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Abstract—Vertical elasticity is recognized as a key enabler for
efficient resource utilization of cloud infrastructure through fine-
grained resource provisioning, e.g., allowing CPU cycles to be
leased for as short as a few seconds. However, little research has
been done to support vertical elasticity where the focus is mostly
on a single resource, either CPU or memory, while an application
may need arbitrary combinations of these resources at different
stages of its execution. Nonetheless, the existing techniques cannot
be readily used as-is without proper orchestration since they
may lead to either under- or over-provisioning of resources and
consequently result in undesirable behaviors such as performance
disparity. The contribution of this paper is the design of an
autonomic resource controller using a fuzzy control approach
as a coordination technique. The novel controller dynamically
adjusts the right amount of CPU and memory required to meet
the performance objective of an application, namely its response
time. We perform a thorough experimental evaluation using three
different interactive benchmark applications, RUBiS, RUBBoS,
and Olio, under workload traces generated based on open and
closed system models. The results show that the coordination of
memory and CPU elasticity controllers using the proposed fuzzy
control provisions the right amount of resources to meet the
response time target without over-committing any of the resource
types. In contrast, with no coordinating between controllers, the
behaviour of the system is unpredictable e.g., the application
performance may be met but at the expense of over-provisioning
of one of the resources, or application crashing due to severe
resource shortage as a result of conflicting decisions.

I. INTRODUCTION

Cloud computing provides pools of resources and shares
them among multiple customers’ applications. Instead of com-
mitting to a fixed size of resources on a long-term basis, it
offers rapid elasticity, letting customers quickly adjust their
level of resource consumption as their applications’ require-
ments change.

Elasticity, as a main selling point of cloud computing, is de-
fined as the ability of the cloud infrastructure to rapidly decide
the right amount of resources needed by each application [1].
Two types of elasticity are defined: horizontal and vertical.
While horizontal elasticity allows Virtual Machines (VMs) to
be acquired and released on-demand, vertical elasticity allows
adjusting the resources of individual VMs to cope with runtime
changes. Generally speaking, horizontal elasticity is coarse-
grained, i.e., VMs with static and fixed size configurations.
Vertical elasticity, on the other hand, is fine-grained: the size
of the VMs can be dynamically changed to an arbitrary size
for as short as a few seconds [2].

‖The first two authors have contributed equally to this paper.

Horizontal elasticity has been widely adopted by commer-
cial clouds due to its simplicity as it does not require any
extra support from the Hypervisor. However, due to the static
nature and fixed VM size of the horizontal elasticity, appli-
cations cannot be provisioned with arbitrary configurations of
resources based on their demands. This leads to inefficient
resource utilization as well as Service Level Agreement (SLA)
violations since the demand cannot always exactly fits the
size of the VM. To efficiently utilize resources and avoid
SLA violations, horizontal elasticity should be augmented with
fined-grained resource allocations where VM sizes can be
dynamically adjusted to an arbitrary value according to runtime
demands. Nevertheless, in the last decade, most research
have focused on horizontal, while only few research efforts
have addressed vertical elasticity [3] due to lack of support
from Hypervisors. However, vertical scaling of resources have
recently started to be supported by Hypervisors such as Xen [2]
and KVM [3].

The few research efforts made on vertical elasticity focus
either on CPU vertical scaling [2], [4]–[6], or memory vertical
scaling [3], [7]–[10] but not both. The underlying assumption
made in these works is that the application is either CPU-
intensive or memory-intensive, moreover they do not consider
application performance (e.g., response time) at all [11], [12].
However, during the application life-time, it can show both
characteristics depending on the nature of workload (Sec-
tion II). For example, a chat application may require techniques
such as long-polling to immediate notify the user when a new
message has arrived. Long-polling essentially delays the HTTP
reply, until there is an event to report, which in turn increases
the number of connections on the server, hence increasing its
memory requirements, without significantly increasing CPU
utilization. On the contrary, the chat application might include
a “search in chat history” functionality, which is CPU inten-
sive. Obviously, the application needs to be scaled both CPU-
and memory-wise. However, existing techniques cannot readily
be used as-is for scaling both memory and CPU at the same
time. This is because uncoordinated control actions by different
controllers may lead to suboptimal or inconsistent resource
allocations which may in turn result in SLA violations [13].
The goal of this work is to design an autonomic controller
that dynamically performs coordinated adjustments of CPU
and memory allocations in order to meet the performance
requirement of a cloud-based application.

In order to address the deficiencies of the existing ap-
proaches, and to support the vertical scaling for both CPU and
memory while meeting the target response time (RT), in this
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Figure. 1: CPU and memory usage of RUBiS with different
workload patterns.

paper we design an autonomic resource controller that allocates
the right amount of both resources. The autonomic resource
controller (Section III) is composed of three sub-controllers.
The first is a fuzzy controller (Section IV) based on fuzzy logic
to infer the degree of contributions of both CPU and mem-
ory to applications’ performance change. Using the resource
demand indicators generated from fuzzy controller, the other
two controllers, i.e., cpu controller and memory controller,
determine the amount of CPU and memory needed to meet the
application performance target. In general, fuzzy controller acts
as a coordinator by looking at resource application’s demand
indicators such as the average of CPU and memory utilization
and application’s performance so that the control actions of
the vertical controllers compliment each other to fulfill the
application need. More specifically, we make the following
contributions:

(i) Autonomic provisioning of resources: We propose auto-
nomic controllers that provision the right amount of resources
required to meet the target application RT. Given the varying
and unpredictable nature of workloads and the infrastructure,
the controllers continuously re-adjusts the right amount of
resources to meet the demand;

(ii) Fuzzy controller to coordinate different elasticity con-
trollers: We propose a fuzzy control approach to coordinate
CPU and memory controllers when provisioning CPU and
memory respectively for the same application;

(iii) we perform thorough experimental evaluations on
the proposed approach using three different benchmark ap-
plications. We validate our approach using workload traces
generated based on open and closed system models.

The results show that without coordinating auto-scaling
controllers, the behaviour of the system is unpredictable.
For instance, the application performance may be met but
at the expense of over-provision one of the resources or
application crashing due to severe resource shortage as a
result of conflicting decisions. Moreover, they show that with
careful coordination of auto-scaling controllers application
performance is met with optimal amount of resources (i.e.,
achieving high resource utilization) preventing both resource
over- and under-provisioning (Section V).

