and self-repair
managers for multi-tier systems. Future Generation
Computer Systems, 35:14-26, 2014.

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback control of computing systems. John Wiley & Sons,
2004.

P. Jamshidi, A. Ahmad, and C. Pahl. Autonomic resource
provisioning for cloud-based software. In SEAMS, pages
95-104, 2014.

J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41-50, 2003.

M. Kihl, E. Elmroth, J. Tordsson, K.-E. Arzén, and

A. Robertsson. The challenge of cloud control. In Feedback
Computing, 2013.

Q. Lu, X. Xu, L. Zhu, L. Bass, Z. Li, S. Sakr, P. L.
Bannerman, and A. Liu. Incorporating uncertainty into
in-cloud application deployment decisions for availability.
In CLOUD, pages 454-461. IEEE, 2013.

M. Maggio, H. Hoffmann, M. D. Santambrogio,

A. Agarwal, and A. Leva. Decision making in autonomic
computing systems: comparison of approaches and
techniques. In ICAC, pages 201-204, 2011.

P. Mell and T. Grance. The NIST definition of cloud
computing. 2011.

A. Milenkoski, A. Iosup, S. Kounev, K. Sachs, P. Rygielski,
J. Ding, W. Cirne, and F. Rosenberg. Cloud Usage
Patterns: A Formalism for Description of Cloud Usage
Scenarios. CoRR, 2014.

T. Patikirikorala and A. Colman. Feedback controllers in
the cloud. In APSEC, 2010.

D. Petcu. Multi-Cloud: expectations and current
approaches. In Proceedings of the 2013 international
workshop on Multi-cloud applications and federated clouds,
pages 1-6. ACM, 2013.

M. Sedaghat, F. Hernandez, and E. Elmroth. Unifying
cloud management: Towards overall governance of business
level objectives. In CCGrid, pages 591-597, 2011.

H. Wu, A. N. Tantawi, and T. Yu. A Self-Optimizing
Workload Management Solution for Cloud Applications. In
ICWS, pages 483-490, 2013.

X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and
P. Padala. What does control theory bring to systems
research? SIGOPS Operating Systems, 43(1):62-69, 2009.



	Introduction
	Self-adaptive cloud applications
	Research Challenges
	Conclusion
	References

