
Cost-based Decision Making in
Cloud Environments using

Bayesian Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Dmytro Grygorenko
Matrikelnummer 1129105

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Ivona Brandic
Mitwirkung: MSc Soodeh Farokhi

Wien, 21.08.2014
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Cost-based Decision Making in
Cloud Environments using

Bayesian Networks

MASTER THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Internet Computing

by

Dmytro Grygorenko
Registration Number 1129105

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Priv.-Doz. Dr. Ivona Brandic
Assistance: MSc Soodeh Farokhi

Vienna, 21.08.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Dmytro Grygorenko
Karlsplatz 13, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Wien, Datum) (Dmytro Grygorenko)

i

Acknowledgements

First of all I would like to express my deep gratitude to my master thesis supervisor, Priv.-Doz.
Dr. Ivona Brandic. I have received a lot of useful knowledge during her lections. I appreci-
ate her contributions of time, commitments, scientific advices, insightful discussions about the
research. I am also grateful to my co-advisor MSc Soodeh Farokhi for providing useful sugges-
tions about this thesis, insightful comments and constructive criticisms at different stages of my
research. They are hard-working people and I believe their academic achievements will continue
to increase.

I would like to express my special appreciation and gratitude Univ.Prof.Dr. Full Professor
Schahram Dustdar, who has been a tremendous mentor for me. His expertise, knowledges, and
provision of the font materials in the study of Clouds added considerably to my graduate expe-
rience. I would especially like to thank Philipp Leitner, Drazen Lucanin and whole Distributed
Systems Group.

I would like to thank Renate Weiss for academic and technical support during master thesis
preparation.

A very special thanks goes out to Univ.Prof. Dipl.-Ing. Dr.techn. Hannes Werthner, without
whose motivation and advices I would not have considered a magistracy in Technical University
of Vienna.

I owe more thanks to my friend and wife, Kateryna and my mother Svitlana Grygorenko for
their support during the final stages of this master thesis and encouragement through education
process. Completing this work would have been all the more difficult without their patient and
faith.

iii

Abstract

Cloud computing providers experienced fast growing trend in recent years by offering highly
available and scalable services. However, increasing customer resource demand and competitive
market force the providers to enlarge their data centers that leads to huge power consumption
or apply more economical resource provision plans that degrades quality of service. Hence, the
cloud providers need the solutions to decrease energy costs and improve resource provisioning.

In this thesis, we propose a new approach for a cost-aware cloud power management that
enables effective placement of customer’s virtual machines (VMs) in the cloud data centers.
This approach consists of two phases. First, we create a model of the cloud infrastructure using
Bayesian Networks (BNs). BNs are graphical models that represent variables of interest and
probabilistic dependencies among them. They allow to apply knowledge about domain in order
to find hidden and causal relationships between different parts of cloud infrastructure. Second,
we make decisions about effective VM placement in order to save cloud provider costs. On
this step Multi-criteria decision aid (MCDA) is applied. This technique helps to quantitatively
measure the benefit of a certain decision. It implies the usage of utility function that is calculated
based on ranking set of reasonable factors and criteria defined by us.

The related work that has been done in this field of study does not cover all aspects of the
problem. In particular, our study focuses more concretely on the geo-distributed data centers ex-
perienced frequent power outages, operating in different time zones and in constantly changing
outdoor temperatures.

Additionally, we developed a simulation toolkit and used it to validate our algorithm by
conducting a performance evaluation. The results of experiments proved good performance
and applicability of the proposed model and its high potential to operate in various real-world
scenarios.

v

Kurzfassung

Die Anbieter von Cloud-Computing haben in den letzten Jahren durch das Angebot von hoch-
verfügbaren und skalierbaren Services ein schnelles Wachstum erfahren. Dennoch zwingen die
steigende Nachfrage der Kunden nach Ressourcen und der vom Wettbewerb bestimmte Markt
die Anbieter dazu, ihre Datenzentren zu erweitern, was einen enormen Stromverbrauch und den
Einsatz von wirtschaftlicheren Plänen für die Bereitstellung von Ressourcen zur Folge hat, wor-
unter die Qualität der Services leidet. Daher benötigen die Cloud-Anbieter Lösungen für die
Senkung von Energiekosten und eine verbesserte Bereitstellung von Ressourcen.

In dieser Arbeit stellen wir einen neuen Ansatz für ein kostenbewusstes Cloud- Energie-
management vor, das die effektive Platzierung der virtuellen Maschinen (VMs) von Kunden in
Cloud-Datenzentren ermöglicht. Dieser Ansatz besteht aus zwei Phasen: Zunächst erschaffen
wir ein Model der Cloud-Infrastruktur, das Bayessche Netze (BNs) nutzt. BN sind graphische
Modelle, die für relevante Variablen und deren probabilistische Abhängigkeiten stehen. Sie er-
lauben die Anwendung von Wissen über Domains, um versteckte und kausale Zusammenhän-
ge zwischen unterschiedlichen Teilen der Cloud-Infrastruktur zu finden. Zweitens treffen wir
Entscheidungen über eine effektive Platzierung der VMs, um Kosten des Cloud-Anbieters zu
senken. Hier wenden wir Multikritierien-Entscheidungshilfen (MCDA) an. Dieses Verfahren
hilft dabei, den Nutzen einer bestimmten Entscheidung quantitativ zu messen. Sie impliziert
die Nutzung von Nutzenfunktionen, die auf Basis einer durch uns definierten Rangfolge von
angemessenen Faktoren und Kriterien berechnet werden.

Die relevante Forschung, die auf diesem Studiengebiet bereits getätigt wurde, deckt nicht
alle Aspekte des Problems ab. Unsere Studie richtet den Blick insbesondere konkreter auf geo-
verteilte Datenzentren, die häufig von Stromausfällen betroffen sind und in unterschiedlichen
Zeitzonen bei sich ständig ändernden Außentemperaturen betrieben werden. Zusätzlich dazu
haben wir ein Simulations-Kit entwickelt, das wir für die Validierung unserer Algorithmen ver-
wendet haben, indem wir eine Leistungsbewertung durchgeführt haben. Die Ergebnisse der Ex-
perimente beweisen eine gute Leistung und Anwendbarkeit des vorgeschlagenen Models und
sein hohes Potential, in verschiedenen realen Szenarien betrieben zu werden.

vii

Contents

1 Introduction 1
1.1 Problem definition . 2
1.2 Motivation . 2
1.3 Contributions of the Thesis . 2
1.4 Structure of the thesis . 5

2 Materials and Methods 7
2.1 Bayesian Networks . 7
2.2 Cloud computing concepts . 13

3 State of the Art 19
3.1 Cloud energy management . 19
3.2 Cloud simulation tools . 28

4 Efficient allocation of cloud resources based on MCDA and BDA 33
4.1 Methodology . 33
4.2 BN for a simplified problem of costs reduction 34
4.3 Bayesian Network for the problem of VM migration 35
4.4 Cost-aware algorithm for allocation of cloud resources 38

5 Architecture and Implementation of Simulation Framework 51
5.1 Architecture . 52
5.2 Implementation . 62

6 Evaluation 65
6.1 Preparation of simulation environment . 65
6.2 Execution and analysis of scenarios . 70
6.3 Evaluation Summary . 76

7 Conclusions and Future Work 79
7.1 Future Work . 80

A List of Abbreviations 81

ix

Bibliography 83

x

List of Figures

Figure 2.1 Functionality of selected methods of Integrated Modelling [7] 8
Figure 2.2 A structure of a simple Bayesian Network designed using Bayes Server, ver-

sion 5 [83] . 10
Figure 2.3 Example of a CPT for the node WetGrass created using Bayes Server, version

5 [83] . 10
Figure 2.4 Usage of Bayesian Networks with GQM and MCDA [38] 12
Figure 2.5 Infrastructure as a Service [14] . 13
Figure 2.6 Example of Static workload [14] . 14
Figure 2.7 Example of Periodic workload [14] . 15
Figure 2.8 Example of Once-in-a-lifetime workload [14] 15
Figure 2.9 Example of Continuously Changing workload [14] 16
Figure 2.10 Example of Unpredictable workload [14] 16
Figure 2.11 Example of Live Migration with using of vSphere Cluster [77] 18

Figure 3.1 The high-level system architecture of a Cloud infrastructure supported energy-
aware resource allocation [6] . 20

Figure 3.2 The Vector Representation of a physical machine [28] 23
Figure 3.3 Two-tiered on-demand resource allocation mechanism versus traditional re-

source management [36] . 26
Figure 3.4 Two-level feedback control model [36] . 27
Figure 3.5 The on-demand resource allocation problems [36] 28

Figure 4.1 Structure (a) and CPT (b) of a Bayesian Network for solving VM Placement
problem designed using Bayes Server, version 5 [83] 35

Figure 4.2 Bayesian Network Decision-Making considering VM Placements in the Cloud
designed using Bayes Server, version 5 [83] . 37

Figure 4.3 Proposed Bayesian Network with assigned evidences 45

Figure 5.1 Example of power utilization under different CPU load for HP ProLiant
DL580 G3 according to the benchmark SPECpower ssj2008 [87] 57

Figure 6.1 International Power Outages Comparison [88] 67
Figure 6.2 The comparison of performance metrics of evaluated elasticity managers for

the scenario 1 . 71

xi

Figure 6.3 The comparison of performance metrics of evaluated elasticity managers for
the scenario 2 . 72

Figure 6.4 The comparison of performance metrics of evaluated elasticity managers for
the scenario 3 . 73

Figure 6.5 Temperature data (a) (provided by Forecast.IO), energy prices (b), cooling
modes (c) and respected PPue rates (d) between January 1, 2013 and February 1,
2013 of 2013 at each data center location . 74

Figure 6.6 The comparison of performance metrics of evaluated elasticity managers for
the scenario 4 . 74

Figure 6.7 The comparison of performance metrics of evaluated elasticity managers for
the scenario 5 . 75

Figure 6.8 The comparison of performance metrics of evaluated elasticity managers for
the scenario 6 . 76

xii

List of Tables

Table 4.1 Efficiency of Emerson’s DSE TM cooling system with an EconoPhase air-side
economizer [43]. Return air is set at 29.4 ◦C . 41

Table 4.2 Criteria mapping to the ratio scale [0; 1] . 48
Table 4.3 An example of decision-making analysis using proposed approach. Criteria

values are obtained from the BN illustrated on Figure 4.3 49

Table 5.1 Concrete implementations of the SimEngine interface 53
Table 5.2 Cloud Domain classes and interfaces . 54
Table 5.3 Examples of Cloudnet message types . 55
Table 5.4 Overview of workload prediction strategies 57
Table 5.5 Overview of classes for BNs usage . 60
Table 5.6 Elasticity managers using First-Fit Decreasing heuristic 61
Table 5.7 Overview of implementation of VM migration policies 62
Table 5.8 Third-party software used in Cloudnet . 62
Table 5.9 Third-party software used in Cloudnet . 63

Table 6.1 Overview of the data center input characteristics 69
Table 6.2 Overview of evaluated algorithms and a set abbreviations referred to them. . 71

xiii

Listings

Listing 5.1 One execution step of the simulation engine 53
Listing 5.2 Implementation of different memory sizes that avoids rounding issues . 55
Listing 5.3 Fetching of the temperature in Vienna for the whole 2013th year 58
Listing 5.4 R script illustrating instantiation and quering of the BN Asia using gRain

package . 59
Listing 5.5 Creation of the BN from Section 4.2 using the BN package 60
Listing 5.6 Installation of the R package Rgraphviz 63

xiv

CHAPTER 1
Introduction

In recent years we have seen a growing trend of lasting occurrence of cloud computing in our
lives. Nowadays many companies from a wide range of branches of industry and science are
looking towards a cloud to help simplify their workflows, increase flexibility and adaptability to
deliver new and innovative ideas and solutions [14].

Multitude of IT vendors offer computational, storage, and application services and plat-
forms. They try to provide coverage in several continents, ensuring quality of service for perfor-
mance and uptime promises with Service-Level Agreements (SLAs) [60].

Cloud service models are varied by exposing resources and follow an “utility”pricing model
where customers pay only for the utilized storage (so-called “pay-per-use”model), computa-
tional capacities, and transferred data [80].

Usage of this sophisticated piece of technology enables shared access for multiple users to
available resources that allows IT vendors to receive a much better return on their investments,
to achieve high availability and to scale easily [13, 39].

Cloud computing becomes more and more popular drastically increasing its power consump-
tion. A report of Greenpeace [16] issues, Cloud Computing is already responsible for 1-2 percent
of the world electricity use. On the other hand, it doesn’t consider the hidden green benefits that
arises due its usage. According to a report of AT & T, a company that moves its infrastructure
into the Cloud reduces its energy consumption, lowers its carbon emissions and decreases its
capital expenditure on IT resources [63]. In general, cloud infrastructure is often considered
nowadays as a green IT approach that addresses two critical elements, energy and resource ef-
ficiency [65]. However, we have to agree with both sides of the discussion, cloud providers’
energy usage plans are mostly not still optimal and have a lot of optimization opportunities [63].

The backbone of each cloud computing platform is an Ultra-Large-Scale (ULS) system [51],
which complex, globally distributed infrastructure consists of heterogeneous sets of software
and hardware nodes. It is important for IT vendors to have a deep knowledge of the system’s
performance behaviour in order to ensure that a ULS system can scale to handle increasing
service demand.

1

Additionally, a cloud provider has to conceive a big amount of external factors such as geo-
distributed infrastructure, weather impact, power outages, etc. Despite advances in infrastructure
robustness, many cloud customers still face database, hardware, and software downtimes that
can lead to loss of application service or data. Everyone would agree that today’s data centers
should never go down, and applications should be always available, end-users worldwide need
to be able to believe on data center availability for critical data and application responsiveness
at any time [9].

1.1 Problem definition

Taking into account all factors and responsibilities described above an efficient and reliable cloud
model that not only address concerns of customers, but satisfies the vendor’s business needs and
requirements is very important in this case.

Main research goal of this thesis is to propose such model, namely to create and evaluate
efficient solution for the management of physical infrastructure of a cloud that can simultane-
ously reduce operational costs satisfying the needs of a cloud vendor and increase Quality of
Service (QoS) thereby addressing the concerns of customers. It should be mentioned that desig-
nated problem introduces necessity of multi-criteria decision making involving a big variety of
factors, criteria, causality, uncertainty, and interdependence among variables.

1.2 Motivation

Although, there is large amount of work that has been done on this topic so far, an effective solu-
tion still stays an open question in the cloud computing community. There are different method-
ologies such as Machine Learning [70], Genetic Algorithms [66], Regression models [89], etc.
which applications to the mentioned problem yield promising results. The problem of previously
proposed solutions is that they do not take advantage of knowledge about observable cloud do-
main and thereby loose information important for the building of a good model. Most of research
approaches addresses just a small part of defined problem, e.g., VM placement [56, 62, 73],
temperature-aware energy usage [43], performance of VM migration [32], but none of them
tries to investigate combination of all these processes, interconnections and dependencies be-
tween them into one model. Exactly this reason became a motivation to investigate the problem
and to create own algorithm that would consider all disadvantages and weaknesses of previous
solutions.

1.3 Contributions of the Thesis

Cost-aware cloud power management approach

In this thesis, we propose a new approach for a cost-aware cloud power management that enables
effective placement of customer’s virtual machines (VMs) in the cloud data centers. It is able to
meet high cloud resource demand in order to reduce penalty costs. We focus more concretely on
the placement and consolidation of virtual machines in geo-distributed data centers experienced

2

frequent power outages, operating in different time zones and in constantly changing tempera-
tures. These aspects were not yet considered during investigation of the problem of cloud power
management and therefore this study should become an important contribution for current cloud
computing research.

Additionally, we utilize commonly used techniques for power saving, namely switching
power of physical hosts in a data center on/off and Dynamic Voltage and Frequency Scaling
(DVFS) [50]. DVFS allows to adjust the frequency of a microprocessor considering its CPU
utilization and thereby to reduce power consumption.

Our approach consists of two phases. During the first phase, we create a model of the cloud
infrastructure in the form of Bayesian Network (BN) [78]. BNs are graphical models that rep-
resent observable quantities, latent variables, unknown parameters and hypotheses, and edges
are conditional dependencies between them. They have two important advantages over other re-
search methods. First, they allow to apply knowledge about domain in order to find hidden and
causal relationships between different parts of cloud infrastructure. Various observations about
cloud infrastructure become an input for the designed BN. The BN will then calculate a possi-
bilities of different criteria based on input values. Second, BNs are widely used for discovering
relationships in raw data that are not clearly expressed with mathematical notations. Finally,
they are based on a powerful mathematical background that is able to prove the correctness of
built models.

During the second phase, we make decisions about effective VM placement in order to save
cloud provider costs. On this step Multi-criteria decision aid (MCDA) [38] is applied. This
technique helps to quantitatively measure the benefit of a certain decision. It implies the usage
of utility function that is calculated based on ranking set of reasonable factors and criteria defined
by us as follows: each criteria gi is defined as an utility weighting ui that represents the relative
importance of each attribute for the given decision problem. The overall utility U(a) of an action
a is then simply the weighted sum

∑
uigi(a).

Following MCDA technique, we defined different criteria that are important for a cloud
provider in the context of the VM placement problem such as energy price in the data center area,
possibility of a downtime of target physical machine, etc. The importance of criteria attributes
was obtained from BN designed on the previous phase. Afterwards, we used a utility function
in order to define the most suitable physical host for a given VM. Finally, a VM was allocated
or migrated to a physical machine with the biggest value of the utility function.

Cloud Simulation framework

Ensuring of the performance and applicability of management models is a top priority for cloud
computing vendors. However, due to the complexity of ULS systems, it is usually not possi-
ble to have a system running in a lab environment for performance testing. The quality and
performance of the software often depends on the runtime environment. This fact introduces
a risk of unexpected problems. A cloud vendor provides a certain QoS designated in SLA and
promises to keep the service running at least, for example, 99,9% of the year, i.e., the service can
still encounter a downtime up to 8..7 hours per year. Unfortunately, an unexpected crash hap-
pened in April, 2011 at Amazon AWS (Amazon Web Services) [82] due to operation mistakes
in network reconfiguration. Due to this failure the performance of more than 70 organizations

3

significantly decreased, some sites were down for a dozens of hours. Such example clearly illus-
trates why currently a lot of organizations perform modelling and simulation in order to improve
their systems, to understand how efficiently they can scale with the increasing demand of cloud
capacity [51].

The applicability of the proposed models in the real-world applications cannot be done with-
out evaluations and experiments.

There are four classes of experimental methodology depending on real or model application
and environment: benchmarking, in-situ, emulation and simulation [42]. This thesis will use
simulation as the main experimental approach for the following research.

Implementation, testing and execution of an application model involves the accomplishment
of several conditions. All experimental results that are obtained from the abstract model should
be reproducible on other platforms. The experimental use cases have to be executed under a
representative set of parameters. In the case of this thesis it will be a set of generated data that
provides the realistic and accurate measuring of data center workloads. The experimental model
has to be extensible that supposes modelling and analysis of future results in an environment
where the number of simulation instances (e.g., CPUs or VMs) increases. The last property that
should be fulfilled is revisability. Each use case and developed hypothesis have to be designed
in a way to explain and improve errors or unexpected results. For such purposes a simulation
approach is necessary.

Though there are several cloud simulation frameworks [97] such as CloudSim, D-Cloud,
PreFail, etc., none of them allows to simulate objectives and processes, e.g., VM migration
between geo-distributed data centers, mentioned above.

The framework, called Cloudnet, proposed in the thesis, was designed considering the objec-
tives and activities described above. The following key features listed below allow to simulate
big variety of use cases as well as to apply the models intended by BDA analysis:

• Simulation of cloud infrastructure: execution of physical machines, allocations and mi-
grations of VMs, etc., communication between different parts of the cloud computing
environment, support of various resource utilization models, usage of real IT vendor spec-
ifications in order to obtain results as close as possible to realistic data.

• Geo-distributed data centers: performing simulations for data centers located in different
parts of the globe that involves different energy price models, temperature data, cooling
costs.

• Management of cooling systems: consideration of temperature-aware models that can be
used in decision-making about data center workload management in order to reduce the
overall energy consumption.

• Use of weather data: a possibility to either generate synthetic temperature data sets or use
real data sets from various Web services.