II. MOTIVATING SCENARIO

The pervasive and popular architectural patterns for a
cloud-based application is the 3-tier pattern [14]. It comprises
presentation tier (representing user interface), business logic

(BL) tier (featuring the main business logic), and data storage
(DS) tier (managing the persistent data). Multiple tiers of
a cloud-based application may be involved for processing
user requests, thus, requiring different resources such as CPU
cores, memory, or both. Therefore, vertical auto-scaling may
be required for different resources of one or more tier(s). In
this work, we focus on vertical scaling of the BL tier.

To show the BL tier may require different resource con-
figurations, we conducted an experiment on a benchmark
application (RUBiS [15]) by injecting variable workloads,
which induce the intended behavior, at different time intervals.
We deployed the BL and DS tiers of RUBiS on different VMs
and over-provisioned both VMs (the VM hosting BL tier: 8
CPU cores and 4 GB memory and the VM hosting DS tier: 6
CPU cores and 10 GB memory). Then, by configuring a work-
load generator tool, httpmon1, we defined variable workload
dynamics which stress BL tier for either CPU, memory, or both
resources during its life span. Fig. 1(a) and (b), respectively,
depict the experimental results regarding the CPU utilization
and memory utilization of the VM hosting Apache Web
Server as the representative of the BL tier. We set different
configuration in httpmon to emulate different combinations
of CPU or memory demands using a closed-system model [16].
To this aim, we vary the number of concurrent users and
thinktime at each interval (i.e, every 250 seconds) as shown
as two values at the top of Fig. 1, respectively. High thinktime
resembles the case where many clients are doing long-polling,
while high concurrency resembles the case where many clients
are intensively interacting with the BL tier. Therefore, chang-
ing the number of concurrent users and thinktime is a way
to emulate variable CPU and memory requirements for an
application. For example, to emulate an application with high
CPU and low memory requirements, one can set both the
number of concurrent users and the thinktime to relatively low
values (e.g., 1st interval). On the other hand, to induce high
memory and low CPU characteristics, one can set high values
for both the number of concurrent users and the thinktime (e.g.,
2nd interval).

As observed in Fig. 1, there are some intervals where
RUBiS needs less of both resources (1th & 4th intervals),
more memory and less CPU (2nd interval), more CPU and
low memory (3rd interval) as well as more CPU and memory
(5th interval). The results clearly show that the application
may need an arbitrary combination of these resources during
its execution. Thus, designing an autonomic controller that
considers multiple resources, in this case CPU and memory
to meet application performance targets is a challenging task
due to unpredictable workloads and the arbitrary nature of
applications’ resource requirements.

The more memory the VM hosting the BL tier has, the
more processes Web server (e.g. Apache) can allocate and
use; which directly translates into the amount of concurrent re-
quests/clients that it can serve and consequently faster response
time [17]. It is worth mentioning that in general, allocating
more memory to the VM hosting the DS tier will also lead
to the ability of caching more data into memory, therefore,
increasing the probability of a cache hit and consequent
enhancement of the performance. However, due to the lack
of research on memory elasticity of the BL tier, we chose

1https://github.com/cloud-control/httpmon

https://github.com/cloud-control/httpmon
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Figure. 2: The architecture of the autonomic resource con-
troller. Modules in "grey" are the contribution of this work.

to primarily concentrate on this tier. Notice that the proposed
solution targets applications that can benefit from live memory
and CPU elasticity at runtime, i.e. application with dynamic
memory and CPU requirements.

III. AUTONOMIC RESOURCE CONTROLLER

In this section, we first give an overview of the proposed
approach for autonomic resource control, then we briefly
explain the two vertical controllers which are used in this work.

A. Overview

We consider a cloud infrastructure that hosts interactive
applications, each with variable workload dynamics. Each
service has an SLA that stipulates a target value expressed
as mean response time. The goal is to continuously adjust the
allocated resources of applications without human intervention,
so as to drive applications’ performance toward their targets.
Specifically, the desired autonomic resource controller should
be capable of allocating just the right amount of resources for
each application at the right time in order to meet its respective
performance target, avoiding both resource under- and over-
provisioning.

Fig. 2 shows the architecture of the proposed autonomic
resource controller. It loosely follows a Monitor, Analysis,
Planning, and Execution (MAPE) loop based on self-adaptive
software terminology [18]. Monitoring gathers information
such as the observed RT, average CPU and memory utilization
from the hosted services at each interval. During analysis, the
resources required by an application to meet its performance
target are computed using the controllers in two steps.

In the first step, fuzzy controller infers the extent of contribu-
tions of both CPU and memory to applications’ performance
change. More specifically, it generates a value ∈ [-1,+1]
indicating the degree of severity that CPU and memory has
on the performance of the application. A value closer to -1
indicates resource over-provisioning case, while a value closer
to 1 shows under-provisioning situation.

In the second step, using the respective values generated by
fuzzy controller, the CPU and memory controllers, respectively,
determine the number of CPU core(s) and the amount of
memory that should be allocated to the application using
the application RT as a decision making criterion. Previous
monitoring data is used to fit the model parameters, which are
similar to the knowledge component of autonomic controllers,
shown in Fig. 2. Finally, during the planning and execution

phase, Hypervisor is configured to enforce the computed
resources. A high level function of each component depicted
in Fig. 2 is described as follows:

• fuzzy controller. It determines the coefficient with
which CPU, memory, or both are the reason for
the application performance change. Based on the
fuzzy rules specified in the engine, it reasons about
the coefficient values using the current state of the
system. The output of fuzzy controller consists of two
coefficients values, one is corresponding to CPU and
the other one is related to memory, which indicates
either to increase or decrease CPU, memory, or both
(See Section IV).

• cpu controller. An adaptive controller that dynami-
cally adjusts the CPU capacity that should be allocated
to an application based on the values of measured and
desired RTs as well as the CPU coefficient (Ccpu)
received from fuzzy controller. It allocates the right
amount of CPU cores for the applications which
guarantees its respective performance target (See Sec-
tion III-B).

• memory controller. Similar to cpu controller, memory
controller is an adaptive controller that dynamically
tunes the amount of memory required for each appli-
cation using the measured and desired RT values as
well as the value of the memory coefficient (Cmem)
given by fuzzy controller (See Section III-C).

• sensor. This component gathers the application and
VM level performance information such as mean
response time, average CPU utilization, and average
memory utilization from the application and the al-
located VMs, periodically. We refer to this period as
the control interval. These monitoring values are used
as a feedback and decision making criteria in fuzzy
controller for the next control interval.

While cpu controller and memory controller will be briefly
introduced in this section, fuzzy controller as the main part of
the contribution of this paper, will be discussed in details under
Section IV. Note that the goal of both vertical controllers is
to allocate the right amount of the resources that they control
in order to meet the target response time.

B. cpu controller

cpu controller is based on the work presented in [2]. The
inverse relationship between mean response time rti of an
application and the number of CPU cores cpui allocated to
it at each control interval is modeled as:

rti = β/cpui, (1)

where β is a model parameter. The parameter β can be
estimated online from the past measurements of mean response
time and allocated CPU cores, thus compensating dynamically
for small non-linearities in the real system. However, to reduce
the impact of measurement noise, we use a recursive least
square (RLS) filter [19]. In essence, such a filter takes past
estimation of β and the current product rti ∗ cpui to output a
new value that minimizes the least-squares error. A forgetting
factor allows to trade the influence of old values for up-to-
date measurements. In our experiments, we use a forgetting



factor of 0.45. Note that in our experiments, based on the
available resources, we define a boundary for the minimum
and the maximum amount of allocated CPU.

C. memory controller

Memory controller is based on an adaptive version of the
work presented in [10], which follows a control synthesis tech-
nique. The control formulation, as originally devised in [20], is
presented in Eq. (2). The control output at each iteration ctli is
calculated based on its previous value ctli−1 and a coefficient
of the control error (ei = r̃t−rti). The coefficient is based on
the value of α, a model parameter, and pole. The parameter α
is estimated online based on the effect of the control output ctl
on the measured output rt. In this work, we apply the linear
regression technique to capture this relationship at each control
interval.

ctli = ctli−1 −
1− pole

α
· ei (2)

The choice of pole influences the stability of the controlled
system, and determines how fast the system approaches to its
equilibrium. The stability of the controller is ensured as long
as 0 ≤ pole < 1 [20]. The value of pole trades responsive-
ness—how fast the controller reacts— and robustness in the
face of noise. Based on analysing various results, we empiri-
cally chose 0.9 as the bset value of pole in our experiments.
At each control interval, the controller’s output ctl ∈ [0, 1]
is mapped to a memory size memi ∈ [memmin,memmax]
using Eq. (3).

memi = ctli · (memmax −memmin) +memmin (3)

where memmin and memmax are the minimum and maximum
amount of VM memory sizes expressed by the number of
memory units2 memunit. The computed memory size memi at
each control interval is used to adjust the size of VM memory,
and then the influence of this memory change is reflected on
the measured RT of the current iteration.

IV. FUZZY CONTROLLER DESIGN

Due to the non-deterministic behavior of software systems,
it is almost impossible to know with a high degree of con-
fidence, the extent of contributions of different resources to
performance degradation of a software application and how
much of each resource should be provisioned to alleviate the
performance problem. Moreover, the measured data used as
decision making criteria in the process of resource allocation
such as RT, CPU and memory utilization may include sen-
sory noise. If an autonomic resource controller does not pay
attention to such uncertainties, it may cause the oscillations
in resources allocations [21], [22]. To address these issues,
we propose fuzzy control as it provides a means to reason
about uncertainties using highly expressive languages where
the treatment of uncertainty and approximate reasoning is
performed in a natural and efficient way. With this in mind,
in this section, we explain the design of the core part of the
proposed autonomic resource controller, fuzzy controller. We
explain how we developed the fuzzy logic system (FLS) which
is responsible for coordination and reasoning of the autonomic
resource controller.

One of the most well-known applications of fuzzy logic
is Fuzzy control, in which the controller decides based on

2memory unit is a discrete block of memory, e.g 64MB in this work.

the defined fuzzy rules. A typical fuzzy IF-THEN rule R is
expressed as:

R : IF x1 is F1 . . . and xp is Fp︸ ︷︷ ︸
antecedent: input variables and fuzzy linguistic terms

THEN y1 is Gl . . . and yq is Gq︸ ︷︷ ︸
consequent: output control variable

(4)

where antecedent is compound of a number of input variables,
and the consequent is composed of a number of output control
variables. In the case where there are multiple input and output
variables, similar to our case, the system is called multi-input-
multi-output (MIMO) fuzzy system.

Elasticity Reasoning using FLS. A fuzzy knowledge-
base has the information of how best scale the target system
in terms of a set of linguistic rules (i.e., rule (4)). In our
FLS, average RT, average CPU utilization (Ucpu), and average
memory utilization (Umem) are the input variables, while CPU
coefficient (Ccpu) and memory coefficient (Cmem) are the
output control variables. Therefore, the fuzzy system used in
this paper is a MIMO FLS. In this work, the linguistic terms
representing the values of the input variables are divided into
three levels. For RT they are: slow (S), medium (M), and fast
(F). Similarly, for Ucpu and Umem they are: low (L), medium
(M), and high (H). As mentioned, the designed FLS consists
of two output control variables, Ccpu and Cmem. These values
indicate two numbers ∈ [−1, 1] as the degree of severity
that CPU and memory effect on the application performance
change at each control interval.

Extracting Fuzzy Rules. In general for an FLS there are
two ways to design a fuzzy knowledge-base including fuzzy
rules and membership functions (MFs): collecting data from
the system behavior or using human experience. In our work,
we first applied the later by following the approach of Jamshidi
et al. [21] to extract the fuzzy rules from the experts and
identify the MFs and then we empirically update these values
by carefully monitoring and analysing the behavior of the
controller. To design the fuzzy rules, we collected the required
data by performing a data collection among 7 experts who had
deep knowledge on cloud resource allocation and performance
modeling. We prepared several questions to extract the required
knowledge such as the following sample question:

R25 : IF RT is S and Ucpu is H and Umem is L︸ ︷︷ ︸
antecedent

THEN Ccpu is +1 and Cmem is -0.3︸ ︷︷ ︸
consequent

(5)

The experts were asked to determine the consequent (output
control variables) using a number ∈ [−1,1] for each fuzzy rule.
We initially used the mean values from the experts’ responses
for our experiments, and then we empirically tuned some of
the rules taken from experts based on analysing the behavior
of fuzzy controller. The Final fuzzy rules which are used in
our experiments (Section V) are presented in Table I.