• Power outages: as was noticed before power outages can cause unexpected changes in
behaviour of hardware and software components therefore they should be modelled and
studied in order to improve a fault-tolerant design that allows a system to continue its

4

intended operation, possibly at a reduced level, rather than failing completely, when some
part of the system fails.

• SLA-aware simulation: escalation penalty costs can become a big problem for a cloud
provider if the duties defined in the SLAs will not be fulfilled, hence, efficient management
and sophisticated provisioning of cloud resources should be performed.

• Prediction of resource usage: large amount of collected statistics gives an opportunity to
predict future workloads, to identify increasing and decreasing demand of resources and
eventually to route user requests to the most appropriate endpoints in order to balance the
load of the whole system.

The usage of Cloudnet framework is very similar to other simulation frameworks, especially
to widely-used CloudSim [81]: firstly a developer configures a cloud infrastructure operating
with familiar objects like data center, physical machines, etc. After that a generator of customer
requests should be defined according to utilized cloud service model. Chapter 2 will give an
overview of different service modes of cloud services. In particular, it should be mentioned
that in comparison to other frameworks Cloudnet was designed for simulation of various service
models. Eventually a developer has to set a cloud manager that triggers various change actions
considering current state of the cloud. The responsibility of execution rests on a simulation
engine that takes cloud configuration and iterates step by step until certain condition will be
fulfilled.

1.4 Structure of the thesis

The Chapter 2 will give an overview of the state of art of in the field of Bayesian Networks and
Decision Analysis. It will also introduce a basement of MCDA and explain the current state in
the area of cloud computing architectures and patterns.

An overview of related work in the field of the costs-based decision-making for cloud com-
puting as well as detail comparison of cloud simulation frameworks, their advantages and dis-
advantages will be given in the Chapter 3.

The Chapter 4 will introduce our methodology and the process of BN designing, will for-
mally describe the problem of cost-aware cloud power management and, finally, will present our
solution based on the previously designed BN.

The architecture and details of packages presented in the Cloudnet framework will be done
in the Chapter 5. Additionally, we will shorty notice the examples of its usage.

Chapter 6 will present critical evaluations of the proposed approach in comparison to widely-
used heuristics, will summarize results and shortly detail advantages and disadvantages of our
solution. Execution of evaluations will be performed using Cloudnet framework.

5

CHAPTER 2
Materials and Methods

In this Chapter, the fundamentals required for the understanding of the following chapters will
be introduced. It will give a short overview of BDA concepts, introduce a basement of MCDA
and explain the current state in the area of cloud computing architectures and patterns.

2.1 Bayesian Networks

Definition

Bayesian Network (BN) is a graphical model that represents variables of interest (e.g., object fea-
tures, event occurrences) and probabilistic dependencies among them via Direct Acyclic Graph
(DAG) [69]. BN is also known as Belief Network or Bayesian Belief Network. It simulates
the mechanism of exploring causal relations between key factors, and facilitates such models as
prediction, abduction, cognitive activity (e.g., causal reasoning) [5].

Using BNs it is possible to discover causal structures with hidden variables from empirical
data, calculate the effectiveness of interventions, like alternative management decisions (e.g., it
is worthwhile to run an advertisement in order to increase sales of specific product), observe
system changes, and generate future scenarios (e.g., predict weather time series data). BNs
are widely used for discovering relationships in raw data that are not clearly expressed with
mathematical notations (e.g., representations of a probabilistic relationship between diseases
and patient symptoms). BNs describe data in both qualitative (graphical representation) and
quantitative aspects (a number that represents the strength of the relation) [61].

BNs were developed to solve diverse problems of different data size and complexity with
possibility of using incomplete data sets with high level of uncertainty [93] when correlation
between input variables is not clearly observed.

BNs describe realistic results and are particularly useful for adapting analysis and decision-
making process. In addition to their intuitively simple causal graphical structure, BNs can be
extended and modified; they can be used for solving both discriminative tasks (classification) and
regression problems (forecasting); they can incorporate missing data through the application of

7

Bayes theorem and use of complex learning algorithms; they can show high predictive accu-
racy on small sample sizes due to possibility to “smooth”models in a way to use all availability
data for training purposes [76]; they can handle models with different scales and several type
variables at the same time. BNs are widely used in medicine, document classification, bioin-
formatics, information retrieval, image processing and can be combined with decision analytic
tools [11, 33, 48].

BN models are applied in fault diagnosis (NASA [71], Microsoft [20, 44]), pattern recogni-
tion (Standford University [40]), and medical diagnosis (Microsoft [64]).

In the background Bayesian Networks apply Bayes theorem, a simple mathematical formula
for computing conditional probabilities.

For better understanding of the theorem we will recall the definitions of different probabili-
ties.

Marginal probability is the probability of an event, ignoring any information about other
events. The marginal probability of A is written P (A).

Conditional probability is the probability of some event A, assuming event B. Conditional
probability is written P (A|B), and is read as “the probability of A, given B”.

Joint probability is the probability of two events occurring together.
Bayes theorem relates the probability P (A|B) of a hypothesis conditional on a given data

set to the probability P (B|A) of the data conditional on the hypothesis. The network is solved
when Bayes’ Rule is applied to each node of the graph:

P (A|B) = P (B|A)P (A)P (B) (2.1)

where P (A) is the prior distribution of parameter A; P (A|B) is the posterior distribution,
the probability of A given new data B; and P (B|A) the likelihood function, the probability of
B given existing data A [69].

Firstly, this theorem was mentioned in a masterwork “An Essay Toward Solving a Problem
in the Doctrine of Chances” [12] of Thomas Bayes.

Bayes theorem is expressed in different forms that can be useful for various purposes. BNs
use Bayes theorem in order to update the probabilities of system states in the respect to new
conditions: reference to posteriori.

Figure 2.1: Functionality of selected methods of Integrated Modelling [7]

8

If compared with other modelling techniques that are used for applications and data mining,
Bayesian Networks have the following benefits (see Figure 2.1 [7]): they use probabilistic, rather
than deterministic expressions to describe the relationships [59]; they are an appropriate method
for dealing with systems where uncertainty is inherent because uncertainty is accounted for
the model itself; they include structure and parameter learning; they facilitate learning about
causal relations between variables [92], and can be adjusted to new knowledge and facts; they
are able to learn a model based on observations. On the other hand BNs also have the some
limitations. First of all, it can be difficult to reach an agreement on the structure of nodes, their
states and relations of BN with experts. Secondly, some packages of BNs can have a limitation
in work with streaming data. Another limitation is a spatial and temporal scaling within BN.
The approach that can solve this challenge is the development of a BN for each time/location
case and performing them separately [3].

Building a Bayesian Network

The starting point for building a BN is to define a model for the given problem, the variables of
interest that will become a nodes in BN, objectives, perspectives, system and scale. The next
step is to build a conceptual model of the system and parameterize it with the given data set.

The objective of a decision problem is the ultimate reason why a user is interested in solving
the problem [38]. The proposed model should have clear operational meaning for experts who
model the BN, the domain experts and the end users. When the model is defined poorly or
incorrectly, unfocused objective will compromise the model development process [5].

The objective and particular perspective are key components for the final decision. The
perspective point of BN modelling incorporates stakeholders and network experts, who are the
most affected parties in the case of decision making and can have different interests [38]. It can
influence different scenarios when the final model will be used for reasoning. Finally, BN can
be used for arbitrary combinations of diagnostics.

Structure of a Bayesian Network

We will give a simple example of the structure of a BN using well-known problem of modelling
a Sprinkler system [68] (see Figure 2.2). The node Cloudy affects nodes Sprinkler and Rain,
which in turn may affect node WetGrass. In this case, node Cloudy is referred to as a parent of
Sprinkler and Rain, with Sprinkler and Rain being referred to as the children of Cloudy. This
model can be described as follows: grass becomes wet if either the sprinkler is switched on or it
is raining outside. Also, suppose that there is an event of cloudy that has a direct effect on the
use of the sprinkler or a possibility of a rain.

In a BN, the directions of arcs cannot loop back (i.e., cycle back into the model) and the
form of the structure is a (DAG).

Condition probability tables

As we have already defined the structure of BN, next we will quantify the relationship between
nodes that have links with each other. The relationship between child and parent nodes is de-

9

Figure 2.2: A structure of a simple Bayesian Network designed using Bayes Server, version
5 [83]

scribed by building of Conditional Probability Table (CPT). Every node should have a CPT
associated with it that contains combinations of the parent node, parent state values and each
cell contains calculated conditional probabilities. It can be easily observed, that a big amount
of dependencies and states in parent and child node will introduce an exponential growth of the
size of CPT. It is one of the weaknesses of BNs and it was described in details in the work of
Cooper [17]. In the case when a node has no parents, like a root node, it can be probabilistically
described by a marginal probability distribution [54].

Figure 2.3 shows CPT for node WetGrass used in the BN in the Section 2.1.

Figure 2.3: Example of a CPT for the node WetGrass created using Bayes Server, version 5 [83]

The next step is a calculation of the probability distributions of each node. As the BN was
already queried, it is ready for evaluation (see Figure 2.2). After performing evaluation tests, the
network is complete and can be used for scenario analysis.

10

Individual scenarios can be built as follows: user can specify a level of accuracy, recompose
models and create a set of observations of the system. All these steps can be applied to simplify
examination of the network. The next step is a testing of scenario. The user queries the network
by setting a set of evidences in the defined nodes. After that he can easily obtain the probability
distribution of rest nodes. One of the major advantages of BN is a rapid view of node and whole
system changes affected by decisions and modified conditions.

Multiple-criteria decision aid

Although a BN model is effectively used to aid decisions by observing the value of uncertainty
of items of interest, but in certain circumstances, it is important to make a decision based on
multiple criteria. Using of poor BN theory makes it impossible to solve such problems as BNs
ignore multiple criteria. In this case MCDA [95] technique can be applied to improve the ef-
fectiveness of obtained results. The main goal of MCDA approach is to rank all less or more
preferred alternatives. Sometimes trade-offs or conflicts can arise among objectives, because
options that are more beneficial can be more costly. Therefore the identification of the objec-
tives and perspectives is the next step. After that it is necessary to define the decision problem
and specify such parameters as set of possible actions or alternatives that user can use; set of
functions defined on actions; set of criteria constraints [38].

When we speak about multi criteria, we refer to the idea that each alternative or option can
be observed from several points that are usually in conflict. Such criteria should be combined
simultaneously and then evaluated in making decisions.

The set of alternatives that should be estimated is finite. The main conflict criteria are cost
and product quality. When purchasing a house cost, safety, attractiveness, criminal level in the
district can be the key criteria. It is logical that expensive house will be built in the most quiet,
friendly district. In this case in order to make a correct decision set of constraints should optimise
a number of possible conflicting criteria (e.g. amount of salary). The ideal case is to minimise
the set of criteria in order to get just a single action to choose. During criteria analysis any
action that fails to satisfy the constraint for criteria will be deleted. Only the most narrow, exact
constraint will be used. To win in one conflicting criteria we have to lose in another. MDCA is
a method that concentrates on such problem and helps to choose between actions [95]. MDCA
assists in the problem structuring and proposes a decision that matches better for the long-term
goals of the expert and possible environmental conditions [98].

However, MCDA has a set of limitations [38]:

• Since relevant criteria are well defined, the calculation of g(a) for action a and given
criteria g is obvious.

• The relevant criteria are certain and the value g(a) is deterministic rather than stochastic
for a given action a above parameters.

• The relevant criteria are independent of each other.

11

Combined approach of BN and MCDA

The advantage of BNs is that they help with complex and uncertain challenges by collecting
information in consistent framework. They represent the uncertainties in natural way, measure
probabilities and assign them to election results [38]. This fact suggests the existence of other
parameters and factors, except uncertain criteria, in a final set of nodes that can influence the
result value of a criterion for a given action. These factors are also called risk factors and can be
hardly controlled by a decision-maker.

The combined approach of BN and MCDA was proposed in [38]. Goal Question Metric
(GQM) [38] is used in order to define the underlying measures for the chosen criteria, MCDA
is used to provide a means of combining resulting measures and to rank the actions as a result.
The majority of key criteria will depend on various factors that we have to identify to make
predictions of the values of uncertain criteria for the different actions. As can be seen on the
Figure 2.4, at this point we use BNs to compute values for each criterion and apply MCDA to
combine the values and rank the actions.

Figure 2.4: Usage of Bayesian Networks with GQM and MCDA [38]

Each criteria gi is stated as an utility weighting ui that represents the relative importance of
each attribute for the given decision problem. The overall utility U(a) of an action a is then

12

simply the weighted sum
∑
uigi(a).

The method described above can be simply modified in consideration of each decision prob-
lem and therefore allows for sophisticated and flexible utilization of BNs in the decision-making
analysis.

2.2 Cloud computing concepts

As was mentioned in the Chapter 1 in order to perform realistic simulations of Cloud Computing
infrastructure the application tools that are used for this task have to follow acknowledged guide-
lines, embrace a wide range of cloud principles and make use of them extensively [14]. Such
principles should be based on the knowledge obtained from practical experience and therefore
become an advise how to build architectures, define the important design decisions, and cover
limitations that have to be considered.

Cloud Service Models

Nowadays there is a wide of range of cloud service models. Among them are not only the most
common Infrastructure as a Service(IaaS) [14], Platform as a Service(PaaS) [14] and Software
as a Service(SaaS) [14], but also recently appeared Data as a Service (DaaS) [4], Backend as
a Service (BaaS) [52], etc. As each service model introduces own workload issues, e.g., IaaS
(shown on the Figure 2.5) requires from a provider intelligent provisioning of Virtual and Phys-
ical Hardware, where PaaS involves also management of application tasks, load balancing, etc.,
each of them should be simulated independently from others.

Figure 2.5: Infrastructure as a Service [14]

Application workloads

Application workload patterns capture different user behaviours on a hosting VM that results
into various changing utilization models of IT resources. Learning and identifying of these
workloads helps in prediction of IT resource usage and application of betters scaling techniques.

13

There are several most frequently occurred workload models as follows: static workload
that only changes minimally over time, periodic workload that has recurring peaks, once-in-
a-lifetime workload that has a peak once, unpredictable workload that changes frequently and
randomly, and continuously changing workload that grows or shrinks over time [14].

Static workload

Static Workload [14] has a flat utilization profile over time within certain boundaries, therefore
for the provisioning of such workflow there is no necessity to vary processing power level, mem-
ory size or bandwidth. Required IT resources can be provisioned for the static load with a certain
over-provisioning rate to be able to solve any minimal variances in the workload. From the point
of elastic scaling, in the case when experienced workload comes close to the level of completely
utilizing of IT resources, minor alignments can be performed, that will be a relatively low cost
overhead for the minimal overprovisioning. But benefits from such dynamic alignment are lim-
ited because of the equal utilization over time. In particular cases, costs may increase. However,
in other cases the effects of IT resources and elasticity homogenization can be profitable to use
in the cloud. Such kind of workload is experienced by private, small or medium size enterprises
who do not fully utilize their VM [14].

Figure 2.6: Example of Static workload [14]

Periodic Workload

One of the most common workloads is periodic, such as yearly car checkups, monthly telephone
bills, daily use of public transport in rush-hours [14]. Generally they are utilized by people at the
same time intervals. As far as business processes, tasks and routines associated with IT systems,
periodic utilization can be observed in IT systems as well. The general issue of IT industry
to handle in case of periodic workload and static scaling is the sufficiency of resources during
periods of peak utilization and their inefficacy in non-peak periods. Since such overprovisioning
can result in a low utilization of the allocated IT resources, can be used an elastic scaling to
monitor experienced workload and if it increased during peaks of utilizing resources can be
added dynamically. Such technology enables to combine resources and assign those that are not
used by one customer to another one [14].

The cloud providers often use so-called resource pooling property than enables assigning of
resources not used by one customer to another customer.

14

Figure 2.7: Example of Periodic workload [14]

Once-in-a-lifetime Workload

A special case of periodic workload is a once-in-a-lifetime workload [14]. It is characterized
with only one peak of periodic utilization that occur in a long timeframe and expected in advance.
Such peaks relate to a certain event or task. On the one hand, such peak does not happen
frequently and the challenge of the enough resource provisioning cannot repeat again. But on
the other hand, such peak can require even more IT resources to handle the task flexibly than
during common peaks during periodic workload. For solving such challenge the same method as
for periodic workload is used. Resource provisioning is accomplished for predicting workload
peak via static scaling. But here can arise one issue: wrong prediction. In such case if the
workload higher than it was expected, additional resources required for efficient task calculations
often cannot be quickly provisioned. Such cloud behaviour will affect performance and violate
results. To solve this problem elastic scaling can be used, that allows to handle increases of
experienced workload even more than expected [14].

Figure 2.8: Example of Once-in-a-lifetime workload [14]

Continuously Changing Workload

Another type of workload is a continuously changing workload [14] that implies utilization of
IT resources of two phases: ongoing continuous growth or decline of the utilization. Such
workload occurs quite often and the rate of the workload change varies or unknown. Cloud
elasticity guarantees applications same rate of IT resource provision and decomposition when
the workload changes. Static scaling enables stepwise IT resource provision. Large increments

15

can be observed on Figure 2.9. They are presented because the physical hardware (such as
clusters, servers) is more efficiently provisioned in large bulks. Using elastic scaling it is possible
to provide IT resources more flexible continuously one by one [14].

Figure 2.9: Example of Continuously Changing workload [14]

Unpredictable Workload

The last workload type is an unpredictable workload [14] that is a general case of periodic work-
load as it requires elasticity, but is not predictable. Such workloads are characterized by random
or unforeseeable IT resource utilization and occur often in the real world. They require un-
planned and unpredictable provision and decomposition of IT resources from hosts. Therefore,
it is extremely hard to handle them with static scaling. Generally IT resources are provisioned to
a certain average level that is economically feasible. In case of static scaling when the workload
unexpectedly exceeds this level, the application will fail. The better possibility can be provided
by elastic scaling. In this case workload predictions are omitted and experienced workload is
just being monitored. Then the changes in application workload will be handled by newly pro-
visioned IT resources or removal of unused once [14].

Figure 2.10: Example of Unpredictable workload [14]

Elasticity Manager

The cloud elasticity manager is an autonomic manager for the utilization of Cloud resources
on which application component instances are deployed. Its main tasks are monitoring and

16

analysing of the Cloud environment infrastructures, prediction of future possible resource con-
sumptions, and the execution of user given policies. Thereby elasticity manager has the possi-
bility on-the-fly to grow and shrink the Cloud infrastructure at run-time.

Live VM Migration

Live VM migration (Figure 2.11) is a replacement of running VMs seamlessly across distinct
physical servers without any impact on VM availability for the end user [67]. During migration
such VM components as process memory, storage, and network connectivity are transferred from
the original host machine to the destination. VM migration improve performance, manageability
of system and allow data centers to serve users in flexible and efficient way [35]. Live VM
migration became an appropriate tool for such scenarios like power management, VM load
balancing, and fault tolerance.

Live migrations are extensively used in virtualized data centers. However, migration costs
may depend on many factors like the diversity of VM configurations, workloads, energy costs,
data center cooling efficiency, etc. Different decisions about those factors may result in sig-
nificant differences of energy consumption, downtime, and performance. Considering all these
issues cloud providers try to develop more efficient VM allocation and migration algorithms.

There are several techniques for live VM migration. The first one is a pure stop-and-copy
[8,26,53] technique. Since VMs are stored like regular files on disk the one possibility is to copy
VM entire memory to the destination using portable storage devices or network [47]. On the one
hand this technique is very simple and it involves minimal total migration time. But on the other
hand both downtime and total migration time are proportional to VM physical memory and
since VM is suspended during the whole time when data are transferred to the destination host,
the user can be suffered from high downtime. Another possibility to perform VM migration is a
pure on-demand [100] migration that requires VM to stop and copy only the most important VM
data to the destination. Although, use of this method requires a very short downtime, however,
it requires high total migration time and therefore introduces degradation of host performance
after migration. Both stop-and-copy and on-demand migrations have poor performance [25].

Another approach is a pre-copy migration, that combines bounded iterative push phase with
a final and typically very short stop-and-copy phase [25]. “Iterative”phase implies the idea
that pre-coping performs in multiple rounds, in which the VM memory pages that have been
modified during the previous copy round will be transferred to the destination. It is supposed
that the number of modified pages is small enough to halt the VM and after copying pages will
be restarted on the destination host. Such design can be more efficient as it minimizes migration
overhead and downtimes.

There are several key factors that have to be studied as a prerequisite for accurate modelling
of live vm migrations: available migration link bandwidth, VM disk size, memory size, or page
dirty rate. The most important are described below [25]:

• Migration link bandwidth: this is one of the most influential parameters for migration
performance. The higher speed links the faster data will be a transfer and less time will be
used to complete VM migration to destination.

17

Figure 2.11: Example of Live Migration with using of vSphere Cluster [77]

• Page dirty rate: it defines the rate at which memory pages are modified. The value directly
affects the number of pages that are transferred in each pre-copy iteration. The higher the
rate the larger amount of information will be sent and the longer will be total migration
time of VM. Dirty pages at a high rate will hit the iteration threshold.

18

CHAPTER 3
State of the Art

The following Chapter will give an overview of related work in the field of the costs-based
decision-making that concern cloud computing. High attention will be paid for the techniques
that aim to reduce energy consumption for cloud data centers. Additionally, it will detail the
comparison of cloud simulation frameworks, describe their advantages and drawbacks.

3.1 Cloud energy management

There are large amount of prior techniques on energy management in cloud data centers. The
reduction of energy consumption leads as well to the reduction of operational electricity costs.
As was mentioned in the Chapter 2 the most common idea is automatic load balancing of VM
resources using sophisticated scheduling and further replacement between hosts. The section
will overview recently proposed state-of-the-art techniques in this field of study.

Energy-aware Green Cloud solution

One example of such energy-aware approach was proposed in [6] by Beloglazov et al. The
authors emphasize on huge amount of electrical energy consumed by data centers that leads also
to high operational costs and therefore propose a Green Cloud solution that allows not only to
minimize operational costs but also to reduce environmental impact.

Figure 3.1 presents four following main entities defined in the paper that involved in a Green
Cloud computing infrastructure supported energy-aware resource allocation: Consumers/Bro-
kers, Green Service Allocator, VMs, Physical Machines.

Among all parts of a Physical Machine, such as CPU, memory, disk storage and network in-
terfaces, CPU consumes the main part of energy. Additionally, on average an idle host consumes
about 70% of the power consumed by the host running at full CPU speed. Therefore the main
focus of the work is applied to power consumption and energy usage of physical machines.

This approach divides the problem of VM placement in two: selection and admission of
newly created VMs and further optimization of their allocation. The proposed algorithm for the

19

Figure 3.1: The high-level system architecture of a Cloud infrastructure supported energy-aware
resource allocation [6]

first part is a modification of the Best-Fit-Decreasing (MBFD) algorithm that “sorts all VMs in
decreasing order of their current CPU utilizations, and then allocates each VM to a host that
provides the least increase of power consumption due to this allocation”. Thereby it tries to
allocate a VM to the most power-efficient nodes first.

The second step, the optimization of the current VM allocation, is performed as follows:
first, the approach identifies VMs that should be migrated, second, applies MBFD algorithm to
place them to the hosts.

The proposed idea of VM selection is to define lower and upper thresholds of host energy
utilization and to keep total host utilization between them. For these purposes three following
policies were defined [6]:

• The minimization of migrations policy selects the minimum number of VMs that have to
be migrated in order to decrease CPU utilization below the upper threshold if it is violated.

• The highest potential growth policy is applied in the case if upper threshold is violated.
It migrates VMs with the lowest CPU usage to reduce the potential growth of the power
utilization and prevent possible SLA violation.

• The random choice policy defines a random selection of a number of VMS for decreasing
of the CPU utilization by a certain host below the upper threshold.

The published experiment results showed that the approach allowed to reduce significantly
energy consumption of Cloud data centers. However, the authors mentioned that there was still
a large amount of opened challenges such as consideration of energy utilization by multiple

20

system resources, optimization of the allocation of communicating applications, optimization of
amount of heat produced by physical machines, etc.

Consolidation of heterogeneous applications and forecast-based resource
provisioning

Li et al. [29] have also considered the problem of high energy consumption and operational
costs. As the result of the work they proposed a consolidation algorithm for sophisticated al-
location of required resources. Their approach combines heterogeneous applications based on
various correlations between them and forecast-based resource provisioning algorithm that uti-
lizes Bayesian Networks for these purposes.

The authors made two observations. They state that all cloud applications can be grouped by
finite number of types. Additionally they assume that workloads occurred in data centers have
typically seasonal cycles based on the work of Chen et al. [27]. Based on these observations
authors propose to consolidate a various types of workloads on a smaller number of servers. In
the context of this problem an Online Colouring Bin Packing problem (OCBP) is formulated as
follows:

Input: A sequence of items a1, a2, ..., am with size s(ai) ≤ 1 for each 1 ≤ i ≤ m, where
each item ai comes with a colour ci and the number of items with the same colour is at most η.

Output: The minimum number of bins such each items is placed in a bin without exceeding
its capacity, and the items must be placed in the same order as they arrive, and no items of the
same colour are placed in the same bin.

As the OCBP is a special case of regular Bin-packing problem that is NP-hard it is also
NP-Hard. It means that it can be solved just using heuristics. The work proposes an Online
Colouring First-Fit (OCFF) algorithm as a modification of First-Fit (FF) approximation algo-
rithm and proves that it provides a 1.7 performance guarantee.

After that authors introduces a Predictive Bayesian Network (PBN) model that tries to obtain
estimates of the time-varying workload demands. Further these estimates are utilized in order to
dynamically change the number of active servers and their frequencies as the work considers the
usage of DVFS technology that scales processor clock frequencies and supplies need voltages.

The Maximum Likelihood Estimation is used for parameter learning of PBN on historical
workloads. After the network is learned it can make the estimations. Further in order to minimize
the operational costs the proper amount of resources are allocated using the estimations given by
PBN. The allocation is performed according to the algorithm that computes mutual information
between any two nodes with O(n2) operations.

The results demonstrate that the approach allows to achieve energy and operational cost
savings close to near-optimal offline approach.

A Dynamic Nature of VM allocation requests

Other interesting aspects of the VM placement problem is shown in the work of N. Calcavecchia
et al. [30]. This work considers the dynamic nature of the incoming stream of VM allocation
requests continuously arriving to the cloud. The paper proposes a technique called Backward
Speculative Placement (BSP) that projects the past demand behaviour of a VM to a candidate

21

target host. Similarly to the [6] the authors utilize the algorithm first for handling the stream of
deployment requests, second in a periodic optimization in order to handle the dynamic aspects
of the demands.

The work introduces a scoring functions called “demand risk” [30] measuring the level of
demand dissatisfaction of a host in the last TM timestamps. Equation 3.1 [30] states the function
U that measures the amount of unsatisfied demand for host h for given time instant t when the
set of VMs V is placed on it and its capacity is reduced by 1− δ percent.

U(h, V, t, δ) =

∑
l∈V dl(t)− δ · ChCPU

δ · ChCPU
(3.1)

The following equation 3.2 [30] denotes the “demand risk”DR:

DR(h, V, T) = A ·
T∑

t=T−TM
U(h, V, t, 1) +B ·

T∑
t=T−TM

U(h, V, t, δ) (3.2)

where A and B are the coefficients that measure satisfied and unsatisfied VMs demand in
the last TM time instants. It is assumed that A� B.

The “demand risk”is utilized during continuous deployment phase while allocating VMs.
In the case when new request to deploy a VM is received the score is computed for each host
and then a VM is allocated to the one with the highest score. Thereby the algorithm follows a
Best-Fit-Decreasing strategy.

As actions triggered during continuous deployment phase can bring system to a sub-optimal
state the placement are periodically optimized involving VM migrations. The most loaded hosts
are identified and VMs are migrated towards hosts which are most likely can ensure demand
satisfaction according to “demand risk”. For a given VM the score is computed for the current
host and then compared with each candidate target host. If the difference is positive the migration
is considered.

The consequence of the second phase is a possibility that from the moment when it is trig-
gered to the moment when it finishes a sensible amount of time might elapse and newly arrived
deploy requests might not be placed correctly. The authors propose to avoid this problem by
switching back to the continuous deployment phase whenever a new request is received.

The demonstrated results show that the technique allows to achieve high level of demand
satisfaction.

Multivariate Probabilistic Models

The paper of Sijin et al. [28] introduces the application of probabilistic models in order to im-
prove utilization of resource utilization in the Cloud infrastructures. The authors pay attention
of the fact that the techniques described in the previous Sections tend to divide the efficient
placement of VMs in two phases: Target Mapping Generation (TMG) and Migration Plan (MP).
Thereby as they notice these strategies cause an increase in the total migration costs in MP with
the increase of the number of physical machines. The introduced technique called Physical
Machine Candidate Selection (PMCS) for improving of resource utilization uses a multivariate

22

probabilistic normal distribution model to select appropriate physical machines for re-allocation
of VMs before reconfiguration plan is generated.

The work introduces two following metrics, i.e., imbalance and volume which are multi-
dimensional characteristics of VMs and physical machines.

Three major resource types, i.e., CPU, memory and I/O are considered [28]. The resource
values are normalized and all information related to them are expressed as vectors shown on the
Figure 3.2 [28]. The total capacity ~C of a physical machine is defined with a vector from the
origin of (0, 0, 0) to point (1, 1, 1). The vector ~L represents the resource utilization of a PM. The
vector ~F shows the remaining capacity in the PM which could be for allocation of new VM.

Figure 3.2: The Vector Representation of a physical machine [28]

Taking into account the vector representations defined previous the imbalance ~I can be de-
notes as the vector difference between ~L’s projection on ~C and ~L. Thereby it will indicate the
degree of imbalance of resource utilisation of a PM. If ~L exactly aligns with ~C then the PM is
well utilized.

Volume V is a measure that indicates the size of resource utilization of a physical machine
and denoted in the Equation 3.3 [28]:

V (~A) =
∏
i∈D

~Ai (3.3)

where ~Ai is a resource vector.
A VM configuration can be expressed in the terms of vectors as well. If assume that there

are a large number of different VM configurations arrive to a cloud it is reasonable to claim
that they are in a normal distribution. Then the Probability Density Function (PDF) of the VM
capacity vector x can be calculated as defined in Equation 3.4 [28]:

p(x) =
1

(2π)d/2|Σ|1/2)
e
−

1

2
(x−µ)T Σ−1(x−µ)

(3.4)

The authors divides the algorithm of VM placement into three stages.

23

Physical Machine Candidate Selection (PMCS) [28] defines the target physical machine for
the VM allocation. It calculates remaining capacity ~F for every physical machine using the
Equation 3.4. After that a host whose score is not in a similar size of the mean VM capacity is
considered as candidate for the allocation.

Target Mapping Generation (TMG) [28] takes all candidates from the previous stage and
applies one of two heuristics proposed by the authors in order to map a physical machine for
each VM. One of them uses the imbalance metric, when the other one utilizes the volume metric.

Migration Plan (MP) [28] is mentioned in the work as an open research problem, though it
is noticed that it must consider the costs associated with performing the migration of VMs using
a certain cost function.

The evaluation presented in the paper demonstrates a minor decrease in resource utilization
levels that results from reducing a number of physical machines for re-allocation. Therefore the
approach tends to lower a number of re-allocated VMs, i.e., to reduce migration costs. Also the
results show advantage in usage of the imbalance heuristic over the volume one in user-defined
view and the opposite fact in the provider-defined view. Additionally, the evaluation shows that
multidimensional heuristic is better than non-dimensional one in the used-defined view and has
no significant difference in the provider view.

Exact VM allocation and migration using linear programming

In [15], the authors pay attention once more to a problem of excessive energy consumption of
data centers. They propose an exact energy allocation algorithm using classical formulation of
Bin-Packing problem. The algorithm is based on the linear integer programming techniques and
aims to reduce the number of running hosts in a data center. They combine exact allocation and
migration algorithms to reduce overall energy consumption in the data centers.

The simulation model is considered similarly to previous works: an infrastructure provider
allocates VMs to physical hosts. At the same time it tries to reduce energy power consumption
consolidating the placement of VMs using migration and maximizing the number of idle servers
that can be put to sleep mode.

The proposed system model consists of the following modules [15]:

• Cloud IaaS manager controls and manages resources, handles VM scheduling, fetches
and stores VM images in storage spaces.

• Energy estimation module behaves energy estimation tool that, e.g., can use power models
to obtain power consumption of VMs or servers from their resource usage. It is an inter-
mediate part between the cloud infrastructure manager and the energy-aware scheduler.

• Energy-aware VM scheduler places VM to the target physical hosts in the data centers. It
consists of two modules: first performs exact VM allocations, second is responsible for
further dynamic consolidation of VMs. The servers that are not used are putting into sleep
mode that thereby reduce the power consumption.

The exact allocation algorithm is presented as an extended Bin-Packing approach through
inclusion of valid constraints and inequalities as follows:

24

• Each physical host has power limit that cannot be exceed.

• All customer requests within a prescribed SLA or quota should be fulfilled. Moreover
each request should be assigned just to one and only one physical host.

• The sum of provisioned resources for all VMs hosted on a physical machine should not
exceed the capacity of this machine.

The migration algorithm is designed as Decreasing Best-Fit heuristics for exact and extended
Bin-Packing problem. The VMs are sorted in decreasing order of power consumption and are
placed to the server with the smallest remaining power consumption budget until a VM fits in
it this target host. The process continues until all VMs are not placed and packed as much as
possible in the most occupied servers. The unused serves is put to sleep mode.

Described migration algorithm relies on an integer linear program (ILP). The ILP algorithm
introduces a number of valid inequalities described previously to reduce the span of the convex
hull of the migration problem. Ideally, the algorithm has to minimize the number of running
physical hosts and maximize the overall number of VMs hosted by these hosts. Additionally, it
considers power consumption caused by migration and aims to minimize it.

At the end, two algorithms are combined together to achieve minimal energy consumption
in data centers. “Both the exact Bin-Packing extension and the Best-Fit heuristic are utilized to
achieve optimal and suboptimal placement respectively.”

The results show the benefits of combining the allocation and migration algorithms and
significant reduction of power consumption of exact Best-Fit algorithm in comparison to the
Best-Fit heuristic.

A Two-Tiered On-Demand Resource Allocation Mechanism for VM-Based Data
Centers

Y. Song et al. state in [36] that existing approaches that tend to turn on and off servers with
the help of VM migrations are not efficient enough. They argue that the key improvement of
resource utilization and throughput lies in the finding of optimized dynamic resource allocation
method. They propose a Two-Tiered on-demand resource allocation mechanism consisting of
the local and global resource allocation with feedback to provide on-demand capacities to the
concurrent applications. Using these mechanism they also propose a set of on-demand allocation
algorithms. It should be mentioned that although this work assume its usage more likely in
PaaS and SaaS environments, the ideas proposed by authors can be as well extended to IaaS
environment.

Figure 3.3 depicts the proposed mechanism. Comparing both figures it can be easily ob-
served that the two-tired on-demand resource allocation algorithm differs from the traditional
approach in adding a resource management level for VMs.

The applications (“application 1”... “application S”) illustrated on the Figure 3.3 consists
of multiple instance copies each of which is allocated in a VM. The VMs hosting the instances
of the same application belong to the same application domain. Obviously each server hosts
VMs that belong to multiple application domains. In this case each VM from a certain server

25

Figure 3.3: Two-tiered on-demand resource allocation mechanism versus traditional resource
management [36]

encounters time varying and various from each other workloads. This fact causes the problem of
dynamic resource allocation among VMs with a single physical machine. Moreover, the appli-
cation workloads on different physical hosts are also time varying and of various type that results
into the problem of dynamic resource allocation among applications. As there are currently no
technological support on the resource allocation on a server to a VM residing in another server,
the authors provide global resource optimization technique.

The work consider the control theory as the basis of modelling and designing feedback-
driven closed-loop allocation algorithms. The two-level control model, illustrated on the Figure,
is utilized. It is assumed that an object to be controlled is often represented as input-output
system. On the Figure 3.4 Controller-L and Controller-G correspond to the local and global
resource resources schedulers respectively.

Controller-L is responsible for the allocation of application to a server according to the
resource utilization Ui(t) of each VM, static priority SPi and activity Ai(t) of an application.
Resources utilization is considered by authors as the CPU utilization. The outputCi(t+1) refers
to to the resource assigned to VMi at time t+ 1.

Controller-G is responsible on the other side for the activities of applications. Resources

26

Figure 3.4: Two-level feedback control model [36]

allocated to each applicationCi(t−1), static priority SPi, workloadsWi(t−1), and the feedback
activity Ai(t − 1) of each application are the inputs. The key parameter is an activity Ai(t)
that controls resource allocation in Controller-L. The proposed loop should have an actuator to
implement the changes indicated by the control knobs. The global resource allocation algorithm
proposed by authors is exactly its actuator.

The work defines two different resource allocation problems as follows (see Figure 3.5) [36]:

• K-VN-1-PM problem of allocation of applications to K VMS within a single physical
host.

• K-VN-N-PM problem of allocation of applications to K VMs within multiple number of
physical hosts.

The goal of the further resource allocation is the optimization of the qualities of the hosted
application taking into account their priorities in the scope of limited resources. The authors
propose to use optimization theory and to transform the resource allocation problem into opti-
mization problem with limiting conditions. After they utilize Simplex Method is used in order
to resolve it.

The K-VM-n-PM problem is further resolved using the same approach as applied to K-VM-
1-PM problem.

The K-VM-1-PM model is used by authors to design a priority-based local and global on-
demand resource allocation algorithms to optimize the resource allocation among applications.
It is mentioned that the model takes a number of arrival requests during the last discrete interval
as a predictor at the next interval.

The local resource allocation algorithm, called ResourceFlow-L, is a combination of two
algorithms [36]:

• CpuFlow-L dynamically adjusts the weights of VMs according to their static priorities, re-
source utilizations, and activities of the hosted applications. It introduces double-threshold
approach that allocates more resources for a VM which CPU resource usage exceeds the
upper threshold and decreases resources for a VM if a CPU resource usage becomes lower
than the lower threshold.

27

Figure 3.5: The on-demand resource allocation problems [36]

• MemFlow-L dynamically controls memory allocation determining the events when the
memory overload in a VM occurs. The algorithm uses one threshold that defines that the
memory need to be reallocated if the idle memory is higher than threshold, or nothing
should be done otherwise.

The global resource allocation algorithm, called ResourceGlow-G, uses K-VM-1-PM model
to optimize resource allocation among applications in the entire system. It adjusts the activity of
each application according to the monitored resources Rit and optimized amount of resources
Rrit that should be assigned to each application. In most cases, they are not equal to each other.
Therefore the authors introduces the threshold that actuates the activity adjustment of VMs as
it avoids frequent adjustment. If Rrit is more than Rit more than a threshold, ResourceFlow-G
decreases the activity of a VM at time t. In turn, if Rit is more than Rrit and difference exceeds
the threshold the algorithm increases the activity of a VM at time t.

The evaluation demonstrates that the use of proposed method significantly improves appli-
cation performance as well as in the CPU utilization in the typical enterprise environment. On
the other side, it introduce degradation in the case of hosting multiple I/O-intensive applications
with high workloads. Additionally, the authors show that the algorithm improves the perfor-
mance of the critical applications as well as resource utilization, while just slightly degrading
the performance of others.

3.2 Cloud simulation tools

Taking into the consideration that the thesis introduces a cloud simulation framework the state-
of-the-art approaches in this field of study should be overviewed. The following section provides

28

a related work on a comparison of the cloud simulation frameworks, practices and ideas that
should be considered during implementation of own simulation approach.

Cloud Testing Tools

X.Bai et al. in [97] made a broad and deep survey of existing cloud testing tools, their advantages
and disadvantages, use cases to apply, etc.

There are main techniques used in cloud testing systems and their implementations as fol-
lows [97]:

• Simulation. An implementation of a cloud simulator allows to focus on a particular cloud
component, and analyse system behaviour under various scenarios.

• Service mocking. External services used by the systems in the cloud should be mocked
in order to at least provide a possibility to test the a system and furthermore to guarantee
repeatability of results.

• Test job parallelization. Parallel programming is an obvious way to reduce time and cost
of testing tasks by dividing them into independent jobs.

• Environment virtualization. Sometimes it necessary to perform tests in different testing
environments, for various versions of software and platforms. The usage of virtual ma-
chines often can help to ease and accelerate the process, and to reduce test cost.

The following part of this section will overview of currently existing tools for the techniques
presented previously.

Simulation

CloudSim [81], the most commonly used framework in the cloud computing research commu-
nity, provides a tool kit for modelling and simulating behaviour of various cloud components
such as data centers, physical machines, VMs, etc. including typical cloud features, e.g., VM
allocation, cloud federations, dynamic workloads. Main purpose of its use is the evaluation of
cloud resource provisioning strategies in a controlled simulated environment.