Constructing Membership Functions. A MF defines the
degree of truth with a value between 0 and 1. In an FLS,
there is a MF for each linguistic term used for defining each
input variable. In our FLS, there are three linguistic terms for
each input variable, so in total we need to define 9 MFs. We
use both trapezoidal and triangular MFs, as shown in Fig. 3.
We used trapezoidal MFs to represent "Low" ("Fast"), and
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Figure. 3: Membership functions for each linguistic term of (a) response time, (b) CPU utilization, and (c) memory utilization.

Table. I: The defined fuzzy rules.

1  Fast  Low Low -1.0 -1.0
2  Fast  Low Medium -1.0 -0.6
3  Fast  Low High -1.0 0.0
4  Fast Medium Low -0.9 -0.9
5  Fast Medium Medium -0.5 -0.7
6  Fast Medium High -1.0 0.0
7  Fast High Low 0.1 -1.0
8  Fast High Medium 0.1 -0.7
9  Fast High High 0.1 0.1

10 Medium  Low Low -0.9 -0.7
11 Medium  Low Medium -0.8 -0.5
12 Medium  Low High -0.8 0.5
13 Medium Medium Low -0.6 -0.6
14 Medium Medium Medium -0.9 -0.5
15 Medium Medium High -0.9 0.5
16 Medium High Low 0.5 -0.8
17 Medium High Medium 0.4 -0.5
18 Medium High High 0.5 0.5
19 Slow  Low Low -1.0 -0.3
20 Slow  Low Medium -1.0 0.7
21 Slow  Low High -1.0 1.0
22 Slow Medium Low 0.6 -0.2
23 Slow Medium Medium 0.5 0.5
24 Slow Medium High 0.4 1.0
25 Slow High Low 1.0 -0.3
26 Slow High Medium 1.0 0.5
27 Slow High High 1.0 1.0

Consequent 
    Ccpu Cmem

Rule               
(R)

Antecedents 
RT Ucpu   Umem

"High" ("Slow"), and triangular MFs to represent "Medium".
Similar to the fuzzy rules, we initially asked the experts to
locate an interval ⊆ [0,100] for each linguistic term used
as input variable, and then we tuned the extracted intervals
empirically. The MFs are presented in Fig. 3 for each input
variable. While CPU and memory utilization do not need
further normalization since the utilization for each resource
is expressed in percentage, RT value should be mapped to a
value ∈ [0, 100]. In order to do so, we normalize the measured
response time with respect to a reference value as a coefficient
of the target RT. Measured RT values closer to this reference
which are further up away from the target value are set to a
value close to 100. On the contrary, the RT values further down
are set to a value closer to 0 depending on the magnitude of
the value relative to the reference.

Fuzzy Controller. Having designed the FLS with the MFs
and the set of fuzzy rules, the controller can then perform
the elasticity reasoning. Fuzzy controller works based on the
following steps: (i) the measured values of input variables (i.e.,
RT, Ucpu, and Umem) are first fuzzified using the defined
MFs (shown in Fig. 3); (ii) the FLS inferences and reasons
according to the given fuzzified input variables using the
designed fuzzy rules (Table I) to produce the outputs consisting
Ccpu and Cmem; (iii) the output control variables, Ccpu and
Cmem, are fed into cpu controller and memory controller,
respectively, to compute CPU cpui and memory memi for
the next control interval. Fig. 4 (a) and (b) show the outputs
of fuzzy controller (Ccpu and Cmem ∈ [-1,1]) results in a
hyper-surface corresponding to all possible normalized values
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Figure. 4: Output of control variables of fuzzy controller in
accordance with the input variables, (a) CPU coefficient, (b)
memory coefficient. Notice that 3 inputs were modeled in two
separated diagrams with 2 inputs for the sake of visibility.

of the input variables (RT, Ucpu, and Umem ∈ [0,100]). These
diagrams reveal a more conservative behavior of fuzzy con-
troller for controlling the memory allocation in comparison
with CPU due to the fact that applications may crash as a
result of memory shortage.

Coordination of Controllers Using Fuzzy Control. CPU
core(s) and memory sizes are allocated to each VM with
seamless coordination of the two controllers. Fuzzy controller
generates coefficients that signify the extent to which each
resource is needed by the application. Using CPU coefficient
Ccpu and memory coefficient Cmem, the other two controllers
determine the actual amount of each resource that should be
allocated to meet the application’s performance target. Then
cpu controller and memory controller first compute the values
of cpui and memi based on Eq. (1), and Eqs. (2) and (3),
respectively. Finally, both controllers apply the coefficient val-
ues to calculate the respective resource using Eqs. (6) and (7).
In these equations, memi and cpui are the outputs of memory
controller and cpu controller, respectively, while CPUi, and
MEMi are the final amount of resources that should be
allocated at control interval i. Indeed, fuzzy controller mitigates
the change on the number of CPU cores or the amount of
memory, as the direct outputs of cpu controller and memory
controller, at the current interval relative to the previous one
by looking at the utilization of both resources as well as the
measured RT at the same time.

CPUi = CPUi−1 + Ccpu · |cpui − CPUi−1| (6)

MEMi =MEMi−1 + Cmem · |memi −MEMi−1| (7)

To clarify the reasoning behind values of Ccpu or Cmem, a
brief highlight is provided. Zero value for Ccpu or Cmem im-
plies that the performance target is met, thus, there is no need
to change resources and the actions made by cpu controller
and memory controller are bypassed. A value of 1 or -1 for
Ccpu or Cmem indicates that the values computed by these
two controllers should be fully allocated to the VM hosting



the application. However, when the value of −1 < Ccpu < 1
or −1 < Cmem < 1, the actual CPU core(s) or memory size
allocated to the VM is proportional to the respective coefficient
values produced by fuzzy controller instead of allocating the
amount of resources computed by these controllers directly.
In general, a positive coefficient value indicates the need for
additional resources while a negative coefficient value indicates
that the need to reduce resources.