D-Cloud [34] “is a dedicated simulated test environment build upon Eucalyptus, an open-
source cloud infrastructure providing similar functionalities as Amazon EC2. ”

D-Cloud provides a possibility to simulate different typical faults of a cloud environment
and to inject them into host operating system (OS). The XML-based workflow configurations
are used for set up infrastructure and fault injection parameters. After a test plan is submitted,
D-Cloud initiates VMs to simulate the execution process following the test plan.

PreFail [75] is a framework for systematic and efficient failure exploration, for validation of
correctness and efficiency of cloud recovery protocols. In comparison to D-Cloud that provides
simulated actual faults, PreFail inserts a failure into the target system or the OS library. Using
such technique, testers can flexible set up failure scenarios.

29

Distributed Load Simulation is a cloud storage system that is characterized by highly paral-
lelism and non-determinism that was implemented as a part of the Cloudy2 distributed database
system. [46]

The framework contains two types of nodes: Master and Slave. Main and uniquely identified
Master nodes are responsible for distribution, synchronization and management of Slave nodes.
During the testing, waits for slaves connect to it, and then sends them tasks. The slaves run
the tasks and store tests results locally. At the end of the test, master node collect all results,
analyses them and then generates statistics.

This framework is capable to simulate a big variety of workload scenarios.

Service Mocking

iTKO [85] is a tool for analysing the constraints of enterprise systems of restricting availabil-
ity and accessibility for development and delivery. It aims to provide a constraint-free cloud
environment with fully virtualized services.

Test Job Parallelization

Cloud9 [55] is a software framework that provides an ability to use important testing technique
named symbolic execution on a cloud platform. It divides the path of application exploration
work into independent jobs that are assigned to different worker nodes. Further In order to get
high efficiency of testing service the workload of each worker is balanced by the global load
balancer. Each worker contains a runtime, a searcher and a constraint solver. It independently
from other nodes explores a sub-tree of applications’s execution tree.

Although the framework allows to reduce testing time significantly, it is still encounters a
scalability problems with increasing application size and complexity.

HadoopUnit [90] migrates JUnit test framework to Hadoop platform [57]. The framework
allows to submit execution of JUnit tests cases as independent Hadoop MapReduce jobs that can
greatly improve testing execution time.

Similar possibilities to HadoopUnit provides YETI [74], another cloud testing tool. It also
uses MapReduce to parallelize to map input testing tasks and to reduce final results.

Environment Virtualization

OCT (Open Cloud tesbed) [31] is a wide area testbed for cloud computing. The OCT was
introduced for performing advance cloud computing research, enabling experimental studies in-
volving different cloud computing architectures, providing a platform for cloud interoperability
studies, and to encourage cloud computing benchmarks. The following heterogeneous platforms
such as Eucalyptus, CloudStore, Hadoop, Sector/Sphere was tested using the OCT.

Summary

The novel design and methods introduced by cloud computing force the cloud testing tools to
emphasize on system testing and online testing. Although there are lot of platforms proposed
so far, many issues stay unresolved and need further investigation and research. For example,

30

fault-tolerance is one of the most important promise given by clouds can be tested just using
D-Cloud and PreFail. Additionally, state-of-the-art techniques and tools lack the support of the
following features [97]:

• Cross-cloud testing. Services has to be migrated between different application domains
or even clouds. Therefore, a unified methods of testing and evaluation of services on
heterogeneous cloud platforms is needed.

• Online and adaptive testing. An online testing tool for dynamic service composition,
deployment and on-line evolution is necessary.

• Real-time results mining. The synthetic offline testing cannot always identify all issues
encountered in real production systems, e.g., huge number of data can show bottlenecks
in fault discovery, allocations, recovery techniques.

31

CHAPTER 4
Efficient allocation of cloud resources

based on MCDA and BDA

The following chapter will formally define the problem of cloud power management mentioned
in the Chapter 1 and present a desired algorithm as its solution. This algorithm involves the usage
of a specific BN and further application of MCDA during decision-making process. Hence, we
will additionally detail methodology and the BN design process and its usage in decision-making
analysis.

4.1 Methodology

The building of a large BN is a step-wise process that starts with the creation of a certain small
model that is further being enlarged and extended with new relationships. Initially, a designer of
the network defines a set of the most important observations and measurements about a studied
system. They are used either to create a model manually or to obtain the structure using one of
the existed learning algorithms. After the model is built, the network can be used for reduction
of the main problem. In the case, when the model returns feasible results and thus proves its
applicability, new logic can be added into the model in order to improve further its efficiency.
In the case, when existing solution does not met the requirements, it can be immediately fixed
or reworked. The advantage of this method is that each following step move a designer towards
desired goals.

Exactly the same method is used in the thesis for the building of desired BN that will be
presented later in this Chapter.

33

4.2 BN for a simplified problem of costs reduction

Definition of simplified problem

The definition of the decision problem that was defined in the Chapter 1 can be simplified as
follows: we will not consider any external factors and will try to reduce energy costs and SLA
penalty costs paid in the case if QoS degrades and a customer is not supplied with a promised
service as much as possible.

Starting from now and in the following parts of the thesis we will assume that the cloud
provider offers an IaaS [14] service for its customers. It allows us to slightly reduce a diversity
of possible parameters and more thoroughly focus on our problem, namely costs.

Recall that IaaS service model offers physical and virtual hardware that can be by demand of
customers quickly provisioned and decommissioned through a self-service interface [14]. Using
these IT resources customers are allowed to install their own operating systems, middleware, and
applications software supporting their business needs and processes [14]. The main consequence
of this fact is that a cloud provider should consider workloads of customers’ VMs as an input
and can manage only the placement of these VMs and power state (either switched on or off) of
physical hardware. It is the starting point of our BN design.

Objectives and perspectives

It is already possible to define objectives, perspectives and decision problem in the scope of
previously defined assumptions. The stakeholders of the problem are the provider itself as the
decision maker and the customers that suppose the fulfilment of the duties defined in the SLA. In
the case, if customers encounter poor service, e.g., frequent downtimes, provider will have to pay
a penalty and in the worst case will lose the clients. Thereby the objectives of the cloud provider
is to consume less amount of energy and at the same time try not to violate its responsibilities
to the customers. As was already mentioned before, key challenge of implementing IaaS is
determining of efficient placement of VMs, i.e., the assignment of each VM to a host in the
provider’s cloud infrastructure [30].

Design of a BN

We will start with a quite straightforward model that enumerates and compares all physical hosts
pairwise and migrates a VM to the host that has higher workload and at the same time has enough
resources to satisfy VM’s needs. The Bayesian Network that is utilized in this case is depicted
on the Figure 4.1. It has three nodes, two of them, PMs workload comparison and Is enough
resources, are our observations from cloud infrastructure and the other one, Action, is a decision
node that defines the action that has to be performed. Additionally, Figure 4.1 illustrates the
CPT of the node Action.

We do not evaluate the efficiency of specially this network and the model in total, we only
want to pay attention to the following facts:

• the structure of the model was created completely based just on our knowledge about
studied domain and it is intuitively simple for understanding and further application

34

• the CPTs of the model can be either defined based on the experts’ experience and used in
forward direction or they can be learned using training data set in the backward direction
beforehand

(a) Structure

(b) CPT

Figure 4.1: Structure (a) and CPT (b) of a Bayesian Network for solving VM Placement problem
designed using Bayes Server, version 5 [83]

4.3 Bayesian Network for the problem of VM migration

After building a simple Bayesian Network in the Section 4.2, we will extend the model using
more detailed knowledge about cloud provider infrastructure.

Problem definition and solution

A provider rarely owns just one single data center. More often there are several data centers
geo-distributed all over the world and connected with each other using certain network topol-
ogy. Each of them has own particularities such as specific electricity markets, different weather

35

conditions (e.g, Google place some of its data centers above the Arctic Circle [96]), various fre-
quency of power outages, etc. All of them can have a big impact on the total costs spent by the
provider for maintenance of its infrastructure.

We consider infrastructure of a data center composed of distinct physical hosts each of them
has limited capacity of resources (e.g., CPU, bandwidth, RAM, etc.) and connected with each
other via network. In order to achieve the best energy efficiency cloud provider has to balance the
load of cloud resources by migrating customer requests to most appropriate hosts considering
data center and host specifics. As was already previously mentioned in the Section 2.2 the
main method of rebalancing workload in the virtualized data centers is a live VM migration.
Moreover, we will assume that pre-copy migration strategy is used.

The approach of the Bayesian Network structure is based on the following considerations:

• A VM should be hosted in a data center with the cheapest energy price

• A data center already encountering high workload is considered as not suitable candidate
for placement and migration of VMs, because many SLAs can be violated that leads to
the payment of penalties

• Migration of VMs from one host to another induces additional overhead to a network
infrastructure and can introduce malfunction in the life-time of cloud services. Migration
gain depends directly on the current workload of a VM and can be presented by a Dirty
Page Rate which value are computed from the combination of CPU and RAM workloads
of the VM.

Decision problem investigated in the current case is the identification of target data center
for each VM hosted in the cloud. It is assumed that the decision-making algorithm compares
each data center pairwise and use certain observations from cloud entities. The set of possible
actions regarding VM placement are defined as follows: Migrate a VM to target data center or
Do Nothing.

Design of a BN for VM migrations

The Figure 4.2 presents desired Bayesian Network with already assigned evidences. All qual-
itative measurements are firstly discretized before evidence assignment. After that a certain
qualitative level, e.g., Low, Middle, High, is assigned to each discrete interval. The network
consists from the following nodes:

• VM CPU node represents current CPU workload of a VM considered as a candidate for
migration.

• VM RAM node behaves similarly to the CPU usage node, except that it represents current
RAM workload of a VM.

• Dirty Page Rate node expresses the value of Dirty Page Rate that is calculated based on the
values of CPU and RAM workloads of a VM. Higher values of RAM and CPU workload
imply higher values of Dirty Page Rate.

36

Figure 4.2: Bayesian Network Decision-Making considering VM Placements in the Cloud de-
signed using Bayes Server, version 5 [83]

• Migration Effort node represents a qualitative value that defines an effort of VM migration
to the target data center. Higher values of Dirty Page RateDirty Page result into higher
migration effort.

• Energy Price Comparison node represents the comparison of energy prices between a data
center where VM is currently allocated and a target data center

• DC load node shows the current load of target data center.

• Migration benefit node represents a benefit from migration of a VM to a target data center.
This node has three parent nodes as follows: Migration Effort, Energy Price Comparison,
and DC load. Higher values encountered by parent nodes will result into lower value
migration benefit.

• Migration Action node is a decision node that calculates a quantitative assessment of each
action that can be applied to a VM. Higher possibility set to a certain level of this node
will identify that it is more suitable that the other one.

In the case, illustrated on Figure 4.2, we evaluate a migration of the VM with low CPU and
RAM workloads to a data center with lower energy price and low overall data center load. The
Network computed that the action Migrate is more suitable in current case and, hence, a VM
should be migrated to the target data center.

Summary

Summarizing the models from the last two sections, it can be concluded that although presented
models are a little bit oversimplified, but they became a good starting point for more efficient
and applicable approach, presented in the following Section.

37

4.4 Cost-aware algorithm for allocation of cloud resources

The Section 4.2 and Section 4.3 give a short overview how simplified problem of VM placement
can be examined and decided in the scope of existed knowledge about cloud service life-time.

The following Section will introduce and describe in turn in details the decision-making
algorithm that was noted in the Chapter 1. It captures many criteria and factors arisen in the
real-world cloud environment and uses combined method of BN and MCDA with the specified
utility functions for certain decision actions.

Problem definition

The simplified definition of the problem was already done in the Section 4.2. We will formalize
it and extend its scope.

We will recall the objectives of the cloud provider, namely the reduction of operational costs
of running cloud infrastructure as well as minimization of SLA penalty costs. It is absolutely
clear that these two criteria conflict with each other therefore we are dealing with multi-criteria
decision problem. In addition, we assume that data centers are geo-distributed all over the world
in order to cover local requirements of each customer and to improve responsiveness of cloud
services. This fact introduce several open issues into the life-time of cloud provider .

Firstly, as was noted in previous sections, each area has its own independent electricity
market that directly impacts on the energy costs. Global electricity price comparison [1] shows
that sometimes the prices in one country can be ten times higher as in another one. Also some
electricity markets experiences the reduction of energy prices during certain time of day, e.g., in
the night.

Second issue arises due to different weather conditions in various parts of the globe. As was
mentioned in the Chapter 3 temperature-aware analysis of data center workloads can greatly
reduce energy costs as data center built in the cold region has smaller pPUE rate [43], or
broadly speaking, consumes less energy for cooling its infrastructure.

The third problem relates to power outages that as was noticed in the Chapter 1 can become
a big issue for the provider. For example, statistics of electrical outages [23] states that in large
number of countries it is even not possible to guarantee common availability level of 99.9 %.
But if a provider decides to place a data center in such region or country with low quality of
electricity services due to either peculiar properties or business requirements or simply much
lower prices, the information about power outages will be useful. As example, we can consider
the case when availability level of a certain customer is already almost violated. Taking into
account that SLA penalties are high 1 2, it would be a bad decision to place the VMs of this
customer into the a data center with high possibility of power outage.

Problem formalization

The following section will give a formal definition of the problem of VM placement. Addition-
ally, it will present the process of building of physical model for the cooling infrastructure that

1http://www.rackspace.com/information/legal/cloud/sla
2http://azure.microsoft.com/en-us/support/legal/sla/

38

http://www.rackspace.com/information/legal/cloud/sla
http://azure.microsoft.com/en-us/support/legal/sla/

will be an important part of the final algorithm presented in the following section.

VM Placement

As was noted previously the method of workoad balancing will be done using live VM migra-
tions. At each simulation timestamp each running VM existed in the cloud can be in two states,
either already allocated to a host or still without destination host assigned to it and therefore has
to be allocated. We call this sets placed(t) and allocation(t) respectively. The set of all VMs
will be called all(t). It is clear that all(t) = allocation(t)

⋃
placed(t). During each time point

two following issues should be resolved:

• find target physical host for all VMs from the set allocation(t)

• find target physical host for migration of currently allocated VMs from the set placed(t)
if their current placement are not optimal enough.

It should be noted that the benefit from the VM allocation or migration are evaluated not
only in the scope of the VM, but also in the scope of the whole cloud.

Additional set migrated(t) defines a set of VMs that are being migrated to some hosts at
time t. It is intuitively clear that migrated(t) ⊆ placed(t).

We define a set of possible decision actions as follows: Allocate VM, Migrate VM. Ad-
ditionally, we determine that the set of decision actions such as switch a physical host on are
triggered automatically when at least one VM begin being allocated or migrated to it or switch
off if no VMs are placed on it.

We assume that a data center consists of M distinct physical hosts. Each host is defined
by a certain capacity of resources R. Each host m has a known limited capacity Cmr for each
resource r, where m ∈ {1..M} and r ∈ {1..R}.

We define the binary variable xij(t) that indicates that VM vi is placed at host j at time t.
Equation 4.1 states that each VM from the set placed(t) will be placed exactly in one host.

M∑
j=1

xij = 1,∀vi ∈ placed(t) (4.1)

Each VM vi has its specifications that defines upper bound of each resource max(vrir(t))
required by it at any point of time. During each simulation timestamp a VM requires certain
amount of resources vrir that is considered during decision about placement of the VM. Ac-
cording to the specified strategy these resources will not be necessarily provisioned for the VM
therefore we introduce additionally the amount of resources vpir(t) that are provisioned for VM.
This value can be less, equal or greater than vrir(t). In the case when it is less VM experiences
a downtime.

Usually there are 4 most common resource types considered for VM: CPU, RAM, bandwidth
and size. For simplification reasons we assume that the hosts in the data center are always big
enough to satisfy needs of RAM, bandwidth or size. Just one resource, CPU, is considered as
limited. We will show later that the model can be easily extended for the case of limitations of
other resources as well.

39

Equation 4.2 guarantees that amount of provisioned resources for all VMs allocated on a
distinct host does not exceed the overall capacity of this host.

∑
i∈placed(t)

xij(t) · vpir ≤ Cjr, ∀j = 1..M, r = 1..R (4.2)

Moreover Equation 4.3 states how the workload Wjr for a certain physical host j and re-
source r with allocated VMs can be computed:

Wjr =
∑

i∈placed(t)

xij(t) · vpir,∀j = 1..M, r = 1..R (4.3)

Further we define the binary variable mij(t) that indicates that VM vi is being migrated to
host j at time t.

Equation 4.4 states that each VM from the set placed(t) will be placed exactly in one host.

M∑
j=1

mij = 1, ∀vi ∈ migrated(t) (4.4)

In our model we assume that the migration of the VM does not affect the resources of the
target host:

∑
i∈migrated(t)

mij(t) · vpir = 0, ∀j = 1..M, r = 1..R (4.5)

The Dirty Page Rate of the VM is defined by variable dpri(t). Equation 4.6 states how it
depends n the requested by VM RAM:

dpri(t) = f(vriram), ∀vi ∈ migrated(t) (4.6)

where f is a custom defined functional dependency. For simplicity we assume f as a certain
linear function. Consequently, the Equation 4.6 can be rewritten as Equation 4.7:

dpri(t) = C · vriram, ∀vi ∈ migrated(t) (4.7)

where C is certain constant value.
If we further assume that amount of RAM and consequently Dirty Page Rate does not change

during some period between two distinct timestamps then the amount of migrated RAM for VM
i defined as migri(t) to another physical host can be computed as follows:

migri(t) =
bw(t) · dt
dpri(t)

(4.8)

40

where bw(t) is bandwidth speed rate between source and target hosts.
Additionally, each VM are assigned with an SLA. Each SLA has a priority level that defines

priority of VM during its placement and resource provisioning to a target host. A VM with higher
SLA level will have higher priority during resource provisioning over other VMs allocated to
the same physical host.

Physical model of a cooling system

As we plan to use temperature data in our model, it is important to measure an impact of an
input temperature on energy consumed for cooling a data center infrastructure. The work [43]
makes an overview of impact of outside temperature to pPue rate. These results give us possi-
bility to find a physical model cooling system, namely a function dependency between outside
temperature, cooling mode and output partial power usage effectiveness (pPue) rate as follows:

pPue = f(Temperature, CoolignMode) (4.9)

Although the results, given in this work, are related to a concrete cooling system (namely
Emerson’s DSE) the method used in the thesis can be easily extrapolated for each similar cooling
system. Table 4.1 gives a concrete measurements of these three observed variables.

Outdoor ambient Cooling mode pPue
35 ◦C (90 ◦F) Mechanical 1.30

21.1 ◦C (70 ◦F) Mechanical 1.21

15.6 ◦C (60 ◦F) Mixed 1.17

10 ◦C (50 ◦F) Air 1.10

−3.9 ◦C (25 ◦F) Air 1.05

Table 4.1: Efficiency of Emerson’s DSE TM cooling system with an EconoPhase air-side econ-
omizer [43]. Return air is set at 29.4 ◦C

The proposed physical model will operate under two assumptions:

• dependency between pPue rate and temperature values for a distinct cooling mode is linear
over a certain range of temperature values:

pPue = a · Temperature+ b (4.10)

where a and b are parameters of the physical model for each cooling mode. It should
be mentioned that each cooling mode has its temperature range within which it can be
utilized, i.e., it is assumed that use of air cooling mode will be completely not applicable
when outside temperature exceeds 20 ◦C.

• pPue of mixed mode is computed as an average value of pPue of mechanical and air
modes:

pPuemixed =
pPueair + pPuemechanical

2
(4.11)

41

• The temperature range within which cooling system utilizes mixed mode are defined man-
ually with consideration to physical models for air and mechanical modes. According to
the [43], we will define this range between 12 ◦C and 18 ◦C.

Equation 4.12 states the expressions that operate under mechanical cooling model:{
21.1a+ b = 1.21

35a+ b = 1.3
(4.12)

The coefficients near a and b used in each equation are temperatures value and respectively
pPue rates defined in the Table 4.1.

Equation 4.13 and Equation 4.14 show the derivation of a and b:

a =
1.3− 1.21

35− 21.1
= 0.0065 (4.13)

b = 1.21− 21.1a = 1.21− 21.1 · 0.0065 = 1.0725 (4.14)

Thereby after solving the Equation 4.12 we can obtain the Equation 4.15 that describes
mechanical cooling model:

pPuemechanical = 0.0065 · Temperature+ 1.0725 (4.15)

Similarly we can find physical model for air cooling mode. Equation 4.16 states the expres-
sions that operate under air cooling model:{

−3.9a+ b = 1.05

10a+ b = 1.1
(4.16)

Equation 4.17 and Equation 4.18 show the derivation of a and b:

a =
1.1− 1.05

10 + 3.9
= 0.0036 (4.17)

b = 1.05 + 3.9a = 1.05 + 3.9 · 0.0036 = 1.064 (4.18)

Once more after solving the Equation 4.16 we can obtain the Equation 4.19 that describes
air cooling model:

pPueair = 0.0036 · Temperature+ 1.064 (4.19)

Thus we can already define the physical model of the whole cooling system:

pPue =


0.0036 · Temperature+ 1.064 Temperature ≤ 12 ◦C

0.00505 · Temperature+ 1.06825 12 ◦C < Temperature < 18 ◦C

0.0065 · Temperature+ 1.0725 Temperature ≥ 18 ◦C

(4.20)

42

It should be noted that this physical model operates just for temperature values in Celsius
and will have other parameters for values in Fahrenheit.

After defining the physical model of cooling system the Equation 4.21 that computes energy
consumption for a given time range can be defined:

Energyoverall = Energyspecs · pPue · dt (4.21)

where Energyoverall is an overall data center energy consumption, Energyspecs is an data cen-
ter energy consumption without cooling costs defined by its specifications. It is assumed that
temperature and therefore pPue are constants within given time range.

Equation 4.22 states the energy costs consumed by a data center within a given range:

Costsenergy = Energyoverall · Priceenergy (4.22)

It is assumed that energy costs and temperature are constants within given time range.

Proposed Bayesian Network

Previous Sections introduced the formalization of different processes occurred in the cloud as
well as rules applied to it. The approach that we will use to reduce costs of cloud infrastructure
is the sophisticated VM placement and further power management of busy and empty physical
machines.

In this Section we will present desired BN, detail the reasoning that led to its creation and
criteria that in combination with MCDA are used for decision making.

The Section 4.4 introduced the issues occurred for the cloud provider such as different energy
prices and weather conditions, frequent power outages, high SLA penalty, etc. Therefore, we can
already define the idea of our approach for the VM placement problem: at each timestamp we
will try to either allocate of currently scheduled or migrate of already hosted VM to a physical
host that are running in a data center with the cheapest energy, the lowest pPue rate and at
the same time with the lowest possibility of VM’s SLA to be violated. Thereby, an elasticity
manager that will follow this approach, will minimize both energy and penalty costs of a cloud
provider.

Using this approach we will define an algorithm for resolving VM placement problem. Our
algorithm consists of two phases: allocation of VMs and their periodic consolidation. The first
phase can be seen as Bin-Packing problem [94] with variable bin sizes and prices. Taking into
account that this problem is NP-hard, we will modify well-known heuristic Best-Fit-Decreasing

that is shown to use no more that
11

9
· OPT + 1 bins (where OPT is defined as the number of

bins given by the optimal solution) [6, 99]. Our modification consists in an utility function that
will be used to define the most appropriate physical host for a VM hosted in the cloud. We have
established a Bayesian Network (BN) (see Figure 4.3) which nodes are built upon observations
collected from the cloud infrastructure and defined factors and criteria. This BN calculates
probabilities of various criteria based on the set of known facts. Further these probabilities are
used in the MCDA as follows: each criteria gi is defined as an utility weighting ui that represents
the relative importance of each attribute for the given decision problem. The overall utility U(a)

43

of an action a, namely allocation or migration of a certain VM to a target host, is then simply the
weighted sum

∑
uigi(a). A VM is allocated or migrated to a physical machine with the biggest

value of the utility function.
Second phase implies the consolidation of existed VM placements based on a certain VM

migration policy. After all candidates for migration are identified, we apply the algorithm from
the first phase, in order to find target physical machine for a VM.

The proposed BN consists from the following set of nodes:

• Same Data Center node defines whether target PM is located at the same data center as
the VM

• VM Next RAM Workload node represents predicted amount of RAM utilized by the VM
on the next simulation timestamp. It is assumed that workload prediction is done by a
custom prediction police. The set of prediction policies used during evaluation will be
listed later in this Section.

• VM Next CPU Workload node represents amount of CPU of target physical machine on
the next simulation timestamp that a VM would be consumed alone, e.g., if a VM will
utilize 500 MIPS and the target host CPU capacity equals to 1000 MIPS, then this values
will equal to 50%.

• Other VMs Next CPU Workload node represents amount of CPU of target physical ma-
chine on the next simulation timestamp that will be utilized by all VMs that have the same
or higher level of SLA than current VM.

• PM Overall CPU Workload node represents current CPU workload of the target physical
machine.

• PM Next Overall CPU Workload node represents estimation of the overall CPU workload
of the target physical machine if the VM will be placed on it.

• Country node defines the country where data center is located.

• VM RAM node defines the amount of RAM of the VM defined in its specifications.

• Bandwidth node defines bandwidth rate between a physical machine where VM is placed
and target physical machine. As was mentioned in the Chapter 2 it has direct impact on
the migration time.

• Dirty Page Rate node represents assessment of possible Dirty Page Rate in the case if the
VM will be migrated to the target host

• Same SLA Next CPU Workload node represents estimation of CPU workload of the target
physical machine in the case if the VM will be placed to it. The node has two parents,
namely VM Next CPU Workload and Other VMs Next CPU Workload.

44

Fi
gu

re
4.

3:
Pr

op
os

ed
B

ay
es

ia
n

N
et

w
or

k
w

ith
as

si
gn

ed
ev

id
en

ce
s

45

• Migration Time Percent node represents a percent of time that takes a VM to migrate to the
target host from the maximal allowed downtime for examined VM until the provider will
pay a penalty, e.g., we assume that a VM SLA claims 99.9% of availability per months.
It means that maximal allowed downtime equals to 43.2 minutes. Then the percentage
value of Migration Time Percent is computed with respect of this maximal downtime. The
same rules are applied for the nodes such as VM Downtime Duration Percent, VM Adj
Downtime Duration Percent, Power Outage Duration Percent, VM Cumm SLA Violation
Rate, VM SLA Violation Rate, VM Adj Cumm SLA Violation Rate, and VM Cumm SLA
Violation Rate.

• Has VM Downtime node defines whether the VM will encounter a downtime if it will be
placed to the target physical machine. The value of this node is computed depending on
the values of Same SLA Next CPU Workload.

• Power Outage node represents a possibility of a downtime occurred in the target data
center during following timestamp.

• Power Outage Duration Percent node represents percentage of downtime from the maxi-
mal allowed downtime of the VM.

• Has other VMs overusage node shows whether at least one VM placed on the target phys-
ical machine will not be fully provisioned with CPU resources and therefore will be in
downtime.

• VM Adj Downtime Duration Percent node represents percentage of downtime with con-
sideration of possible power outage time from the maximal allowed downtime of the VM.

• VM SLA Violation Rate node represents percentage of already encountered downtime in
the current billing period from the maximal allowed downtime of the VM.

• VM Adj SLA Violation Rate node represents percentage of downtime considering current
downtime and possible downtime after migration of VM to the target host from the maxi-
mal allowed downtime of the VM.

• VM Cumm SLA Violation Rate node represents percentage of duration of currently en-
countered downtime in the current billing period from the maximal allowed downtime of
the VM, e.g., if a VM is in downtime at the moment this value will equal to the difference
between current timestamp and the time of last VM availability, other it will be equal to 0.

• VM Adj Cumm SLA Violation Rate node similarly to VM Adj SLA Violation Rate represents
the value of VM Cumm SLA Violation Rate with the consideration of possible downtime
after migration of VM to the target host.

The SLA utilized in the model guarantees overall availability over defined period, e.g.,
monthly availability of 99.9%, and the maximal time of cumulated duration of distinct down-
time, e.g., that every single downtime will not last more than 30 minutes.

46

The discretization of observed variables to 10 levels was done due to the fact that majority
of hardware specifications benchmarks provide their data (e.g., power utilization of as physical
machine) in respect of these 10 levels.

We have built the Bayesian Network around an example that assumes that a given cloud
provider owns 5 data centers located in the following cities: Vienna (Austria), Oslo (Norway),
Toronto (Canada), Tokyo (Japan), and Rio de Janeiro (Brazil). These countries are utilized as
levels in the node Country. It should be noted that chosen concrete values do not affect the
architecture of the network and in the case when new location should be added it can be simply
done with updating of the node Country and distributions of its two child nodes Power Outage
and Power Outage Duration.

Additionally, we have mentioned that the workloads utilized in the model are predicted using
several prediction policies. In our further evaluations in the Chapter 6 we will use the following
policies:

• Last Workload Policy supposes that next workload value will equal to current one.

• Rate Workload Policy supposes that next workload value differs from the current one to
the static rate.

• Trend Workload Policy supposes that the values of workload follows a certain linear trend
and tries to identify this linear dependency and to calculate appropriate prediction value.

• Linear Regression Workload Policy applies regression algorithms to the workload history
values in order to predict possible future value of workload.

It should be noted that we use this four simple policies and not more sophisticated solutions
because they are not the focus of our study in this thesis.

We will describe in details decision process about VM placement using an example illus-
trated on the Figure 4.3. We use the BN to calculate values of uncertain criteria. In this scenario,
we evaluate the benefit of migration of VM with small amount of RAM to a host in the data
center located in Brazil. The BN calculates that the probability of violation of overall availabil-
ity as well as cumulative downtime duration is 0.1291 whereas their current violation levels are
40-50% from the guaranteed values.

The next step is a definition of criteria. We have defined the following criteria:

• violation rate of the overall availability (g1 ∈ [0; 1]),

• violation rate of cumulative downtime duration (g2 ∈ [0; 1])

• power utilized by physical host with consideration to consumption of energy for its cooling
(g3)

• CPU workload of physical host if a VM will be migrated (g4)

• migration time (g5)

• energy price (g6)

47

• possibility of downtime of other VMs on the host (g7)

Table 4.2 represents the mapping of each criteria to a ratio scale [0, 1] where 0 represents the
worst value and 1 represents the best one.

g1,g2,g5

0-10 % 1
10-20 % 0.9
20-30 % 0.8
30-40 % 0.7
40-50 % 0.6
50-60 % 0.5
60-70 % 0.4
70-80 % 0.3
80-90 % 0.2
90-100 % 0.1
violation % 0

g4

0-10 % 0.125
10-20 % 0.25
20-30 % 0.375
30-40 % 0.5
40-50 % 0.625
50-60 % 0.750
60-70 % 0.875
70-80 % 1
80-90 % 0.66
90-100 % 0.33
violation % 0

g7

yes 0
no 1

Table 4.2: Criteria mapping to the ratio scale [0; 1]

Equation 4.23 states the calculation of g3:

g3 = (P − p ∗ pPue)/P (4.23)

where P is a constant that defines maximal power that can be utilized by each host with
consideration of cooling energy consumption, p is host power consumption, pPue is pPue rate
for current data center where physical host is located.

Equation 4.24 states the calculation of g6:

g6 = (E − e)/E (4.24)

where E is a constant that defines maximal energy price over all data centers, e is current
energy price in the target data center.

At the end in order to utilize BN for decision analysis and evaluate triggered actions we use
the utility function U(a) defined previously.

Example. In the Table 4.3 we have specified utility weightings to the criteria for the sce-
nario given above on Figure 4.3. The weight for each single utility is defined in the header of the
table. Each column refers to the criteria specified in its header. The SLA violations as well as
energy price have been considered as the most important criteria. In the table the rows represent
the physical host’s characteristics: its location, bandwidth between target host and current host
where VM is allocated, host CPU workload, etc. The values of each criteria are taken consid-
ering the rules defined previously. To obtain the values for the uncertain criteria (what host is
the best for VM placement) we get the mean values from the BN when we enter the specified
input vectors and then transform these using the rules. The column with total value contains
that values that are calculated as weighted sum of each criteria and its weight. In this example,

48

target host (location,
same data center,
bandwidth, host

workload, vms workload)

g1(3) g2(3) g3(2) g4(0.5) g5(3) g6(2) g7(2) total

(Brazil, no, medium,
30-40%,50-60%)

0.2 0.7 0.3 0.7 1 0.66 0.8 9.37

(Brazil, no, medium,
10-20%,10-20%)

0.2 0.7 0.4 0.7 1 0.825 0.8 9.9

(Japan, no, high,
70-80%,70-80%)

0.6 0.7 0.15 1 0 0 0.2 5.3

(Japan, no, high,
0-10%,50-60%)

0.9 0.9 0.45 1 1 0.75 0.2 10.9

(Austria, yes, high,
20-30%,60-70%)

0.8 0.2 0.35 1 1 1 0.6 10.0

(Austria, yes, high,
60-70%,20-30%)

0.4 0.6 0.2 1 0 0 0.6 5.7

(Canada, no, medium,
80-90%,80-90%)

0.3 0.3 0.1 0.7 0 0 0.5 3.85

(Canada, no, medium,
0-10%,0-10%)

0.9 0.8 0.45 0.7 1 0.75 0.5 11.35

(Norway, no, high,
20-30%,40-50%)

0.8 0.9 0.35 1 1 1 0.3 11.2

(Norway, no, high,
10-20%,30-40%)

0.9 0.9 0.4 1 1 0.825 0.3 11.25

Table 4.3: An example of decision-making analysis using proposed approach. Criteria values
are obtained from the BN illustrated on Figure 4.3

the biggest total utility value refers to the data center in Canada that supposes to migrate a VM
to it.

49

CHAPTER 5
Architecture and Implementation of

Simulation Framework

The Chapter 1 introduced the key features of the simulation framework called Cloudnet that
allows its use for evaluations of cloud infrastructures among which a possibility to simulate live
VM migrations between Geo-distributed data centers, usage of realistic weather data, scheduling
of power outages, simulation of various cooling models and resources utilization workloads, etc.

The following Chapter will describe in detail the design, architecture and implementation of
the Cloudnet framework, which has been developed with deep consideration of common Cloud
Computing patterns introduced in the Chapter 2. Cloudnet solution allows a cloud provider to
test its infrastructure in repeatable and controllable way, to find and avoid performance bottle-
necks, evaluate different cloud management scenarios under varying geo-aware, load and pricing
conditions. On the other side, it should be mentioned that although the simulation is very pow-
erful experimental methodology, it should be utilized with great understanding of the running
process and is applicable just in certain number of use cases. If necessary other methodologies
such as benchmarking, in-situ, emulation [42] should be strongly considered.

Cloudnet is a reliable, flexible, fast simulation framework written in JAVA with the possibil-
ity to perform native invocations of the R language [79] using external running R environment.
A part of it is hardly concentrated on the usage of BNs for the decision-making analysis utilized
in this Thesis.

Cloudnet was designed and implemented on the basis of loose-coupling paradigms [14] that
assumes decoupling of different simulated components from each other and their communica-
tion through the Message-oriented middleware (MOM) [18]. The dependent components of the
system interact with each other through interfaces that allows simple extension of almost each
part of the framework and highly configurable possibilities that captures many simulation use
cases.

51

5.1 Architecture

The framework consists of the following components:

• Simulation core: different implementations of simulation engines as well as simulation
clock that shows the actual simulation time. The actual simulation time can be polled by
any object but can only be set by the simulation engine responsible for this.

• Cloud domain: the classes that represent all main cloud entities, models and interfaces.

• Various physical models: Implementation of different physical models that are utilized
during runtime of cloud infrastructure.

• MOM: A set of classes that allows loose couple communication between different com-
ponents of the simulated cloud.

• Monitoring infrastructure: attachable observers that monitor ans make snaphots of cloud
entity states and log them into different output formats for further analysis.

• R Wrapper: service wrapper for execution of commands in the external R environment.

• Bayesian Networks package: a set of classes that provides various possibilities to work
with BNs.

• Data-collecting utilities: a set of utilities that are responsible for downloading and trans-
formation of various weather data from different Web services.

• Logging package: Highly configurable logging capabilities for tracing various information
about execution of the simulations.

The core classes as well as cloud interfaces are assumed to a necessary part of the framework
that denotes their irreplaceability.

Simulations

The Simulation package contains the components that are responsible for the simulation of the
cloud infrastructure: interface of a cloud engine and its two implementations, simulation clock
and interfaces for abstract scheduler that is responsible for generation of customer requests and
simulated entity which can be utilized by simulation engine.

Figure (add figure) shows a UML diagram of the package.
The interface SimEngine allows to perform simulations of the processes in the given cloud

environment. Current implementation of the framework contains two concrete implementations
represented in the Table 5.1.

As was mentioned above, the class SimClock is utilized by a simulation engine in order
to save the actual simulation time. Further this information is used by each component that
implements interface Simulated to simulate its execution between two different time instants.

52

Class Name Responsibility
SimEngineSimple Simulates predetermined number of steps
SimEngineDates Simulates predetermined time range between two dates

Table 5.1: Concrete implementations of the SimEngine interface

Listing 5.1 exemplifies one execution step of the simulation engine. Initially it schedules
customer requests, then increases simulation time and after that simulates execution of the at-
tached simulated entity, e.g, a cloud in this case.

Listing 5.1: One execution step of the simulation engine

1 // schedule
2 scheduler.schedule(cloud, clock);
3 // increase time
4 clock.add();
5 // simulate cloud execution
6 cloud.simulateExecution();

Cloud domain

The Domain Core package contains main cloud entities and interfaces that they use during their
life-time.

CloudEntity, the base class for each simulated entity, implements the interface Simulated
utilized by a simulation engine. It is implemented using Abstract Factory pattern [21] that pro-
vides a simple way to encapsulate a group of individual entity implementations.

Cloud entities in the Cloudnet are the containers [24] for various physical models of the
processes running within them. For example, a Datacenter has a CoolingModel that can
be utilized to get power usage effectiveness of its cooling system. Often containers are imple-
mented as concrete classes, whereas physical models are represented by interfaces that allows
simple extensibility of the framework, e.g., CoolingModel has two following implementa-
tions which physical models where described in details in the Section 4.4: AirCoolingModel
and MechanicalCoolingModel.

Table 5.2 gives an overview of main cloud entities and models.
Cloud contains the list of data centers and references to ElasticityManager and

Monitoring System attached to it. The simulation of its execution consists from the fol-
lowing stages:

• Waiting and performing of changes triggered by the ElasticityManager

• Simulation of execution of cloud infrastructure

• Calculation of current costs

• Monitoring

53

It means that Cloud does not perform any changes without a designation of the ElasticityManager
that completely manages all actions applied to the cloud infrastructure.

Class Name Responsibility
Cloud Represents abstract implementation of Public Cloud [14]

that can be customized for each concrete cloud service
model such IaaS, PaaS, etc.

Datacenter Represents a geo-aware data center
Pm Represents a physical machine (host) that are located in a

data center and can host VMs
PmSpec Represents concrete specifications of a physical machine

such as amount of resources, power utilization
Vm Represents a VM
VmSpec Concrete specifications of VM that contain information

about its maximal amount of resource usage
ElasticityManager Represents an interface for ElasticityManager described in

the Chapter 2 that is used to perform management of cloud
infrastructure

MonitoringSystem Represents an interface for an system that can be attached
to a cloud for monitoring purposes

Sla Interface for an SLA which concrete implementation
should be provided for each cloud service model

SlaLevel SLA’s priority level
WorkloadModel Interface that is used to simulate various application work-

loads described in the Chapter 2
CoolingModel Interface that is used to get power usage effectiveness of a

cooling system used in a data center
EnergyPriceModel Interface that is used to simulate energy price with con-

sideration a data center location. It uses combination of
WorkloadModel with a specific factor in order to simu-
late various prices

PowerOutageModel Interface that is used to simulate power outages with con-
sideration a data center location

TemperatureModel Interface that is used to simulate outside temperature with
consideration a data center location

Location Interface that encapsulate all necessary information regard-
ing certain geo-aware location such as city, country, time-
zone, different statistics, etc.

Provisioner Interface that represents the strategy of resource provision-
ing

Table 5.2: Cloud Domain classes and interfaces

The framework emphasis on accuracy of calculations therefore almost all of them are per-

54

formed using the type java.lang.Long (or the primitive type long where it is possible),
because it avoids any rounding issues. An example is given in the Listing 5.2 where part imple-
mentation of helper class Size is shown.