V. PERFORMANCE EVALUATION

In this section, we present the experimental performance
evaluation of the proposed autonomic resource controller based
on a fuzzy controller (FC) as compared to a non-fuzzy con-
troller (NFC). The NFC is based on by simply running the
previous independent work for cpu controller [2] and memory
controller [10] in parallel without having any synchronization
between the two controllers during the resource provisioning
decision. Indeed, the outputs of these two controllers will be
directly applied on the VM without any influence of fuzzy
controller’s outputs, i.e., coefficient values. In this case, the
inputs for both cpu controller and memory controller are only
the desired and measured RT. In NFC evaluation scenario,
it has been assumed that an application is either CPU- or
memory-intensive, so there is no need for coordination be-
tween controllers which control these resources separately. The
evaluation goal is to show which approach, FC or NFC, meet
the desired RT by predicting the right amount of resources
and avoiding under- or over-provisioning. A controller is said
to be better if the desired RT is met without over-provisioning
any of the resources. In what follows, we first describe the
experimental setup and then, we report and discuss the results.

A. Experimental Setup

The experiments were conducted on a Physical Machine
(PM) equipped with 32 cores3 and 56 GB of memory. To
emulate a typical cloud environment and easily perform verti-
cal elasticity, we used Xen Hypervisor [23]. Each benchmark
application, as shown in Fig. 5, was deployed on two separate
VMs. VM1 runs a web server, Apache 2.0 with PHP
enabled, and VM2 runs the application database, MySQL.
To emulate long connections that induce memory-intensive
behaviour on VM1, as would be the case with techniques
such as long-polling, we set keep alive timeout to 10 seconds.
To avoid VM2 being a bottleneck, we provisioned sufficient
memory and CPU cores for that during the experiments.
Besides, we set our experimental setup in a way that there is
no memory consumption limit for Apache running on VM1.
We used Apache MPM prefork module, which is thread
safe and therefore suitable to be used with PHP applications.
We set parameters regarding Apache processes, for example
MaxClients and ServerLimit, to relatively high values,
i.e., 2000 in our experiments. This value is well above the
number of concurrent requests that Apache has to deal with
during any experiments in our work.

Note that, in general for using memory controller, one
should configure the Web server in a way that it would
consume all memory it needs to reach peak performance, and
let the controller find the right amount of memory and adjust
it at each control interval in accordance to the workloads
and measured RT. In other words, it is the controller’s job

3Two AMD OpteronTM6272 processors, 2100 MHz, 16 cores each.
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Figure. 5: Experimental setup for FC evaluation scenario.
Numbers indicate the experimental process.

to provision the right amount of memory to the VM hosting
the Web server in order to meet the performance constraints.
This way the released memory can be used by other VMs or
application which are at the same PM.

Benchmark Applications. To test the applicability of our
contribution with a wide range of interactive applications, we
performed experiments using three benchmark applications:
RUBiS, RUBBoS [24], and Olio [25]. These applications are
widely-used cloud benchmarks (see [26]–[28]) and represent
an eBay-like e-commerce application, a Slashdot-like bulletin
board, and an Amazon-like book store, respectively.

Workloads. Experiments were performed using different
workloads to characterize the controller’s responses to perfor-
mance changes. We evaluated the controller using workload
generated based on the open and closed system models [16].
The generated workloads gave us freedom of evaluating pa-
rameters. For instance, to increase the number of requests
by five-folds or ten-folds to understand the behavior of our
solution; to induce memory and/or CPU intensive behavior by
varying different parameters such as thinktime, and the number
of concurrent users accessing the systems. To emulate the users
accessing the applications, under the generated workload, we
used our custom httpmon workload generator tool, which
supports both open and closed system model client behaviors.
By using httpmon, a low thinktime would induce high CPU
utilization. On the contrary, a long thinktime with a high
number of concurrent users would induce a high memory
utilization while keeping the CPU utilization low. We also kept
the number of requests constant for some time to study the
behavior of the models under both the steady- and transient-
states. We test the controller under more extreme scenarios
than can be found in real world traces to stress-test the resulting
system. For open clients, we changed the arrival rate and inter-
arrival time during the course of the experiments as required to
stress the system. For the closed model, thinktime of each client
as well as the number of concurrent users were varied. The
change in arrival rate or number of users was made instantly.
This made it possible to meaningfully compare the system’s
behavior under the two client models.

Metrics. The RT of a request is defined as the time elapsed
from sending the first byte of the request to receiving the last
byte of the reply. In this work, we are mostly interested in
the average RT over 20 seconds (4 control intervals), which
is a long enough period to filter measurement noise, but short
enough to highlight the transient behavior of an application.

Experiment Process. As shown in Fig. 5, the experiment
starts with feeding the workload traces into httpmon (1),



and based on the workload at each control interval, httpmon
emulates a specific number of concurrent users to send GET
requests to application under test (2). In each control interval,
5 seconds in our experiments, the application sensor observes
the average RT (3), while the VM sensor measures the
average of CPU and memory utilization (4). Both sensors
send their monitored information via TCP/IP connection
to the controller. Depending on the evaluation setup, either
FC or NFC are use and the amount of resources required
to meet the demand is computed. In the case of FC, fuzzy
controller, implemented using fuzzylite library [29], computes
the corresponding coefficients for CPU Ccpu and memory
Cmem, and the result is fed to the respective controllers (5).
Then the CPU and memory controllers compute the amount
of the respective resource. Finally, each controller invokes the
corresponding actuator, i.e., the Xen API for CPU and memory
allocation, to either increase or decrease the allocated memory
or CPU of VM1 at runtime (6, 6’).

B. Time-Series Analysis

To evaluate the controllers, we injected a variable load, so
as to test how each controller reacts during sudden workload
spikes (i.e., under extreme conditions) under both open and
closed system models. Furthermore, the target RTs used in
the experiments were varied from relatively high to small
target values in order to assess the controllers’ behavior under
different scenarios.