Listing 5.2: Implementation of different memory sizes that avoids rounding issues

1 public final static long Bit = 1;
2 public final static long KBit = Bit * 1024;
3 public final static long MBit = KBit * 1024;
4 public final static long GBit = MBit * 1024;
5 public final static long Byte = Bit * 8;
6 public final static long KB = Byte * 1024;
7 public final static long MB = KB * 1024;
8 public final static long GB = MB * 1024;
9 public final static long TB = GB * 1024;

MOM

The MOM package introduces a layer of distributed communication for sending and receiving
messages between different parts of the cloud infrastructure and thereby allows to insulate them
from details of implementation of each other.

MessageBus in Cloudnet is a communication broker that implements publish–subscribe
pattern [37]. With such scheme of interaction, subscribers register their interest in certain pattern
of messages, and are subsequently notified of such messages generated by publishers.

Each entity in the cloud that extends CloudEntity can communicate with each other as
it already contains a reference to the MessageBus.

Message is a base for each concrete message in the framework. Each message implemen-
tation contains specific information about notified event. Messages are hardly utilized, for ex-
ample, for the communication between ElasticityManager or Scheduler and Cloud.

The examples of concrete message types are presented in the Table 5.3.

Class Name Responsibility
PmStartMessage Notifies that certain physical machine should be started
PmStopMessage Notifies that certain physical machine should be stopped
VmAllocationMessage Notifies that certain VM should be allocated to the speci-

fied physical machine
VmMigrationMessage Notifies that the live migration of the specified VM should

be started
VmSchedulingMessage Notifies about new VM scheduled by a customer

Table 5.3: Examples of Cloudnet message types

55

System Monitoring

The Monitoring package contains a set of classes that allows collecting and storing different
states of the cloud entities. The extensibility of the framework allows different implementations
of the monitoring systems such as passive that simply collects measurements from attached en-
tities as well as active that additionally publishes different messages to a cloud if some problems
occurred (also known as Watchdog [14]).

Currently the framework offers the PassiveMonitoringSystem (and its asynchronous
implementation PassiveAsyncMonitoringSystem) that can collect states of a cloud,
data center, physical machine or VM and save them into necessary output format using a con-
crete implementation of the interface HistoryWriter.

Service models

Architecture of Cloudnet is applicable for the usage of each known cloud service model. Cur-
rently only IaaS model is available.

The IaaS package contains concrete implementation IaaSCloud that simulates execution
of entities with such consideratiosn to this service model as allocation and migration of VMs,
power management of physical machines, etc.

Specifications

In order to provide realistic results during evaluation of simulation use cases the framework
provides a set of real hardware and VM specifications.

The PM package contains several implementations of specification for physical machines
provided by the benchmark SPECpower ssj2008 [87]. Each specifications except of resources
(CPU, RAM, etc.) available on a physical machine defines its power utilization ratio in respect
of target CPU load. The example of such specifications 1 is shown for on the Figure 5.1.

The VM package as well as SLA package were implemented around VM specifications and
SLAs of Microsoft Azure cloud service [10]. Current implementation assumes that the VM
specification is stable and cannot be changed during execution of simulation.

Application workloads

Cloudnet offers a wide range of application workloads. A part of them were already described
in details in the Section 2.2. Each implementation utilizes own algorithms and mathematical
functions in order to simulate desired behaviour, e.g., PeriodicWorkload uses function
sin(x) with a specific factor that creates effect of periodicity. Also its workload is pseudo-
randomized with defined deviation of the base value. UnpredictableWorkload also uses
pseudo-randomization via class Random from the java.util package for generation of un-
predictable workload.

1http://www.spec.org/power_ssj2008/results/res2011q1/power_
ssj2008-20110124-00336.html

56

http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00336.html
http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00336.html

Figure 5.1: Example of power utilization under different CPU load for HP ProLiant DL580 G3
according to the benchmark SPECpower ssj2008 [87]

Except of standard workloads the framework contains a time zone specific workload con-
tainer DayNightWorkloadModel. It is possible to specify two different workload models,
one of them operates daily and another one nightly. It is very useful for simulation of application
workloads in different locations of the globe.

Additionally, the Workload package contains the Prediction sub-package that provides im-
plementations for various prediction strategies. All of them use WorkloadHistory, an object
that stores history of the workload’s observations. Prediction of workloads can be utilized for
more accurate and sophisticated management of the cloud by elasticity manager. Due to the fact
that time-series forecasting is not a focus of current research just the most obvious strategies,
listed in the Table 5.4 , were implemented.

Class Name Responsibility
LastWorkload Takes the last encountered workload and simply returns it
RateWorkload Takes the last encountered workload, multiplies it by the

specified rate and returns resulting value
Trend Takes two last workloads and builds a linear function of

dependency between workload and time; afterwards it uses
this function to return a result substituting the input future
time stamp as an argument of the function

Simple Regression Observes the workload history provided by a VM, builds
a simple regression model based on these history observa-
tions and returns the value predicted by the model

Table 5.4: Overview of workload prediction strategies

57

Temperature models

There are two implementations of the abstract TemperatureModel available in the frame-
work.

First of them is GeneratedTemperatureModel. It generates synthetic temperature
data using values of the attached WorkloadModel. The output of this model can be used if
the simulations should be performed under defined initially known temperature or for short time
intervals within a part of the year where average temperature values do not change so much day
by day.

RealTemperatureModel is the model that reads temperature data preloaded in advance
into text files with specific format as follows:

// format: Date,Timestamp,Temperature
2012-12-30 23:00:00,1356904800,18.89

Obtaining of real temperature time series can be done using each web service suitable
for this. Cloudnet framework contains utility classes that allows to get data from the service
Forect.io 2. It is a free weather service which API provides data for most locations on the globe
for a specific time, past or future 3.

WeatherFether is used to fetch data from the Forecast.io in JSON format [49] for a
specified location, start and end dates. Listing 5.3 shows its usage for obtaining temperature
data for Vienna for the whole 2013th year. First, we specify start and end dates (lines 1 − 4).
After that we define a geo-coordinates that refers to a city of Vienna (line 5) and, finally, we
execute WeatherFether by calling it with necessary parameters (line 6).

Listing 5.3: Fetching of the temperature in Vienna for the whole 2013th year

1 Calendar start = new GregorianCalendar(TimeZone.getTimeZone("GMT"));
2 start.set(2013, Calendar.JANUARY, 1, 0, 0, 0);
3 Calendar end = new GregorianCalendar(TimeZone.getTimeZone("GMT"));
4 end.set(2014, Calendar.JANUARY, 1, 0, 0, 0);
5 String vienna = "48.2000,16.3667";
6 WeatherFether.fetchData(vienna, start, end);

In order to convert obtained data into compatible for RealTemperatureModel format,
FormatConverter should be further utilized.

Cooling models

The Cooling package contains set of implementations of the CoolingModel. Physical mod-
els for a cooling infrastructure were described in detail in the Section 4.4. There were two
models namely Air and Mechanical that are reflected in the classes AirCoolingModel and

2http://forecast.io/#/f/35.6832,139.8089
3https://developer.forecast.io/docs/v2

58

http://forecast.io/#/f/35.6832,139.8089
https://developer.forecast.io/docs/v2

MechanicalCoolingModel respectively. MixedCoolingModel implements general ap-
proach that introduces mixed mode where two models can be put together.

Power outage models

The Power outage package contains a set of models that introduces simulation of power outages
in data centers.

ProbabilityPowerOutageModel utilizes function sin(x) for simulation of power
outage events with initially defined overall duration and number of occurrences over the year.
Such implementation is very convenient as it provides the usage of commonly published statis-
tical indices CAIDI and SAIFI.

R Wrapper and Bayesian Networks

Cloudnet framework provides the possibility to invoke different scripts in R Language from
JAVA code using external R environment.

R is a wrapper [21] that encapsulates execution of commands and obtaining of results sent
from R environment via callbacks.

The opportunity to use R Language opens access to wide range of mathematical models,
algorithms and packages supported by it.

The object of interest was a package gRain [41] for probability propagation in Bayesian
Networks.

Listing 5.4 shows the usage of this package for instantiation of the famous BN Asia [58]
using R language.

Listing 5.4: R script illustrating instantiation and quering of the BN Asia using gRain package

1 yn <- c("yes", "no")
2 asia <- cptable(~ asia, values = c(1, 99), levels = yn)
3 t.a <- cptable(~ tub + asia, values = c(5.0, 95, 1, 99), levels = yn)
4 s <- cptable(~ smoke, values = c(5,5), levels = yn)
5 l.s <- cptable(~ lung + smoke, values = c(1, 9, 1, 99), levels = yn)
6 b.s <- cptable(~ bronc + smoke, values = c(6, 4, 3, 7), levels = yn)
7 x.e <- cptable(~ xray + either, values = c(98, 2, 5, 95), levels = yn)
8 d.be <- cptable(~ dysp + bronc + either, values = c(9, 1, 7, 3, 8, 2, 1, 9),
9 levels = yn)

10 e.lt <- ortable(~ either + lung + tub, levels = yn)
11 bn.asia <- grain(compileCPT(list(asia, t.a, s, l.s, b.s, e.lt, x.e, d.be)))
12 # evidence example, conditional
13 bn1 <- setEvidence(bn.asia, c("asia","either"), c("yes", "yes"))
14 querygrain(bn.asia, nodes=c("lung", "bronc"), type="joint")
15 # marginal probability example
16 querygrain(bn1, nodes=c("asia", "tub"), type="marginal")

59

The listing starts with the definition of the levels that will be used in all nodes further (line
1). After that we define each node of the network separately and assign a variable for each of
them (lines 2− 10). Next we instantiate a network object by compiling all nodes into one single
network using function grain (line 11). After that the listing provides two example of network
querying: one for the computation of conditional probability for the nodes lung and bronc (lines
13 − 14), and the other one for the computation of marginal probability for the nodes asia and
tub (line 16).

Cloudnet provides a BN package that contains a set of classes for design and usage of BNs.
They are formally wrappers over R expressions used in the gRain package to instantiate and
perform querying of nodes. Table 5.5 gives a short overview of these classes.

Class Name Responsibility
Network Represents a BN that contains a set of nodes with links

between them. It is responsible for preparing and sending
of expressions into R Engine using R Wrapper

AsyncNetwork An asynchronous implementation of Network
Node Represents a regular node in the BN
Link Represents a link between two nodes
Distribution An abstract base for node distributions
DiscreteDistribution Concrete implementation of discrete distribution
NodelinkType Specifies link types of a node such as NONE, AND, OR
ProbabilityType Specifies probability during querying of node’s inferences

Table 5.5: Overview of classes for BNs usage

Listing 5.5 shows the usage of the BN package for creation of the BN presented in the
Section 4.2.

Listing 5.5: Creation of the BN from Section 4.2 using the BN package

1 String[] levels = new String[]{Levels.YES, Levels.NO};
2 Node res = new Node(Nodes.RESOURCES, levels);
3 Node workload = new Node(Nodes.WORKLOAD, levels);
4 Node migrate = new Node(Nodes.MIGRATE, levels,
5 new Integer[]{9, 1, 2, 8, 0, 1, 0, 1});
6 Network network = new Network("allocation");
7 network.setR(r);
8 network.addLink(res, migrate);
9 network.addLink(workload, migrate);

10 network.init();

First, we define levels for the nodes of the network (line 1). After that we create three
following nodes:

60

• Resources using boolean levels (line 2)

• Workload using boolean levels (line 3)

• Migrate using boolean levels, but already with definition of appropriate CPT (lines 3− 4)

Further we create the network (line 5) and set the R Wrapper adapter object to it (line 7)
allowing communication with R environment. After that we specify structure of the network by
setting links from the Resources node to the Migrate node (line 8) and the Workload node to the
Migrate node (line 9). Finally, we initialize the network (line 10) that also establishes it in the R
environment workspace for further usage.

Elasticity

The Elasticity package was intended for the various implementations of elasticity managers.
The framework provides implementation for the BN described in the Chapter 4 called

ElasiticityManagerMCDA. In addition, three elasticity managers, presented in the Ta-
ble 5.6, that use well-known First-Fit Decreasing heuristic algorithm [94] were added into the
solution.

Class Name Responsibility
FirstFitUnefficient Elasticity manager that represents the worst case of power

consumption as it keeps all physical machines always in
running state. Also it uses a First-Fit Decreasing heuristic
algorithm for the placement of VMs. Additionally, it does
not consider the requested resources by a VM and assumes
that it will utilize all resources defined by its specification.

FirstFitPessimistic Elasticity manager that behaves the same as
FirstFitUnefficient, but it switches off un-
used physical machines

FirstFitOptimistic Elasticity manager that behaves the same as
FirstFitPessimistic, but it try to optimize
the placement of VMs considering amount of resources
requested by them

Table 5.6: Elasticity managers using First-Fit Decreasing heuristic

Each elasticity manager performs three main tasks: power management of physical ma-
chines, allocation of scheduled VMs and their further consolidation based on the defined
VmMigrationPolicy. The VmMigrationPolicy defines the conditions under which a
VM should become a candidate for a VM migration. We pay attention on the fact that it just
detects the candidates for a possible VM migration, but not force to migrate a certain VM to an-
other physical host. Table 5.7 gives an overview implementations of VmMigrationPolicy
presented in the Cloudnet.

61

Class Name Responsibility
Always It always consider each VM that are not currently migrated

to another physical machine as a candidate for VM migra-
tion.

Downtime It refers a VM to a candidate in the case if it encountered a
downtime on a previous simulation step and currently are
not migrated

ShortDowntime It behaves the same as Downtime, but also consider pos-
sible short-time downtimes that caused, e.g., by power out-
ages

Table 5.7: Overview of implementation of VM migration policies

5.2 Implementation

Cloudnet solution was implemented using Java language, version 8 (Java SE8). The implemen-
tation is not compatible with previous versions of Java, but this choice in favour of version 8
was done due to its new very powerful features such as lambda expressions, new possibilities of
concurrent parallel execution and performing different useful operations with collections [45].
Thereby the framework becomes more compact, stable and faster.

Additionally, the framework depends on certain third-party libraries. Their usage is ap-
plied just whenever it makes sense to improve the implementation performance and to keep
development effort low. Table 5.9 contains the list of third-party libraries that are used in the
implementation. All of them are published under open source license.

Library Version
JRI Engine 0.9.7
Apache Commons Math 3.3
Apache Commons IO 1.3.2
Apache Commons CLI 1.3
Log4J 1.2.17
JSON.simple 1.1.1
Google Guava 17.0

Table 5.8: Third-party software used in Cloudnet

The package JRI Engine provides a possibility to run commands written in R Language in-
side Java applications that allows to design and use BNs inside of Cloudnet. The library Apache
Commons Math is used instead of regular Java Math package whenever it is possible as it much
faster performs mathematical and statistical computations [72] that, for example, hardly utilized
in the implementation of application workloads. Apache Commons IO package provides con-
venient opportunities of file processing that are used, e.g., in the WeatherFether. Another
package that was utilized in the same class is JSON.simple. Temperature data obtained from
the Web service Forecast.io are available just in JSON format. The JSON.simple library helps

62

to perform error-prone process of parsing of JSON documents stable and fast. Apache Com-
mons CLI was used during implementation of highly configurable command line applications
used for evaluations described in the Chapter 6. Log4J is commonly used library for logging
that provides a lot of convenient features and possibilities to write logs into almost any output
source.

The BN package depend also on the R that should be additionally installed on the machine
where simulations are performed. The used version of R is 3.0.2 or higher. Table denotes the R
packages used in the implementation.

R Package Version
gRbase 1.7-0.1
gRain 1.2-3
Rgraphviz 2.8.1

Table 5.9: Third-party software used in Cloudnet

It should be mentioned that the package Rgraphviz cannot be installed from the official
CRAN repository, instead of that a repository called Bioconductor should be used as shown in
the Listing 5.6. In this listing we, first, add new package repository to R environment (line 1)
and then install new package named Rgraphviz.

Listing 5.6: Installation of the R package Rgraphviz

1 source("http://bioconductor.org/biocLite.R")
2 biocLite("Rgraphviz")

Implementation issues

Mostly the development process of Cloudnet solution was held as expected. Issues that revealed
themselves were related to the usage of R commands from Java code, configuration of their
correct invocations and the single-threaded nature of the library JRI Engine.

Limitations of R

R has a lot of crucial advantages that became fundamentals of choosing it as the algorithmic
platform for the Thesis. It is the most comprehensive statistical analysis package available nowa-
days. It includes a lot of statistical models, tests, algorithms, and, additionally, provides simple
and understandable syntax for managing and manipulating data. Besides of that it is free, open
source and has huge growing community [2]. But there are also some disadvantages become
apparent during the usage of R. They concerns performance aspect, which is manifested in the
inability to quickly handle big amount of complex requests as well as perform them efficiently
in parallel [91]. The performance of R is the known issue, but it is often neutralized by the
opportunities of this language.

Another issue that concerns the overall performance of the framework was a fact that JRI
Engine library allows to run R inside of Java application only as a single thread. It means that

63

if the second instance of the class Rengine from this package will be created it cannot be
instantiated. Therefore the Rengine can be considered as a Singleton object [21] and it is
generally complex issue for the use in the cases of parallel programming.

First implementation of the Cloudnet prototype performed all calls into R in a single-threaded
sequential manner. Considering all problems described above the execution of the simulation
was obviously slow and tedious and therefore required urgent improvements. As was identified
most of the time consumed for the invocation was consumed not by R, but for sending calls as
well as receiving results via callbacks.

Recall the algorithm of the usage of the BN described in the Section 4.4. According the
algorithm ElasiticityManagerMCDAViolations performs assessment of all physical
machines for each VM hosted in the cloud during each simulation step. After all rates are
calculated the host with the higher score wins and the VM decided to be migrated to it in the case
if it has not been placed there yet. Formally speaking, if there are n VMs and m physical hosts
the algorithm requires nxm steps in order to calculate all ratings. Besides that the placement
of certain VM reserves a part of space on the target host that impacts the following decisions
regarding placement of other VMs to the same host. This implies the theoretical impossibility
to perform seeking of the target host for each VM in parallel, but it does not means that the
evaluation of the physical machines for a separate VM cannot be done so.

The enhancement was accomplished via introduction of MapReduce [19] paradigm. The
“Map”step consists from the evaluation of each physical hosts for a single VM. The “Re-
duce”step collects all results and choose the most appropriate target host.

The usage of MapReduce is applied in the implementation of BN called AsyncNetwork
that is able to be queried in parallel. For the querying purposes AsyncNetwork creates a
copy of the base BN in the R environment and performs all calls already to it. It should be also
mentioned that after the calculations are complete, the copy is released from the R environment
in order not to imply memory leaks.

The described improvement allows to perform simulation much faster.

64

CHAPTER 6
Evaluation

In this Chapter, we will discuss an evaluation of the approach for sophisticated VM placement
based on BN and MCDA proposed in the Section 4.4. We define a set of reasonable scenarios
that tend to identify strengths and weaknesses of the proposed algorithm.

The evaluation will be built around comparison of proposed method with two near-optimal
First-Fit-Decreasing [94] heuristics for Bin-Packing problem and the approach when no power
management is in place as the worst-case performance baseline.

During evaluation the most attention will be paid to the following aspects:

• Power consumption and cost savings: How much power energy are used? How does it
affect on the costs?

• Quality of Service: What level of service availability and reliability can be guaranteed?

• Migration overhead: Although we do not consider any migration costs except the migra-
tion time between two hosts, we will count the number of overall migrations to understand
possible future improvements of proposed algorithm.

The evaluation implies step-wise simulation of a cloud environment with the running VMs
scheduled to it. The Cloudnet framework is used for the simulation purposes. Also it provides
an ability to collect detail information about simulation execution as well as to obtain final
results. The following sections will describe in detail the process of preparation of simulation
environment and further execution and analysis of the scenarios.

6.1 Preparation of simulation environment

Initially we defined several evaluation use cases that tend to test different aspects of the proposed
algorithm. Each use case was configured and evaluated using the Cloudnet framework. The
detail overview and analysis of these use cases will be done in the following Section. This
Section describes preparation of a simulation environment for the experiments.

65

Simulation environment

Although the implementation of Cloudnet guarantees full repeatability of results, they still may
depend on environment where experiments are performed. Hence, we didn’t change the runtime
environment and used just one machine for all experiments:

• Our test machine was an Intel Core i5 U430 desktop PC with 4 GB of RAM. The machine
was running on Microsoft Windows 8 Pro.