The plots in this section are structured as follows. Each
figure shows the results of a single experiment. Note that we
performed a number of experiments and found similar patterns
in the results and then presents one of them. The bottom x-axis
represents the time elapsed since the start of the experiment.
The upper graph in each figure plots mean response times,
while the lower graphs plot the number of CPU cores and
the amount of memory required in GB as were computed by
the respective controllers and allocated to the VM hosting the
BL tier (i.e., VM1) of the application under test over the next
5 seconds as the control interval.

Figs. 6(a) to 6(f) show the results for FC and NFC scenarios
with different target RTs under open and closed system models
for Olio application. In general, the measured RTs remain
stable and close to the target values under both system models.
Moreover, the RTs converge to the target values immediately,
mostly without being noticed, after detecting a sudden increase
or decrease in workload for FC and NFC scenarios. However,
NFC most of the time over-provisions both memory and
CPU. The reason for this is due to asynchronous decision
making by the CPU and memory controllers. As a result, each
controller assumes that the performance degradation is due to
the lack of resource which is controlled by itself. Since cpu
controller is more reactive than memory controller due to the
different nature of the controlled resources, it can adapt the
allocated CPU more quickly with the right number of cores.
While memory controller is more conservative for memory
adjustment and it remains in over-provisioning state because
it needs to consider the performance stability of its decision.
In general, FC allocates the right amount of both resources
without over- or under-provisioning any of the resources.

The other important point to note is that both FC and NFC
properly detect and adapt to the CPU capacity required to meet
the target RTs for both open and closed model systems. Indeed,

as it can be observed from the plots presented in Fig. 6, the
open system model requires more capacity compared to the
closed system model for similar configurations. This is because
the closed system model waits for the thinktime after getting
response from the system which reduces the intensity of the
workload. However, memory is over-provisioned under NFC
for the reason explained above. On the contrary, FC allocates
the right amount of memory required to meet the target RT for
both open and closed system models due to the coordination of
the memory and CPU controllers. Besides, close observation
of the results reveals that the memory allocated using FC is
slightly higher under open system model compared to closed
system model for similar configurations. This is because that
the number of Apache processes created are slightly higher
under open system model than closed system model. Moreover,
there is a slight increase in memory usage as the number
of users or arrival rates increase because of the equivalent
number Apache processes created. However, memory is not
immediately released unlike CPU cores as the number of users
or arrival rates decrease. This is because the idle Apache
processes are not garbage collected immediately.

We also run the experiments with RUBiS and RUBBoS
applications to observe the behaviour of the proposed coordi-
nation approach with applications which have different types
of resource needs. However, due to the lack of space, we only
present time series plots for target RT of 0.5sec and 1.0sec
for RUBiS and RUBBoS, respectively. As can be observed
from Figs. 7 and 8, while NFC does not behave well as it
over-provisions memory for RUBiS application, FC remains
stable since provisioning of the resources is synchronized. The
over-provisioning of both CPU and memory was lower in case
on RUBBoS.

In general, FC remains stable both in terms of achieving
performance targets and avoiding resource over- and under-
provisioning irrespective of the target values under both system
models. On the other hand, most of the time, NFC makes
inconsistent decisions. In general, it is only cpu controller that
does its job under NFC while memory controller is usually
over-provisioning the memory because of its slow reaction
due to the fact that memory is released or reclaimed by
the application slowly. Moreover, there were some instances
where the experiments were not able to be completed under
NFC as a result of application crashing due to low memory
allocation (under-provisioning). Thus, the behavior of NFC
is non-deterministic from one run to the other for the same
workload pattern and with the same configurations.

C. Aggregate Analysis

To assess the aggregate behaviors of FC in comparison with
NFC over the course of the experiments, we report the mean
values for the CPU and memory allocations along with the val-
ues for the mean and standard deviation (SD) of RT. Moreover,
we also present two control theoretic metrics which measure
the total error observed during the life span of the system
under test. These metrics are Integral of Squared Error (ISE)
and Integral of the Absolute Error (IAE) which are computed
as shown in Eqs. (8) and (9), where e (t) = r̃t− rt (t).

ISE =
∑

(e (t))
2 (8)

IAE =
∑
|e (t)| (9)



NFC  RT
FC  RT

NFC memory
FC  memory

NFC  cores
FC  cores

 0
 0.5

 1
 1.5

 2
 2.5

 3

R
e

s
p

o
n

s
e

 t
im

e
[s

e
c
o

n
d

s
]

[Arrival rate [request / second], Inter-arrival time]

500, 1 1000, 2 300, 0.1 600, 1 500, 0.5

 0

 1

 2

 3

 4

C
a

p
a

c
it
y

[C
P

U
s
]

 0

 2

 4

 6

 8

0 5 10 15 20 25

C
a

p
a

c
it
y

[M
e

m
o

ry
 i
n

 G
B

]

Time [Minutes]

((a)) open system model, 0.5sec target

NFC  RT
FC  RT

NFC memory
FC  memory

NFC  cores
FC  cores

 0
 0.5

 1
 1.5

 2
 2.5

 3

R
e

s
p

o
n

s
e

 t
im

e
[s

e
c
o

n
d

s
]

[Users, thinktime]

500, 1 1000, 2 300, 0.1 600, 1 500, 0.5

 0

 1

 2

 3

 4

C
a

p
a

c
it
y

[C
P

U
s
]

 0

 2

 4

 6

 8

0 5 10 15 20 25

C
a

p
a

c
it
y

[M
e

m
o

ry
 i
n

 G
B

]

Time [Minutes]

((b)) closed system model, 0.5sec target
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((c)) open system model, 1.0sec target
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Figure. 6: Olio– under open and closed system models with with 0.5sec, 1.0sec and 1.5sec target response times.



Table. II: Aggregated results under the two system models for Olio, RUBiS and RUBBoS with various target RTs.

Application (target RT) System
Model

Control
Mode ISE IAE Memory usage

(mean) [GB]
CPU usage
(mean) [core]

RT
(mean) [sec]

RT
(SD) [sec]

Olio (0.5sec)
open FC 16.65 41.68 3.70 4.44 0.56 0.22

NFC 34.69 56.10 4.57 10.21 0.59 0.32

closed FC 14.32 34.50 4 1.99 0.50 0.21
NFC 24.03 52.47 4.73 2.04 0.52 0.27

Olio (1sec)
open FC 7.60 38.15 3.70 2.21 0.98 0.15

NFC 37.39 48.15 4.57 2.34 1.01 1.29

closed FC 28.12 66.11 4.00 1.39 0.98 0.29
NFC 34.90 75.21 4.73 1.37 1.04 0.33

Olio (1.5sec)
open FC 40.45 86.24 3.93 1.86 1.46 0.35

NFC 34.07 74.91 8.08 1.92 1.50 0.32

closed FC 42.36 89.69 2.25 1.80 1.47 0.36
NFC 39.48 84.17 4.81 1.86 1.51 0.35

RUBiS (0.5sec)
open FC 25.25 42.43 2.67 1.70 0.55 0.27

NFC 190.66 60.10 6.81 1.75 0.56 0.76

closed FC 16.52 43.15 2.19 0.91 0.50 0.22
NFC 355.89 81.94 4.19 0.90 0.56 1.04

RUBBoS (1sec)
open FC 7.04 32.51 1.78 3.50 0.93 0.14

NFC 10.95 21.32 2.23 3.50 1.02 0.18

closed FC 13.04 40.52 1.76 2.16 0.95 0.20
NFC 15.61 39.45 1.83 2.33 0.98 0.22
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Figure. 7: RUBiS– under open and closed system models with 0.5sec target response time.
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Figure. 8: RUBBoS– under open and closed system models with 1sec target response time.
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Figure. 9: Comparison of the aggregated results under FC compared to NFC for the allocated memory, allocated CPU, and
stability of RT, based on the values reported at Table II.

Table II shows these aggregated results of the three applica-
tions under different target RTs and system models. As shown
in Table II, for almost all the benchmark applications the
ISE and IAE are relatively smaller for FC compared to NFC
under both system models. This implies that our novel FC
takes better decisions than NFC. In some of instances where
NFC has smaller values of the aggregate errors, it has higher
resource allocations and standard deviation indicating that the
allocations were either over-provisioned or under-provisioned
during the experiment. Generally, the average resources allo-
cated under FC is almost always less than under NFC. This
difference is significant in some experiments for either of the
resources under FC in comparison with NFC. Fig. 9 presents
the percentage of improvements for FC compared to NFC in
terms of allocated resources and stability of the RT, i.e., lower
value for the standard deviation. In general, it shows that FC
is more stable and allocates less resources compared to NFC.

As shown in Fig. 9, under RUBiS open system model
experiment, the allocated memory under FC was less by
60.76% (2.67 GB vs. 6.81 GB) compared to NFC for similar
workload pattern while having 64.78% more stability in RT.
In case of CPU, while the values for both FC and NFC were
comparable, we observed less CPU cores in some experiments
under FC such as Olio (0.5 sec, open model) which has allo-
cated 56.51% (4.44 CPU cores vs. 10.21 CPU cores) less CPU
cores compared to NFC while again having improvement in
both allocated memory (18.98%) and stability of RT (29.68%).
Besides, even though the aggregated mean RTs were relatively
comparable for both FC and NFC, the standard deviation for
FC is relatively smaller than NFC, i.e., more stability in case of
RT. This implies that the resources allocated under NFC were
less well matched with the needs compared to FC. Moreover,
it also indicates that there were more oscillations under NFC
than FC due to improper prediction of the resources.

In general, in all scenarios under NFC, more CPU and
memory were allocated on average during the experiment than
with FC under similar configurations despite the fact that the
aggregate mean RTs are comparable. These results clearly
reveal that by using our novel FC the target RTs were met
with lower oscillation (lower values for the standard deviation
of RT) while avoiding under- and over-provisioning of either
of the resources. This happens due to fuzzy controller that
coordinated the level of requirements of each resource. Thus,
FC is an effective approach that meets the target RTs slightly
better, using a substantially lower amount resources.
D. Discussion

Experiments highlighted the need for coordination of the
two vertical controllers acting on different resources for the
same goal–meeting applications performance demands. Specif-
ically, coordination among the different controllers prevents
conflicting decisions such as under- or over-provisioning of

one or more of the resources while avoiding performance
violations. The experimental results revealed that under open
system model relatively more improvement was achieved in
terms of allocation of both resources and stability in term of
application RT (see Fig. 9). On the contrary, uncoordinated
decision making can lead to non-deterministic behavior due
to the fact that each controller makes decision in isolation
without considering the effect of the other. That is why the
novel FC was able to predict the right amount of resources
required to satisfy applications’ demands under a variety
extreme conditions using workloads generated based on open
and closed system models. On the other hand, the behavior of
NFC, as a baseline approach, was non-deterministic leading
to either resource over-provisioning or under-provisioning. In
general, FC was able to adapt the resources by observing the
applications’ performance, and average resources’ utilization
without needing to be explicitly notified about changes in the
workload patterns. In summary, the experimental results reveal
the following key findings:

(i) the behavior of NFC was non-deterministic leading to
either over provisioning or under-provisioning of memory. The
applications performance was met during over-provisioning of
memory as the application performance was literally controlled
by cpu controller. However, this leaves ample unused memory
that could have been used by other VMs of the same PM. On
the other hand, the most serious issue was when memory was
under-provisioned which led the application to crash;

(ii) FC was able to meet applications performance while
resources were efficiently utilized. This is because FC is
able to reason about the contribution of each resource under
uncertainty (using fuzzy logic) by observing the corresponding
average utilization values and application RT;

(iii) FC maintains high utilization of resources. The pro-
posed FC not only guarantees the application performance
but also achieves high utilization of resources as they are
used as the decision making criteria. Thus FC provides a
win-win scenario for both application owners and also cloud
infrastructure providers.

In summary, depending on the nature of the workload,
an application can intensively need arbitrary combinations
of resources (e.g., CPU or memory) at different stages of
its execution. Therefore, uncoordinated deployment of re-
source elasticity controllers that control different resources
for the same application may lead to unpredictable behavior
such as resource over-provisioning, which forces customers
to pay for unused resources, or application crashing due
to severe resource shortage as a result of conflicting deci-
sions. To overcome such issues, careful coordination of con-
trollers ensures application performance is met with optimal
amount of resources, preventing both resource over- and under-
provisioning.