• Oracle JRE (Java Runtime Environment), version x64 1.8.05 for Windows, was installed
on the machine. All code was compiled using Oracle Java compiler javac, version
1.8.05.

• R, version 3.1.1 x64 for Windows, was installed on the machine. Additionally, JRIEngine,
version 0.9.7, was utilized for the interaction between Cloudnet and R runtime environ-
ment. A set of installed R packages was described in details in the Section 5.2.

Input parameters

One of the important goals of each experiment is an applicability of algorithm in the real
world [42]. Furthermore, our evaluation should prove or refute the ability of the proposed
approach to use additional information about cloud domain such as temperature data, or in-
formation about energy prices in different locations, in order to make more efficient decisions
concerning placement of VMs in the cloud. Due to this reason real-world data were used during
experiments as much as possible. Though the set of possible input parameters and conditions
can be potentially infinite, we tried to define realistic and representative set of them:

• Geo-distributed data centers: We defined 5 locations on the globe for the location and
simulation of data centers: Rio de Janeiro (Brazil), Toronto (Canada), Oslo (Norway),
Vienna (Austria), Tokyo (Japan). Selected locations allow to test model considering com-
bination of various input parameters as temperature, energy price, time zone, power outage
statistics. For example, although most of the time it is hot in Rio de Janeiro that on the
one hand will cause higher cooling costs, but on the other this location offers competitive
energy prices that can be a good reason for placement VM there.

• Electricity prices: Electricity prices for the locations selected previously were defined
using statistics in [1]. Additionally, we considered that Oslo, Tokyo and Vienna offer the
reduction of the electricity price at night in average from 11 PM to 8 AM. Additionally,
information about electricity prices in Austria was taken considered prices for business
customers provided on the Web site of Wien Energie [86].

• Power outage statistics: We obtained a lot of power outage statistics for recent years for
the selected locations using [22,23,88]. For example, Figure 6.1 shows a measure of total
electric grid outage duration, called SAIDI (System Average Interruption Duration Index),
across a sample of countries in the world in 2013. SAIDI represents the total number of

66

Figure 6.1: International Power Outages Comparison [88]

minutes per year of outage experienced by an average customer [88]. Further these statis-
tics with combination of CAIDI (Customer Average Interruption Duration Index) were
utilized in the ProbabilityPowerOutageModel, one of the power outage simula-
tion models implemented in the Cloudnet framework.

• Temperature data: We obtained real temperature data from the Web service Forecast.IO
[84] for the whole experiment interval with the granularity of one hour for all previously
defined locations.

• Cooling models: There are three cooling models used in the experiments: Air, Mechanical
and Mixed. Their physical models were described in details in the Chapter 4.

• Physical machine power specifications: We used data of SPECpower ssj2008 1 to define
the power specifications of a physical machines in data centers.

• VM resource utilization: We simulated the resource utilization of VMs using various ap-
plication workloads described in the Section 2.2. Moreover, we took technical specifica-
tion of VMs proposed by Azure Cloud Service [10]. All our further evaluation utilizes
the same type of VMs, called A0. It is characterized by 1 Virtual CPU and 768 RAM. We
use the same seed value for all VMs therefore all VMs request always the same amount
of resources.

• VM migration network overhead: The Chapter 2 defines the Page Dirty Rate that is mea-
sure of network data overhead during migration of a VM. We considered it as a multiplier
of amount of sending data through a network bandwidth.

1http://www.spec.org/power_ssj2008/results/res2011q1/

67

http://www.spec.org/power_ssj2008/results/res2011q1/

• SLAs: Each VM has an SLA that composes from two availability measures: time of an
overall downtime per billing period (one month in our case) and maximal duration of a
single downtime. Moreover, each SLA has a priority level that forces to allocate resources
to the VMs with higher priority level firstly.

Performance metrics

In order to compare the efficiency of algorithms we use several metrics.
The first metric is total energy costs spent by all data centers in the cloud caused by VM

workloads.
The second metric is an SLA violation costs paid by a cloud provider. We define that an SLA

violation occurs either if a VM unavailability exceeds a certain time threshold over the whole
billing period or during single downtime taken separately. We separate downtimes to regular
downtimes and short downtimes. Regular downtime for a given VM can occur either if it is not
provided by a requested amount of Million Instructinos per Second (MIPS) or if a data center
where its hosted server is located encounters a power outage. In the case, if a power outage lasts
less then the duration of the simulation step such downtime is considered as the short downtime.
Regular downtime due to lack of resources occurs in the case if a VM shares the same host
with other VMs. The metric shows a level of degradation of a cloud provider QoS caused by
consolidations in the cloud in order to save costs. It is assumed that the provider pays a penalty
in the case of an SLA violation.

The third metric is a number of regular and short downtimes that represents the time where
a VM was not provided by a necessary resources that leads to a performance degradation.

The last metric is the number of VM migrations scheduled by an elasticity manager.

Experiment setup

For evaluation purposes two helper classes were additionally implemented: Scenario and
ScenarioExecutor.

Scenario

Scenario represents an evaluation scenario and contains a set of initial configurations for an
experiment as follows:

• An elasticity manager algorithm: defines an elasticity manager. Just one and only one
elasticity manager can be used during evaluation.

• A VM migration policy: identifies migration policy for the elasticity manager.

• A workload prediction strategy: defines the strategy that is used for prediction of future
VM resource workloads.

• A simulation period: start and end date and time of simulation.

68

• A number of data centers: defines the number of data centers taking participation in a
simulation. In the case of usage of just one data center the data center in Tokyo was
chosen.

• A number of physical machines per data center: defines amount of hosts located in each
data center.

• A number of simulated VMs: defines a number of VMs scheduled during the first simula-
tion step to the cloud.

• Existence of power outages: defines whether a simulation engine schedules a power out-
ages to a cloud infrastructure.

• VM CPU workload model: defines a workload generated by a VM. Used workloads refer
to the application workloads defined in the Section 2.2.