VI. RELATED WORK

In theory, any resource could be elastic, however, the
practical exploitation depends on the type of the resource, cost
and complexity of the implementation. Since the focus of this
paper is on vertical scaling of CPU and memory, we review
work related to these resources. Moreover, we briefly introduce
work on fuzzy control, as a used approach in our work.

A. CPU Elasticity

Kalyvianaki et al. [5] design a controller using Kalman
filtering to control allocation based on the CPU utilization.
The authors in [4] propose a two stage controller to allocate
CPU cores for different tiers of a multi-tier application. While
the first controller regulates the relative CPU utilization of each
tier, the second controller adjusts the allocations in cases of
CPU contention. Yazdanov and Fetzer [30] develop a specific
solution for vertical scaling of CPU resources. Their solution
are built on top of Xen Hypervisor using combination of on-
the-fly plugging CPU and tuning virtual CPU power to provide
a finer grain control of the physical resources associated to
the VM. Spinner et al. [6] propose a model-based approach
that uses the relationship between the resource allocation
and the observed application performance to automatically
extract and update the model using resource demand estimation
techniques. Lakew et al. [2] present two generic response time
performance models, queue length based and inverted response
time, which map performance to CPU capacity and provide
performance guarantees for interactive applications deployed
in the cloud. Indeed, this is the cpu controller that served as
a building-block in the present contribution.

B. Memory Elasticity

Baruchi et al. [7] compare two techniques for memory
elasticity: exponential moving average (EMA), and page faults.
They demonstrate that scaling memory using page faults im-
prove performance as compared to the EMA technique. Wang
et al. [9] propose a mechanism to dynamically set the amount
of memory required to meet the performance of an application
using sampling techniques. The authors in [3] use rules to
adapt the VM memory size to the application requirements.
The application’s memory usage is monitored and then vertical
elasticity rules are applied in order to dynamically change
the memory size by using the memory ballooning technique
provided by KVM Hypervisor. Molto et al. [3] present a
mechanism for adjusting the VM memory size based on the
memory consumption pattern of the application using a simple
elasticity rule.

C. CPU and Memory Elasticity

Lu et al. [31] develop a tool to automatically set resource
control for both VMs and resource pools to meet performance
of the application level, as well as resource pool level. For the
former, they translate performance objectives into the appro-
priate resources, consisting memory and CPU, by controlling
setting of the individual VMs running that application. At the
resource pool level, they ensure that all important applications
within the resource pool can meet their performance targets by
adjusting controls at the resource pool level. In [11] a MIMO
controller is designed to regulate server CPU and memory
utilization within specified QoS value for Apache. They
show that the MIMO control technique is able to handle the

trade-offs between speed of metric convergence and sensitivity
to random fluctuations while enforcing the desired policies.
Apache CloudStack as a recent open source software [12]
tries to add the ability to scale up CPU and/or memory for
running VMs based on the predefined compute offerings for
different Hypervisors (Xen, VMware, and KVM). Some more
recent approaches to the problem considered herein are either
focusing on single resource (CPU or Memory) or the other
which consider both CPU and memory [11], [12] use resource
utilization as a decison making criteria which is oblivious to
application performance [32]. The work proposed in [31] is
an application-driven model that tries to ensure response time
below a certain threshold. However, the approach may lead
to resource over-provisioning. The authors of [2] and [10]
propose a significantly faster average response time models by
using parameter estimation techniques for CPU and memory,
respectively. These models require only minimal training or
knowledge about the hosted applications while simultaneously
reacting as quickly as possible to changes in workloads. In this
paper, we combine these two techniques to meet applications’
response time targets. Moreover, in order to efficiently utilize
the resources while meeting the targets, fuzzy control is
employed. The goal of this work is to efficiently utilize the
resources (i.e., maintain high utilization for both CPU and
memory) while meeting the RT targets at the same time.

D. Fuzzy Control

The main difference between the traditional model-based
control and knowledge-based control is the assumption of the
former of the availability of a precise and explicit mathematical
model of the system under control. Whereas, the knowledge-
based control does not make such an assumption but rely on
expert knowledge, instead [21]. Deriving an accurate mathe-
matical model of the underlying software system is a daunting
task due the non-linear dynamics of real systems [33], [34].
Fuzzy control is a known knowledge-based control approach
which has been applied for dynamic resource allocation in
cloud [35]. In fuzzy control, which is typically called as
model-free approach, such non-linear functions of the target
system is implicitly constructed through fuzzy rules and fuzzy
inference by imitating human control knowledge [36], [37].
In this work, we used fuzzy control to reason and determine
the contribution of each resources to the performance changes.
This in turn guides the allocation decision of the controllers
for each resource.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an autonomic resource con-
troller consisting of three sub-controllers: fuzzy controller,
cpu controller, and memory controller. Fuzzy controller acts
as a coordinator so that the control actions of the cpu and
memory vertical controllers complement each other in order to
fulfill the application’s performance requirements expressed in
terms of response time. Cpu controller and memory controller
allocate the right amount of CPU and memory respectively
using the inputs provided by fuzzy controller. In general, the
proposed fuzzy control approach can be used as a coordi-
nation technique among distributed controllers. We evaluated
the proposed solution using RUBiS, RUBBoS, and Olio–
three widely used cloud benchmark interactive applications–
on a virtualized environment using Xen Hypervisor. Different
experiments were conducted under workload traces generated



based on open and closed system models. The results show
that the proposed coordination solution was able to maintain
the target response time with fewer control errors and more
efficient resource use, e.g., up-to 60% less memory usage in
case of the RUBiS experiment or up-to 56% less CPU usage in
the experiment with Olio compared to a non-fuzzy approach
used as a baseline. We envision extending the work in several
ways: (i) focusing on tail response time values instead of
mean values; (ii) enhancing fuzzy controller with features such
as online learning for self-adaptation of the fuzzy rules and
membership functions; (iii) extending the proposed solution to
complement vertical elasticity with horizontal elasticity.
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