We used the same data centers characteristics in all our experiments. Table 6.1 provides
overview of them of each data center selected in this Section previously.

`````````````̀Parameter
Data center

Brazil Toronto Oslo Vienna Tokyo

Time Zone Brazil/
East

America/
Toronto

Europe/
Oslo

Europe/
Vienna

Asia/
Tokyo

Energy price (USD/kWh) 0.162 0.117 0.159/
0.1113

0.2484/
0.1678

0.24/
0.20

Day/Night switch hours 8 AM/
11 PM

8 AM/
11 PM

8 AM/
11 PM

6 AM/
10 PM

8 AM/
11 PM

SAIDI (min/year) 1101.6 220 218 39 6
CAIDI (min/time) 25 5 5 3 1

Table 6.1: Overview of the data center input characteristics

We used also just one type of physical machine during all simulations, namely, HP ProLiant
ML110 G3 1 CPU Pentium D930 3000 MHz 2 cores and 4GB RAM, which power specifications
are provided by SPECpower ssj2008 [87]. We assume in our experiments that 3000 MHz refers
to 3000 MIPS.

The granularity of all simulations was set to one hour.

ScenarioExecutor

ScenarioExecutor is responsible for a configuration of a cloud simulation engine, starting
an evaluation and obtaining final results in convenient readable format. It should be mentioned
that it does not perform monitoring of the evaluation execution. On the contrary, monitoring
is performed by an attached to a cloud PassiveMonitoringSystem described in the Sec-
tion 5.1. After each simulation step it makes snapshots of current state of each cloud entity

69



including the cloud itself and outputs monitoring results into defined by ScenarioExecutor
files. Further, these data are used during analysis of final results. Such detailed log of simulation
execution allows to achieve high revisability [42] of the experiment. In the case, if an experi-
mental hypothesis is not met, it should help in identifying the reasons: whether these reasons
are caused by the modelling, the algorithm, the design, its implementation or the experimental
environment.

6.2 Execution and analysis of scenarios

The following section describes the execution and further analysis of various evaluation scenar-
ios. At the end it will give a summary of all executed experiments.

Each scenario implies the simulation of one month execution of 10 VMs, between January 1,
2013 and February 1, 2013, that equals to one billing month for the SLAs defined in the previous
Section.

All First-Fit-Decreasing heuristics used ShortDowntimeVmMigrationPolicy for dis-
covering the candidates for a migration. It means that they start to migrate a VM just in the case
of it encounters short or regular downtime. Our approach described in the Chapter 4 used
AlwaysVmMigrationPolicy for all scenarios, because it is assumed that the used multi-
criteria decision-making algorithm already implies the discovering of VM migration candidates.
Additionally, we evaluate the proposed algorithm using different workload forecasting strategies,
described in the Chapter 4, such as LastWorkload, RateWorkload, Trend and SimpleRegression,
in order to identify an impact of the prediction strategy to the efficiency of the proposed model.

Results for each scenario will present with a set of plots as follows:

• Energy costs plot shows total energy costs.

• SLA penalty costs plot shows total penalties paid due to SLA violations.

• Number of downtimes plot represents the sum of downtime events occurred for each VM.
We consider a downtime for a VM if it was not provisioned with requested amount of
CPU resources.

• Number of downtimes plot represents the sum of short downtime events occurred for each
VM. We consider a short downtime for a VM if it was not provisioned with requested
amount of CPU resources or was shortly unavailable between two simulation timestamps
due to power outage. This plot is used just in the Scenario 4 instead of the plot Number of
downtimes.

• Number of migrations plot represents number of all triggered migrations.

Each plot shows a comparison of different strategies evaluated in this scenario. On the Y-axis
that value of the parameter is defined, on the X-axis the evaluated algorithms are shown.

Table 6.2 gives and overview of evaluated algorithms and abbreviations which they use on
the plots respectively. The baseline separates foreign approach (above the line) from ours (under
the line).

We will follow this notation for all figures between Figure 6.2 and Figure 6.8.

70



Algorithm VM Migration policy Workload Prediction policy Abbreviation
Unefficient ShortDowntime No strategy used UE
FirstFitPesimistic ShortDowntime No strategy used FFP
FirstFitOptimistic ShortDowntime No strategy used FFO
BayesianNetwork Always LastWorkload BN LW
BayesianNetwork Always RateWorkload BN RW
BayesianNetwork Always Trend BN Trend
BayesianNetwork Always SimpleRegression BN SR

Table 6.2: Overview of evaluated algorithms and a set abbreviations referred to them.

Scenario 1: An efficient power management in a highly-concurrent environment

0

20

40

60

80

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

E
ne

rg
yC

os
ts

(a) Energy costs

0

400

800

1200

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

S
la

V
io

la
tio

nC
os

ts

(b) SLA penalty costs

0

200

400

600

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

D
ow

nt
im

es

(c) Number of downtimes

0

500

1000

1500

2000

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

M
ig

ra
tio

ns

(d) Number of migrations

Figure 6.2: The comparison of performance metrics of evaluated elasticity managers for the
scenario 1

The first scenario evaluates the ability of an algorithm to perform correct placement of VMs
with periodic CPU workload to the hosts in a single data center, namely in Tokyo. This scenario
does not schedule any power outages. In order to force periodic downtimes of at least some part
of VMs we set the number of physical hosts to 3 and the range of periodic workload of a VM
between 10% and 80%. As all VMs generate the same workload it is easy to observe that at least
one VM should encounter a downtime at the moment of peak resource usage.

71



The experimental results of the evaluation are shown on the Figure 6.2. The usage of our
algorithm allows to reduce energy cost to the most 22% in comparison to the worst case, but on
the other hand introduces more downtimes in comparison to the optimistic First-Fit algorithm.

Scenario 2: An efficient power management in a non-concurrent environment

0

50

100

150

200

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

E
ne

rg
yC

os
ts

(a) Energy costs

0

100

200

300

400

500

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

S
la

V
io

la
tio

nC
os

ts

(b) SLA penalty costs

0

100

200

300

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

D
ow

nt
im

es

(c) Number of downtimes

0

500

1000

1500

2000

2500

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

M
ig

ra
tio

ns

(d) Number of migrations

Figure 6.3: The comparison of performance metrics of evaluated elasticity managers for the
scenario 2

The following scenario operates under the same conditions as Scenario 1 except the number of
physical machines available in a data center. We set the number of hosts to 10 that guarantees
non-concurrent resource supply for the hosted VMs. The goal of this scenario is to test how effi-
ciently our approach can place VMs to these physical machines in non-concurrent environment.

The experimental results of the evaluation are shown on the Figure 6.3. The usage of our
algorithm provides improvements of costs usage to the most 72% in comparison to the worst
case and to 40% to First-Fit algorithm. Once more, as in the previous scenario, a big amount of
VM migrations cause an increase of downtimes and SLA penalty costs.

72



Scenario 3: The benefits of geo-distibuted data centers

0

50

100

150

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

E
ne

rg
yC

os
ts

(a) Energy costs

0

100

200

300

400

500

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

S
la

V
io

la
tio

nC
os

ts

(b) SLA penalty costs

0

100

200

300

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

D
ow

nt
im

es

(c) Number of downtimes

0

1000

2000

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

M
ig

ra
tio

ns

(d) Number of migrations

Figure 6.4: The comparison of performance metrics of evaluated elasticity managers for the
scenario 3

This scenario increases the number of data centers in comparison to the previous one. Thereby
it introduces new information and conditions that can be used in our algorithm. Each location
hat its own electricity price and temperature that differ depending on the time of day. As was
mentioned in the Chapter 2 the temperature involves the usage of different cooling modes and
also directly impacts on the PPue rate. Figure 6.5 shows the values of various input parameters
such as energy price, temperature, used cooling mode, PPue rate during the whole simulation
period at each data center location. Moreover, each data center locates in its own time zone.
These two facts imply more or less competitive energy price at a certain data center in com-
parison to other data centers as well as well as ability to use the most efficient cooling mode
depending on temperature and thereby consume less energy. Our algorithm should consider all
these objectives and migrate VMs between data centers during the day in order to save costs.

The experimental results of the evaluation are shown on the Figure 6.4. The usage of our
algorithm provides improvements of costs usage to the most 79% in comparison to the worst
case and to 62% to First-Fit algorithm. The best results in perspective of downtimes for our
algorithm was achieved with RateWorkload prediction strategy.

73



−20

0

20

40

Dez 31 Jän 07 Jän 14 Jän 21 Jän 28
time

te
m

pe
ra

tu
re

city

America/Toronto

Asia/Tokyo

Brazil/East

Europe/Oslo

Europe/Vienna

(a) Temperature data

0.15

0.20

0.25

Dez 31 Jän 07 Jän 14 Jän 21 Jän 28
time

ep
ric

e

city

America/Toronto

Asia/Tokyo

Brazil/East

Europe/Oslo

Europe/Vienna

(b) Energy prices

Air

Mechanical

Mixed

Dez 31 Jän 07 Jän 14 Jän 21 Jän 28
time

co
ol

in
gM

od
e

city

America/Toronto

Asia/Tokyo

Brazil/East

Europe/Oslo

Europe/Vienna

(c) Cooling modes

0.0

0.1

0.2

0.3

Dez 31 Jän 07 Jän 14 Jän 21 Jän 28
time

P
P

ue
R

at
e

city

America/Toronto

Asia/Tokyo

Brazil/East

Europe/Oslo

Europe/Vienna

(d) PPue rates

Figure 6.5: Temperature data (a) (provided by Forecast.IO), energy prices (b), cooling modes
(c) and respected PPue rates (d) between January 1, 2013 and February 1, 2013 of 2013 at each
data center location

Scenario 4: High reliability during frequent power outages

0

50

100

150

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

E
ne

rg
yC

os
ts

(a) Energy costs

0

250

500

750

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

S
la

V
io

la
tio

nC
os

ts

(b) SLA penalty costs

0

300

600

900

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

S
ho

rt
V

io
la

tio
ns

(c) Number of short downtimes

0

500

1000

1500

2000

2500

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

M
ig

ra
tio

ns

(d) Number of migrations

Figure 6.6: The comparison of performance metrics of evaluated elasticity managers for the
scenario 4

74



The following scenario introduces power outages into cloud management. It should illustrate
the impact of power outages on cloud reliability and to analyse the benefits that brings the usage
of power outage statistics data.

The experimental results of the evaluation are shown on the Figure 6.6. The usage of our
algorithm provides improvements of costs usage to the most 77% in comparison to the worst
case and to 40% to First-Fit algorithm. The best results in perspective of downtimes for our
algorithm was achieved with RateWorkload prediction strategy: number of short downtimes
decreased to the most 71% in comparison to the worst case and to 84% to First-Fit algorithm.

Scenario 5: Maintenance of rare unscheduled peak workloads

0

50

100

150

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

E
ne

rg
yC

os
ts

(a) Energy costs

0

5

10

15

20

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

S
la

V
io

la
tio

nC
os

ts

(b) SLA penalty costs

0

5

10

15

20

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

V
io

la
tio

ns

(c) Number of downtimes

0

500

1000

1500

2000

2500

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

M
ig

ra
tio

ns

(d) Number of migrations

Figure 6.7: The comparison of performance metrics of evaluated elasticity managers for the
scenario 5

This scenario operates under same input parameters as Scenario 3 except the usage of Once-
in-a-lifetime Workload for simulation of VM CPU resource usage. As was mentioned in the
Chapter 2 this type of workload refers to a certain event or task occurred once during an obser-
vation period.

We set the starting time of workload increase at 12 AM on the 1st of January with the
duration of 12 hours.

The experimental results of the evaluation are shown on the Figure 6.7. The usage of our
algorithm provides improvements of costs usage to the most 92% in comparison to the worst

75



case and to 79% to First-Fit algorithm. The best results in perspective of downtimes between
strategies used our algorithm was achieved with SimpleRegression prediction strategy.

Scenario 6: Efficient consolidation of unpredictable workloads

0

50

100

150

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

E
ne

rg
yC

os
ts

(a) Energy costs

0

100

200

300

400

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

S
la

V
io

la
tio

nC
os

ts

(b) SLA penalty costs

0

50

100

150

200

250

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

D
ow

nt
im

es

(c) Number of downtimes

0

1000

2000

3000

UE FFP FFO BN LW BN RW BN Trend BN SR
ElasticityManager

M
ig

ra
tio

ns

(d) Number of migration

Figure 6.8: The comparison of performance metrics of evaluated elasticity managers for the
scenario 6

The last scenario tests the performance of proposed algorithm in the case when a cloud provider
operates in environment with unpredictable workloads generated by the VMs. The scenario has
the same input parameters as previous one except the fact that Unpredictable Workload is used
for generation of CPU resource demand.

The experimental results of the evaluation are shown on the Figure 6.8. The usage of our
algorithm provides improvements of costs usage to the most 79% in comparison to the worst
case and to 63% to First-Fit algorithm. Hovewer, it should mentioned that despite efficient
energy power consumption, all elasticity manager using our algorithm faces high SLA penalty
costs.

6.3 Evaluation Summary

The Section 6.2 presented the evaluation scenarios and obtained results. We simulated the per-
formance and behaviour of proposed algorithm in comparison to commonly used heuristics in
this field of study. The experimental results indicate that our algorithm significantly improves

76



energy costs savings almost in all simulation cases. Furthermore, it can be easily observed that
the more additional information is available for the algorithm the better results it shows. A good
example is the Scenario 4 that provides all possible existed information for an elasticity man-
ager. In this case, our approach reduced energy costs to 40% in comparison to the best First-Fit
approach.

Also based on the results we can conclude that the best performance was achieved when
an algorithm used a linear regression model for the prediction of future workloads. It proves
the fact that more sophisticated and accurate prediction algorithm could further more improve
results of our experiments. We should mention that good time-series forecasting model is not a
focus of current Thesis, therefore these improvements should be done in the future work.

For the described advantages the proposed approach also has a set of weaknesses:

• A big amount of triggered migrations introduces a lot of downtimes that results in higher
SLA penalty costs.

• Sometimes a set of migrations induces more other migrations that can bring the system to
the unstable state.

• The utility function defined in the Chapter 4 that is used in decision-making process while
selecting target host for scheduled VMs still can be improved as it was defined based on
our subjective view of the importance of its parameters.

• A necessity to discretize input values for the BN used in the ElasticityManagerMCDA
leads to a degradation of model precision and effectiveness.

77





CHAPTER 7
Conclusions and Future Work

Modern cloud computing technologies experienced fast growing trend in recent years by offering
highly available and scalable services. They are allowed to store a big amount of data, perform
large scale computations, ensure high reliability, and supply huge customer demands. Increasing
resource demand forces the providers to either expand production capacities that increases power
consumption or apply more economical resource provision plans that degrades quality of service.
Such situation established in the cloud computing world gives a good change for the scientific
community to supply the world’s leading cloud vendors with effective algorithms for cloud
infrastructure management.

In this thesis, we propose a novel approach for cost-aware cloud power management that
allows to significantly reduce operational and penalty costs paid by a cloud provider. The key
technique that is utilized to reduce the costs and to improve the resource provisioning is an
effective placement of customer’s VMs in the cloud data centers.

There is big amount of related work in this field of study. However, modern approaches
focus mostly just on concrete problems or parts of cloud systems loosing the whole picture of
complex interdependencies of internal and external factors and parameters. In this work we try
to fill this scientific gap by involving a big amount of cloud processes, parameters into proposed
algorithm. We introduce the consideration of geo-distributed data centers experienced frequent
power outages, operating in different time zones and in constantly changing temperatures.

Our solution for the problem of VM placement consists of two steps. First, we model a
cloud infrastructure using the theory of BNs in order to find dependencies between its different
parts and processes. For these purposes we designed a suitable BN that allows to calculate a
probability of various factors such a SLA violation, power consumption level, etc. with some
level of confidence.

On the second step, we utilize the MCDA method to assess physical machines by a various
number of criteria. We define our custom utility function that utilizes values of the factors
calculated by the BN on the previous step. This utility allows us to find the most suitable host
for allocation or migration of VM to it.

79



Ensuring of the performance and applicability of our approach is one more important step of
our study. We used simulation experimental methodology to perform assessments of the model.
As there was no simulation toolkit that allowed simulation of objectives and processes defined
by us, e.g., VM migration between geo-distributed data centers, or scheduling of power outages,
mentioned above, we implemented our own Java-based simulation framework, called Cloudnet.
This framework provides a rich set of cloud simulation opportunities. One of its key features is a
possibility to execute code in R language that contains a wide range of mathematical algorithms
and methods. In particular, we used an R package gRain for creation and querying of BNs.

For conducting a critical performance evaluation of our approach we defined a set of reason-
able real-world scenarios and evaluated our model in comparison to commonly used algorithm
First-Fit-Decreasing defined in the context of the Bin-Packing problem.

The results of the experiments proved high performance and applicability of our approach.
They showed its ability to significantly decrease energy usage and to improve resource provision
in the cloud infrastructure. Moreover, the results clearly demonstrated that consideration of
more input factors and application of domain knowledge greatly improved the efficiency of the
proposed model.

In summary we can conclude that the proposed model for sophisticated cloud power man-
agement based on the BNs and MCDA shows promising results in solving cost-based issues in
cloud computing environments.

7.1 Future Work

However, there are still some open issues and challenges that should be investigated in the future
work.

First, the model triggers sometimes too much migration actions generating a huge migration
overhead that bring a system to unstable state and leads to its downtime. This problem can be
related to the utility function selected during MCDA based just on the own subjective view of
the importance of its input variables. The correct parameters of the utility function is another
optimization problem that is left for the future work. Another reason of such model behaviour
can be caused by incorrectly select VM migration policy that by its nature constantly forces to
perform a consolidation of the VMs placed in the cloud.

Second, the model utilizes a time-series forecasting models for prediction of future resource
demands. The evaluation has shown that more sophisticated workload prediction strategy can
significantly improve performance of the model.

Finally, the current design of the BN utilized by the model implies the usage of only discrete
nodes. Hence, all input values supplied to the model are initially discretized and thereby loose
their precision. This fact can lead to further rough assessment of probabilities in the BN and
wrong conclusions. Hence, the application of Hybrid Bayesian Networks that allow usage of
analogous data can improve precision of calculated parameters of the model and result into
more efficient decisions.

80



APPENDIX A
List of Abbreviations

AWS Amazon Web Services
BaaS Backend as a Service
BN Bayesian Network
BSP Backward Speculative Placement
CAIDI Customer Average Interruption Duration Index
CPT Conditional Probability Table
DaaS Data as a Service
DAG Directed Acyclic Graph
DVFS Dynamic Voltage and Frequency Scaling
GQM Goal Question Metric
IaaS Infrastructure as a Service
ILP Integer linear program
MBFD Modified Best-Fit-Decreasing
MCDA Multi-criteria decision aid
MIPS Million Instructinos per Second
MOM Message-oriented middleware
MP Migration Plan
OCBP Online Colouring Bin Packing problem
OCFF Online Colouring First-Fit
OS Operating system
PaaS Platform as a Service
PBN Predictive Bayesian Network
PMCS Physical Machine Candidate Selection
pPue Partial power usage effectiveness
QoS Quality of Service
SaaS Software as a Service
SAIDI System Average Interruption Duration Index

Continued on th Next page...

81



SLA Service-Level Agreement
TMG Target Mapping Generation
ULS Ultra-Large-Scale
VM Virtual machine

82



Bibliography

[1] Electricity pricing. Accessed: 2014-04-07.

[2] http://analyticstrainings.com/?p=101. Accessed: 2014-03-02.

[3] A beginners guide to bayesian network modelling for integrated catchment management.
Technical report, Landscape Logic, July 2009.

[4] The äbcsöf daas. Technical report, Delphix, December 2011.

[5] Bayesian networks: A guide for their application in natural resource management and
policy. Technical report, Landscape Logic, March 2011.

[6] J. Abawajy A. Beloglazov and R. Buyya. Energy-aware resource allocation heuristics for
efficient management of data centers for Cloud computing. Future Generation Computer
Systems, 28:755–768, 2012.

[7] R. Letcher A. Jakeman and S. Chen. Integrated assessment of impacts of policy and wa-
ter allocation change across social, economic and environmental dimensions. Managing
Water for Australia: the social and institutional challenges, pages 97–112, 2007.

[8] M. Shaw A. Whitaker, R. Cox and S. Grible. Constructing services with interposable vir-
tual hardware. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI’04), Berkeley, CA, USA, pages 169–182, 2004.

[9] Evolven’s IT Operations Analytics. Downtime, outages and failures - understanding their
true costs, September 2013. Accessed: 2014-06-05.

[10] Microsoft Azure. http://azure.microsoft.com/. Accessed: 2014-05-11.

[11] M. Raphael M. Rowland B. Marcot, R. Holthausen and M. Wisdom. Using bayesian
belief networks to evaluate fish and wildlife population viability under land management
alternatives from an environmental impact statement. Forest Ecology and Management,
153:29–42, 2001.

[12] T. Bayes. An essay toward solving a problem in the doctrine of chances. 1764.

[13] Softlayer blog. Virtual magic the cloud, April 2014. Accessed: 2014-03-18.

83



[14] F. Leymann C. Fehling and R. Retter et al. Cloud Computing Patterns: Fundamentals to
Design, Build, and Manage Cloud Applications. Springer, 2014.

[15] M. Hadji C. Ghribi and D. Zeghlache. Energy efficient vm scheduling for cloud data
centers: Exact allocation and migration algorithms. In Proceedings of the 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, pages 671–678. IEEE,
2013.

[16] G. Cook and J. Van Horn. How dirty is your data? Technical report, Greanpeace Interna-
tion, April 2011.

[17] G. Cooper. The computational complexity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence, 42:393–405, 1990.

[18] E. Curry. Message-Oriented Middleware. In Middleware for Communications, pages
1–28, 2004.

[19] J. Dean and S. Ghemawat. MapReduce: Simplied Data Processing on Large Clusters.
MapReduce: Simplied Data Processing on Large Clusters, 2004.

[20] O. Doguc and J. Ramirez-Marquez. An Efficient Fault Diagnosis Method for Complex
System Reliability. In Proceedings of the Seventh Annual Conference on Systems Engi-
neering Research 2009 (CSER 2009), 2009.

[21] R. Johnson E. Gamma, R. Helm and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. 1994.

[22] Austrian electrical outages statistics. http://www.e-
control.at/en/businesses/electricity/security-of-supply/outage-and-disturbance-statistics.
Accessed: 2014-06-12.

[23] World electrical outages statistics. http://www.nationmaster.com/country-
info/stats/energy/electrical-outages/days. Accessed: 2014-06-12.

[24] A. Schatten et al. Best Practice Software-Engineering, Eine praxiserprobte Zusammen-
stellung von komponentenorientierten Konzepten, Methoden und Werkzeugen. Spektrum
Akademischer Verlag (Springer), 2010.

[25] C. Clark et al. Live Migration of Virtual Machines. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI’05), Berkeley, CA,
USA, pages 273–286, 2005.

[26] C. P. Sapuntzakis et al. Optimizing the migration of virtual computers. In Proceedings of
the 5th symposium on Operating systems design and implementation, volume 36, pages
377–390, 2002.

[27] G. Chen et al. Energyaware server provisioning and load dispatching for connection-
intensive internet services. In Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, pages 337–350. USENIX Association, 2008.

84



[28] H. Sijin et al. Improving resource utilisation in the cloud environment using multivariate
probabilistic models. In Proceedings of the Fifth International Conference on Cloud
Computing, pages 574–581. IEEE, 2012.

[29] L. Jian et al. Reducing operational costs through consolidation with resource prediction
in the cloud. In Proceedings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 793–798. IEEE, 2012.

[30] N. Calcavecchia et al. VM Placement Strategies for Cloud Scenarios. In Proceedings of
the Fifth International Conference on Cloud Computing, pages 852–859. IEEE, 2012.

[31] R. L. Grossman et al. The Open Cloud Testbed: A Wide Area Testbed for Cloud Com-
puting Utilizing High Performance Network Services. CoRR, abs/0907.4810, 2009.

[32] S. Akoush et al. Predicting the Performance of Virtual Machine Migration. In Pro-
ceedings of the Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 37–46. IEEE, 2010.

[33] S. Kuikka et al. Modeling environmentally driven uncertainties in baltic cod (gadus
morhua) by bayesian influence diagrams. Canadian Journal of Fisheries and Aquatic
Sciences, 56(4):629–641, 1999.

[34] T. Banzai et al. D-cloud: Design of a software testing environment for reliable distributed
systems using cloud computing technology. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages 631–636, 2010.

[35] W. Voorsluys et al. Cost of virtual machine live migration in clouds: A performance
evaluation. 2009.

[36] Y.Song et al. A Two-Tiered On-Demand Resource Allocation Mechanism for VM-Based
Data Centers. IEEE TRANSACTIONS ON SERVICES COMPUTING, 6(1):116–4129,
2013.

[37] P. Eugster. The many faces of publish/subscribe. ACM Computing Surveys (CSUR),
35(2):114–131, 2003.

[38] N. Fenton and M. Neil. Making Decisions: Using Bayesian Nets and MCDA. Knowledge-
Based Systems, pages 307–325, 2001.

[39] B. Furht and A. Escalante. Handbook of Cloud Computing. Springer, 2010.

[40] D. George and J. Hawkins. Invariant Pattern Recognition using Bayesian Inference on
Hierarchical Sequences.

[41] gRain: Graphical Independence Networks. http://cran.r-
project.org/web/packages/grain/index.html. Accessed: 2014-03-08.

[42] J. Gustedt and E. Jeannot. Experimental Validation in Large-Scale Systems: a Survey of
Methodologies. In Parallel Processing Letters 19, pages 399–418. IEEE, 2009.

85



[43] C. Feng H. Xu and B. Li. Temperature aware workload management in geo-distributed
datacenters. In Proceedings of the ACM SIGMETRICS/international conference on Mea-
surement and modeling of computer systems, pages 373–374, 2013.

[44] D. Heckerman and J. Breese. Causal independence for probability assessmentand infer-
ence using bayesian networks. Technical report, Microsoft Research, Advanced Technol-
ogy Division, 1995.

[45] What’s New in JDK 8. http://www.oracle.com/technetwork/java/javase/8-whats-new-
2157071.html. Accessed: 2014-07-28.

[46] T. Kraska J. Moreno, D. Kossmann and S. Loesing. A Testing Framework for Cloud
Storage Systems. Master’s thesis, Swiss Federal Institute of Technology Zurich, 2010.

[47] E. Cooke J. Oberheide and F. Jahanian. Empirical exploitation of live virtual machine
migration. 2008.

[48] F. Jensen and T. Nielsen. Bayesian Networks and Decision Graphs. New-York: Springer
Verlag, 2007.

[49] Introducing JSON. http://json.org/. Accessed: 2014-01-17.

[50] W. Gu-Yeon K. Wonyoung, M.S. Gupta and D. Brooks. System level analysis of fast,
per-core DVFS using on-chip switching regulators. In Proceedings of the IEEE 14th
International Symposium on High Performance Computer Architecture, 2008, pages 123–
134. IEEE, 2008.

[51] Z.M. Jiang K.C. Foo and B. Adams et al. Modeling the performance of Ultra-Large-Scale
systems using layered simulations. In Proceedings of the International Workshop on the
Maintenance and Evolution of Service-Oriented and Cloud-Based Systems. IEEE, 2011.

[52] W. Kohl. Backend as a service using the example of enginio a cloud service for qt. 2013.

[53] M. Kozuch and M. Satyanarayanan. Internet suspend/resume. In Proceedings of the
Workshop on Mobile Computing Systems and Applications (WMCSA’02), pages 40–46.
IEEE, 2002.

[54] M. Krieg. A Tutorial on Bayesian Belief Networks. DSTO Electronics and Surveillance
Research Laboratory, 2001.

[55] S. Bucur-V. Chipounov L. Ciortea, C. Zamfir and G. Candea. Cloud9: A Software Testing
Service. ACM SIGOPS Operating Systems Review, 43(4):5–10, 2010.

[56] Z. Huanyang L. Kangkang and W. Jie. Migration-based Virtual Machine Placement in
Cloud Systems. 2013.

[57] C. Lam. Hadoop in Action. Manning Publications Co. Greenwich, 2010.

86



[58] S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society.
Series B (Methodological) 50(2), pages 157–224, 1988.

[59] C. Stow M. Borsuk and K. Reckhow. A bayesian network of eutrophication models
for synthesis, prediction, and uncertainty analysis. Ecological Modelling, 173:219–239,
2004.

[60] V. Emeakaroha M. Maurer and I. Brandic. Cost and Benefit of the SLA Mapping Ap-
proach for Defining Standardized Goods in Cloud Computing Markets. Future Genera-
tion Computer Systems, 28:39–47, 2012.

[61] D. Marquez M. Neil and N. Fenton. Using Bayesian networks to model the operational
risk to information technology infrastructure in financial institutions. The capco institute,
Journal of financial transformation, pages 131–138.

[62] S. Masoumzadeh and H. Hlavacs. Integrating VM Selection Criteria in Distributed Dy-
namic VM Consolidation Using Fuzzy Q-Learning. In Proceedings of the 9th CNSM
2013: Workshop SVM 2013, pages 332–338, 2013.

[63] J. McKendrick. Cloud computing’s hidden green benefits, March 2011. Accessed: 2014-
03-18.

[64] I. Milho and A. Fred. A user-friendly development development tool for medical diagno-
sis based on Bayesian Networks.

[65] C. Mines. 4 reasons why cloud computing is also a green solution, July 2011. Accessed:
2014-03-18.

[66] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

[67] MSDN. Virtual machine live migration overview, 2013. Accessed: 2014-06-30.

[68] K. Murphy. An introduction to graphical models. 2001.

[69] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

[70] N. Nilsson. Introduction into Machine Learning. Stanford University, November 1998.

[71] S. Poll O. Mengshoel and T. Kurtoglu. Developing Large-Scale Bayesian Networks by
Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft.

[72] Performance of FastMath from Commons Math.
http://blog.juma.me.uk/2011/02/23/performance-of-fastmath-from-commons-math/.
Accessed: 2014-05-02.

[73] S. Ohta. Virtual Machine Placement Algorithms to Minimize Physical Machine Count.
2013.

87



[74] M. Oriol and F. Ullah. Yeti on the cloud. In Proceedings of the Third International Con-
ference on Software Testing, Verification, and Validation Workshops, pages 434––437,
2010.

[75] H. S. Gunawi P. Joshi and K. Sen. Prefail: a programmable tool for multiple-failure
injection. In Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications, pages 171–188, 2011.

[76] T. Silander P. Kontkanen, P. Myllmäki and H. Tirri. Comparing predictive inference
methods for discrete domains. In Proceedings of the Sixth Internation Workshop On
Artificial Intelligence and Statistics (Ft. Lauderdale, USA, January 1997), 1997.

[77] A. Pogosyan. vmotion virtual machines between clusters with different hosts, 2013. Ac-
cessed: 2014-04-02.

[78] W. Premchaiswadi. Bayesian Networks. InTech, 2012.

[79] R Project. http://www.r-project.org/. Accessed: 2014-03-08.

[80] J. Broberg R. Buyya and A. Goscinski. Cloud Computing. Principles and Paradigms.
John Wiley, 2011.

[81] A. Beloglazov-C. De Rose R. Calheiros, R. Ranjan and R. Buyya. CloudSim: a Toolkit for
Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource
Provisioning Algorithms. Software: Practice and Experienc, 41(1):23–50, 2011.

[82] Amazon Web Service. http://aws.amazon.com/. Accessed: 2014-02-12.

[83] Bayes Server Web Site. http://www.bayesserver.com/. Accessed: 2014-01-12.

[84] Forecast.IO Weather Web Service Web Site. http://www.forecast.io/. Accessed: 2014-
03-11.

[85] ITKO Web Site. http://www.itko.com/. Accessed: 2014-07-28.

[86] Wien Energie Web Site. http://www.wienenergie.at/. Accessed: 2014-07-11.

[87] First Quarter 2011 SPECpower ssj2008 Results. http://www.spec.org/. Accessed: 2014-
03-12.

[88] Internation Power Outage Statistics. http://earlywarn.blogspot.co.at/2013/05/international-
power-outage-comparisons.html. Accessed: 2014-06-12.

[89] A. Sykes. An Introduction to Regression Analysis. Chicago Working Paper in Law &
Economics, 1993.

[90] N. Daley T. Parveen, S. Tilley and P. Morales. Towards a distributed execution framework
for junit test cases. In Proceedings of the IEEE International Conference on Software
Maintenance 2009, pages 425––428, 2009.

88



[91] Taking R to the Limit: Parallelism and Big Data.
http://blog.revolutionanalytics.com/2010/08/taking-r-to-the-limit-parallelism-and-
big-data.html. Accessed: 2014-06-18.

[92] L. Uusitalo. Advantages and challenges of bayesian networks in environmental mod-
elling. Ecological Modelling, 203:312–318, 2007.

[93] O. Varis. Bayesian decision analysis for environmental and resource management. Envi-
ronmental Modelling and Software, 12:177–185, 1997.

[94] V. Vazirani. Approximation Algorithms. 2003.

[95] Ph. Vincke. Multicriteria decision-aid. Journal of Multi-Criteria Decision Analysis,
3(2):131, 1994.

[96] Finland Web Page of a Google’s data center located in Hamina.
http://www.google.com/about/datacenters/inside/locations/hamina/index.html. Ac-
cessed: 2014-04-05.

[97] B.T.W.-T. Chen J. Gao X. Bai, M. Li. Cloud testing tools. In Proceedings of the 6th In-
ternational Symposium on Service Oriented System (SOSE 2011), pages 373–374. IEEE,
2011.

[98] I. Yevseyeva. Solving Classification Problems with Multicriteria Decision Aiding Ap-
proaches. Jyväskylä University Printing House, 2007.

[99] M. Yue. A simple proof of the inequality FFD (L)<11/9 OPT (L)+ 1,for all l for the FFD
bin-packing algorithm. Acta Mathematicae Applicatae Sinica (English Series), 7(4):321–
331, 1991.

[100] E. Zayas. Attacking the process migration bottleneck. In Proceedings of the eleventh
ACM Symposium on Operating systems principles, volume 21, pages 13–24, 1987.

89


	Introduction
	Problem definition
	Motivation
	Contributions of the Thesis
	Structure of the thesis

	Materials and Methods
	Bayesian Networks
	Cloud computing concepts

	State of the Art
	Cloud energy management
	Cloud simulation tools

	Efficient allocation of cloud resources based on MCDA and BDA
	Methodology
	BN for a simplified problem of costs reduction
	Bayesian Network for the problem of VM migration
	Cost-aware algorithm for allocation of cloud resources

	Architecture and Implementation of Simulation Framework
	Architecture
	Implementation

	Evaluation
	Preparation of simulation environment
	Execution and analysis of scenarios
	Evaluation Summary

	Conclusions and Future Work
	Future Work

	List of Abbreviations
	Bibliography

